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ABSTRACT

In order to represent, compute and reason with advanced data types one must go
beyond the traditional treatment of data types as being inductive types and, instead,
consider them as inductive families. Strictly positive types (SPTs) form a grammar for
defining inductive types and, consequently, a fundamental question in the the theory of
inductive families is what constitutes a corresponding grammar for inductive families.
This paper answers this question in the form of strictly positive families or SPFs. We
show that these SPFs can be used to represent and compute with a variety of advanced
data types and that generic programs can naturally be written over the universe of SPFs.

1. Introduction

The search for an expressive calculus of data types in which canonical algorithms
can be easily written and proven correct has proved to be an enduring challenge
to the theoretical computer science community. Ideally, we want a calculus of data
types which allows programs to be written in a natural style and which also has a
clear semantic foundation so as to justify principles for reasoning about such pro-
grams. Approaches such as polynomial types, strictly positive types and inductive
types have all met with much success but they tend not to cover advanced data
structures, e.g. types with variable binding such as untyped λ-terms, types with
constraints such as square matrices and dependent types such as the type of finite
sets.
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Our first key observation is that in order to represent, compute and reason with
such advanced data types one must go beyond the traditional treatment of data
types as being inductive types and, instead, consider them as inductive families. To
understand this, consider as an example the natural numbers which is an inductive
type Nat : ?. Going further, one may next consider the list type constructor List :
? → ?. Notice that, crucially, List A is an inductive type and does not depend upon,
i.e. can be defined independently of, List B for any A 6= B . Thus, List is a family
of inductive types indexed by the type of small types.

In contrast to the family of inductive types List, consider Fin : Nat → ? which
is defined inductively by the constructors

fz : Fin (s n) fs : Fin n → Fin (s n)

Concretely, Fin n represents the finite type with n elements, fz and fs are the zero
and successor of these types where fz exists in every non-empty Fin type and fs

embeds elements of Finn into Fin (sn). In effect the type Fin (s (s (s z))) contains
elements that look much like 0,1 and 2: fz, fs fz and fs (fs fz), later in the paper
we will use the type Finn to index into collections of n items. The key point is
that, unlike the case with lists, the type Finn cannot be defined in isolation and
with recourse only to the elements of Finn that have already been built. Rather,
we need elements of the type Finn to build elements of Fin (sn) etc. In effect, the
Nat-indexed family Fin : Nat → ? has to be inductively built up simultaneously for
every n and is thus an inductive family of types rather than a family of inductive
types.

Our interests are in total programming and concrete data types so we avoid
negative occurrences in definitions and the pathological issues raised by non-strict
positivity by concentrating on the strictly positive. Strictly positive types form a
grammar for defining inductive types and, consequently, a fundamental question in
the theory of inductive families is what is a corresponding grammar for inductive
families. This paper answers this question in the form of strictly positive families
or SPFs. In detail, the contributions of this paper are:

• We show that these SPFs are expressive in that they can be used to represent
and compute with a variety of advanced data types. To do this we define a
number of SPFs, and programs which manipulate them, in the programming
language Epigram.

• We define a data type whose elements are names, or codes, of strictly posi-
tive families and a decoding function which assigns to each code, the actual
elements of the type it represents. This construction is an example of a uni-
verse [20, 24] and allows us to write generic programs for SPFs by simply
writing programs which manipulate this universe.

• We also consider a smaller universe of regular families, which is the depen-
dent counterpart of the universe of regular tree types. This smaller universe
which excludes infinitely branching trees is interesting because it allows more
programs including a generic program to decide equality.
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• We give a full implementation of all our constructions in Epigram which is
a dependently typed programming language [22, 21, 6]. Not only does Epi-
gram provide a language to implement SPFs, but SPFs are also sufficiently
expressive to provide a meta-language for Epigram’s data types.

Therefore this paper will appeal to those interested in the theory of data types,
generic programming and type theory. In particular, we are interested in the rela-
tionship between indexed containers with shapely types.

Related Work: Generic programming within the functional programming, es-
pecially in the language Haskell, had many successes with a succession of systems
such as PolyP [16, 17] and Generic Haskell [8, 19] proving very popular the latter
being based on the work of Hinze [12], who with Peyton-Jones [13] implemented
the widely employed ‘deriving’ mechanism for Haskell from a similar idea. It is
our intention to show that while these systems are extensions on top of an existing
language with dependent types generic programming can be implemented inside
the system. Indeed Altenkirch and McBride [4] showed how to simulate Generic
Haskell like generics within an Epigram-like system. This paper serves to show that
similar techniques extend to dependent data-structures. More recent developments
in generic programming with Haskell have exploited the addition of generalized
algebraic data-types (GADTs) [18] to some versions of the language to implement
some of the techniques used by the dependently typed programming community, the
Scrap Your Boilerplate [14, 15] work and Weirich’s RepLib [25] show some promise,
but ultimately the benefits from having full dependent types are great, the con-
structions in the first half of this paper deal with Haskell-like data-types but cannot
be translated into a language with only GADTs.

This work is an extension of previous work with a universe of regular tree
types [23], a proper sub-set of the strictly positive types. We will revisit this work
in the first section of this paper. Others have exploited universes for generic pro-
gramming purposes, for instance Dybjer and Setzer’s axiomatization’s of induction
recursion [10, 11] have been the inspiration for advances in generic programming [7]
within the AGDA [9] system.

