
On the efficient computation of the minimal coverability
set for Petri nets

G. Geeraerts, J.-F. Raskin, and L. Van Begin

Computer Science Department, Université Libre de Bruxelles (U.L.B.)

Abstract. The minimal coverability set(MCS) of a Petri net is a finite repre-
sentation of the downward-closure of its reachable markings. The minimal cov-
erability set allows to decide several important problems like coverability, semi-
liveness, place boundedness, etc. The classical algorithmto compute the MCS
constructs the Karp&Miller tree [1]. Unfortunately the K&Mtree is often huge,
even for small nets. An improvement of this K&M algorithm is the Minimal Cov-
erability Tree (MCT) algorithm [2], which has been introduced 15 years ago, and
implemented since then in several tools such as Pep [3]. Unfortunately, we show
in this paper that the MCT is flawed: it might compute an under-approximation of
the reachable markings. We propose a new solution for the efficient computation
of the MCS of Petri nets. Our experimental results show that this new algorithm
behaves much better in practice than the K&M algorithm.

1 Introduction
Petri nets [4, 5] are a very popular formalism for the modeling and verification of para-
metric and concurrent systems [6]. The underlying transition graph of a Petri net is po-
tentially infinite. Nevertheless, a large number of interesting verification problems are
decidable on Petri nets. Among these decidable problems arethecoverabilityproblem
(to which many safety verification problem can be reduced); theboundednessproblem
(is the number of reachable markings finite ?); theplace boundednessproblem (is the
maximal reachable number of tokens bounded for some placep ?); thesemi-liveness
problem (is there a reachable marking in which some transition t is enabled).

In order to decide the aforementioned problems, one can use the minimal cover-
ability set (MCS), which is a finite representation of some over-approximation of the
reachable markings. The MCS is thus a very useful tool for theanalysis of Petri nets,
and an efficient algorithm to compute it is highly desirable.

Karp and Miller have shown, in their seminal paper [1], that the minimal coverabil-
ity set is computable. The main idea of the Karp and Miller (K&M) algorithm is to build
a finite tree that summarizes the potentially infinite unfolding of the reachability graph
of the Petri net. In particular, this algorithm relies on an acceleration technique, which
computes the limit of repeating any number of times some sequences of transitions that
strictly increase the number of tokens in certain places. The acceleration technique is
sound because Petri nets arestrictly monotonic, i.e. a sequence of transitions which
can be fired from a markingm can be fired from all markingsm′ such thatm 4 m

′

(where4 is a partial order for the markings). Furthermore sequence of transitions have
constant effect, i.e. they add and subtract in each place thesame number of tokens no

2 G. Geeraerts, J.-F. Raskin, and L. Van Begin

matter from which marking they are fired. At the end of the execution of the K&M
algorithm, one obtains acoverability tree, from which the MCS can be extracted.

Unfortunately, the K&M algorithm is often useless in practice because the finite
tree that it builds is often much larger than the minimal coverability set, and cannot be
constructed in reasonable time. As a consequence, a more efficient algorithm is needed.
In [2], such an algorithm is proposed. The minimal coverability tree (MCT) builds on
the idea of K&M but tries to take advantage more aggressivelyof the strict monotonicity
of Petri nets. The main idea is to construct a tree where all markings that label nodes
are incomparable wrt4. To achieve this goal, reduction rules are applied at each step
of the algorithm: each time a new marking is computed, it is compared to the other
markings. If the new marking is smaller than a existing marking, the construction is not
pursued from this new marking. If the new marking is larger than an existing marking,
the subtree starting from that smaller marking is removed. The informal justification
for this is as follows: the markings that are reachable from removed markings will be
covered by markings reachable from the marking that was usedfor the removal, by
the monotonicity property of Petri nets. While this idea is appealing and leads to small
trees in practice, we show in this paper that, unfortunately, it is not correct: the MCT
algorithm is not complete and can compute a strict under-approximation of the minimal
coverability set. The flaw in the algorithm is intricate and we do not see an easy way to
get rid of it.

So, instead of trying to fix the MCT algorithm, we consider theproblem from
scratch and propose a new efficient method to compute the MCS.It is based on novel
ideas: first, we do not build a tree but handle sets of pairs of markings. Second, in order
to exploit monotonicity property, we define an adequate order on pairs of markings that
allows us to maintain sets of maximal pairs only. We give in this paper a detailed proof
of correctness for this new method, and explain how to turn itinto an efficient algorithm
for the computation of the MCS of practically relevant Petrinets. We have implemented
our algorithm in a prototype and compared its performance with the K&M algorithm.
Our algorithm is orders of magnitude faster than the K&M algorithm.

The rest of the paper is organized as follows. In Section 2, werecall necessary pre-
liminaries. In Section 3, we recall the KM as well as the MCT algorithms. In Section 4,
we expose the bug in the MCT algorithm using an example and explain the essence of
the flaw. In Section 5, we define the covering sequence, a sequence of sets of pairs of
ω-markings that allows to compute the MCS. In Section 6, we show how to turn the
concept of Section 5 into a practical algorithm and we reporton results obtained with
our prototype. Due to the lack of space, we provide most of theproofs in appendix.

2 Preliminaries
Petri nets Let us first recall the model of Petri nets, and fix several notations.

Definition 1. A Petri net [4, 5] (PN for short) is a tupleN = 〈P, T 〉, whereP =
{p1, p2, . . . , p|P |} is a finite set of places andT = {t1, t2, . . . , t|T |} is a finite set of
transitions. Each transition is a tuple〈I, O〉, whereI : P 7→ N andO : P 7→ N are
respectively the input and output functions of the transition.

An example of Petri nets is to be found in Fig. 1(a). To define the semantics ofPN,
we first introduce the notion ofω-marking. Anω-markingm is a functionm : P 7→
(N ∪ {ω}) that associates a number oftokensto each place (ω meaning ‘any natural

On the efficient computation of the minimal coverability setfor Petri nets 3

number’). Anω-markingm is denoted either as
〈
m(p1),m(p2), . . . ,m(p|P |)

〉
(vec-

tor) , or as{m(pi1)pi1 ,m(pi2)pi2 , . . . ,m(pik
)pik

} (multiset), wherepi1 , pi2 , . . . , pik

are exactly the places that contain at least one token (we omit m(p) when it is equal
to 1). For example,〈0, 1, 0, ω, 2〉 and{p2, ωp4, 2p5} denote the sameω-marking. An
ω-markingm is amarkingiff ∀p ∈ P : m(p) 6= ω.

Let N = 〈P, T 〉 be aPN, m be anω-marking ofN and t = 〈I, O〉 ∈ T be a
transition. Then,t is enabledin m iff m(p) ≥ I(p) for anyp ∈ P (we assume that
ω ≥ ω andω > c for any c ∈ N). In that case,t canfire and transformsm into a
newω-markingm

′ s.t. for anyp ∈ P : m
′(p) = m(p) − I(p) + O(p) (assuming that

ω−c = ω = ω+c for anyc ∈ N). We denote this bym
t
−→ m

′, and extend the notation
to sequences of transitionsσ = t1t2 · · · tk ∈ T ∗, i.e.,m

σ
−→ m

′ iff either σ = ε (the

empty sequence) andm = m
′, or there arem1, . . . ,mk−1 s.t.m

t1−→ m1
t2−→ · · ·

tk−→
m

′. Given anω-markingm of somePN N = 〈P, T 〉, we letPost (m) = {m′ | ∃t ∈

T : m

t
−→ m

′} andPost∗ (m) = {m′ | ∃σ ∈ T ∗ : m

σ
−→ m

′}. Given a sequence of
transitionsσ = t1t2 · · · tk with ti = 〈Ii, Oi〉 for any1 ≤ i ≤ k, we let, for any placep,
σ(p) =

∑k

i=1(Ii(p) − Oi(p)), i.e., the effect ofσ onp.
In the following, we use the order4 for ω-markings.

Definition 2. Let P be a set of places of somePN. Then,4⊆ (N ∪ {ω})|P | × (N ∪
{ω})|P | is the relation s.t. for anym1,m2 ∈ (N∪{ω})|P |, m1 4 m2 iff for any p ∈ P :
m1(p) ≤ m2(p).

We writem ≺ m
′ whenm 4 m

′ butm 6= m
′.

Finally, it is well-known thatPN arestrictly monotonic. That is, ifm1, m2 andm3

are threeω-markings andt is a transition of somePN N s.t.m1
t
−→ m2 andm1 ≺ m3,

then,t is enabled inm3 and the markingm4 with m3
t
−→ m4 is s.t.m2 ≺ m4.

Covering and coverability sets Given a setM of ω-markings, we define the set of
maximal elements ofM asMax4 (M) = {m ∈ M | ∄m

′ ∈ M : m ≺ m
′}. Given

an ω-markingm (ranging over set of placesP), its downward-closureis the setof
markings↓4(m) = {m′ ∈ N|P | | m

′ 4 m}. Given a setM of ω-markings, we let
↓4(M) = ∪m∈M↓4(m). A setD of markings is said to bedownward-closedwhenever
↓4(D) = D. Then:

Definition 3. Let N = 〈P, T 〉 be aPN and letm0 be the initialω-marking ofN (for
m0). Thecovering setof N , denoted asCover (N ,m0) is the set↓4(Post∗ (m0)).

Given aPN N with initial markingm0, a coverability setfor N andm0 is a finite
sub-setS ⊆ (N ∪ {ω})|P | such that↓4(S) = Cover (N ,m0). Such a set always exists
because any downward-closed set of markings can be represented by a finite set of
ω-markings:

Lemma 1 ([7]). For any subsetD ⊆ Nk such that↓4(D) = D there exists a finite
subsetS ⊂ (N ∪ {ω})k such that↓4(S) = D.

It is also well-known [2] that there exists one minimal (in terms of⊆) coverability set
(called theminimal coverability set).

