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Abstract

The satisfiability problems for CTL and CTL� are known to be EXPTIME-complete, resp. 2EXPTIME-
complete (Fischer and Ladner (1979), Vardi and Stockmeyer (1985)). For fragments that use less temporal
or propositional operators, the complexity may decrease. This paper undertakes a systematic study of
satisfiability for CTL- and CTL�-formulae over restricted sets of propositional and temporal operators.
We show that restricting the temporal operators yields satisfiability problems complete for 2EXPTIME,
EXPTIME, PSPACE, and NP. Restricting the propositional operators either does not change the complexity
(as determined by the temporal operators), or yields very low complexity like NC1, TC0, or NLOGTIME.
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1 Introduction

For reasoning about the ongoing behaviour of programs, in particular non-terminating
programs such as operating systems, the branching time logic CTL�, introduced by
Emerson and Halpern [7] (see also [6]), has been advocated to be a good language
[19], and in the meantime it has proven to be useful even for practical purposes.

A decidable satisfiability problem is central for such logics in order to be a useful
tool in program verification. For CTL�, satisfiability was proven to be complete
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for double exponential time by Vardi and Stockmeyer [19]. For certain fragments,
satisfiability is known to be more efficiently decidable: Sistla and Clarke [18] proved
that for linear temporal logic LTL, the fragment of CTL� not allowing path quantifiers,
the satisfiability problem is complete for polynomial space. For the fragment of LTL
that disallows U, satisfiability is NP-complete. Markey [12] extended these results
showing essentially that adding operators for the past does not increase complexity
(“past is for free”). Further fragments of LTL were classified in [2]. Fischer and
Ladner [8] proved that for computation tree logic CTL, the fragment of CTL� in
which each path quantifier is followed by exactly one temporal operator that is
not a path quantifier (i. e., X, U, F, G), satisfiability is complete for exponential
time. However, a systematic study of the complexity of the satisfiability problem for
fragments of CTL� has not been undertaken until today. This is the purpose of the
present paper.

We first consider fragments of CTL and of CTL� where we restrict the allowed
temporal operators. Here, a CTL-operator is a pair of a path quantifier (A and E)
and non-path operator (X, U, etc.). We determine the lattice of all sets of temporal
operators where one such set T1 is below another set T2 (T1 � T2) iff the operators
from T1 can be expressed using operators T2. Then we determine for each set in the
lattice the complexity of the satisfiability problem restricted to only these temporal
operators.

For CTL, we show, e. g., that the complexity of the satisfiability problem drops
to NP-complete for the operators sets ∅ and {AF}, it is PSPACE-complete for {AX},
{AG}, {AX,AF}, {AF, AG}, and is complete for exponential time for all other cases.
For CTL�, we show, e. g., that the complexity of the satisfiability problem drops to
NP-complete for the operators sets ∅, {A}, {F}, and {X}, it is PSPACE-complete for
{U}, {X,F} and {U,X}, {A,F} and {A,X}, and is complete for double exponential
time for all other cases. Figure 1 summarizes these results.

As a second step, we also restrict the allowed propositional operators, following
the approach undertaken in [2] for LTL. Let CTL�-SAT(T, B) denote the satisfiability
problem for CTL� restricted to the fragments of formulae only allowing temporal
operators from T and propositional operators from B. Here, we thus have to consider
the lattice of all classes of Boolean functions, and we say that for such classes B1, B2,
B1 � B2 if all functions in B1 can be obtained by superposition (essentially simple
composition or substitution of functions) from functions in B2. This lattice is the
well known Post’s lattice (cf., e. g., [14,3]), see Fig. 2.

