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ABSTRACT

Communication complexity is an area of classical computer science which studies how
much communication is necessary to solve various distributed computational problems.
Quantum information processing can be used to reduce the amount of communication
required to carry out some distributed problems. We speak of pseudo-telepathy when it
is able to completely eliminate the need for communication. The matching game is the

newest member of the family of pseudo-telepathy games. After introducing a general
model for pseudo-telepathy games, we focus on the question what the smallest size of
inputs is for which the matching game is a pseudo-telepathy game.

Keywords: Quantum pseudo-telepathy; classical and quantum winning strategies; the
matching game; local realism.

1. Introduction

Quantum information processing allows us to solve problems that we are not

able to solve in the classical world at all or at least that we are not able to solve

efficiently. This is true also in the field of communication complexity. The first

convincing evidence that quantum communication protocols can be more efficient

than classical ones was given in 1998 by Buhrman, Cleve and Wigderson [5]. They

found a problem whose quantum communication complexity is exponentially better

than classical communication complexity in the error-free model. One year later,

Raz proposed a problem for which this exponential separation holds also in the

bounded-error model [6]. Since quantum entanglement provides us with strong non-

local correlations, one can ask whether it can be used even to completely eliminate

the need for communication. Of course, we are interested only in such problems

for which this does not hold in the classical world. On one hand, the answer is

negative if we consider the standard communication complexity model [7] in which

parties compute a value of some function on their inputs and the whole result of the
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computation must become known to at least one party. Otherwise, faster-than-light

communication would be possible which would contradict the Relativity Theory. On

the other hand, if each party has its own input, computes its own output and we

are interested only in non-local correlations between the inputs and the outputs,

then the answer is positive. Such problems are often described using a terminology

of the game theory and they are usually called pseudo-telepathy games.

Apart from the fact that they can be seen as distributed problems which can be

solved without any form of direct communication between the parties, there is one

more reason to be interested in pseudo-telepathy games. They offer an alternative

way to show that the physical world is not local realistic, the result which is usually

proved using some form of the Bell inequality [2]. Locality means that no action

performed at a location A can have an instantenous (faster than light) effect at

a remote location B. Realism means that every characteristic about the physical

system that can be measured is already determined before the actual measurement.

Therefore, we can say that it exists independently of the measurement. Unfortu-

nately, the Bell inequality is not very easy to explain because it involves nontrivial

probabilistic arguments. It would be very convenient if we could demonstrate an

observable behaviour which is obviously impossible in the classical world. Pseudo-

telepathy games are of interest because some of them are very simple and one can

explain that there is no classical winning strategy for them in several minutes almost

to anyone.

In order to be able to describe what a pseudo-telepathy game is, we explain at

first what we mean by the term two party game. A two party game G is a sextuple

(X,Y,A,B, P,W ) where X,Y are input sets, A,B are output sets, P is a subset

of X × Y known as a promise and W ⊆ X × Y × A × B is a relation among the

input sets and the output sets which is called a winning condition. Before the game

begins, the parties, usually called Alice and Bob, are allowed to discuss strategy and

exchange any amount of classical information, including values of random variables.

They may also share an unlimited amount of quantum entanglement. Afterwards,

Alice and Bob are separated from each other and they are not able to communicate

any more till the end of the game. In one round of the game, Alice is given an input

x ∈ X and she is required to produce an output a ∈ A. Similarly, Bob is given

an input y ∈ Y and he is required to produce an output b ∈ B. The pairs (x, y)

and (a, b) are called a question and an answer, respectively. We say that Alice and

Bob win the round if either (x, y) /∈ P or (x, y, a, b) ∈ W . Alice and Bob win the

game if they have won all the rounds of it. A strategy of Alice and Bob is said to

be winning if it always allows them to win.

We say that a two-party game is pseudo-telepathic if there is no classical winning

strategy, but there is a winning strategy, provided Alice and Bob share entangle-

ment. The origin of this term can be explained in the following way. Suppose

that scientists who know nothing about quantum computing witness Alice and Bob

playing some pseudo-telepathy game. More precisely, suppose that the players are

very far from each other, they are given their inputs at the same time and have to

produce their outputs in time shorter than time required by light to trave1 between
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them. If Alice and Bob answer correctly in a sufficiently long sequence of rounds,

the scientists will conclude that Alice and Bob can communicate somehow. But

according to classical physics, communication between the players is impossible.