4 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Labeled trees Finally, let us introduce the notion oflabeled tree:

Definition 4. Given a set of placesP , a labeled tree is a tupleT = 〈N, B, root , Λ〉, s.t.
〈N, B, root〉 forms a tree (N is the set of nodes,B ⊆ N × N is the set of edges and
root ∈ N is the root node) andΛ : N 7→ (N ∪ {ω})|P | is a labeling function of the
nodes byω-markings.

Given two nodesn andn′ in N , we write respectivelyB(n, n′), B∗(n, n′) B+(n, n′)
instead of(n, n′) ∈ B, (n, n′) ∈ B∗, (n, n′) ∈ B+.

3 The Karp&Miller and the MCT algorithms
The Karp and Miller algorithm The Karp&Miller algorithm [1] is a well-known
solution to compute a coverability set of aPN. It consists in building a labeled tree
whose root is labeled bym0. The tree is obtained by unfolding the transition relation of
thePN, and by applyingaccelerations, which exploit the strict monotonicity property
of PN. That is, let us assume thatm1 andm2 are twoω-markings s.t.m1 ≺ m2 and
there exists a sequence of transitionsσ with m1

σ
−→ m2. By (strict) monotonicity,σ is

firable fromm2 and produces aω-markingm3 s.t.m2 ≺ m3. As a consequence, all
the placesp s.t.m1(p) < m2(p) are unbounded. Hence, theω-markingmω defined
asmω = ω if m1(p) < m2(p), andmω = m1(p) otherwise, has the property that
↓4(mω) ⊆ ↓4(Post∗ (m1)). This can be generalized to the case where we consider an
ω-markingm and a setS of ω-markings s.t. for anym′ ∈ S: m ∈ Post∗ (m′). Hence,
the following acceleration function:

∀p ∈ P : Accel (S,m) (p) =

{
ω if ∃m′ ∈ S : m′ ≺ m andm

′(p) < m(p)
m(p) Otherwise

The Karp&Miller procedure (see Algorithm 1) relies on this function: when developing
the successors of a noden, it calls the acceleration function on everym ∈ Post (Λ (n)),
by lettingS be the set of all the markings that are met along the branch ending in n.
This procedure terminates and computes a coverability set:

Theorem 1 ([1]). For any PN N = 〈P, T 〉 with initial ω-markingm0, theKM pro-
cedure produces a finite labeled treeT = 〈N, B, root , Λ〉, s.t.↓4({Λ (n) |n ∈ N}) =
Cover (N ,m0).

Properties of the Karp&Miller tree Let n 6= root be a node of some Karp&Miller
tree. Hence,Λ (n) has been obtained by callingAccelerate with parametersS andm.
In this case, we say thatn has been obtainedby the acceleration ofm (with S). For any
noden 6= root of any Karp&Miller tree, we assume that the functionM(n) returns the
markingm s.t.Λ (n) has been obtained by the acceleration ofm. Remark that, for any
noden 6= root , M(n) ∈ Post (Λ (n′)) wheren′ is the father ofn. Remark that it might
be the case thatΛ (n) = M(n).

Let N = 〈P, T 〉 be aPN with initial markingm0 and letT = 〈N, B, root , Λ〉 be
its Karp&Miller tree. Then,ς : N 7→ T ∗ is a function that associates a sequence of
transitions to every noden, as follows.(i) If n = root , thenς (n) returns the empty
sequence.(ii) If there is non′ ∈ N s.t.B+(n′, n), Λ (n′) 6= Λ (n) andΛ (n′) 4 Λ (n)
(hence,n is such thatΛ (n) = M(n)), thenς (n) returns the empty sequence.(iii)

On the efficient computation of the minimal coverability setfor Petri nets 5

Data: A PN N = 〈P, T 〉 and an initialω-markingm0.
Result: The minimal coverability set ofN for m0.
KM (N ,m0) begin
T ← 〈N, B, n0, Λ〉 whereN = {n0}, B = ∅ andΛ (n0) = m0 ;
to treat ← {n0} ;
while to treat 6= ∅ do

let n be a node ofto treat ;
to treat ← to treat \ {n} ;
if ∄n : B+(n, n) ∧ Λ (n) = Λ (n) then

foreachm ∈ Post (Λ (n)) do
S ← {Λ (n′) | B∗(n′, n)} ;
Let n′ be a new node s.t.Λ (n′) = Accel (S,m) ;
N ← N ∪ {n′} ;
B ← B ∪ {(n, n′)} ;
to treat ← to treat ∪ {n′} ;

return({Λ (n) | n ∈ N ∧ ∄n′ ∈ N : Λ (n′) ≻ Λ (n)}) ;
end

Algorithm 1 : TheKM algorithm.

Otherwise,n has been obtained by the acceleration ofM(n). Let Pa = {p ∈ P |
Λ (n) (p) = ω andM(n) (p) 6= ω} and letPω = {p ∈ P | Λ (n) (p) = M(n) (p) =
ω}. In that case,ς (n) returns one of the finite non-empty sequences such that for any
p ∈ Pa: ς (n) (p) > 0; for anyp ∈ P \ (Pa ∪ Pω): ς (n) (p) = 0; andς (n) is firable
from M(n).

The existence ofς (n) in the third case is guaranteed by the following lemma, that
can be extracted from the main proof of the Algorithm 1, in [1]:

Lemma 2 ([1]). Let N = 〈P, T 〉 be aPN with initial ω-markingm0 and letT =
〈N, B, root , Λ〉 be its Karp&Miller tree. Letn 6= root be a node ofT . LetPa = {p ∈
P | Λ (n) (p) = ω andM(n) (p) 6= ω} andPω = {p ∈ P | Λ (n) (p) = M(n) (p) =
ω}. Then, there exists a sequence of transitionsσ ∈ T ∗ s.t.: (i) for any p ∈ Pa:
σ(p) > 0. (ii) for anyp ∈ P \ (Pa ∪ Pω): σ(p) = 0. (iii) σ is firable fromM(n).

The MCT algorithm The minimal coverability tree algorithm(MCT for short) has
been introduced by Finkel in [2], as an optimization of the Karp&Miller algorithm. It
is recalled in Algorithm 2, and relies on two auxiliary functions: given a labeled tree
T and a noden of T , removeSubtree(n, T) removes the subtree rooted byn from
T . The functionremoveSubtreeExceptRoot(n, T) is similar toremoveSubtree(n, T)
except that the root noden is not removed. The main idea consists in exploiting the
monotonicity property ofPN in order to avoid developing part of the nodes of the
Karp&Miller tree, as well as removing some subtrees during the construction. With
respect to the Karp&Miller algorithm, three main differences can be noted. Letn be a
node picked fromto treat . First, when there already exists another noden with Λ (n) =
Λ (n) in the tree,n, is not developed (line (a)). Second, whenn is accelerated (line (b)),
the result of the acceleration is assigned to the label of itshighest ancestorn s.t.Λ (n) ≺
Λ (n), and the whole subtree ofn is removed from the tree. Third, the algorithm avoids
adding a noden′ to the tree if there is another noden s.t. Λ (n) < Λ (n′) (line (c)).

6 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Data: A PN N = 〈P, T 〉 and an initial markingm0

Result: The minimal coverability set ofN .
MCT (N ,m0) begin
T ← 〈N, B, n0, Λ〉 whereN = {n0}, B = ∅ andΛ(n0) = m0 ;
to treat ← {n0} ;
while to treat 6= ∅ do

Select some noden in to treat and remove it;
(a) if ∄n ∈ N s.t.Λ (n) = Λ (n) then

foreachm ∈ Post (Λ (n)) do
(b) if ∃n : B∗(n, n) andΛ (n) ≺m then

Let n be the highest node s.t.B∗(n, n) ∧ Λ (n) ≺m ;
Λ (n)← Accel ({n′ ∈ N | B∗(n′, n)}, m) ;
to treat ←

`

to treat \ {n′ | B∗(n, n′)}
´

∪ {n} ;
removeSubtreeExceptRoot(n, T) ;
break ;

(c) else if∄n ∈ N s.t.m ≺ Λ (n) then
Let n′ be a new node s.t.Λ (n′) = m ;
N ← N ∪ {n′} ; B ← B ∪ (n, n′) ;
to treat ← to treat ∪ {n′};

(d) while ∃n1, n2 ∈ N : Λ (n1) ≺ Λ (n2) do
to treat ← to treat \ {n | B∗(n1, n)} ;
removeSubtree(n1, T) ;

return({Λ (n) | n ∈ N}) ;
end

Algorithm 2 : TheMCT algorithm [2].

Moreover, the adjunction ofn′ to the tree (when it happens) triggers the deletion of all
the subtrees rooted in some noden′′ s.t.Λ (n′′) ≺ Λ (n′) (line (d)).

Remark that this algorithm isnon-deterministic, in the sense that no ordering is
imposed on the nodes into treat . Hence, any strategy that fixes the exploration order
(which can possibly improve the efficiency of the algorithm)can be chosen.

4 Counter-example to the MCT algorithm
In this section, we introduce aPN on which the MCT algorithm might compute astrict
under-approximationof the covering set (see Fig. 1). Fig 1(a) is thePN on which we
run the MCT algorithm, and Fig. 1(b) through 1(f) are the key points of the execution.

Let us briefly comment on this execution. First remark that placep5 of thePN in
Fig. 1(a) is unbounded, because marking{p3} is reachable from the initial marking
m0 = {p1} by firing t1t2, and the sequencet3t4 can be fired an arbitrary number of
times from{p3}, and strictly increases the markings ofp5. Then, one possible execution
of MCT is as follows (markings in the frontier are underlined):

Fig. 1(b) The three successors ofm0 are computed. Then, the branch rooted in{p2} is
unfolded, by firingt2, t3 andt4. At that point, two comparable markings{p3} and
{p3, p5} are met with and an acceleration occurs (line (b) of Algorithm 2) . The
result is{p3, ωp5}, which is put intoto treat .