Structure of the Paper: The rest of the paper is structured as follows: Since
our use of dependent types and universes are a novel approach to the theory of
data types, we begin in section 2 by reviewing the construction in Epigram of the
universe of SPTs and the use of this universe in providing a framework for generic
programming. In section 3 we discuss the elements of the grammar of SPFs, while in
section 4 we give a variety of examples of SPFs and discuss the composition of SPFs.
In section 5, we give a number of generic programs for SPFs while section 6 shows
that every SPF is an indexed container. In section 7, we conclude with some final
remarks. Finally, if possible, we ask readers to print this paper in colour as we have
used the Epigram colouring scheme to improve legibility of code. For example,
constructors always occur in red, type constructors in blue, defined constants in
green etc.
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2. SPTs, Epigram and Universes

We begin the paper by recalling strictly positive types, their implementation in
Epigram and the representation of the type of strictly positive types as a universe
in Epigram. The rest of the paper will apply this treatment to the more advanced
strictly positive families.

We introduce strictly positive types (SPTs) by way of a generative grammar as
follows:

τ = X | 0 | 1 | τ + τ | τ × τ | K → τ | µX.τ

where X ranges over type variables, 0 and 1 represent the empty and unit types,
the operators + and × stand for disjoint union and cartesian product. If K is a
constant type (an SPT with no free type variables) then K → − is exponentiation
by that constant. Finally the least fixed point operator (µ) creates recursive types
by binding a type variable. Examples of SPTs include the natural numbers, lists,
rose trees and ordinal notations:

Nat = µX.1 + X

List A = µX.1 + (A×X)

RT A = µY.A× List Y

= µY.A× (µX.1 + (Y ×X))

Ord = µX.1 + (X + (Nat → X))

The first three examples, which don’t use exponentiation are regular tree types
which are a proper subset of strictly positive types.

SPTs have traditionally been used as part of the semantics of programming lan-
guages and, for such applications, the informal grammar given above is adequate.
However, in order to reason about and to program with SPTs, we need a formal
definition of SPTs. For this reason we define a type SPT n whose elements consist
of the names or codes of SPTs and a decoding function which computes the elements
of an SPT. This construction forms a universe for SPTs so that generic program-
ming with SPTs can then be achieved by writing programs which manipulate this
universe. This construction of a universe of SPTs requires a dependently typed
programming language and we now give a summary of one such language, namely
Epigram.

2.1. Epigram

Epigram is a dependently typed functional language with an interactive environ-
ment for developing programs with the aid of the type checker. Epigram’s syntax
is based on Type Theory, using λx :A ⇒ t for λ abstraction, ∀x :A ⇒ t for Π-types
and ∃x : A ⇒ t for Σ-types. All type annotations can be omitted when inferable
by the context. ? stands for the type of types which is implicitly stratified, i.e. we
have ?i : ?i+1 but omit the indices.

All Epigram programs are total to ensure that type checking is decidable. We
ensure this by only allowing structural recursion. Programs are presented as decision
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trees, representing the structure of the analysis of the problem being solved. Each
node consists of a left-hand side of a pattern match defining the problem to be
solved plus one of three possible right-hand sides:

⇒ t the function returns t , an expression of the appropriate type, constructed
over the pattern variables on the left;

⇐ e the function’s analysis is refined by e, an eliminator expression, or ‘gad-
get’, characterizing some scheme of case analysis or recursion, giving rise to a
number of sub nodes with more informative left-hand sides;

|| w the sub nodes’ left-hand sides are to be extended with the value of w , some
intermediate computation, in an extra column: this may then be analysed in
addition to the function’s original arguments.

In this paper we need only two ‘by’ gadgets, rec which constructs the structural
recursive calls available to the programmer, and case which applies the appropriate
derived case analysis principle and introduces a set of more informative patterns in
the sub-nodes. We will use the convention that we suppress the use of case when
its presence is inferable from the presence of constructors in the patterns. We will
always be explicit about which input we are being structurally recursive on.

Epigram’s data types are presented by declaring their formation rules and con-
structors in natural deduction style as are the types of functions. In these rules,
arguments whose types are inferable can be omitted for brevity. Here are the natural
numbers and addition in Epigram:

data
Nat : ?

where
z : Nat

n : Nat
s n : Nat

let m,n : Nat
plus m n : Nat

; plus m n ⇐ rec m
plus z n ⇒ n
plus (s m) n ⇒ s (plus m n)

We can then define types which are dependent on the natural numbers such as
the finite types and vectors (lists of a given length) and a safe projection using the
finite types to ensure there are only as many indexes as elements in the array - the
nil case doesn’t appear since Fin z is uninhabited. In this example, the correctness
by construction ideal is achieved by means of type checking, but this could only be
done because of the extra sophistication of dependent types.

5



data n : Nat
Fin n : ?

where
fz : Fin (s n)

i : Fin n
fs i : Fin (s n)

data A : ? n : Nat
Vec n A : ?

where
ε : Vec z A

as : Vec n A a : A
as::a : Vec (s n) A

let as : Vec n A i : Fin n
as!!i : A ; as!!i ⇐ rec i

(as::a)!!fz ⇒ a
(as::a)!!(fs i) ⇒ as!!i

Any universe to capture the strictly positive families would need to include these
examples, but shouldn’t be limited to Nat indexed families.

2.2. A Universe for Strictly Positive Types

data n : Nat
SPT n : ?

where
vz : SPT (s n)

T : SPT n
vsT : SPT (s n)

‘0’ : SPT n
S ,T : SPT n

S ‘+’T : SPT n ‘1’ : SPT n

S ,T : SPT n
S ‘×’T : SPT n

K : ? T : SPT n
K ‘→’T : SPT n

F : SPT (s n)
‘µ’ F : SPT n

data n : Nat
Tel n : ?

where
ε : Tel z

~T : Tel n T : SPT n
~T ::T : Tel (s n)

data
~T : Tel n T : SPT n

El ~T T : ?
where

e : El ~T T
top e : El (~T ::T ) vz

e : El ~T T
pop e : El (~T ::S ) (vsT )

f : K → El ~T T
fun f : El ~T (K ‘→’T )

void : El ~T ‘1’
s : El ~T S

inl s : El ~T (S ‘+’T )
t : El ~T T

inr t : El ~T (S ‘+’T )

s : El ~T S t : El ~T T
pair s t : El ~T (S ‘×’T )

e : El (~T ::‘µ’ F ) F
in e : El ~T (‘µ’ F )

Figure 1: The SPT Universe

The traditional, informal, definition of SPTs given above is insufficent when we
want to write generic programs which manipulate SPTs.