Therefore, the scientists will be made to believe that Alice and Bob are able to

communicate in the way unknown to classical physics. Now, one of possible expla-

nations will be that the players are endowed with telepathic powers. A survey of

pseudo-telepathy games can be found in [3]. The definition of these games can be

easily generalized to more than two players.

A classical strategy s for a pseudo-telepathy game G is deterministic if there are

functions sA : X → A and sB : Y → B such that for each question (x, y) ∈ X × Y ,

the only possible answer of Alice and Bob is the pair (sA(x), sB(y)). The success

ωs(G) of a deterministic strategy s is defined as the proportion of questions from

the promise P for which s produces a correct answer. Clearly, this number can by

interpreted as the probability that the strategy s succeeds on a given question which

is chosen uniformly and randomly. We denote with ωd(G) the maximal success of

a deterministic strategy for the game G:

ωd(G) = max
s

{(x, y) ∈ P | (x, y, sA(x), sB(y)) ∈ W}

|P |
. (1)

Alice and Bob can also use a classical randomized strategy for G. Any random-

ized strategy can be seen as a probability distribution over a finite set of deter-

ministic strategies. Therefore, if questions are chosen uniformly and randomly, the

probability of winning the game G using a randomized strategy cannot be greater

than ωd(G) [3].

This paper examines how successful classical players can be at the matching

game. This game is described in the next section. Classical winning strategies for

inputs of size 4 and for inputs of size 6 are proposed in Section 3. In Section 4, we

show that there is no classical winning strategy if the input size is greater than 6.

2. The Matching Game

The matching game is the youngest member of the family of pseudo-telepathy

games. It was proposed by Buhrman and Kerenidis in 2004 [4].

Definition 1

A perfect matching M on the set {0, . . . ,m− 1}, where m is even, is a partition of

this set into m
2

sets, each of cardinality 2. We define Mm as the set of all perfect

matchings on {0, . . . ,m− 1}.

2.1. The game

Alice receives a bit string x = x0x1 · · ·xm−1 and Bob receives a perfect matching

y ∈ Mm. The task for Alice is to output a string a ∈ {0, 1}⌈logm⌉. The task for Bob

is to output a set {b11 , b12} ∈ y and a string b2 ∈ {0, 1}⌈logm⌉. The players win the

round if and only if

xb11
⊕ xb12

= (b̄11 ⊕ b̄12) · (a⊕ b2) (2)
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where u · v =
⊕n

i=1(ui ∧ vi) and b̄11 , b̄12 ∈ {0, 1}⌈logm⌉. The exclusive-or operator

is applied on bits on the left side of the equation and is applied bit-wise on bit

strings on the right side. The bit string b̄11 is a binary representation of the number

b11 in which the most significant bit of b11 is preceded by k11 zero bits where

k11 = ⌈logm⌉− ⌊log b11⌋− 1. Similarly, the bit string b̄12 is a binary representation

of the number b12 .

A formal definition of the matching game is given in Table 1.

Table 1. The matching game.

X {0, 1}m where m is even
Y Mm

A {0, 1}⌈logm⌉

B {{b11 , b12} | b11 , b12 ∈ {0, 1, . . . ,m− 1}} × {0, 1}⌈logm⌉

P X × Y
W xb11

⊕ xb12
= (b̄11 ⊕ b̄12) · (a⊕ b2) ∧ {b11 , b12} ∈ y

A quantum winning strategy for the matching game and also the proof that it

always succeeds can be found in [4]. The proof of the non-existence of a classical

winning strategy for the matching game is based on the exponential separation

between quantum and classical one-way communication complexity of the hidden

matching problem [1, 4].

3. Classical Winning Strategies for m = 4 and m = 6

The above asymptotic result tells us only that for large enough inputs, there is

no classical winning strategy for the matching game. But to be able to perform

practical experiments, it is important to know exactly the smallest size of inputs

with this property. Obviously, there is a classical winning strategy for m = 2

because there is only one perfect matching on the set {0, 1}. We propose classical

winning strategies both for m = 4 and m = 6. These strategies are both obtained

as a straightforward consequence of the following lemma which tells us that for each

input size, there is a classical strategy which is winning if we properly restrict the

set of questions Alice and Bob can be given.

Definition 2 For a positive integer m, we denote with Wm the set {0} ∪ {2i | i ∈

{0, 1, . . . , ⌈logm⌉ − 1}}.