On the efficient computation of the minimal coverability setfor Petri nets 7

Fig. 1(c) The subtree rooted in{p6} is unfolded. After the firing oft6t4, one ob-
tains{p3, 3p5}, which is smaller than{p3, ωp5}. Hence,{p3, 3p5} is not put into
to treat and the branch is stopped (line (c)).

Fig. 1(d) The subtree rooted in{p7} is developed. The unique successor{p2, p5} of
{p7} is larger than{p2}. Hence, the subtree rooted in{p2} (including{p3, ωp5},
still in the frontier) is removed (line (d)).

Fig. 1(e) and 1(f) The tree (actually a single branch) rooted in{p2, p5} (only node
in the frontier) is further developed through the firing oft2 andt3. The resulting
node{p4, p5} is strictly smaller than{p4, 2p5}. Hence, that branch is stopped too
(line (c)), and the frontier becomes empty. The final result of the algorithm is shown
in Fig. 1(f). It is not difficult to see that the set of labels ofthis tree does not form a
coverability set, because it contains no markingm s.t.m(p5) = ω.

Comment on the counter-exampleThis counter-example allows us to identify a flaw
in the logic of the MCT algorithm. The algorithm stops the development of a noden
or removes the subtree rooted inn because its has found another noden′ s.t. Λ (n′)
is larger thanΛ (n). In that case, we say thatn’ is a proof forn. The intuition behind
this notion is that, by monotonicity, all the successors ofn should be covered by some
successor ofn′. Thus, whenn′ is a proof forn, the algorithm makes implicitly the
hypothesis that either all the successors ofn′ will be fully developed, or that they will
be covered by some other nodes of the tree.

In our counter-example, that reasoning fails becausecyclesappear in ‘proofs’. In
Fig. 1, we have drawn a thick gray arrow fromn to n′ whenn′ is a proof forn. On
Fig. 1(d), the node labeled by{p3, ωp5}, which is a proof for{p3, 3p5} is deleted,
because of{p2, p5}. Hence,{p2, p5}, becomes the proof of{p3, 3p5} (see Fig. 1(e)).
The cycle clearly appears in Fig 1(f): all the successors of{p4, 2p5} will be eventually
covered under the assumption that all the successors of{p2, p5} are covered. However,
this happens under only if all the successors of{p4, 2p5} are eventually covered.

Implementation of the MCT in the Pep tool Actually, the flaw in the MCT algorithm
has already been independently discovered by the team of Prof. Peter Starke. They
have implemented in INA (a component of the toolkit Pep [3]) avariation of the MCT
which is supposed to correct the aforementioned bug. To the best of our knowledge,
this implementation (and the discovery of the bug) has been documented only in a
master’s thesis in German [8]. Unfortunately, their version of the MCT contains a flaw
too, because it offers no guarantee of termination [9, 10], although [8] contains a proof
of termination. See [11] for a counter-example to termination. Thus, from our point of
view, fixing the bug of the MCT algorithm seems to be a difficulttask.

5 The covering sequence
Instead of trying to fix the bug in the MCT algorithm, we propose a different solution
based on novel ideas. To introduce our new solution, let us look back at the basics.
Remember that we want to compute an effective representation of ↓4(Post∗ (m0)).
It is easy to show that this set is the limit of the following infinite sequence of sets:
X0 = ↓4({m0}), and fori ≥ 1, Xi = ↓4(Xi−1 ∪ Post (Xi−1)). Note that by strict
monotonicity of Petri nets, we can instead consider the following sequence that handles
maximal elements only:Y0 = Max4 ({m0}), andYi = Max4 (Yi−1 ∪ Post (Yi−1))

8 G. Geeraerts, J.-F. Raskin, and L. Van Begin

•p1

p2

p4

p5

p3

p6

p7

t1 t3

t4

t5 t6

t7 t8

t2
2

(a) ThePN.

{p1}

{p2}

{p3}

{p3, p5}

{p6} {p7}

t1

t2

t3 · t4

t5 t7

≺

(b) Step 1.

{p1}

{p2}

{p3, ωp5}

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

t6

t4 ≺

(c) Step 2.

{p1}

{p2}

{p3, ωp5}

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

{p2, p5}

t8≺

(d) Step 3.

{p1}

{p2}

m3

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

{p2, p5}

{p4, p5}

{p3, p5}

t2

t3

≻

(e) Step 4.

{p1}

{p2}

m3

{p6} {p7}

{p4, 2p5}

{p3, 3p5}

{p2, p5}

{p4, p5}

{p3, p5}

(f) The result.

Fig. 1.A counter-example to the MCT algorithm. Underlined markings are in the frontier. A gray
arrow fromn to n′ means thatn′ is a ‘proof’ for n.

On the efficient computation of the minimal coverability setfor Petri nets 9

for anyi ≥ 1. Unfortunately, this is not an effective way to compute the minimal cov-
erability set as we do not know how to compute the limit of thissequence. To compute
that limit, we need accelerations. Accelerations are computed from pairs of markings.
Our solution constructs a sequence of sets of pairs of markings on which we systemati-
cally apply a variant of thePost operator and a variant of the acceleration function. By
defining an adequate order⊑ on pairs of markings, we show that we can concentrate on
maximal elements for⊑.

Preliminaries Let m1 and m2 be two ω-markings. Then,m1 ⊖ m2 is a function
P 7→ Z∪ {−ω, ω} s.t. for any placep: (m1 ⊖m2)(p) is equal toω if m1(p) = ω; −ω

if m2(p) = ω andm1(p) 6= ω; m1(p) − m2(p) otherwise. Then, given two pairs of
ω-markings(m1,m2) and(m′

1,m
′
2), we have(m1,m2) ⊑ (m′

1,m
′
2) iff m1 4 m

′
1,

m2 4 m
′
2 and for any placep: (m2 ⊖ m1)(p) ≤ (m′

2 ⊖ m
′
1)(p).

For any(m1,m2), we let↓⊑((m1,m2)) = {(m′
1,m

′
2) | (m′

1,m
′
2) ⊑ (m1,m2)}.

We extend this to sets of pairsR as follows:↓⊑(R) = ∪(m1,m2)∈R↓
⊑((m1,m2)).

Given a setR of pairs of markings, we letMax⊑ (R) = {(m1,m2) ∈ R | ∄(m′
1,m

′
2) ∈

R : (m1,m2) 6= (m′
1,m

′
2) ∧ (m1,m2) ⊑ (m′

1,m
′
2)}

Our new solution relies on a weaker acceleration function than that of Karp&Miller
(because its first argument is restricted to a single markinginstead of a set of markings).
Given twoω-markingsm1 andm2 s.t.m1 4 m2, we letAccelPair (m1,m2) = mω

s.t. for any placep, mω(p) = m1(p) if m1(p) = m2(p); mω(p) = ω otherwise.
According to the following lemma, this acceleration function is sound:

Lemma 3. Let N be a PN and let m1 and m2 be twoω-markings ofN that re-
spectm1 4 m2 and↓4(m2) ⊆ ↓4(Post

∗ (m1)). Then,↓4(AccelPair (m1,m2)) ⊆
↓4(Post∗ (m2)).

Moreover, given a labeled treeT = 〈N, B, root , Λ〉, we let, for anyn ∈ N ,
Anc (T , n) = {n′ | B∗(n′, n)} (that is,Anc (T , n) is the set of ‘ancestors’ ofn in
T , n included). Then, the following lemma draws a link betweenAccelPair and the
Karp&Miller acceleration. It shows that, althoughAccelPair is weaker, it can produce
the same results than the Karp&Miller acceleration, when properly applied.

Lemma 4. Let N = 〈P, T 〉 be a Petri net with initial markingm0 and let T =
〈N, B, root , Λ〉 be its Karp&Miller tree. Letn 6= root be a node ofT . Let m′ be

s.t.M(n)
ς(n)
−−−→ m

′. Then,Λ (n) 4 AccelPair (M(n) ,m′).

Proof. Let Pa = {p ∈ P | Λ (n) (p) = ω ∧ M(n) (p) 6= ω}. By construction, for any
placep, Λ (n) (p) = ω if p ∈ Pa; Λ (n) (p) = M(n) otherwise. Moreover, by definition
of AccelPair, for any placep, AccelPair (M(n) ,m′) (p) = ω if ς (n) (p) > 0; and
AccelPair (M(n) ,m′) (p) = M(n) (p) otherwise. By def. ofς (n), p ∈ Pa implies
ς (n) (p) > 0, andp 6∈ Pa impliesΛ (n) (p) = M(n) (p). Hence the lemma. ⊓⊔

Finally, we introduce several operators that work directlyon pairs of markings.
Given a setR of pairs ofω-markings, we letFlatten (R) = {m | ∃m′ : (m′,m) ∈ R}.
Given a pair of markings(m1,m2), we letPost ((m1,m2)) = {(m1,m

′), (m2,m
′) |

m
′ ∈ Post (m2)} andAccel ((m1,m2)) = {(m2, AccelPair (m1,m2))} if m1 ≺

m2; andAccel ((m1,m2)) is undefined otherwise. We extend these two functions to
setsR of pairs in the following way:Post (R) = ∪(m1,m2)∈RPost ((m1,m2)) and
Accel (R) = ∪(m1,m2)∈R,m1≺m2

{Accel (m1,m2)}.

10 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Definition of the sequenceWe are now ready to introduce the covering sequence. We
will define the sequence in a way that allows for optimizations. To incorporate those
optimizations elegantly, we allow our construction to be helped by an oracle which is a
procedure that produces pairs of markings. This oracle potentially allows for the early
convergence of the covering sequence. However, we will prove that our sequence con-
verges even if the oracle is trivial (returns always an emptyset of pairs of markings). In
the next section, we will show that the oracle can be implemented by a recursive call to
the covering sequence, by consideringω-markings where the number ofω is increasing
as initialω-markings in the recursive call. This will lead to an efficient procedure as we
will see in the next section.