It turns out that if B contains (or can implement) the negation of implication
x �→ y (that is, x ∧ ¬y)—in terms of Post’s lattice this means that S1 ⊆ B—
then satisfiability is as complicated as if allowing all propositional operators or a
complete set such as {∧,¬}, in other words, the complexity of CTL�-SAT(T, B) is
determined by the set T as described above (and independent of the actual B).
If on the other hand B cannot implement the negation of implication, then the
complexity of CTL�-SAT(T, B) drops to a very low class inside the circuit class NC1.
In this case, the complexity of CTL�-SAT(T, B) astonishingly is independent of the
temporal operators we allow. For example, if we consider only monotone formulae,
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Fig. 1. The lattice of CTL-operators (left) and CTL�-operators (right). Nodes are labelled with a minimal set
of operators; colors indicate the complexity of the satisfiability problem without restrictions on the Boolean
connectives.

i. e., B = {∧,∨, true, false} (this corresponds to the class M in Post’s lattice), then
CTL�-SAT(T, B) is complete for NC1 for all T . If B ⊆ {∧, true, false} (B ⊆ E in
Post’s lattice) then CTL�-SAT(T, B) is complete for TC0 for all T . These results for
the case of unrestricted temporal operators are summarized in Figure 2. It should
be remarked that also in the case of simple propositional satisfiability, the operator
x ∧ ¬y determines if the problem is NP-complete or in P, see [11].

In this vein, we study the complexity of satisfiability for CTL and for CTL� for all
combinations of B and T . We give completeness results for 2EXPTIME, EXPTIME,
PSPACE, NP, NC1, and TC0. However, we have to leave open one scenario: When B

consists only of the exclusive-or (plus possibly the constants true and false) we can
only state a trivial upper bound. We come back to this open case in the conclusion.

The reader might expect certain fragments of CTL� to have a trivial satisfia-
bility problem (e. g., since the allowed formulas are always satisfiable)—the lowest
complexity in our classification, however, is completeness for TC0. The reason is
that the syntax alone, checking that a given word is a correct formula, leads to
TC0-completeness. In order to determine the cases of trivial satisfiability we therefore
also study the promise problem to determine, given a syntactically correct formula
as input, if it is satisfiable.

The rationale behind our approach is that looking for simpler fragments helps
us to understand where the boundary lies between hard and easy fragments. This
provides insight into the sources of hardness (x ∧ ¬y on the propositional side, and
for instance U on the temporal side). We also hope that our results might lead to
improved algorithms for the special cases. One of our technically most involved
results concerns the CTL-satisfiability for the operators {AF, AG}: Here we consider
quasi-models (models whose labels are certain variants of Hintikka sets) and prove
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Fig. 2. Post’s lattice. Colors indicate the complexity of CTL-SAT and CTL�-SAT without restrictions on the
temporal operators.

that a given formula ϕ is satisfiable iff a quasi-model with certain properties exists.
A PSPACE-upper bound then is obtained by solving a certain reachability problem
in the graph of quasi-models of ϕ. A clever implementation of this algorithm (and
algorithms for other special cases) could lead to better tools than we have today.

The rest of this paper is organized as follows. Section 2 contains preliminaries.
The complexity of the satisfiability problem for the computational tree logic, CTL,
is considered in Section 3. Section 4 then extends these considerations to the logic
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CTL�. Section 5 concludes with a summary and a discussion.
In the interests of space, proofs are omitted or sketched. Detailed proof will be

included in the full version of this paper.

2 Preliminaries

2.1 Complexity Theory

We assume familiarity with the standard notions of complexity theory. In par-
ticular, we will make use of the classes LOGSPACE,P,NP, PSPACE, EXPTIME and
2EXPTIME.

We require subtle reductions in order to obtain hardness results for complexity
classes below TC0. Therefore, we introduce the following notion of reducibility (see
[21]). Let A and B be languages. Then A is constant-depth reducible to B (A ≤cd B)
if there exists an AC0-circuit family {Cn}n>0 with {∧,∨,¬}-gates and oracle gates
for B such that for all x, C|x|(x) = 1 iff x ∈ A. One of our results even addresses
complexity issues inside the class AC0—hence ≤cd-reducibility is of no use since AC0

forms the 0-degree of ≤cd. Instead, we will make use of dlt-projection reducibility
(A ≤dlt

proj B) as introduced in [16]. We note that TC0 and NC1 are closed under ≤cd,
and NLOGTIME and coNLOGTIME are closed under ≤dlt

proj.