Lemma 1 Let m > 0 be an even integer. Suppose that Alice is given an input

x = x0x1 · · ·xm−1 and that Bob’s input y contains a pair {w1, w2} ⊂ Wm. If Alice

outputs the string a = (x0⊕x2⌈log m⌉−1)(x0⊕x2⌈log m⌉−2) · · · (x0⊕x1) and Bob outputs

the pair b = ({w1, w2}, 0⌈logm⌉), the players will win.

Proof. Let strm(i, j), where i, j ∈ {0, . . . , ⌈logm⌉− 1}, be the bit string of length

⌈logm⌉ such that

strm(i, j)k = 1 if k = i ∨ k = j
strm(i, j)k = 0 otherwise.
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We show that for the players’ inputs x and y, respectively, and their outputs a and

b, respectively, the equation

xw1
⊕ xw2

= (w̄1 ⊕ w̄2) · (a⊕ 0⌈logm⌉)

is satisfied. Without loss of generality, four distinct cases are sufficient to consider:

• If x0 = 0, w1 = 0 and w2 = 2j , then the right side of the equation can be

transformed in the following way:

strm(j, j) · x2⌊log m⌋−1x2⌊log m⌋−2 · · ·x1 = xw2
= xw1

⊕ xw2
,

• if x0 = 0, w1 = 2i and w2 = 2j , then the right side of the equation can be

transformed in the following way:

strm(i, j) · x2⌊log m⌋−1x2⌊log m⌋−2 · · ·x1 = xw1
⊕ xw2

,

• if x0 = 1, w1 = 0 and w2 = 2j , then the right side of the equation can be

transformed in the following way:

strm(j, j) · ¬x2⌊log m⌋−1¬x2⌊log m⌋−2 · · · ¬x1 = ¬xw2
= xw1

⊕ xw2
,

• if x0 = 1, w1 = 2i and w2 = 2j , then the right side of the equation can be

transformed in the following way:

strm(i, j) · ¬x2⌊log m⌋−1¬x2⌊log m⌋−2 · · · ¬x1 = ¬xw1
⊕ ¬xw2

= xw1
⊕ xw2

.

✷

Theorem 1 There is a classical winning strategy for the matching game for m = 4

and also for m = 6.

Proof. For m = 4, Lemma 1 gives us the following deterministic strategy:

1. For an input x = x0x1x2x3, Alice outputs a string a = a0a1 where a0 = x0⊕x2

and a1 = x0 ⊕ x1,

2. for an input y, Bob outputs a pair ({w1, w2}, 00) where {w1, w2} ⊂ {0, 1, 2}

and {w1, w2} ∈ y.

This strategy is depicted in Figure 1.

It follows from Lemma 1 that each deterministic strategy which satisfies simul-

taneously the following conditions succeeds for all possible inputs of size 6:

1. For an input x = x0x1 · · ·x5, Alice outputs a string a = a0a1a2 where a0 =

x0 ⊕ x4, a1 = x0 ⊕ x2 and a2 = x0 ⊕ x1,

2. for an input y, Bob outputs a pair ({w1, w2}, 000) where {w1, w2} ⊂ {0, 1, 2, 4}

and {w1, w2} ∈ y.
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Figure 1: Classical winning strategy for m = 4.

x sA(x)
0000, 0001, 1110, 1111 00
0100, 0101, 1010, 1011 01
0010, 0011, 1100, 1101 10
1000, 1001, 0110, 0111 11

y sB(y)
{{0, 1}, {2, 3}} ({0, 1}, 00)
{{0, 2}, {1, 3}} ({0, 2}, 00)
{{1, 2}, {0, 3}} ({1, 2}, 00)

Figure 2: Classical winning strategy for m = 6.