In the following, given a Petri netN and an initial markingm0, we call anoracle
any functionOracle : N 7→ (N ∪ {ω})|P | × (N ∪ {ω})|P | that returns, for anyi ≥ 0, a
set of pairs ofω-markings s.t.

↓4(Post (Flatten (Oracle (i)))) ⊆ ↓4(Flatten (Oracle (i))) (1)

and
↓4(Flatten (Oracle (i))) ⊆ Cover (N) . (2)

Let N = 〈P, T 〉 be aPN, m0 be an initial marking, andOracle be an oracle. Then,
the covering sequence ofN , notedCovSeq (N ,m0, Oracle) is the infinite sequence
(Vi, Fi, Oi)i≥0, defined as follows:

– V0 = ∅, O0 = ∅ andF0 = {(m0,m0)};
– For anyi ≥ 1: Oi = Max⊑ (Oi−1 ∪ Oracle (i));
– For anyi ≥ 1: Vi = Max⊑ (Vi−1 ∪ Fi−1) \ ↓⊑(Oi);
– For anyi ≥ 1: Fi = Max⊑

(
Post (Fi−1) ∪ Accel (Fi−1)

)
\ ↓⊑(Vi ∪ Oi).

It is not difficult to see that this sequence enjoys the following three properties:

Lemma 5. Let N be aPN, m0 be its initial marking,Oracle be an oracle, and let
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then, for alli ≥ 0:

1. Post (Vi) ∪ Accel (Vi) ⊆ ↓⊑(Vi ∪ Fi ∪ Oi);
2. ↓4(Flatten (Vi ∪ Oi)) ⊆ ↓4(Flatten (Vi+1 ∪ Oi+1));
3. for all (m1,m2) ∈ Fi ∪ Vi: ↓4(m2) ⊆ ↓4(Post∗ (m1)).

Completeness of the sequenceFor all markingm computed by the Karp&Miller
algorithm, we show that there exists a finite valuek s.t.m ∈ ↓4(Flatten (Vk)), where
k depends on the depth of the node labeled bym in the Karp&Miller tree:

Lemma 6. Let N be a PN, m0 be its initial marking,Oracle be an oracle,T =
〈N, B, root , Λ〉 be the K&M tree ofN andCovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0.
Then∀n ∈ N : ∀k ≥

∑
n′∈Anc(T ,n)(|ς (n′) |+3): ↓4(Λ (n)) ⊆ ↓4(Flatten (Vk ∪ Ok)).

Proof. Sketch.1 We show by induction on the depthℓ of nodes in the Karp&Miller tree
that the lemma holds for alln ∈ N . For a noden at depthℓ, we prove that there exists
i and a pair(m1,m2) ∈ Vi ∪ Oi s.t.↓4(Λ (n)) ⊆ ↓4(m2), as follows. By induction

1 The complete proof can be found in appendix.

On the efficient computation of the minimal coverability setfor Petri nets 11

hypothesis, there isj s.t.↓4(Λ (n′)) ⊆ ↓4(Flatten (Oj ∪ Vj)), wheren′ is the father of
n. The valuei s.t.Λ (n) ⊆ ↓4(Flatten (Oi ∪ Vi)) depends onj and the length ofς (n).
Hence, a second induction on the size ofς (n) is used. That induction is applied in the
case where| ς (n) |> 0 and allows to prove that there is a pair(m3,m4) ∈ Vi−1 ∪

Oi−1 such that(M(n) ,m) ⊑ (m3,m4) wherem is such thatM(n)
ς(n)
−−−→ m. Once

that result is obtained, we have by Lemma 4 thatΛ (n) 4 Accel ((M(n) ,m)), since
M(n) ≺ m, and thatAccel ((M(n) ,m)) 4 Accel ((m3,m4)) = m

′ by definition of
Accel and⊑. Hence(m4,m

′) ∈ ↓⊑(Oi−1 ∪ Fi−1 ∪ Vi−1) by Lemma 5.1. Finally, by
construction ofOi andVi, we conclude that(m4,m

′) ∈ ↓⊑(Oi ∪ Vi), with Λ (n) 4

m
′, henceΛ (n) ∈ ↓4(Flatten (Oi ∪ Vi)). �

As a consequence, the covering sequence is complete:

Corollary 1. Let N be a PN, m0 be its initial marking,Oracle be an oracle, and
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. There existsk ≥ 0 such that for allk′ ≥ k

we haveCover (N ,m0) ⊆ ↓4(Flatten (Vk′ ∪ Ok′)).

Soundness of the sequenceIn order to show that the covering sequence is correct,
it remains to show that any markingm produced by the sequence is s.t.↓4(m) ⊆
Cover (N ,m0). For that purpose, we need the two following lemmata:

Lemma 7. LetN be aPN letA andB be two sets ofω-markings ofN . Then,↓4(A) ⊆
↓4(Post∗ (B)) implies that↓4(Post∗ (A)) ⊆ ↓4(Post∗ (B)).

Lemma 8. Let N be aPN, m0 be its initial marking,Oracle be an oracle, and let
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then,∀i ≥ 1: ∀m ∈ Flatten (Ti ∪ Fi ∪ Oi),
↓4(m) ⊆ ↓4(Post

∗ (m0)).

As a consequence, we directly obtain our soundness result:

Corollary 2. Let N be a PN, m0 be its initial marking,Oracle be an oracle, and
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then,∀i ≥ 1, ↓4(Flatten (Vi ∪ Oi)) ⊆
↓4(Post∗ (m0)).

Corollary 1 and 2 allow us to obtain the next Theorem.

Theorem 2. Let N be a PN, m0 be its initial marking,Oracle be an oracle, and
CovSeq (N ,m0, Oracle) = (Vi, Fi, Oi)i≥0. Then, there existsk ≥ 0 such that

1. for all 1 ≤ i < k : ↓4(Flatten (Vi ∪ Oi)) ⊂ ↓4(Flatten (Vi−1 ∪ Oi−1));
2. for all i ≥ k : ↓4(Flatten (Vi ∪ Oi)) = Cover (N ,m0).

Proof. By Corollary 1 and 2, we conclude that there exists at least one k ∈ N such
that↓4(Flatten (Vk ∪ Ok)) = ↓4(Flatten (Vk+1 ∪ Ok+1)). Let us consider the small-
estk ∈ N that satisfies that condition and let us prove that↓4(Flatten (Vk ∪ Ok)) =
Cover (N). Note that by Lemma 5.2 we have for all0 ≤ i < k : ↓4(Flatten (Vi ∪ Oi)) ⊂
↓4(Flatten (Vi+1 ∪ Oi+1)).

First, we prove that↓4(Flatten (Fk)) ⊆ ↓4(Flatten (Vk ∪ Ok)). By construction,
↓⊑(Fk) ⊆ ↓⊑(Vk+1 ∪ Ok+1). Hence,↓4(Flatten (Fk)) ⊆ ↓4(Flatten (Vk+1 ∪ Ok+1)),
by definition of⊑. However,↓4(Flatten (Vk+1 ∪ Ok+1)) = ↓4(Flatten (Vk ∪ Ok)),
by definition ofk.

12 G. Geeraerts, J.-F. Raskin, and L. Van Begin

By Lemma 5.1,Post (Vk) ∪ Accel (Vk) ⊆ ↓⊑(Vk ∪ Fk ∪ Ok), which implies that
↓4

(
Flatten

(
Post (Vk) ∪ Accel (Vk)

))
⊆ ↓4(Flatten (Vk ∪ Fk ∪ Ok)). In particular,

↓4
(
Flatten

(
Post (Vk)

))
⊆ ↓4(Flatten (Vk ∪ Fk ∪ Ok)). Since↓4(Flatten (Fk)) ⊆

↓4(Flatten (Vk ∪ Ok)), we have↓4
(
Flatten

(
Post (Vk)

))
⊆ ↓4(Flatten (Vk ∪ Ok)).

This means that↓4(Post (Flatten (Vk))) ⊆ ↓4(Flatten (Vk ∪ Ok)). Furthermore, by
(1) and definition ofOk, ↓4(Post (Flatten (Ok))) ⊆ ↓4(Flatten (Ok)). We conclude
that ↓4(Post (Flatten (Vk ∪ Ok))) ⊆ ↓4(Flatten (Vk ∪ Ok)). Then, by Lemma 5.2,
and sincem0 ∈ ↓4(Flatten (V1 ∪ O1)), we havem0 ∈ ↓4(Flatten (Vk ∪ Ok)). Hence,
↓4(Flatten (Vk ∪ Ok)) is aPost fixpoint that coversm0. Thus↓4(Flatten (Vk ∪ Ok)) ⊇
↓4(Post∗ (m0)). Since, by Corollary 2,↓4(Flatten (Ok ∪ Vk)) ⊆ Cover (N ,m0), we
conclude that↓4(Flatten (Vk ∪ Ok)) = Cover (N ,m0). Finally, by Lemma 5.2 and
Corollary 2,↓4(Flatten (Vi ∪ Oi)) = ↓4(Flatten (Vk ∪ Ok)) = Cover (N), for all
i > k. Hence, the lemma. �

6 Practical implementation

To implement the method in practice, we have to instantiate the oracle. First, note
that theempty oracle, i.e. Oracle (i) = ∅ for all i ≥ 1, is a correct oracle. Indeed,
↓4(Post (∅)) = ∅ ⊆ ↓4(∅) and↓4(∅) ⊆ ↓4(Post∗ (m0)) for all m0. Thus, the oracle
can be regarded as an optional optimization of our algorithm. Yet, this optimization can
be very powerful, as we show now. When using the empty oracle our method performs
a breadth first search. In particular, if several accelerations can be applied from anω-
markingm, each of them puttingω’s in different places (for instance a first acceleration
puts oneω in placep1 and a second one puts anω is p2), then all the possible orders for
their application will be investiguated (i.e. first put theω in placep1 in m and then an
ω in p2; and vice-versa). However, all the possible orders lead to the sameω-marking
(with anω in p1 andp2) that covers the intermediate ones (where there is oneω either
in p1 or p2). Thus, in order to improve our method, only one possible order should be
explored. To achieve that goal, we present in the next paragraph theCovProc procedure
where the oracle is implemented as a recursive call onω-markings resulting from an
acceleration. As a consequence, the initial breadth first search is mixed with a depth
first search that allows to develop first theω-markings resulting from an acceleration.