Codes for SPTs: To address this issue, we represent the syntax of SPTs with
n free type variables by the Epigram type SPT n, see figure 1. We use de Bruijn
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notation to represent type variables - with vz and vs as the zero and successor for
variables. The empty type 0 and unit type 1 are represented by ‘0’a and ‘1’ while
sums and products of SPTs are represented using the SPT constructors ‘+’ and
‘×’ . Finally, note that the fix-point constructor ‘µ’ reduces the number of free
type variables by 1 because the last variable has been bound. In summary, SPT n
represents names or codes for SPTs.

Here are the codes for the four examples above.

let ‘Nat’ : SPT z ; ‘Nat’ ⇒ ‘µ’ (‘1’ ‘+’ vz)

let ‘List’ : SPT (s z) ; ‘List’ ⇒ ‘µ’ (‘1’ ‘+’ ((vs vz) ‘×’ vz))

let ‘RT’ : SPT (s z)

‘RT’ ⇒ ‘µ’
(

(vs vz)
‘×’ (‘µ’ ((‘1’ ‘+’ ((vs vz) ‘×’ vz))))

)
let ‘Ord’ : SPT z

‘Ord’ ⇒ ‘µ’ (‘1’ ‘+’ (vz ‘+’ (Nat ‘→’ vz)))

Interpretation of SPTs: Recall that so far we constructed, for each SPT con-
taining (at most) n type variables, a name or code which is an expression of type
SPT n. Thus we have a data type that represents the syntax of SPTs. Of course,
there is no guarantee that ‘0’ behaves like the empty type or that S ‘+’T behaves
like the sum of S and T .

In order to ensure that the codes for SPTs behave as intended, we give an in-
terpretation El which intuitively assigns, to each code T : SPT n and appropriate
n-tuple of inputs, the type of elements of the actual SPT. In order that this con-
struction can be formalised within the universe of SPTs, we require each input to
be an SPT. Further, the interpretation of fixed points shows that the n + 1’th SPT
must be able to depend on the previous n-SPTs. Such an input is called a telescope
and we therefore introduce the type of telescopes of length n which we denote Tel n.

Then, given a type T : SPT n and a matching telescope ~T : Tel n we define
the type of elements El ~T T . The idea is that, for example, El ~T ‘1’ will really have
one element showing that ‘1’ really is the unit type, and that El ~T (S ‘+’T ) really
is the sum of El ~T S and El ~T T . The universe of SPTs thus consists of the codes
given by SPT and the intended meanings of these codes given by El. See Figure 1
for the full definition of this universe.

2.3. Generic Map

As our first example of a generic program, we shall present a generic map op-
eration for all SPTs by using the universe of SPTs. We shall define this by first
considering morphisms between telescopes. Had a telescope of length n been an
n-tuple of types, a morphism between two telescopes of length n would have been

aThe quotes here have no semantic significance, but rather remind the reader that this is a
code.
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an n-tuple of functions between the associated types. However, since an SPT in a
telescope can depend upon the previous SPTs in a telescope, this information must
also be taken into account as is shown in the mF constructor for morphisms.

In the mu case we would like to have:

gMap φ (in x ) ⇒ gMap (mF φ (gMap φ)) x

However, the nested recursive call is not guaranteed to be structurally recursive
since it could be eventually applied to anything - hence this definition would be
rejected by Epigram. To solve this problem, we introduce a third constructor for
morphisms mU φ which stands for extending φ by gMap φ as follows.

data
~S , ~T : Tel n

Morph ~S ~T : ?
where φ : Morph ~S ~T f : El ~S S → El ~T T

mF φ f : Morph (~S ::S ) (~T ::T )

mI : Morph ~S ~S
φ : Morph ~S ~T

mU φ : Morph (~S ::T ) (~T ::T )

We now have the following, obviously structural definition for gMap:

let φ : Morph ~S ~T x : El ~S T
gMap φ x : El ~T T

gMap φ x ⇐ rec x
gMap (mF φ f ) (top x ) ⇒ top (f x )
gMap (mU φ) (top x ) ⇒ top (gMap φ x )
gMap mI (top x ) ⇒ top x
gMap (mF φ f ) (pop x ) ⇒ pop (gMap φ x )
gMap mI (pop x ) ⇒ pop x
gMap (mU φ) (pop x ) ⇒ pop (gMap φ x )
gMap φ void ⇒ void
gMap φ (inl x ) ⇒ inl (gMap φ x )
gMap φ (inr x ) ⇒ inr (gMap φ x )
gMap φ (pair x y) ⇒ pair (gMap φ x ) (gMap φ y)
gMap φ (fun f ) ⇒ fun (λk ⇒ gMap φ (f k))
gMap φ (in x ) ⇒ in (gMap (mU φ) x )

In our work on the regular tree types [23], ie those SPTs which are finitely
branching, we present a number of other algorithms in this style including a decid-
able equality. Types in the SPT universe do not have such an equality since they
permit infinite branching - for example there is no such decidable equality function
for the ordinals ‘Ord’. It is clear that the larger the universe of types the fewer
generic operations we may define. In a system of generic programming it is con-
ceivable that we would need a number of successively larger universes to cope with
this trade off.