x sA(x)
000000, 000001, 000100, 000101,
111010, 111011, 111110, 111111 000
000010, 000011, 000110, 000111,
111000, 111001, 111100, 111101 100
001000, 001001, 001100, 001101,
110010, 110011, 110110, 110111 010
001010, 001011, 001110, 001111,
110000, 110001, 110100, 110101 110
010000, 010001, 010100, 010101,
101010, 101011, 101110, 101111 001
010010, 010011, 010110, 010111,
101000, 101001, 101100, 101101 101
011000, 011001, 011100, 011101,
100010, 100011, 100110, 100111 011
011010, 011011, 011110, 011111,
100000, 100001, 100100, 100101 111

y sB(y)
{{0, 1}, {2, 3}, {4, 5}},
{{0, 1}, {2, 5}, {3, 4}} ({0, 1}, 000)
{{0, 2}, {1, 3}, {4, 5}},
{{0, 2}, {1, 5}, {3, 4}} ({0, 2}, 000)
{{0, 4}, {1, 2}, {3, 5}},
{{0, 4}, {1, 3}, {2, 5}},
{{0, 4}, {1, 5}, {2, 3}} ({0, 4}, 000)
{{0, 3}, {1, 2}, {4, 5}},
{{0, 5}, {1, 2}, {3, 4}} ({1, 2}, 000)
{{0, 2}, {1, 4}, {3, 5}},
{{0, 3}, {1, 4}, {2, 5}},
{{0, 5}, {1, 4}. {2, 3}} ({1, 4}, 000)
{{0, 1}, {2, 4}, {3, 5}},
{{0, 3}, {1, 5}, {2, 4}},
{{0, 5}, {1, 3}, {2, 4}} ({2, 4}, 000)
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One possible winning strategy for inputs of size 6 is depicted in Figure 2.

✷

4. Classical Winning Strategies for m ≥ 8

This section investigates whether there is a classical winning strategy for the

matching game for m ≥ 8. The task is carried out using some pieces of knowledge

from the graph theory. Therefore, we begin this section with several necessary

definitions regarding graphs and their properties.

Definition 3 A (undirected) graph G is an ordered pair G = (V,E) where V is a

set of vertices and E is a set of two-element sets of vertices. These sets are called

edges.

Definition 4 Let G = (V,E) be a graph. A path in G is a sequence v0, v1, . . . , vn,

where n is a non-negative integer, of mutually different vertices such that for each

i ∈ {0, . . . , n− 1}, it holds that {vi, vi+1} ∈ E.

Definition 5 Let G = (V,E) be a graph. The distance dG(u, v) of vertices u, v ∈ V

in G is the smallest number n for which there is a path v0, v1, . . . , vn in G such that

v0 = u and vn = v.

Definition 6 Let G = (V,E), G′ = (V ′, E′) be graphs. We say that G′ is a

subgraph of G if V ′ ⊆ V and E′ ⊆ E. Moreover, G′ is said to be an induced

subgraph of G if for any vertices u, v ∈ V ′, it holds that {u, v} ∈ E′ if and only if

{u, v} ∈ E.

Definition 7 Let G = (V,E) be a graph and let G′ = (V ′, E′) be its induced

subgraph such that V ′ 6= ∅. We say that G′ is a connected component (or only

component) in G if the following two conditions hold simultaneously:

1. There are no vertices u ∈ V ′ and v ∈ V \ V ′ such that {u, v} ∈ E,

2. for any vertices u, v ∈ V ′, there is a path v0, v1, . . . , vn in G′ such that v0 = u

and vn = v.

Definition 8 Let G = (V,E) be a graph. We say that G has cardinality (has size)

n if |V | = n.

Now we will proceed in the following way. At first, we assign to each classical

deterministic winning strategy s a set of bit strings of length m and a set of subsets

of cardinality 2 of the set {0, 1, . . . ,m−1}. Then we examine properties of these sets

and show that for m ≥ 8 such sets cannot exist. We conclude that for m ≥ 8, there

is no classical deterministic winning strategy. Since by fixing random variables we

can turn any classical randomized winning strategy into a deterministic one, this

means that there is no classical winning strategy at all.

Definition 9 Let s be any classical deterministic strategy for the matching game

for some m. We define a graph Gs = (V,Es) where V = {0, 1, . . . ,m− 1} and Es

is the set of all elements of the set W = {{i, j} | i, j ∈ {0, 1, . . . ,m− 1}} which Bob

produces as a part of at least one of his outputs using the strategy s.
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Lemma 2 Let m > 0 be an even integer. Suppose that there is a classical deter-

ministic winning strategy s for the matching game for m. Then there is a set R of

bit strings of length m such that the following conditions hold simultaneously:

1. |R| ≥ 2m

2⌈log m⌉ ,

2. the graph Gs contains a component of cardinality greater than m
2
,

3. for each {i, j} ∈ Es, the parity of bits on positions i and j is the same for

every r ∈ R.

Proof.