The CovProc procedure TheCovProc procedure is shown in Algorithm 3. It closely
follows the definition of the covering sequence. At each stepi, the oracle is imple-
mented as a finite number of recursive calls toCovProc, where the initialω-markings
are the results of the accelerations occurring at this step.Note that a recursive call
is not applied on all the acceleratedω-markings but a non-deterministically chosen
subsetS. Indeed, in practice, if we have two accelerated markingsm1 andm2 with
↓4(m2) ⊆ ↓4(Post∗ (m1)) then it is not necessary to applyCovProc onm2 to explore
the markings that are reachable fromm2.

This strategy allows to mix the breadth-first exploration ofthe covering sequence
and the depth-first exploration due to the recursive calls which favorω-markings with
moreω. It turns out to be very efficient in practice (see hereunder). Since, for any pair
(m1,m2), AccelPair (m1,m2) contains strictly moreω’s thanm1 andm2, and since
the number of places of thePN is bounded, the depth of recursion is bounded too, which
ensures termination.

On the efficient computation of the minimal coverability setfor Petri nets 13

Data: A PN N = 〈P, T 〉, an initialω-markingm0

Result: A set of pairs of markings.
CovProc (N ,m0)
begin

i := 0 ; O0 := ∅ ; V 0 := ∅ ; F 0 := {(m0,m0)} ;
repeat

i := i + 1 ;
Ri := ∪m∈SCovProc (N ,m) whereS ⊆ Flatten

`

Accel (Fi−1)
´

;
Oi := Max⊑

`

Oi−1 ∪ Ri

´

;
V i := Max⊑

`

V i−1 ∪ F i−1

´

\ ↓⊑
`

Oi

´

;
F i := Max⊑

`

Post
`

F i−1

´

∪ Accel
`

F i−1

´´

\ ↓⊑
`

Oi ∪ V i

´

;
until ↓4

`

Flatten
`

Oi ∪ V i

´´

⊆ ↓4
`

Flatten
`

Oi−1 ∪ V i−1

´´

;
return(Oi ∪ V i) ;

end
Algorithm 3 : TheCovProc algorithm.

Let us show that this solution is correct and terminates. Forany markingm, we let
Nbω (m) = |{p | m(p) = ω}|, i.e. the number of unbounded places inm. We first
state the following technical lemma:

Lemma 9. Let N be aPN, m0 be aω-marking, and letF i be the sets computed by
CovProc (N ,m0). Then, for anyi ≥ 0: for any m ∈ Flatten

(
F i

)
: Nbω (m) ≥

Nbω (m0).

Then, the proof of total correctness ofCovProc is as follows:

Theorem 3. For anyPN N and anyω-markingm0: CovProc (N ,m0) terminates and
↓4(Flatten (CovProc (N ,m0))) = Cover (N ,m0).

Proof. The proof works by induction onNbω (m0).
Base case (Nbω (m0) = |P |) In that case,CovProc (N ,m0) finishes after two it-
erations and returnsO2 ∪ V 2 = {(m0,m0)}. Remark that no recursive call is per-
formed becauseR1 = Accel

(
F 0

)
= ∅ andR2 = Accel ({(m0,m0)}) = ∅. Moreover,

↓4(Flatten (CovProc (N ,m0))) = ↓4(m0) = Cover (N ,m0).
Inductive case (Nbω (m0) = k < |P |) We consider two cases. First, assume that
the algorithm terminates afterℓ iterations, i.e., assume that↓4

(
Flatten

(
Oℓ ∪ V ℓ

))
=

↓4
(
Flatten

(
Oℓ−1 ∪ V ℓ−1

))
, but for any1 ≤ j ≤ ℓ − 1: ↓4

(
Flatten

(
Oj ∪ V j

))
6=

↓4
(
Flatten

(
Oj−1 ∪ V j−1

))
. By Lemma 9, for any1 ≤ j ≤ ℓ, for any(m1,m2) ∈

F j : Nbω (m2) ≥ k. Hence, for any1 ≤ j ≤ ℓ, for anym ∈ Flatten
(
Accel

(
F j

))
:

Nbω (m) ≥ k + 1. Thus, by induction hypothesis, for any1 ≤ j ≤ ℓ, for any
m ∈ Flatten

(
Accel

(
F j

))
, CovProc (N ,m) terminates and returns a set of pairs such

that ↓4(Flatten (CovProc (N ,m))) = Cover (N ,m). As a consequence, and since
Flatten

(
Accel

(
F j

))
is a finite set for any1 ≤ j ≤ ℓ, we conclude thatRj is computed

in a finite amount of time and that↓4(Post (Flatten (Rj))) ⊆ ↓4(Flatten (Rj)) ⊆
Cover (N ,m0), for any1 ≤ j ≤ ℓ.

Let Ω denote the function s.t., for any1 ≤ j ≤ ℓ: Ω(j) = Rj , and, for any
j > ℓ, Ω(j) = ∅. Thus,Ω is an oracle. Let us assume thatCovSeq (N ,m0, Ω) =

14 G. Geeraerts, J.-F. Raskin, and L. Van Begin

(Vi, Fi, Oi)i≥1. Clearly, for any0 ≤ j ≤ ℓ, V j = Vj andOj = Oj . Thus, by The-
orem 2, there existsk s.t.↓4

(
Flatten

(
V k−1 ∪ Ok−1

))
= ↓4

(
Flatten

(
V k ∪ Ok

))
=

Cover (N ,m0), and s.t. for every1 ≤ j ≤ k − 1: ↓4
(
Flatten

(
V j−1 ∪ Oj−1

))
⊂

↓4
(
Flatten

(
V j ∪ Oj

))
. Hence,k = ℓ, and we conclude thatCovProc (N ,m0) termi-

nates and returns↓4
(
Flatten

(
V ℓ ∪ Oℓ

))
= Cover (N ,m0).

In the latter case, we assume that the algorithm does not terminate and derive a
contradiction. This can happen for two reasons: either because the test of therepeat
loop is never fulfilled, or because some stepj of the loop takes an infinite time to
complete. By re-using the arguments of the first part of this proof, we can show that the
latter is not possible. Indeed,Rj is computed in a finite amount of time and the functions
Max⊑, Flatten, Post, Accel, and the test that guards the ”until” are computable, i.e. the
computation of the setsOj , V j andF j always takes a finite amount of time. Thus, if the
algorithm does not terminates, it computes an infinite sequence of sets(V i, F i, Oi)i≥0.
Symmetrically to the first part of this proof, we build an oracle Ω s.t.Ω(j) = Rj for
anyj ≥ 1. Let us assume thatCovSeq (N ,m0, Ω) = (Vi, Fi, Oi)i≥0. Clearly, for any
j ≥ 0, we haveVj = V j andOj = Oj . Hence, by Theorem 2, we conclude that
there existsk ≥ 1 s.t.↓4

(
Flatten

(
V k ∪ Ok

))
= ↓4

(
Flatten

(
V k−1 ∪ Ok−1

))
, which

compels the algorithm to terminate at stepk. Contradiction. ⊓⊔

Empirical evaluation We have implemented a prototype that computes the coverabil-
ity set of aPN, thanks to the covering sequence method and the Karp&Milleralgo-
rithm. We have selected five boundedPN and eight unboundedPN. Those examples
describes (mutual exclusion) protocols (boundedPN), parameterized systems and com-
munication protocols (unboundedPN). The prototype has been written in the PYTHON

programming language in a very straightforward way. As a consequence the running
times of the prototype are given for the sake of comparison only. Nevertheless, as can
be seen in Table 1, this prototype performs very well on our set of examples2.

More precisely, we have compared two implementations of thecovering sequence to
theKM algorithm. The former (columnCov. Seq. w/o oracle) is the covering sequence
where we letOracle (i) = ∅ for any i ≥ 0 (that is, the oracle-based optimization is
disabled). In that case the sets of pairs built by our algorithm are small (see column
Max P.) compared to the size of the Karp& Miller tree (column Nodes), although the
number of pairs created by the algorithm is not dramaticallysmall compared to the size
of the K&M tree (see column Tot. P.). This shows the efficiencyof our approach based
onpairsof markings (and on the⊑ order), with respect to the classical approach.

The latter implementation is theCovProc procedure (Algorithm 3) where we have
implemented the oracle as follows: we consider the acceleratedω-markings one by one.
If an acceleratedω-marking is already covered by theFlatten of the pairs computed by
previous recursive calls, it is forgotten; otherwise a recursive call is applied on it. In the
case ofboundedPN, CovProc performs as the covering sequence with trivial oracle,
which is not surprising since no acceleration occur on theseexamples. In the case of
unboundedPN, the optimization based on the oracle turns to be useful. Indeed, the
sets of pairs built byCovProc are much smaller than the respective K&M trees, and
negligible with respect to the sets built with the trivial oracle. Hence, theCovProc
procedure terminates within 20 minutes with reasonable execution time (and memory

2 Seehttp://www.ulb.ac.be/di/ssd/ggeeraer/eec for a complete description.

On the efficient computation of the minimal coverability setfor Petri nets 15

Table 1.Empirical evaluation of the covering sequence. Experiments on an INTEL XEON 3GHZ.
Times in seconds (× = no result within 20 minutes). P = number of places; T = numberof
transitions; MCS = size of the minimal coverability set ; Tp =Bounded or UnboundedPN; Max
P. =max{|Vi∪Oi∪Fi|, i ≥ 1} ; Tot. P. = total number of pairs created along the whole execution

Example KM Cov. Seq. w/o Oracle CovProc
Name P T MCS Tp Nodes Time Max P.Tot. P. Time Max P. Tot. P. Time

RTP 9 12 9 B 16 0.18 47 47 0.10 47 47 0.13
lamport 11 9 14 B 83 0.18 115 115 0.17 115 115 0.17
peterson 14 12 20 B 609 2.19 170 170 0.21 170 170 0.25
dekker 16 14 40 B 7,936 258.95 765 765 1.13 765 765 1.03
readwrite 13 9 41 B 11,139 529.91 1,103 1,103 1.43 1,103 1,103 1.75

manuf. 13 6 1 U 32 0.19 9 101 0.18 2 47 0.14
kanban 16 16 1 U 9,8391221.96 593 9,855 95.05 4 110 0.19
basicME 5 4 3 U 5 0.10 5 5 0.12 5 5 0.12
CSM 14 13 16 U >2.40·106 × 371 3,324 14.38 178 248 0.34
FMS 22 20 24 U >6.26·105 × >4,460 × × 477 866 2.10
PNCSA 31 36 80 U >1.02·106 × >5,896 × × 2,61713,408113.79
multipoll 18 21 220 U >1.16·106 × >7,396 × × 14,03414,113365.90
mesh2x2 32 32 256 U >8.03·105 × >6,369 × × 10,48312,735330.95

consumption) and outperforms the covering sequence with trivial oracle. Finally, the
execution times ofCovProc are several order of magnitudes smaller than those of the
KM procedure, showing the interest of our new algorithm.