2.2 Temporal Logic

We inductively define CTL�-formulae as follows. Let Φ be a finite set of atomic
propositions. The symbols used are the atomic propositions in Φ, the constant
symbols � and ⊥, the Boolean connectives ¬ and ∧, the temporal operator symbols
X, U, and A. A is also called a path quantifier, temporal operators aside from A
are thence also called pure temporal operators. The atomic propositions, � and ⊥
are called atomic formulae. Each atomic formula is a state formula, and each state
formula is a path formula. Let ϕ, ψ be state formulae and χ, π be path formulae.
Then (ϕ), ϕ ∧ ψ, ¬ϕ, Aχ are state formulae, and χ ∧ π, ¬χ, Xχ, and [χUπ] are
path formulae. The set of CTL�-formulae (or formulae) is the union of all state
formulae and of all path formulae. We further define CTL�(T, B) to be the set of
CTL�-formulae using the Boolean connectives in B and the path quantifiers and
temporal operators in T only. The set of proper subformulae of ϕ will be denoted
by SF(ϕ), the number of pure temporal operators in ϕ by #T(ϕ).

A model is a triple M = (S, R, l), where S is a finite set of states, R ⊆ S×S a total
relation (i. e., for each s ∈ S, there exists an s′ such that (s, s′) ∈ R), and l : S → P(Φ)
is a labelling function. A path x is an infinite sequence x = (x1, x2, . . .) ∈ Sω such
that (xi, xi+1) ∈ R, for all i > 0.

Let M = (S, R, l) be a model, χ be a state formula, s ∈ S be a state and
x = (x1, x2, . . . ) ∈ Sω be a path. The truth of a CTL�-formula w. r. t. M is
inductively defined using the following semantics. Let ϕ, ψ, χ, π ∈ CTL�.

M, s |= � always,
M, s |= ⊥ never,
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M, s |= p iff p ∈ Φ and p ∈ l(s),
M, s |= (ϕ) iff M, s |= ϕ,
M, s |= ¬ϕ iff M, s �|= ϕ,
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ,
M, s |= Aχ iff for all paths x = (x1, x2, . . . ) with x1 = s holds M, x |= χ,
M,x |= χ iff M,x1 |= χ,
M,x |= Xχ iff M,x2 |= χ,
M,x |= [χUπ] iff M,xk |= π, for some k ∈ N, and M, xi |= χ, for all 1 ≤ i < k.

The syntax and semantics of each remaining Boolean function f can be expressed
through the connectives ∧ and ¬. The remaining temporal operators are defined in
the following way:

Eϕ ≡ ¬A¬ϕ, Fϕ ≡ �Uϕ, Gϕ ≡ ¬F¬ϕ,

where E is again also called a path quantifier. A state formula ϕ is hence said to be
satisfied by model M if there exists an s ∈ S such that M, s |= ϕ (written as M |= ϕ).
Analogously, a path formula is said to be satisfied by a model M if there exists a
path x = (x1, x2, . . .) such that M,x |= ϕ. Finally ϕ is said to be satisfiable if there
exists a model M that satisfies ϕ. We define CTL�-SAT(T, B) to be the problem of
deciding whether a given CTL�(T, B)-formula is satisfiable.

A CTL-formula is a CTL�-formula in which each path quantifier is followed by
exactly one pure temporal operator and each pure temporal operator is preceded by
exactly one path quantifier. The set of CTL-formulae is a strict subset of the set
of CTL�-formulae. For example, AGEFp is a CTL-formula, whereas A(GFp → Fq) is
not. Pairs of path quantifiers and pure temporal operators are thence also referred
to as CTL-operators. Let ALL denote the set of all CTL-operators. We remark the
following dualities among CTL-operators:

EXϕ ≡ ¬AX¬ϕ, EFϕ ≡ E[�Uϕ], AFϕ ≡ A[�Uϕ], AGϕ ≡ ¬EF¬ϕ, EGϕ ≡ ¬AF¬ϕ,

and A[ψUχ] ≡ AFχ ∧ ¬E[¬χU(¬ψ ∧ ¬χ)]. Hence {AX,AF, EU} is a minimal set of
CTL-operators for CTL (in presence of all Boolean connectives), whereas {AX, AG,

AU} is not complete for CTL [10]. Alike CTL�-SAT, we define CTL(T, B) to be the
set of all CTL-formulae using the CTL-operators in T and the Boolean connectives
in B only, and define CTL-SAT(T, B) to be the problem of deciding whether a given
CTL(T, B)-formula is satisfiable.