1. There are 2m possible inputs and 2⌈log m⌉ possible outputs for Alice. There-

fore, there are at least 2m

2⌈log m⌉ inputs for which Alice produces the same output

using s. We take as the set R some set of Alice’s inputs with this property

whose cardinality is at least 2m

2⌈log m⌉ .

2. Let us admit that the graph Gs does not contain a component of cardinality

greater than m
2
. We show that there is at least one Bob’s input for which

the strategy s is not defined. In other words, we show that there is a perfect

matching y on the set {0, 1, . . . ,m− 1} such that for each {i, j} ∈ y, i and j

are in different components of Gs. This result provides us with a contradiction

because the strategy s is deterministic.

Let C1, . . . , Ck be all the components of the graph Gs. Suppose without loss

of generality that for each i ∈ {1, . . . , k − 1}, the component Ci has greater

or equal cardinality than the component Ci+1. We describe a simple proce-

dure to construct the perfect matching y. We begin with y = ∅. Then we

repeat as long as possible the following step. We try to find the greatest index

j ∈ {2, . . . , k} such that the component Cj contains a vertex which has not

been inserted in y so far. Let us denote with u1, . . . , ul all the vertices from Cj

with this property. Since the component Cj−1 has greater or equal cardinal-

ity than the component Cj and we proceed from components of smaller size

to components of greater size, there certainly are mutually different vertices

v1, . . . , vl in Cj−1 which have not been inserted in y so far. Now for each

i ∈ {1, . . . , l}, we insert the set {ui, vi} in y. If we are not able to find the

index j, two possible cases can be distinguished. If the component C1 does

not contain a vertex which has not been inserted in y so far, then there is

nothing more to do. On the contrary, if C1 contains 2i vertices, where i is a

non-negative integer, with this property, we remove i sets of vertices from y,

assign the vertices from C1 to vertices from the removed pairs and insert the

sets we have obtained in y. In both cases we get the perfect matching y which

gives us the desired contradiction.

3. Let x, x′ be any elements of R and let {b11, b12} be any element of Es. If Bob’s

input is y ∈ Y such that sB(y) = ({b11 , b12}, b2), for some b2, the right side

of the equation (2) will be the same both for x and x′. Since s is a winning
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strategy, it follows that the parity of bits on positions b11 and b12 is the same

both for x and x′. Since x and x′ has been arbitrarily chosen from R, the

parity of bits on positions b11 and b12 has to be the same for all elements of

R. This holds for all pairs of positions from Es because the set {b11 , b12} has

been arbitrary as well.

✷

Our goal is to show that for m ≥ 8, the sets R and Es from Lemma 2 cannot

exist. For this purpose, we slightly modify the definition of the graph colouring

problem.

Definition 10 Let G = (V,E) be a graph and let h : E → {0, 1} be a function. We

say that G is colourable according to h if there is a function c : V → {0, 1} such

that for each {u, v} ∈ E it holds that c(u)⊕ c(v) = h({u, v}). The function c is said

to be a colouring of the graph G according to h.

Lemma 3 The last condition from Lemma 2 holds for a set R of bit strings of

length m and a set T of elements of the set W = {{i, j} | i, j ∈ {0, 1, . . . ,m − 1}}

if and only if there is a function h : T → {0, 1} for which |R| various colourings of

the graph G = (V, T ), where V = {0, 1, . . . ,m− 1}, according to h exist.

Proof. (⇒) Suppose that for a set R of bit strings of length m and a set T of

elements of the set W , the last condition from Lemma 2 holds. We intend to find a

function h : T → {0, 1} for which |R| various colourings of the graph G according to

h exist. Let r be any element of R. The function h is defined by h({u, v}) = ru⊕rv,

for each {u, v} ∈ T . Since every r ∈ R can be transformed to a colouring cr of the

graph G according to h by cr(u) = ru, where u ∈ V , |R| various colourings of G

according to h exist.

(⇐) Suppose that there is a function h : T → {0, 1} such that k various colour-

ings of the graph G = (V, T ), where V = {0, 1, . . . ,m − 1}, according to h exist.