References
1. Karp, R.M., Miller, R.E.: Parallel Program Schemata. JCSS3 (1969) 147–195
2. Finkel, A.: The minimal coverability graph for petri nets. In: ATPN (1991) 210–243
3. Grahlmann, B.: The pep tool. In Grumberg, O., ed.: CAV. Volume 1254 of LNCS, Springer

(1997) 440–443
4. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Tech. University Darmstadt (1962)
5. Reisig, W.: Petri Nets. An introduction. Springer (1986)
6. German, S.M., Sistla, A.P.: Reasoning about Systems withMany Processes. Journal of ACM

39(3) (1992) 675–735
7. Van Begin, L.: Efficient Verification of Counting Abstractions for Parametric systems. PhD

thesis, Université Libre de Bruxelles, Belgium (2003)
8. Luttge, K.: Zustandsgraphen von Petri-Netzen. Master’sthesis, Humboldt-Universität zu

Berlin (1995)
9. Starke, P.: Personnal communication

10. Geeraerts, G.: Coverability and Expressiveness Properties of Well-structured Transition Sys-
tems. PhD thesis, Université Libre de Bruxelles, Belgium (2007)

11. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: Acounter-example the the minimal
coverability tree algorithm. Technical Report 535, Université Libre de Bruxelles (2005)

12. Geeraerts, G., Raskin, J.F., Van Begin, L.: Well-structured languages. Submitted.

16 G. Geeraerts, J.-F. Raskin, and L. Van Begin

A Proof of Lemma 3
Let P ′ be the set of places{p | m1(p) < m2(p)}. Remark that, sincem1 4 m2,
m1(p) = m2(p) for anyp 6∈ P ′. Since↓4(m2) ⊆ ↓4(Post∗ (m1)), andm1 4 m2

there must exist a sequence of transitionsσ that is firable fromm1 and allows to in-
crease the number of tokens in the places ofP ′. That is, there existsσ and a marking
m s.t. (i) m1

σ
−→ m, (ii) m1 4 m and(iii) for any placep ∈ P ′, m(p) > m1(p).

Indeed, letm′ be defined as follows:

∀p ∈ P : m′(p) =






0 if p 6∈ P ′ andm1(p) = ω

m1(p) if p 6∈ P ′ andm1(p) 6= ω

m1(p) + 1 if p ∈ P ′

By Definition, we havem′ ∈ ↓4(m2) but m′ 6∈ ↓4(m1) (remark in particular that
p ∈ P ′ implies thatm1(p) 6= ω andm2(p) ≥ m1(p) + 1). Sincem

′ ∈ ↓4(m2) ⊆

↓4(Post∗ (m1)), there exists a markingm and a sequence of transitionsσ s.t.m1
σ
−→

m andm
′ 4 m. Hence,m′(p) ≤ m(p) for every placep. We consider three cases.(i)

whenm1(p) = ω, we have necessarilym(p) = ω. Hence,m1(p) ≤ m(p) for every
placep s.t.m1(p) = ω. (ii) whenm1(p) 6= ω andp 6∈ P ′, we havem′(p) = m1(p),
by definition ofm′. Hencem1(p) ≤ m(p). (iii) whenp ∈ P ′ (hencem1(p) 6= ω), we
havem1(p) < m

′(p), by definition ofm′ again. Hencem1(p) < m(p). We conclude
thatm1 4 m and thatm1(p) < m(p) for everyp ∈ P ′.

Let mi (i ≥ 1) be the marking s.t.m1
σi

−→ mi, i.e. the marking obtained after
having firedi timesσ from m1. Thus, sincePN transitions have constant effect,

∀i ≥ 1 : ∀p : mi(p) = m1(p) + i · (m(p) − m1(p)) (3)

Remark that, for anyi ≥ 1 : mi ∈ Post∗ (m1), and that, by monotonicity,∀i ≥ 1 :
mi 4 mi+1.

In the case wherep ∈ P ′, the valuem(p)−m1(p) is > 0. Hence, by (3), we have:

∀p ∈ P ′ : ∀n ∈ N : ∃k : mk(p) > n (4)

On the other hand, by definition of the acceleration function, and sincemi < m1 for
anyi ≥ 1:

∀p 6∈ P ′ : ∀i ≥ 1 : mi(p) ≥ m1(p)=m2(p)=AccelPair (m1,m2)(p) (5)

Letm be in↓4(AccelPair (m1,m2)). Thus,m 4 AccelPair (m1,m2) and for any
placep: m(p) 6= ω. Hence, by (5), for anyp 6∈ P ′, for any i ≥ 1, m(p) ≤ mi(p).
Moreover, by (4), there exists, for anyp ∈ P ′, a valuek(p) s.t.mk(p)(p) > m(p). Since
the sequencem1, m2, . . . is 4-increasing, the markingmk, with k = max{k(p) | p ∈
P ′} is s.t. for anyp ∈ P ′ : mk(p) ≥ m(p). We conclude that there existsk ≥ 1
with mk < m. Sincemk ∈ Post∗ (m1), and sincem2 < m1, there exists, by mono-
tonicity, a markingm′ s.t.m′ ∈ Post∗ (m2) andm

′ < mk < m. Since this is true
for anym ∈ ↓4(AccelPair (m1,m2)), we conclude that:↓4(AccelPair (m1,m2)) ⊆
↓4(Post∗ (m2)). ⊓⊔

On the efficient computation of the minimal coverability setfor Petri nets 17

B Proof of Lemma 5

First remark that, by definition of↓⊑ andMax
⊑, the following holds for any set of pairs

S: ↓⊑(S) = ↓⊑
(
Max⊑ (S)

)
. Then, we prove the three properties independently.

B.1 for any i ≥ 0: Post (Vi) ∪ Accel (Vi) ⊆ ↓⊑(Vi ∪ Fi ∪ Oi)

The proof is by induction oni.
Base case (i = 0) V0 = ∅ implies thatPost (V0) = ∅ andAccel (V0) = ∅. We conclude
thatPost (V0) ∪ Accel (V0) = ∅ ⊆ ↓⊑(V0 ∪ F0 ∪ O0).
Inductive case (i > 0) Let us consider a pair(m,m′) ∈ Vi and let us show that
Post ((m,m′))∪Accel ((m,m′)) ⊆ ↓⊑(Vi ∪ Fi ∪ Oi). We consider two cases: either
(m,m′) ∈ Vi−1 or (m,m′) ∈ Fi−1 \ Vi−1.

In thefirst case, (m,m′) ∈ Vi−1. By induction hyp.,Post (Vi−1)∪Accel (Vi−1) ⊆
↓⊑(Vi−1 ∪ Fi−1 ∪ Oi−1). Note that↓⊑(Vi−1 ∪ Fi−1 ∪ Oi−1) = ↓⊑(Vi−1 ∪ Fi−1) ∪
↓⊑(Oi−1). Hence, since↓⊑(Oi−1) ⊆ ↓⊑(Oi):

Post (Vi−1) ∪ Accel (Vi−1)
⊆ ↓⊑(Vi−1 ∪ Fi−1) ∪ ↓⊑(Oi−1)
⊆ ↓⊑(Vi−1 ∪ Fi−1) ∪ ↓⊑(Oi)

We also have that:

↓⊑(Vi−1 ∪ Fi−1) ∪ ↓⊑(Oi)

= ↓⊑
(
Max⊑ (Vi−1 ∪ Fi−1)

)
∪ ↓⊑(Oi)

= ↓⊑
(
Max⊑ (Vi−1 ∪ Fi−1) \ ↓⊑(Oi)

)
∪ ↓⊑(Oi)

= ↓⊑(Vi) ∪ ↓⊑(Oi)
= ↓⊑(Vi ∪ Oi)

We conclude that:

Post ((m,m′)) ∪ Accel ((m,m′)) ⊆ ↓⊑(Vi ∪ Oi) ⊆ ↓⊑(Vi ∪ Fi ∪ Oi)

In thesecond case, (m,m′) 6∈ Vi−1 but (m,m′) ∈ Fi−1. We have:

↓⊑(Vi ∪ Fi ∪ Oi)
= ↓⊑(Vi) ∪ ↓⊑(Fi) ∪ ↓⊑(Oi)

= ↓⊑(Vi) ∪ ↓⊑
(
Max⊑

((
Post (Fi−1) ∪ Accel (Fi−1)

)
\ ↓⊑(Vi ∪ Oi)

))
∪ ↓⊑(Oi)

Furthermore, we have that:

↓⊑
(
Max⊑

((
Post (Fi−1) ∪ Accel (Fi−1)

)
\ ↓⊑(Vi ∪ Oi)