2.3 Boolean Clones

Since there are infinitely many finite sets B of Boolean functions, we introduce some
algebraic tools to classify the complexity of the infinitely many arising satisfiability
problems. A set B of Boolean functions is called a clone if it is closed under
superposition, which means B contains all projections and B is closed under arbitrary
composition [14, Chapter 1]. For a set B of Boolean functions we denote with [B]
the smallest clone containing B and call B a base for [B]. In [15] Post classified the
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lattice of all clones and found a finite base for each clone, see Fig. 2. In order to
introduce the clones relevant to this paper, we define the following notions, where f

is an n-ary Boolean function.

• f is 1-reproducing if f(1, . . . , 1) = 1.
• f is monotone if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn =⇒ f(a1, . . . , an) ≤ f(b1, . . . , bn).
• f is 1-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = 1

implies ai = 1.
• f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
• f is linear if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ 0, 1 and variables x1, . . . , xn.

The clones relevant to this paper are listed in Table 1. The definition of all Boolean
clones can be found, e. g., in [3].

Name Definition Base

BF All Boolean functions {∧,¬}
R1 {f : f is 1-reproducing} {∨,→}
M {f : f is monotone} {∨,∧,⊥,�}
S1 {f : f is 1-separating} {x ∧ y}
D {f : f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
L {f : f is linear} {⊕,⊥}
V {f : f ≡ c0 ∨

∨n
i=1 cixi where the cis are constant} {∨,⊥,�}

V0 [{∨}] ∪ [{⊥}] {∨,⊥}
E {f : f ≡ c0 ∧

∧n
i=1 cixi where the cis are constant} {∧,⊥,�}

E0 [{∧}] ∪ [{⊥}] {∧,⊥}
N {f : f depends on at most one variable} {¬,⊥,�}
I {f : f is a projection or a constant} {id,⊥,�}

Table 1
A list of Boolean clones with definitions and bases.

3 Satisfiability in CTL

We commence by considering the complexity of the satisfiability problem for restricted
sets of the CTL-operators and continue with restricted sets of Boolean functions.
Recall the previously known results.

Theorem 3.1 ([5], [8]) (i) CTL-SAT(∅,BF) is NP-complete.

(ii) CTL-SAT({AX, AU, EU},BF) is EXPTIME-complete.
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3.1 Restricting the CTL-operators

Theorem 3.2 Let T be a set of CTL-operators. Then CTL-SAT(T, BF) is

(i) NP-complete under ≤cd-reductions if T = {AF},
(ii) PSPACE-complete under ≤cd-reductions if T = {AG},{AX},{AF,AG},{AX,AF},
(iii) EXPTIME-complete under ≤cd-reductions in all other cases.

Proof (Sketch) For (i), NP-hardness of CTL-SAT({AF, BF}) is immediate from
Theorem 3.1(i). The membership in NP follows from a small model property:
ϕ ∈ CTL({AF, BF}) is satisfiable iff ϕ is satisfiable in a model of size ≤ |ϕ|O(1). As
the model-checking problem for CTL is polynomial-time solvable [4], we can hence
simply guess a model M and check whether M |= ϕ.

As for (ii), it suffices to show PSPACE-hardness for T = {AG}, {AX}, and
membership in PSPACE for T = {AF, AG}, {AX, AF}. The hardness for both T =
{AG}, and T = {AX} is established using similar ≤cd-reductions fAX and fAG

from the satisfiability problem for quantified Boolean formulae, QBF-SAT. For
ϕ ∈ QBF-SAT, the constructed formula f(ϕ) forces any satisfying model to encode
in a tree-like structure the set of assignments necessary to fulfill ϕ. Both proofs are
similar to [9, Theorem 3.1]; a proof for CTL-SAT({AX},BF) ∈ PSPACE can also be
found in [13, Theorem 9].