We intend to find a set R, where |R| = k, of bit strings of length m such that the

last condition from Lemma 2 holds for the sets R and T . We define this set as

R = {c(0)c(1) · · · c(m− 1) | c is a colouring of G according to h.}. The last condi-

tion from Lemma 2 holds because for each {i, j} ∈ T , ri ⊕ rj = h({i, j}) for every

r ∈ R. ✷

Corollary 1 Let m > 0 be an even integer. In order to show that there is no

classical deterministic winning strategy for the matching game for m, it suffices

to show that there are no graph G = (V,E), where |G| = m, and no function

h : E → {0, 1} such that the following conditions hold simultaneously.

1. There are at least 2m

2⌈log m⌉ colourings of G according to h,

2. G contains a component of cardinality greater than m
2
.

In the rest of this section, the following simple statement will be useful.

Lemma 4 Let G = (V,E) be a graph and let h : E → {0, 1} be a function. If G is

colourable according to h, then there are exactly 2k colourings according to h where

k is a number of components of G.
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Proof. Suppose that there is a colouring c of the graph G according to h. It

suffices to show that for any component C = (V ′, E′) of G, there are exactly 2

colourings of C according to h. Since the events of colouring mutually different

components of G according to h are independent, this gives us the desired result.

If C contains only one vertex, the statement holds trivially because we can

assign either 0 or 1 to the only vertex of C. Suppose further that C contains k > 1

vertices. By restricting the colouring c to the component C only, we obviously obtain

a colouring of C according to h. Let us denote this restricted colouring with cr. It is

straightforward to see that a function c′r : V ′ → {0, 1} defined as c′r(u) = ¬cr(u) is

also a colouring of C according to h. Now consider any colouring q of C according

to h and any vertices u, v ∈ V ′. Clearly, it holds that either q(u) = cr(u) or

q(u) = c′r(u). Suppose without loss of generality that the first possibility has

occurred. We intend to show, using induction on the distance dC(u, v) of the vertices

u, v in C, that also q(v) = cr(v). This is certainly true for dC(u, v) = 0 because

then u = v. Now suppose that dC(u, v) = n > 0 and that the equality holds for

each vertex w ∈ V ′ such that dC(u, v) = n− 1. There is a path v0, v1, . . . , vn in C

such that v0 = u and vn = v. Since the equation q(vn−1)⊕ q(v) = h({u, v}) has to

be satisfied, it follows with the help of the induction hypothesis that

q(v) = h{u, v} ⊕ q(vn−1) = h{u, v} ⊕ cr(vn−1) = cr(v).

We have shown that if the colouring q agrees with the colouring c on some vertex

from C, then the two colourings agree on each vertex from C. A similar result can

be obtained for the case of q(u) = c′r(u). Consequently, we can conclude that either

d = cr or d = c′r. ✷

Theorem 2 Let m ≥ 8 be an even integer. There are no graph G = (V,E), where

|G| = m, and no function h : E → {0, 1} such that the following conditions hold

simultaneously.

1. There are at least 2m

2⌈log m⌉ colourings of G according to h,

2. G contains a component of cardinality greater than m
2
.

Proof. Let G = (V,E), where |G| = m, be a graph and let h : E → {0, 1} be a

function. Suppose that there are at least 2m

2⌈log m⌉ colourings of G according to h.

We show that the other condition cannot hold.

From the previous lemma we can conclude that the graph G is composed at least

of m − ⌈log m⌉ components. Since G contains a component of cardinality greater

than m
2
, it contains at most m−2

2
components composed of a single vertex. This

indicates that G is composed at most of m
2
components. It is easy to verify that for

m ≥ 8, m
2
< m− ⌈log m⌉. Therefore, if m ≥ 8, the graph G cannot exist. ✷

5. Conclusions and Open Problems

In the present text, we have described a general model for pseudo-telepathy

games and a pseudo-telepathy game called the matching game. We have dealt

with the problem what the smallest size of inputs, denoted as m, is for which the

10



matching game is pseudo-telepathic. We have found classical winning strategies for

m = 4 and m = 6. Also, we have shown that there is no classical winning strategy

for m ≥ 8.

Since the matching game is the youngest pseudo-telepathy game, it is known

very little about it so far. For example, we still do not know any nontrivial upper

bound for the success of the best possible classical strategy for m ≥ 8. This is

of importance because due to erroneous measurements, it is unavoidable that Alice

and Bob will not be perfect in real experiments. If they try to show that the physical

world is not local realistic, it will have to be sufficient that they are significantly

better than classical players could ever be. Obviously, the better Alice and Bob are

than classical players, the more convincing the experiment is.
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