We now turn to the central question of this paper. That is, can we find a
grammar of SPFs for inductive families similar to the grammar of SPTs for inductive
types? Further, can we construct a universe for SPFs which allows us to program
generically with SPFs?
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3. Strictly Positive Families

Recall that our central motivation for studying inductive families is that induc-
tive types cannot capture advanced data types such as Fin and Vec above. Another
nice example of an inductive family is the type of untyped λ-terms in n free vari-
ables, which can be defined as follows using de Bruijn indices to refer to variable:

data n : Nat
Lam n : ?

where i : Fin n
var i : Lam n

f , a : Lam n
app f a : Lam n

b : Lam (s n)
abs b : Lam n

Recall that SPTs were essentially constructed as fixed points of polynomials
but, rather surprisingly, SPFs are actually not constructed from polynomials. This
is because the fundamental structure of families lies in the indexes which were
not present in the SPT case. We call a indexed family of types F : O → ? an
O-indexed family — in our examples so far we have looked only at Nat-indexed
families although, in general, O can be any type. If t :F o, we say that t is indexed
by o.

Instead of coding O → ?, we choose to keep the function spaces and replace ?

by a universe of indexed strictly positive types ISPT. The type of ISPTs will be
similar to that for SPTs, except each input will require an index type:

data
~I : Vec n ?
ISPT ~I : ?

Families are represented as functions from the output index to an ISPT over the
families input index types:

let
~I : Vec ? n O : ?

SPF ~I O : ?
; SPF ~I O ⇒ O → ISPT ~I

Our intuition is that each element of SPF ~I O will represent an SPF which
takes as input families whose indexes are in ~I and will return a family indexed by
O . We choose to create these definitions mutually, so we can refer to SPF in the
constructors of ISPT.

As with SPTs, we also define an interpretation for ISPTs which gives rise to an
interpretation for families. As before the crucial ingredient in for this interpretation
is the type of telescopes Tel which contain families indexed by the types contained
in ~I :

data
~I : Vec ? n

Tel ~I : ?
where

ε : Tel ε
~T : Tel ~I T : SPF ~I I

(~T ::T ) : Tel (~I ::I )

The type of the interpretation is then:

data T : ISPT ~I ~T : Tel ~I
JT K~T : ?

for ISPTs and we also lift this to families in the obvious way:

let F : SPF ~I O ~T : Tel ~I o : O
JF K~T o : ?

; JF K ~T o ⇒ JF oK~T
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Again for convenience we refer to this function in the definition of J− K.
The base constructors of ISPT are the constant types ‘0’ and ‘1’ as before, these

give rise to families which are empty and contain one element at each possible index.
We can exploit the fact that codes for families are a function space to transform

codes by composition with out adding syntax, given a code F : SPF ~I O and a
function f :O ′ → O we can form F .f :SPF ~I O ′. The meaning of this is clear, an
element of this new family indexed at o′ : O ′ is an element of F indexed at (f o′)
i.e. JF .f K ~I o′ is definitional equal to JF K ~I (f o′).

An example of a construction like this can be seen in the abs constructor for
Lam which could alternatively been defined by composing the recursive reference to
Lam with s:

b : (Lam.s) n
abs b : Lam n

While composition has no syntax, there are two related constructions which will
and they deal with the cases that arise if we combine an O indexed family with a
function of type O → O ′ to create an O ′ indexed family. There are two ways to do
this and we denote the ‘Σ’ and ‘Π’ since they correspond to dependent tuples and
dependent functions. To see an example of the first consider the fs constructor of
Fin:

i : Fin n
fs i : Fin (s n)

Here, unlike the abs example we are placing a requirement on the index to the
family we are creating, the function is in the opposite direction, in some sense. We
can alter this definition so that it applies to all indexes n : Nat by using Epigram’s
dependent tuples (∃) and built-in equality:

i : ∃n ′ :Nat ⇒(sn ′=n)×Fin n ′

fs i : Fin n

We formalise this construction for SPFs by adding this constructor to ISPT:

f : O → O ′ T : SPF ~I O o′ : O ′

‘Σ’f T o′ : ISPT ~I

The interpretation reflects the idea contained in the alternative fs construction:

v : ∃o :O ⇒(f o=o′)×JT K~T o
σ v : J‘Σ’f T o′K~T

While in the fs example there is only one possible value for n ′ in the general
construction this is not the case, there is often a choice of possible indexes that
satisfy the equation, where ‘Σ’ selects on one these possibilities ‘Π’ considers all
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such possibilities:

f : O → O ′ T : SPF ~I O o′ : O ′

‘Π’f T o′ : ISPT ~I

~v : ∀o :O ⇒(f o=o′) → JT K~T o
π ~v : J‘Σ’f T o′K~T

We will come across examples of ‘Π’ families later. Note that ‘Σ’, composition and
‘Π’ are very closely related, in fact ‘Σ’ is the left adjoint of composition and ‘Π’ is
its right adjoint.

We can also take the fixed point of a family as before, so we have this construct
of ISPT:

F : SPF (~I ::O) O o : O
‘µ’ F o : ISPT ~I

v : JT K(~T ::(‘µ’ T )) o
in v : J‘µ’ T oK~T

Note that the family we add to the interpreting telescope leaves off the top index
since ‘µ’ F o is an ISPT ~I but ‘µ’ F is and SPF ~I O , this is a useful pattern and
also applies to ‘Π’ and ‘Σ’.

Finanlly, we add variables, these resemble the the simple typed SPT variables,
except that Tel now contains families, so at a vz code we must provide the index at
which to interpret the top of the context:

i : I
vz i : ISPT (~I ::I )

T : ISPT ~I
vsT : ISPT (~I ::I )

v : JT K~T i
top v : Jvz iK(~T ::T )

v : JT K~T
pop v : JvsT K(~T ::S )

The full definition of SPF is given in figure 2.