Now consider T = {AF, AG}. To show memberhip in PSPACE, we present an
algorithm inspired by the algorithm showing that provability in the modal logic
K is in PSPACE [9]. The algorithm is based on the notion of quasi models: let
ϕ ∈ CTL({AF, AG},BF) be in negation normal form (i. e., negations occur in front
of atomic formulae only), a quasi model for ϕ is a model M = (S, R, l) with labels
l : S → P(CTL({AF,AG},BF)) such that

(i) for all s ∈ S, l(s) are minimal sets satisfying the condition that ψ ∧ χ ∈ l(s)
implies ψ ∈ l(s) and χ ∈ l(s), and the condition that ψ ∨ χ ∈ l(s) implies
ψ ∈ l(s) or χ ∈ l(s),

(ii) ϕ ∈ l(s) for some s ∈ S.

(iii) for all s ∈ S and each Oψ ∈ l(s), “M satisfies the constraints imposed by Oψ”,
i. e., O ∈ {AF, EF, AG, EG}, ψ ∈ l(xi) on all/some paths x = (x1, x2, x3, . . .),
x1 = s, and all/some 1 ≤ i ∈ N.

Note that the labels of quasi models bear resemblance to Hintikka sets but differ
from the latter in that they are allowed to contain ⊥. The algorithm is based on
the following observation: ϕ is satisfiable iff there is a quasi-model for ϕ whose
labels are consistent on all path prefixes of linear length from some s ∈ S with
ϕ ∈ l(s). Thence the algorithm performs a nondeterministic depth-first search for
contradictions on the set of quasi models for ϕ. The space-bound derives from the
linear length of path prefixes to be investigated.

For T = {AX,AF}, a straightforward modification of the former algorithm
is not possible, since the X operator allows for the construction of “counters”
such that contradictions may occur in exponential depth firstly. Nevertheless,
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any CTL({AX,AF}, BF)-formula may impose at most linearly many temporal con-
straints. Using the fixpoint-characterisation of EG, we derive an algorithm for
ϕ ∈ CTL({AX, AF},BF) in a two-steps approach: first verify that ϕ with all EG
operators ignored is satisfiable, then test each of the EG-prefixed subformulae for
satisfiability separately.

Finally for (iii), membership in EXPTIME is due to Theorem 3.1(iii). Hardness
for EXPTIME is obtained from reducing the word problem for polynomial-space
alternating Turing machines to CTL-SAT(T, BF). The reduction for T = {AX,AG} is
straightforward and can then be modified to prove hardness for the cases T = {AU}
and T = {EU}, too. The hardness of the remaining fragments follows. �

3.2 Restricting the Boolean connectives

Say that a set B of Boolean connectives is non-trivial if B contains a connective of
arity ≥ 2. We state an auxiliary lemma.

Lemma 3.3 Let B be a non-trivial set of Boolean function symbols and let T be a
set of CTL-operators. The problem to decide, whether a given string is a CTL(T, B)-
formula, is complete for TC0 under ≤cd-reductions.

Theorem 3.4 Let T denote a set of CTL-operators and let B be a set of Boolean
functions such that [B] /∈ {L, L0} and B is non-trivial. Then CTL-SAT(T, B) is

(i) equivalent to CTL-SAT(T, BF) if S1 ⊆ [B],

(ii) NC1-complete under ≤cd-reductions if S11 ⊆ [B] ⊆ M, and

(iii) TC0-complete under ≤cd-reductions in all other cases.

Proof (Sketch) For (i), note that BF = [S1 ∪ {�}] = [B ∪ {�}]. It hence suffices
to show that we can generate the constant � in all sets of Boolean functions B

satisfying [B] = S1.
For (ii), [B] does not contain negations. Hence we can substitute each atomic

proposition with � and evaluate this proposition-free formula alike propositional
formulae [17, Theorem 3.2]. As evaluation of propositional S11-formula is NC1-
complete already, the claim follows.