))

= ↓⊑
((

Post (Fi−1) ∪ Accel (Fi−1)
)
\ ↓⊑(Vi ∪ Oi)

)

Hence, it follows that:

↓⊑(Vi ∪ Fi ∪ Oi)
= ↓⊑(Vi) ∪ ↓⊑

((
Post (Fi−1) ∪ Accel (Fi−1)

)
\ ↓⊑(Vi ∪ Oi)

)
∪ ↓⊑(Oi)

= ↓⊑
((

Post (Fi−1) ∪ Accel (Fi−1)
)
\ ↓⊑(Vi ∪ Oi) ∪ Vi ∪ Oi

)

= ↓⊑
(
Vi ∪ Post (Fi−1) ∪ Accel (Fi−1) ∪ Oi

)

18 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Hence, for all(m1,m
′
1) ∈ Post ((m,m′)) ∪ Accel ((m,m′)) we have(m1,m

′
1) ∈

↓⊑(Vi ∪ Fi ∪ Oi). We conclude thatPost (Vi) ∪ Accel (Vi) ⊆ ↓⊑(Vi ∪ Fi ∪ Oi). ⊓⊔

B.2 for any i ≥ 0: ↓4(Flatten (Vi ∪ Oi)) ⊆ ↓4(Flatten (Vi+1 ∪ Oi+1))

By definition,∀i ≥ 1 : Vi ∪ Oi =
(
Max

⊑ (Vi−1 ∪ Fi−1) \ ↓
⊑(Oi)

)
∪ Oi. Hence:

↓⊑(Vi ∪ Oi)

= ↓⊑
((

(Max⊑ (Vi−1 ∪ Fi−1)) \ ↓⊑(Oi)
)
∪ Oi

)

= ↓⊑
(
Max⊑ (Vi−1 ∪ Fi−1) ∪ Oi

)

Furthermore,

↓⊑
(
Max⊑ (Vi−1 ∪ Fi−1) ∪ Oi

)
= ↓⊑(Vi−1 ∪ Fi−1 ∪ Oi)

Hence,↓⊑(Vi ∪ Oi) = ↓⊑(Vi−1 ∪ Fi−1 ∪ Oi) ⊇ ↓⊑(Vi−1 ∪ Oi−1), becauseOi−1 ⊆
Oi. It follows that for all pair(m1,m

′
1) ∈ Vi−1 ∪Oi−1 there exists a pair(m2,m

′
2) ∈

Vi ∪ Oi such that(m1,m
′
1) ⊑ (m2,m

′
2); and for allm ∈ Flatten (Vi−1 ∪ Oi−1)

there ism′ ∈ Flatten (Vi ∪ Oi) such thatm 4 m
′. Hence,↓4(Flatten (Vi ∪ Oi)) ⊆

↓4(Flatten (Vi+1 ∪ Oi+1)) for all i ≥ 0. ⊓⊔

B.3 for any i ≥ 1, for any (m1,m2) ∈ Fi ∪ Vi: ↓4(m2) ⊆ ↓4(Post∗ (m1))

The proof is by induction oni.
Base case (i = 1) F0 = {(m0,m0)} by definition. Hence,V1 = {(m0,m0)} and
m0 ∈ Post

∗ (m0). Thus,↓4(m0) ∈ ↓4(Post
∗ (m0)) since↓4 is monotonic. For any

(m1,m2) ∈ F1, we have(m1,m2) ∈ Post ((m0,m0)). Hence, for any(m1, m2) ∈
Fi, m1 = m0 and{m2} ∈ Post (m0). It follows that{m2} ⊆ Post∗ (m1), hence
↓4(m2) ⊆ ↓4(Post∗ (m1)) by⊆-monotony of↓4.
Inductive case (i = k+1) By construction,(m1,m2) ∈ Vk+1 implies that(m1,m2) ∈
Vk ∪ Fk. By induction hypothesis we conclude that↓4(m2) ⊆ ↓4(Post∗ (m1)). For
any(m1,m2) ∈ Fk: ↓4(m2) ⊆ ↓4(Post

∗ (m1)). Let us show that the same holds for
any(m1,m2) in Fk+1. We consider two cases:

1. If (m1,m2) ∈ Accel (Fk), then, there existsm3 s.t. (m3,m1) ∈ Fk, m3 ≺ m1

andm2 = AccelPair (m3,m1). By induct. hypoth.,↓4(m1) ⊆ ↓4(Post∗ (m3)).
By Lemma 3, this implies that↓4(m2) ⊆ ↓4(Post∗ (m1)).

2. If (m1,m2) ∈ Post (Fk), then there exists, by construction, a pair(m3,m4) ∈ Fk

such thatm2 ∈ Post (m4) and eitherm3 = m1 or m4 = m1. In the first case,
by induction hypothesis↓4(m4) ∈ ↓4(Post∗ (m1)), hence↓4(Post (m4)) ⊆
↓4(Post∗ (m1)) by Lemma 7 since↓4(Post (m4)) ⊆ ↓4(Post∗ (m4)). Finally,
m2 ∈ Post (m4) by construction. It implies↓4(m2) ⊆ ↓4(Post (m4)) by mono-
tonicity of ↓4. We conclude that↓4(m2) ⊆ ↓4(Post∗ (m1)). In the second case,
we have thatm2 ∈ Post (m1), hence{m2} ⊆ Post∗ (m1). Thus,↓4(m2) ⊆
↓4(Post

∗ (m1)) by monotonicity of↓4. ⊓⊔

On the efficient computation of the minimal coverability setfor Petri nets 19

C Proof of Lemma 6

The proof is by induction on the length3 ℓ of the branch ending inn.
Base case (ℓ = 1) In that case,n = root and Λ (root) = m0. By construction,
V1 = {(m0,m0)} \ ↓4(O1), hencem0 ∈ ↓4(Flatten (V1 ∪ O1)). Moreover, we have
that1 ≤

∑
n′∈Anc(T ,root)(|ς (n′) | + 3) = |ς (root) | + 3 = 3.

Inductive case (ℓ > 1) Let n1, n2, . . . , nℓ−1, nℓ be a branch ofT (hence,n1 =

root) of lengthℓ. By induction hypothesis, there existsk ≤
∑ℓ−1

j=1(|ς (nj) | + 3) s.t.
↓4(Λ (nℓ−1)) ⊆ Flatten (Tk ∪ Ok). We consider two cases: either↓4(Λ (nℓ−1)) ⊆
Flatten (Ok) or not.

In the first case,↓4
(
Post

(
↓4(Flatten (Oracle (i)))

))
⊆ ↓4(Flatten (Oracle (i)))

for all i ≥ 0, by property of the oracle. From the construction ofOi (i ≥ 0), we
have:↓4

(
Post

(
↓4(Flatten (Oi))

))
⊆ ↓4(Flatten (Oi)). As a consequence, we have:

↓4
(
Post∗

(
↓4(Λ (nℓ−1))

))
⊆ ↓4(Flatten (Ok)). On the other hand,↓4(Λ (nℓ)) ⊆

↓4
(
Post∗

(
↓4(Λ (nℓ−1))

))
by prop. of the Karp& Miller tree [1]. Hence,↓4(Λ (nℓ)) ⊆

↓4(Flatten (Ok)). Finally,↓4(Flatten (Oi)) ⊆ ↓4(Flatten (Oi+1)), for anyi ≥ 0 We
conclude that:

↓4(Λ (nℓ)) ⊆ ↓4(Flatten (Ok′)) ⊆ ↓4(Flatten (Vk′ ∪ Ok′))

for all k′ ≥ k.
In the second case,↓4(Λ (nℓ−1)) ⊆ ↓4(Flatten (Vk)). Let us consider the sequence

of transitionsς (nℓ). We consider two cases:

1. In the case whereς (nℓ) is the empty sequence, there exists a transitiont s.t.

Λ (nℓ−1)
t
−→ Λ (nℓ). Furthermore, there existsmℓ−1 ∈ Flatten (Vk) s.t.mℓ−1 <

Λ (nℓ−1) by induction hypothesis. Hencet is firable frommℓ−1 andmℓ−1
t
−→ m

implies thatΛ (nℓ) 4 m. By Lemma 5.1 and sincemℓ−1 ∈ Flatten (Vk), we have
that(mℓ−1, m) ∈ ↓⊑(Vk ∪ Fk ∪ Ok) = ↓⊑(Vk ∪ Fk)∪↓⊑(Ok) ⊆ ↓⊑(Vk ∪ Fk)∪
↓⊑(Ok+1) = ↓⊑(Vk ∪ Fk ∪ Ok+1) since↓⊑(Ok) ⊆ ↓⊑(Ok+1). Hence:

(mℓ−1, m) ∈ ↓⊑
((

Max⊑ (Vk ∪ Fk) \ ↓⊑(Ok+1)
)
∪ Ok+1

)
= ↓⊑(Vk+1 ∪ Ok+1)

We conclude thatΛ (nℓ) ∈ ↓4(Flatten (Vk+1 ∪ Ok+1)). Hence↓4(Λ (nℓ)) ⊆

↓4(Flatten (Vk+1 ∪ Ok+1)). Moreover,k+1 ≤ k+3 ≤
∑ℓ−1

j=1(|ς (nj) |+3)+3 =
∑ℓ

j=1(|ς (nj) | + 3). Finally, by Lemma 5.2 we conclude that∀k′ ≥ k + 1 :

↓4(Λ (nℓ)) ⊆ ↓4(Flatten (Vk′ ∪ Fk′)).

2. In the case whereς (nℓ) is not empty, then letm′ be s.t.M(nℓ)
ς(nℓ)
−−−→ m

′. By
Lemma 4, we haveAccelPair (M(nℓ) ,m′) < Λ (nℓ). Let us show, by induction
on the length ofς (nℓ), that eitherΛ (nℓ) ∈ ↓4

(
Flatten

(
Ok+|ς(nℓ)|+3

))
or there

exists inVk+|ς(nℓ)|+2 ∪Ok+|ς(nℓ)|+2 a pair(m, m′) s.t.(M(nℓ) ,m′) ⊑ (m, m′).
First remark that there is, inFlatten (Vk+1 ∪ Ok+1), a markinĝm s.t.M(nℓ) 4 m̂,

because, by definition ofM(nℓ), there exists a transitiont s.t.Λ (nℓ−1)
t
−→ M(nℓ).