4. Examples of SPFs

To give examples of data types in this universe, it is very useful to first define
some auxiliary combinators for Cartesian product and disjoint union.

let A,B : ISPT ~I
A ‘+’B : ISPT ~I

; A ‘+’B ⇒ ‘Σ’(λx ⇒())
(

λ
fz ⇒A

(fs fz)⇒ B

)
()

let a : JAK~T
inl a : JA ‘+’BK~T

; inl a ⇒ σ (fz; refl; a)

let b : JBK~T
inr b : JA ‘+’BK~T

; inr b ⇒ σ (fs fz; refl; b)
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ISPT and SPF codes:

let
~I : Vec n ? O : ?

SPF ~I O : ?
; data

~I : Vec n ?
ISPT ~I : ?

where

SPF ~I O ⇒ O → ISPT ~I

i : I
vz i : ISPT (~I ::I )

T : ISPT ~I
vsT : ISPT (~I ::I ) ‘0’, ‘1’ : ISPT ~I

f : O → O ′ T : SPF ~I O o′ : O ′

‘Σ’f T o′, ‘Π’f T o′ : ISPT ~I
F : SPF (~I ::O) O o : O

‘µ’ F o : ISPT ~I

The Interpretation of ISPT and SPF:

data
~I : Vec n ?
Tel ~I : ?

where
ε : tel ε

~T : Tel ~I T : SPF ~I I
~T ::T : Tel (~I ::I )

let F : SPF ~I O ~T : Tel ~I o : O
JF K~T o : ?

data T : ISPT ~I ~T : Tel ~I
JT K~T : ?

where

JF K ~T o ⇒ JF oK~T

v : JT K~T i
top v : Jvz iK(~T ::T )

v : JT K~T
pop v : JvsT K(~T ::S ) void : J‘1’K~T

v : JT K(~T ::(‘µ’ T )) o
in v : J‘µ’ T oK~T

v : ∃o :O ⇒(f o=o′)×JT K~T o
σ v : J‘Σ’f T o′K~T

~v : ∀o :O ⇒ (f o = o′) → JT K~T o
π ~v : J‘Π’f T o′K~T

Figure 2: The SPF Universe

where (
λ

fz ⇒ A
fs fz ⇒ B

)
denotes the function whose domain is Fin (s (s z)) and which returns A on fz and B
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on fs fz. For the products we have

let A,B : ISPT ~I
A ‘×’B : ISPT ~I

; A ‘×’B ⇒ ‘Π’fst
(

λ
fz ⇒ A

(fs fz) ⇒ B

)
()

let a : JAK~T o b : JBK~T o
pair a b : JA ‘×’BK~T o

; pair a b ⇒ π

(
λ

fz refl ⇒ a
(fs fz) refl ⇒ b

)
For convenience we also define the family of variables var:

let
~I : Vec n ? i : Fin n x : ~I !!i

var i x : ISPT ~I
; var i x ⇐ rec i {

var fz x ⇒ vz x
var (fs i ′) ⇒ vs (var i ′ x ) }

We can now encode some of our examples from above, we encode Fin : Nat → ?

as an element of RF [] Nat and Vec A n : ? as an instance of RF [One] Nat denoting
that it is a Nat indexed family with one type of ‘input’ which is indexed by Oneb:

let ‘Fin’ : SPF [] Nat ; ‘Fin’ ⇒ ‘µ’ (‘Σ’s (λn ⇒ ′‘1’ ‘+’var fz n ′))

let ‘Vec’ : SPF [One] Nat

‘Vec’ ⇒ ‘µ’
(

λn ⇒ (‘Σ’(λx :One ⇒z) (const ‘1’) n)
‘+’ (‘Σ’s (λn ′ ⇒(var (fs fz) ()) ‘×’ (var fz n ′)) n)

)
We use the definitions above to present the type in a ‘sums of products’ style, with
added indexing information. In the ‘ε’ case for vectors ‘Σ’(const z) forces the empty
vector to always have index zero; in the (‘::’) case, ‘Σ’s forces the vector a‘::’as to
have index/length s n if as has index/length n. We can encode values of the finite
sets and vectors using generic constructors such as these:

let ‘fz’n : J‘Fin’K[] (s n)

‘fz’n ⇒ in (σ (n; refl; inl void))

let i : J‘Fin’K[] n
‘fs’n i : J‘Fin’K[] (s n)

‘fs’n i ⇒ in (σ (n; refl; inl (top i)))

let A : SPF [] One
‘ε’ : J‘Vec’K[A] z

‘ε’ ⇒ in (‘inl’ (σ ((); refl; void)))

let as : J‘Vec’K[A] n a : JAK[] ()
(as‘::’na) : J‘Vec’K[A] (s n)

(as‘::’na) ⇒ in (‘inr’ (σ (n; refl; ‘pair’ (pop (top a)) (top as))))

bSince we have to treat types uniformly the type A becomes a family whose index carries no
information.
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As another example, we can encode lambda terms Lam n :?, whose Epigram defini-
tion was given above, as the following SPF and generic constructors.

let ‘Lam’ : SPF [] Nat

‘Lam’ ⇒ ‘µ’
(

λn ⇒ ((vs (‘Fin’ n)) ‘+’ ((var fz n) ‘×’ (var fz n)))
‘+’ (var fz (sn))

)
let i : J‘Fin’K[] n

‘var’ i : J‘Lam’K[] n

‘var’ i ⇒ in (‘inl’ (‘inl’ (pop i)))

let f , a : J‘Lam’K[] n
‘app’ f a : J‘Lam’K[] n

‘app’ f a ⇒ in (‘inl’ (‘inr’ (‘pair’ (top f ) (top a))))

let f : J‘Lam’K[] (s n)
‘abs’ f : J‘Lam’K[] n

‘abs’ f ⇒ in (‘inr’ (top f ))