For (iii), we have to distinguish between two cases. First consider the cases
[B] ⊆ R1 and [B] ⊆ D. An induction on the formulae structure shows that all
formulae are trivially satisfiable by the model M = ({s}, {(s, s)}, l), where, for all
s ∈ S, either l(s) = Φ or l(s) = ∅. If [B] ⊆ N, we can w. l. o. g. transform the given
formula ϕ to be of the form

ϕ ≡ O1O2 · · · OkP1

[
ψUP2

[ · · ·UPl[· · ·Uψ′] · · · ]
]
,

where ψ ∈ CTL(T, B), ψ′ ∈ CTL(T \ {AU,EU}, B), O1, . . . ,Ok ∈ T \ {AU,EU} and
P1, . . . ,Pl ∈ {A, E}. Hence we only need to count the number of preceding negations
of ψ′ modulo 2. For the remaining clones we can substitute the propositions with
� and only need to search for a � (in the ∨-case), or ensure absence of ⊥ (in the
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∧-case). Having established membership in TC0, completeness for TC0 stems from
Lemma 3.3. �

That is, for the last case of Theorem 3.4, the main complexity thus lies in checking
the syntactical correctness of the given formula. In order to classify the complexity of
CTL-SAT(T, B) beyond the complexity of its syntactical correctness, we restrict our
attention to syntactically correct input formulae: Let CTL-SATP(T, B) denote the
promise problem of deciding whether a given syntactically correct CTL(T, B)-formula
is satisfiable. The following theorem refines Theorem 3.4 for subclasses of TC0.

Theorem 3.5 Let T denote a set of CTL-operators and let B be a set of Boolean
functions such that CTL-SAT(T, B) is TC0-complete. Then CTL-SATP(T, B) is

(i) in TC0 if T ∩ {AU,EU} �= ∅ and [B] ∈ {V,V0,E, E0, N},
(ii) NLOGTIME-complete under ≤dlt

proj-reductions if T ∩ {AU, EU} = ∅ and [B] ∈
{V,V0},

(iii) coNLOGTIME-complete under ≤dlt
proj-reductions if T ∩ {AU, EU} = ∅ and [B] ∈

{E, E0},
(iv) equivalent to MOD2 under ≤dlt

proj-reductions if T ∩ {AU,EU} = ∅ and [B] = N,
and

(v) trivial in all other cases.

Proof (Sketch) For (i), one has to determine the relevant parts of the formula
first. This requires counting the parentheses, therefore the problem remains in TC0.

The cases (ii) and (iii) can be solved analogously to [17, Lemma 3.7], that is, by
guessing the position of a satisfying � (or a falsifying ⊥, resp.) after substituting
all propositions with �. Hardness is obtained via a reduction from the language
{0, 1}�1{0, 1} (or {0, 1}�, resp.).

For (iv), syntactically correct formulae in CTL(T, N) can be checked for satisfia-
bility by just counting the preceding negations modulo 2, for all temporal operators
and Boolean connectives are unary. Hardness for this case arises from a reduction
from PARITY = {w ∈ {0, 1}� | |w|1 ≡ 1 mod 2}.

Lastly, for any other combination of T and B, all CTL(T, B)-formulae are trivially
satisfiable. �

4 Satisfiability in CTL�

Having classified the complexity of the satisfiability problem for CTL, we now turn to
CTL�, a logic strictly more expressive than CTL: instead of paired, path quantifiers
and temporal operators may occur independently of each other. This fact amounts
to a jump in the complexity in the general case.

Theorem 4.1 ([19]) CTL�-SAT({A,X,U},BF) is 2EXPTIME-complete.

We will hence proceed analogously to Section 3 and consider the complexity
of the satisfiability problem for restricted sets of path quantifiers and temporal
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operators and restricted sets of Boolean functions.

4.1 Restricting the temporal operators and path quantifiers

Theorem 4.2 Let T be a set of temporal operators. Then CTL�-SAT(T, BF) is

(i) NP-complete under ≤cd-reductions if T = ∅, {A}, {F}, {X},
(ii) PSPACE-complete under ≤cd-reductions if T = {U},{X,F}, {X,U},{A,X},{A,F},
(iii) 2EXPTIME-complete under ≤cd-reductions in all other cases.

Proof (Sketch) NP-completeness for (i) and the first three cases from (ii) follows
from [2]—these are LTL-formulae.

The remaining two restricted sets in (ii) can be proven by a similar reduction
and algorithm as for the CTL-cases.