3 The length of a tree’s branch is defined as the number of nodes it contains.

20 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Hence, we can invoke the arguments used in point 1 of the present proof. Thus,
ς (nℓ) is firable fromm̂ ∈ Flatten (Vk+1 ∪ Ok+1).

Base case (|ς (nℓ) | = 1) In this case,ς (nℓ) = t ∈ T . Eitherm̂ ∈ Flatten (Ok+1)
or not. In the first case, note that for alli ≥ 1: ↓4(mi) ⊆ ↓4(Post∗ (m̂)), wheremi

is the marking s.t.̂m
ti

−→ mi. Furthermore,↓4(Λ (nℓ)) =
⋃

i≥1 ↓
4(mi) by prop-

erty of the Karp& Miller tree [1]. Hence,↓4(Λ (nℓ)) ⊆ ↓4(Post∗ (m̂)). Following
the same reasoning as above, we obtain that↓4

(
Post

(
↓4(Flatten (Ok+1))

))
⊆

↓4(Flatten (Ok+1)). Sincem̂ ∈ ↓4(Flatten (Ok+1)), we have↓4(Λ (nℓ)) ⊆
↓4(Flatten (Ok+1)). Finally, since∀i ≥ 0 : ↓4(Flatten (Oi)) ⊆ ↓4(Flatten (Oi+1))
we conclude that↓4(Λ (nℓ)) ⊆ ↓4

(
Flatten

(
Ok+|ς(nℓ)|+3

))
.

In the other case, we have that̂m ∈ Flatten (Vk+1). Sincet is firable fromm̂ and

m̂ ∈ Flatten (Vk+1), by Lemma 5.1 we have that the pair(m̂, m̂
′
) with m̂

t
−→ m̂

′

is in ↓⊑(Vk+1 ∪ Fk+1 ∪ Ok+1). Remark that(M(nℓ) ,m′) ⊑ (m̂, m̂
′
) because

PN transitions have constant effects. By construction, thereis in ↓⊑(Vk+2 ∪ Ok+2)
a pair(m, m′) s.t.(m̂, m̂

′
) ⊑ (m, m′), hence(M(nℓ) ,m′) ⊑ (m, m′).

Inductive case (|ς (nℓ) | = m + 1) Let us assume thatς (nℓ) = σ · t, where

|σ| = m. Let m′′ be the marking s.t.M(nℓ)
σ
−→ m

′′ t
−→ m

′. By induction hy-
pothesis, either↓4(Λ (nℓ)) ∈ ↓4

(
Flatten

(
Ok+|ς(nℓ)|+3

))
or there exists a pair

(m, m′′) ∈ Vk+m+2 s.t. (M(nℓ) ,m′′) ⊑ (m, m′′) (hence,m′′ < m
′′). Let us

consider the second case. The transitiont is firable fromm
′′. Letm′ be the marking

s.t.m′′ t
−→ m

′. By monotonicity,m′ 4 m
′ and by Lemma 5.1 (since(m, m′′) ∈

Vk+m+2) we have that(m, m′) ∈ ↓⊑(Vk+m+2 ∪ Fk+m+2 ∪ Ok+m+2). Further-
more,(M(nℓ) ,m′) ⊑ (m, m′) since transitions ofPN have constant effect. Hence,
(M(nℓ) ,m′) ∈ ↓⊑(Vk+m+2 ∪ Fk+m+2 ∪ Ok+m+2). By construction ofVk+m+3

andOk+m+3, the pair(M(nℓ) ,m′′) is in ↓⊑(Vk+m+3 ∪ Ok+m+3) (with | σ · t |=
m + 1).

Thus, eitherΛ (nℓ) ∈ ↓4
(
Flatten

(
Ok+|ς(nℓ)|+3

))
or there is inVk+|ς(nℓ)|+2 a pair

(m, m′) s.t. (M(nℓ) ,m′) ⊑ (m, m′). In the second case, by Lemma 5.1, we
have that(m′, m′′) ∈ ↓⊑

(
Vk+|ς(nℓ)|+2 ∪ Fk+|ς(nℓ)|+2 ∪ Ok+|ς(nℓ)|+2

)
s.t.m′′ =

AccelPair (m, m′). By def. of⊑, AccelPair (m, m′) < AccelPair (M(nℓ) ,m′).
Moreover, by Lemma 4,AccelPair (M(nℓ) ,m′) < Λ (nℓ). By construction of
Vk+|ς(nℓ)|+3 andOk+|ς(nℓ)|+3, there is(m̂′

, m̂
′′
) in Vk+|ς(nℓ)|+3 ∪ Ok+|ς(nℓ)|+3

s.t.(m′, m′′) ⊑ (m̂
′
, m̂

′′
). Hence, we have:

Λ (nℓ) 4 AccelPair (M(nℓ) ,m′) 4 AccelPair (m, m′) = m
′′

4 m̂
′′

with m̂
′′
∈ Flatten

(
Tk+|ς(nℓ)|+3 ∪ Ok+|ς(nℓ)|+3

)
. Thus, there exists a marking

m̂ in Flatten
(
Tk+|ς(nℓ)|+3 ∪ Ok+|ς(nℓ)|+3

)
s.t.m̂ < Λ (nℓ). Moreover, using in-

duction hypothesis, we obtain:k + |ς (nℓ) | + 3 ≤
∑ℓ

j=1(|ς (nj) | + 3). Hence
the lemma. Finally, by Lemma 5 we conclude that∀k′ ≥ k + |ς (nℓ) | + 3 :
↓4(Λ (nℓ)) ⊆ ↓4(Flatten (Vk′ ∪ Ok′)). ⊓⊔

On the efficient computation of the minimal coverability setfor Petri nets 21

D Proof of Lemma 7

By monotonicity ofPost, and sincem2 ∈ Post(m1) implies↓4(m2) ⊆ ↓4(Post(m1))
(see [12, Lemma 7]) we have:

∀X ⊆
(
N ∪ {ω}

)|P |
: ↓4(Post∗ (X)) = ↓4

(
Post∗

(
↓4(X)

))
(6)

Thus:

↓4(A) ⊆ ↓4(Post∗ (B))
⇒ ↓4

(
Post∗

(
↓4(A)

))
⊆ ↓4

(
Post∗

(
↓4(Post∗ (B))

))
Monotonicity ofPost and↓4

⇒ ↓4(Post∗ (A)) ⊆ ↓4(Post∗ (Post∗ (B))) By (6)
⇒ ↓4(Post

∗ (A)) ⊆ ↓4(Post
∗ (B)) ⊓⊔

E Proof of Lemma 8
The proof is by induction oni.
Base case (i = 0) Trivial.
Inductive case (i = k+1) By definition ofVi, (m1,m2) ∈ Vi implies that(m1,m2) ∈
Vi−1 ∪ Fi−1. By induction hypothesis, we conclude that↓4(m2) ∈ ↓4(Post∗ (m0)).
Furthermore,Flatten (Oracle (i)) ⊆ ↓4(Post

∗ (m0)), by property of the oracle. Hence,
for all m ∈ ↓4(Flatten (Oi)): ↓4(m) ⊆ ↓4(Post∗ (m0)).

We now show that(m′,m) ∈ Fi implies that↓4(m) ∈ ↓4(Post∗ (m0)). We
consider two cases:

1. If (m′,m) ∈ Post (Fi−1), then by construction it implies that there exists a pair
(m1,m2) ∈ Fi−1 such that eitherm1 = m

′ orm2 = m
′ andm ∈ Post (m2). By

induction hypothesis, sincem2 ∈ ↓4(Flatten (Fi−1)), we know that↓4(m2) ⊆
↓4(Post∗ (m0)). By Lemma 7, it follows that↓4(Post∗ (m2)) ⊆ ↓4(Post∗ (m0)).
Sincem ∈ Post (m2) ⊆ Post∗ (m2), we conclude that↓4(m) ⊆ ↓4(Post∗ (m2)),
by monotonicity of↓4. Hence,↓4(m) ⊆ ↓4(Post∗ (m0)).

2. If (m′,m) ∈ Accel (Fi−1), then there exists, by construction, a pair(m′′,m′) ∈
Fi−1 such thatm′′ ≺ m

′ andm = AccelPair (m′′,m′). By Lemma 5.3,↓4(m′) ⊆
↓4(Post

∗ (m′′)). Hence, by Lemma 3, we conclude that↓4(m) ⊆ ↓4(Post
∗ (m′)).

Furthermore,↓4(m′) ⊆ ↓4(Post∗ (m0)), by induction hypothesis. By Lemma 7,
it follows that ↓4(Post∗ (m′)) ⊆ ↓4(Post∗ (m0)). We conclude that↓4(m) ⊆
↓4(Post

∗ (m0)). ⊓⊔

F Proof of Lemma 9
The proof is by induction oni.
Base case (i = 0) Trivial.
Inductive case (i = k > 0) First remark that, for any markingm, the follow-
ing holds: for anym′ ∈ Post (m), Nbω (m′) = Nbω (m), becausePN transitions
have constant effect. Moreover, for any pair of markings(m1,m2) s.t. m1 ≺ m2:
Nbω (AccelPair (m1,m2)) > Nbω (m2). Thus, by definition ofFk, for any m ∈
Flatten (Fk), there existsm′ ∈ ↓4(Flatten (Fk−1)) s.t.Nbω (m) ≥ Nbω (m′). How-
ever, by induction hypothesis,Nbω (m′) ≥ Nbω (m0) for anym

′ ∈ Flatten (Fk−1).
Hence the lemma. ⊓⊔