The above definitions satisfy syntactic conditions for strict positivity, as imple-
mented in systems such as COQ or Epigram. A more delicate case are types where
the strictly positive occurrence appears inside another inductively define type, such
as n-branching trees:

data A : ? n : Nat
NBrTree A n : ?

where a : A
leaf a : NBrTree A n

~t : Vec (NBrTree A n) n
node ~t : NBrTree A n

The translation of this definition is not completely straightforward as the type
Vec appears inside NBrTree. This composition of types can be seen as a generalisa-
tion of Monadic substitution; If we regard SPFs as syntax trees with constructors
at the nodes and variables at the leaves, then this composition operator will re-
place the variables of the outer SPF (here Vec) with the code for the payload type
(NBRTree). Note that just as (>>=) is the bind of the ISPT ‘monad’ so var is the
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return. The definition of composition is given as follows:

let

~I : Vec m ? ~J : Vec n ?

S : ISPT ~I ~T : ∀i :Fin n ⇒SPF ~J (~I !!i)
S>>=~T : ISPT ~J

S>>=~T ⇐ rec S {
‘0’>>=~T ⇒ ‘0’
‘1’>>=~T ⇒ ‘1’
(‘Σ’ f F o′)>>=~T ⇒ ‘Σ’ f (λo ⇒(F o)>>=~T ) o′

(‘Π’ f F o′)>>=~T ⇒ ‘Π’ f (λo ⇒(F o)>>=~T ) o′

(vz i)>>=~T ⇒ ~T fz i
(vsT )>>=~T ⇒ T>>=(~T .fs)

(‘µ’ F o)>>=~T ⇒ ‘µ’ (λo′ ⇒(F o′)>>=
(

λ
fz o′′ ⇒vz o′′

(fs j ) i ⇒vs (~T j i)

)
) o

}

To simplify the construction we replace all variables simultaneously and switch
contexts as we do, the value ~T explains how to replace a variable in S a type in
context ~I with a new type in the context ~J . We then perform the substitution by
traversing S , when we hit a variable we look up the appropriate code, when we hit a
weakening we simply forget the replacement for the top variable. When we traverse
under a ‘µ’ binder we extend ~T to leave the new top variable intact, the other
terms in ~T must be weakened to account for the new variable in the context, note
that this is only possible because we allow weakenings of arbitary terms, without
the vs constructor this weakening would have to be defined mutually with (>>=.
‘0’, ‘1’, ‘Π’ and ‘Σ’ are all structural.

We can now define ‘NBrTree’ by right composing it with ‘Vec’:

let ‘NBrTree’ : SPF [One] Nat

‘NBrTree’ ⇒ ‘µ’
(

λn ⇒ (var (fs fz) ())
‘+’ ((‘Vec’ n)>>=(λfz () ⇒ var fz n))

)

5. Generic Programs

We can now use the universe of SPFs to write generic programs over SPFs.

5.1. Modalities, map and find

In our first example we give definitions for the modalities � and ♦. Informally
the modality � is, for a given family F :? → ? and predicate P :A → ? a new type
�F P :F A → ? that says that the predicate P ‘holds’ (is inhabited) for each a : A
in an F A.

data P : A → ? as : List A
�List P as : ?

where
ε : �List P A ε

p : P a ps : �List P as
p::ps : �List P (a::as)
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The dual of �, the modality ♦ gives a type which describes the predicate P
holding somewhere in the structure, so again for lists:

data P : A → ? as : List A
♦List P as : ?

where p : P a
now p : ♦List P A (a::as)

p : ♦List P as
later p : ♦List P (a::as)

It seems that the idea of both � and ♦ fit nicely with our abstraction of data
types as SPFs and, indeed, we can give generically the types �F P and ♦F P for
any SPFs in the appropriate form.

Firstly we define �, which we will give this type:

let

~I : Vec n ?

T : ISPT ~I
P : ∀i :Fin n ⇒SPF ~J (∃x :~I !!i ⇒Jvar i xK ~T )
v : JT K ~T

�T P v : ISPT ~J

The predicate P is defined as a collection strictly positive families, one for each
variable in the code T . The function is then defined by recursion over the code:

�T P v ⇐ rec v
�(vz x ) P v ⇒ P fz (x ; v)
�(vsT ) P (pop v) ⇒ �T (λi (x w) ⇒P (fs i) (x ; pop w)) v
�‘1’ P void ⇒ ‘1’
�(‘Σ’f F (f o)) P (σ (o; refl; v)) ⇒ �(F o) P v
�(‘Π’f F o′) P (π ~v) ⇒ ‘Π’(λ((o; p) :∃o :O ⇒ f o=o′) ⇒ f o)

(λ(o; p) ⇒�(F o) (~v o p)) o′

�~I ~T (‘µ’ F o) P v ⇒
‘µ’ (λ((o′; in w) :∃o′ :O ⇒JF K ~T o′) ⇒

�(F o′)
(

λ
fz o′′ (top v ′) ⇒ vz (o′′; v ′)
(fs i) x (pop v ′)⇒ P i x v ′

)
w) (o; v)

The key thing to notice here is that the case for ‘µ’ here we the code we produce
is a fix point over values in the original type.