For (iii), we modify the hardness part of Vardi’s proof showing that CTL�-SAT
restricted to {A,X,U} and BF is 2EXPTIME-complete [20]. Vardi gives a reduc-
tion from the word problem for exponential-space alternating Turing machines to
CTL�-SAT({A, X, U},BF). We restate the formulae in this reduction using either the
temporal operators A,X and F, or the temporal operators A and U only. �

4.2 Restricting the Boolean connectives

Theorem 4.3 Let T denote a set of temporal operators and let B be a set of Boolean
functions such that [B] /∈ {L, L0}. Then CTL�-SAT(T, B) is

(i) equivalent to CTL�-SAT(T, BF) if S1 ⊆ [B],

(ii) NC1-complete under ≤cd-reductions if S11 ⊆ [B] ⊆ M, and

(iii) TC0-complete under ≤cd-reductions in all other cases.

Proof. The results of Section 3 are easily generalized to CTL�-SAT. �

5 Conclusion

The complexity of the satisfiability problem for temporal-operator-restricted frag-
ments of CTL and CTL� is a trichotomy: for CTL we classified completeness for
EXPTIME, PSPACE and NP, and for CTL� we classified completeness for 2EXPTIME,
PSPACE and NP. This situation is depicted as a lattice in Figure 1.

Concerning the restrictions on the set of Boolean functions we observe a tetra-
chotomy: a line from BF down to S1, whose complexity is determined by the temporal
operators we allow, a similar line of NC1-complete clones from M down to S11, the
two clones L and L0, whose complexity is bounded above by the complexity for the
clone BF, and the remaining clones—all of which are TC0-complete. The complete
lattice is shown in Figure 2.

Hence, the complexity of the satisfiability problems increases along the same
edges as it does in propositional logic. In particular, if x �→ y can be implemented
then satisfiability is as difficult as if all Boolean connectives were available, whereas
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else the complexity of CTL-SAT(T, B) drops to a very low class inside NC1 and is
particularly independent of the temporal operators (except for the clones L and L0).

For CTL-SATP , the satisfiability problem restricted to syntactically correct for-
mulae, the TC0-complete clones R1 and D are trivially satisfiable, while the clones
N, V, V0, E, and E0 yield complexity results depending on the set of CTL-operators
allowed: Let B be a set of Boolean functions such that [B] ∈ V,V0,E,E0,N and
let T be a set of CTL-operators not containing AU and EU (T ∩ {AU,EU} = ∅).
Then CTL-SATP(T, B) is solvable in TC0. Otherwise, if T ∩ {AU,EU} = ∅
then CTL-SATP(T,V) and CTL-SATP(T,V0) are NLOGTIME-complete; whereas
CTL-SATP(T,E) and CTL-SATP(T,E0) are coNLOGTIME-complete. Finally, the
promise problem CTL-SATP(T, N) is equivalent to MOD2 under ≤dlt

proj-reductions.
For CTL-SATP(T, B), [B] ∈ {V,V0,E,E0,N} and T ∩ {AU,EU} �= ∅, the gap

between membership in TC0 and hardness for NLOGTIME (resp. coNLOGTIME or
AC0[2]) results—intuitively speaking—from the unfortunate circumstance that the
given formula is promised to be syntactically correct, but determining the influence of
some literal on the satisfyability yet has to be derived from the syntactical structure.
On the one hand, determining whether some guessed literal or constant is relevant to
the satisfiability of some formula seems to require the capability of counting; on the
other hand, it seem unlikely that some TC0-complete is reducible to CTL-SATP(T, B).
Analogous results were obtained for full branching time logic CTL�.

Finally, the complexity of CTL-SAT(T, [B]) and CTL�-SAT(T, [B]) for [B] ∈ {L,

L0} remains unclassified. Though we obtained membership in P for CTL-SAT(T, B)
if T = {AX} or T = {AG} (the results will be included in the full version of this
paper), the interplay of linearity and temporal operators eluded CTL-SAT(T, B)
from a detailed analysis for the remaining cases. Their complexity remains an
open question. Note that the result for CTL-SAT({AG}, B) states the hitherto first
subexponential upper bound for a reflexive temporal operator in connection with
the ⊕-function.

Further work should, besides closing the just mentioned complexity gap, address
a detailed analysis of the model checking problem for fragments of CTL�, as begun
in [1] for LTL. The fragment CTL is known to generally have an efficient (polynomial
time decidable) model checking problem; we consider it very interesting to determine
here for which fragments space efficient or parallel algorithms exist.
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