The definition of ♦ follows much the same pattern, but with alternative results
at ‘1’ and ‘Π’:

♦T P v ⇐ rec v
♦(vz x ) P v ⇒ P fz (x ; v)
♦(vsT ) P (pop v) ⇒ ♦T (λi (x w) ⇒P (fs i) (x ; pop w)) v
♦‘1’ P void ⇒ ‘0’
♦(‘Σ’f F (f o)) P (σ (o; refl; v)) ⇒ ♦(F o) P v
♦(‘Π’f F o′) P (π ~v) ⇒ ‘Σ’(λ((o; p) :∃o :O ⇒ f o=o′) ⇒ f o)

(λ(o; p) ⇒♦(F o) (~v o p)) o′

♦~I ~T (‘µ’ F o) P v ⇒
‘µ’ (λ((o′; in w) :∃o′ :O ⇒JF K ~T o′) ⇒

♦(F o′)
(

λ
fz o′′ (top v ′) ⇒ vz (o′′; v ′)
(fs i) x (pop v ′)⇒ P i x v ′

)
w) (o; v)
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That is we no longer succeed by not finding a variable of the right type and
when confronted by a set of possibilities, we need only pick one.

We can also define generic programs that use these types, for instance we can
generalise the type of map to dependent functions, and that if we do the type of
this function involves �.

let

P : ∀i :Fin n ⇒SPF ~J (∃x :~I !!i ⇒Jvar i xK ~S )
f : ∀i :Fin n; t : (∃x :~I !!i ⇒Jvar i xK ~S ) ⇒JP i tK ~T
v : JT K ~T

dMap f v : J�T P vK ~T

dMap(vz x) f (top v ′) ⇒ f fz (x , v ′)
dMap f (pop v ′) ⇒ dMap (f .fs) v ′

dMap f void ⇒ void
dMap f (σ (o; refl; v ′)) ⇒ dMap f v ′

dMap f (π ~v) ⇒ π (λ(x ; p) q ⇒dMap f (v ′ o p))

dMap f (in v ′) ⇒ in (dMap
(

λ
fz (o;w)⇒ dMap f w
(fs i) t ⇒ f i t

)
v ′)

This program is not directly structurally recursive, but it can be made so in the
same manner as with SPTs, as before we begin our definition by creating a type of
morphisms that satisfy a predicate P :

data

~I : Vec m ? ~J : Vec n ? ~S : Tel ~I ~T : Tel ~J
P : ∀i :Fin m ⇒SPF ~J (∃x :~I !!i ⇒ Jvar i xK ~T )

�~I ~J ~S ~T P : ?
where

ε : �ε ~J ε ~T (λx ⇐ case x )

φ : �~I ~J ~S ~T P
X : SPF ~J (∃x :I ⇒Jvar fz xK (~T ::T ))
f : ∀v : (∃x :I ⇒Jvar fz xK (~T ::T )) ⇒JX K ~S v

φ::X f : �(~I ::I ) ~J (~T ::T ) ~S
(

λ
fz ⇒X
(fs i)⇒ P i

)
φ : �~I ~J ~S ~T P F : SPF (~I ::O) O

φNF : �(~I ::O) ~J (~T ::F ) ~S
(

λ
fz (o; t)⇒�(F o) P t
(fs i) v ⇒ P i v

)
The key feature here is the N constructor, which we will use to mark recursive

variables, just as we did in the SPT case, the extra information in the type is there
to make the following definition type check.
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let φ : �~I ~J ~S ~T P v : JT K ~S
dMapT φ v : J�T P vK ~T

dMap φ v ⇐ rec v {
dMap(vz x) (φ′::X f ) (top v ′) ⇒ f (x , v ′)
dMap (φ′NF ) (top v ′) ⇒ dMap φ′ v ′

dMap (φ′::X f ) (pop v ′) ⇒ dMap φ′ v ′

dMap (φ′NF ) (pop v ′) ⇒ dMap φ′ v ′

dMap φ void ⇒ void
dMap φ (σ (o; refl; v ′)) ⇒ dMap φ v ′

dMap φ (π ~v) ⇒ π (λ(x ; p) q ⇒dMap φ (v ′ o p))
dMap φ (in v ′) ⇒ in (dMap (φNF ) v ′)

}

We have said that ♦ is the dual of �, that being the case it is reasonable to
ask what the dual of dMap is, returning to the type of the incorrect definition of
dMap, we dualise thus:

let

P : ∀i :Fin n ⇒SPF ~J (∃x :~I !!i ⇒Jvar i xK ~S )
v : JT K ~T
p : J�T P vK ~T

dFind v p : ∃i :Fin n; t : (∃x :~I !!i ⇒Jvar i xK ~S ) ⇒JP i tK ~T

That is, if the ♦P property holds for v the dFind will extract a sub-tree and a
proof that P holds for that value. We would like this function to have this behaviour:

dFind(vz x) (top v ′) p ⇒ (fz; x ; top v ′; p)
dFind (pop v ′) p ⇒ (fs;−; pop;−) (dFind v ′ p)
dFind (σ (o; refl; v ′)) p ⇒ dFind v ′ p
dFind (π ~v) (σ(o; q ; p′)) ⇒ dFind (v ′ o q) p′

dFind (in v ′) (in p′) dFind v ′ p′

(fz; o;w ; q) ⇒ dFind w q
(fs i ; x ;w ; q) ⇒ (i ; x ;w ; q)

Again, however, this is not structurally recursive as shown, when we go under a
‘µ’ constructor the property that might hold is the ♦ property at some arbitary vz

node, on which we have to call dFind again, in the above code there is no guarantee
that what comes out is a strict sub-tree of the input and so we have to do more
work to justify this process. Luckily we can play a trick similar to the one used to
fix dMap to recover the functionality we want with structural recursion.

5.2. Equality of RFs

Another key example for any generic programming system is how it deals with
value equality. Clearly, however the universe of SPFs is too large to support a de-
cidable equality, since it contains codes for infinitely branching data-types. Clearly
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to have any sort of generic value equality we will need to dispense with the ‘Π’
constructor, just as we did by removing the ‘→’ construct from the SPT to arrive
at the regular-tree types, with support equality in previous work. Here we would
need to replace the function constructor with a code for cartesian product, since
the latter is defined in terms of the former. Even this, howevfer, this would not be
sufficient, to see why we must return to the definition of disjoint union by ‘Σ’:

let A,B : ISPT ~I
A ‘+’B : ISPT ~I

; A ‘+’B ⇒ ‘Σ’(λx ⇒())
(

λ
fz ⇒A

(fs fz)⇒ B

)
()

let a : JAK~T
inl a : JA ‘+’BK~T

; inl a ⇒ σ (fz; refl; a)

let b : JBK~T
inr b : JA ‘+’BK~T

; inr b ⇒ σ (fs fz; refl; b)

If we use this definition to create a code for Booleans:

let
‘Bool’ : SPF ~I One

; ‘Bool’ () ⇒ ‘1’ ‘+’ ‘1’

let
‘true’, ‘false’ : J‘Bool’K ~T ()

‘true’ ⇒ inl void
‘false’ ⇒ inr void

The fully evaluated codes for ‘true’ and ‘false’ are:

‘true’ 7→ σ(fz; refl; void)
‘false’ 7→ σ(fs fz; refl; void)

We can tell these codes apart because we fz and fs fz are different, in fact exactly
because Fin has a decidable equality, but in general the new indexing information
introduced by a ‘Σ’ constructor need have no decidable equality, so a truly generic
equality could not distinguish ‘true’ from ‘false’

To define a syntactic equality we must therefore replace ‘Π’ with a code for
cartesian product and add a dual code for disjoint union to create IRT, the indexed
regular types:

A,B : IRT ~I
A ‘+’B : IRT ~I

A,B : IRT ~I
A ‘×’B : IRT ~I

a : JAK ~T
inl a : JA ‘+’BK ~T

a : JAK ~T
inr b : JA ‘+’BK ~T

a : JAK ~T b : JBK ~T
pair a b : JA ‘+’BK ~T
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We also create the regular families RF in the way you would expect, and we
overload the Scott bracket interpretation notation. In this way we can recast all
our examples above into this new universe, by swapping out the defined ‘+’ and
‘×’ for the codes with the same names.

We need to keep the original ‘Σ’constructor in place otherwise we lose expressive
power, but we now have two places where choices are made, we will distinguish
between choices at ‘+’ codes but not at ‘Σ’ codes, the intention is that the former
is used to encode choice between constructors the latter encode choice between
indicies.

We can now define our equality, which we do heterogeneously:

let S ,T : RF ~I O a : JSK ~T oa b : JT K ~T ob
gEq a b : Bool

gEq a b ⇐ rec a
gEq (top a) (top b) ⇒ gEq a b
gEq (pop a) (pop b) ⇒ gEq a b
gEq (inl a) (inl b) ⇒ gEq a b
gEq (inl a) (inr b) ⇒ false
gEq (inr a) (inl b) ⇒ false
gEq (inr a) (inr b) ⇒ gEq a b
gEq void void ⇒ true
gEq (pair ax ay) (pair bx by) ⇒ gEq ax bx && gEq ax bx
gEq (σ a) (σ b) ⇒ gEq a b
gEq (in a) (in b) ⇒ gEq a b
gEq ⇒ false

We have cheated slightly here, by omitting all the off-diagonal cases. Within
Epigram this could have been achieved by creating a view which justifies the case-
split above.

That we have different codes for the types of the two arguments is necessary
again in the ‘Σ’ case where we don’t know that the new indexes are the same so we
cannot know whether the types of the sub-trees are the same.

We decide the equality of values based entirely on their syntax, we therefore
equate values at different output indexes as long as the syntax is the same; so, for
instance fz : Fin n = fz : Fin (s n). In practice it might be better to restrict
ourselves only to comparing things for equality at the top level, though we can no
better as we traverse under ‘Σ’ constructors.

It remains very difficult to specify this equality function, something that would
be very useful in a dependent programming language, if two things are equal for
instance you would like to be able to substitute one for the other. It is future
work to see if we can do any better with alternative definitions of these regular
families. One possibility is to tie a recursive knot and restrict output types to be
indexed regular types themselves, though this raises real questions about universe
hierarchies which would need careful study.
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6. Future Work and Conclusions

We have tied the knot by presenting a universe construction which is powerful
enough to encode all inductive types needed in Epigram, including the construc-
tion itself. While encoding types by hand is a rather cumbersome process, we can
translate the high level Epigram syntax mechanically into the SPFs. We plan to
integrate the universe directly into Epigram giving the programmer direct access to
the internal representations of types for generic programming as part of the system.
This approach also has the benefit that it allows a more flexible and extensible
positivity test as we have demonstrated in the example of n-branching trees. Ex-
ploiting Observational Type Theory [5] we are also planning to include co-inductive
definitions in the universe.

In as yet unpublished work [3] we have extended the existing notion of data
types as containers [1] to families of data types and indexed containers. The codes
in the universe (SPF,J− K) can be given normal forms as indexed containers, just
as the universe of (SPT,El) was reflected in containers. This gives us a justification
of the constants chosen here, but also alternative access to generic programming
using a metaphor of shapes and positions, see [2] for simply-typed examples.

It turns out that the Epigram ‘gadgets’ that build the structural recursion, and
case analysis principals (⇐ rec and ⇐ case) for Epigram data types are generic
programs in this universe. Expressing them in the language may well help us on
the road to building Epigram in Epigram.

The move from strictly positive to regular families is but one example for a
hierarchy of universes important for generic programming. The trade-off is clear —
the further up we move the more generality we gain, the further down we go the
more generic functions are definable. It is the subject of future work to see how we
can give the programmer the opportunity to move along this axis freely, seeking the
optimal compromise for a certain collection of generic functions.
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