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Abstract. The minimal coverability sefMCS) of a Petri net is a finite repre-
sentation of the downward-closure of its reachable maskii@pe minimal cov-
erability set allows to decide several important probleike ¢overability, semi-
liveness, place boundedness, etc. The classical algotdhtompute the MCS
constructs the Karp&Miller tree [1]. Unfortunately the K&Mee is often huge,
even for small nets. An improvement of this K&M algorithmligtMinimal Cov-
erability Tree (MCT) algorithm [2], which has been introgédcl5 years ago, and
implemented since then in several tools such as Pep [3].rumately, we show
in this paper that the MCT is flawed: it might compute an urejggroximation of
the reachable markings. We propose a new solution for thaesfficomputation
of the MCS of Petri nets. Our experimental results show thiatriew algorithm
behaves much better in practice than the K&M algorithm.

1 Introduction

Petri nets [4, 5] are a very popular formalism for the modghnd verification of para-
metric and concurrent systems [6]. The underlying tramsitjraph of a Petri net is po-
tentially infinite. Nevertheless, a large number of intérggverification problems are
decidable on Petri nets. Among these decidable problenthao®verabilityproblem
(to which many safety verification problem can be reducé@bbundednesgroblem
(is the number of reachable markings finite ?); phece boundednegwoblem (is the
maximal reachable number of tokens bounded for some pl&e thesemi-liveness
problem (is there a reachable marking in which some tramsitis enabled).

In order to decide the aforementioned problems, one canhesainimal cover-
ability set(MCS), which is a finite representation of some over-appration of the
reachable markings. The MCS is thus a very useful tool forataysis of Petri nets,
and an efficient algorithm to compute it is highly desirable.

Karp and Miller have shown, in their seminal paper [1], the ininimal coverabil-
ity setis computable. The main idea of the Karp and Miller ({¥algorithm is to build
a finite tree that summarizes the potentially infinite unifaddof the reachability graph
of the Petri net. In particular, this algorithm relies on aaeleration technique, which
computes the limit of repeating any number of times someeeeps of transitions that
strictly increase the number of tokens in certain placeg ddéceleration technique is
sound because Petri nets atectly monotonici.e. a sequence of transitions which
can be fired from a markinga can be fired from all markingsa’ such thatm < m’
(where< is a partial order for the markings). Furthermore sequeht®@psitions have
constant effect, i.e. they add and subtract in each placsatme number of tokens no
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matter from which marking they are fired. At the end of the etien of the K&M
algorithm, one obtains @overability treg from which the MCS can be extracted.

Unfortunately, the K&M algorithm is often useless in praetibecause the finite
tree that it builds is often much larger than the minimal catbdity set, and cannot be
constructed in reasonable time. As a consequence, a maiemftlgorithm is needed.
In [2], such an algorithm is proposed. The minimal coveigbitee (MCT) builds on
the idea of K&M but tries to take advantage more aggressivilye strict monotonicity
of Petri nets. The main idea is to construct a tree where alkimgs that label nodes
are incomparable wrK. To achieve this goal, reduction rules are applied at eagh st
of the algorithm: each time a new marking is computed, it impared to the other
markings. If the new marking is smaller than a existing nragkthe construction is not
pursued from this new marking. If the new marking is largamtlan existing marking,
the subtree starting from that smaller marking is removérk ihformal justification
for this is as follows: the markings that are reachable fremaved markings will be
covered by markings reachable from the marking that was fmethe removal, by
the monotonicity property of Petri nets. While this ideappaaling and leads to small
trees in practice, we show in this paper that, unfortunately not correct: the MCT
algorithm is not complete and can compute a strict underesqgamation of the minimal
coverability set. The flaw in the algorithm is intricate and #o not see an easy way to
getrid of it.

So, instead of trying to fix the MCT algorithm, we consider gr@blem from
scratch and propose a new efficient method to compute the M@&Shased on novel
ideas: first, we do not build a tree but handle sets of pairsaskings. Second, in order
to exploit monotonicity property, we define an adequate oodgoairs of markings that
allows us to maintain sets of maximal pairs only. We give is thaper a detailed proof
of correctness for this new method, and explain how to tumatan efficient algorithm
for the computation of the MCS of practically relevant Pa#is. We have implemented
our algorithm in a prototype and compared its performandk thie K&M algorithm.
Our algorithm is orders of magnitude faster than the K&M aiidpon.

The rest of the paper is organized as follows. In Section 2aeall necessary pre-
liminaries. In Section 3, we recall the KM as well as the MCgaalthms. In Section 4,
we expose the bug in the MCT algorithm using an example ankhiexine essence of
the flaw. In Section 5, we define the covering sequence, a sequx sets of pairs of
w-markings that allows to compute the MCS. In Section 6, weashow to turn the
concept of Section 5 into a practical algorithm and we repaortesults obtained with
our prototype. Due to the lack of space, we provide most optobefs in appendix.

2 Preliminaries

Petri nets Let us first recall the model of Petri nets, and fix several tmta.
Definition 1. A Petri net[4,5] (PN for short) is a tupleN' = (P, T), whereP =
{p1,p2,...,pp} is afinite set of places aril = {t,2,...,t7} is a finite set of

transitions. Each transition is a tup|é, O), wherel : P — N andO : P — N are
respectively the input and output functions of the traaaiti

An example of Petri nets is to be found in Fig. 1(a). To defiregbmantics oPN,
we first introduce the notion af-marking. Anw-markingm is a functionm : P —
(N U {w}) that associates a numbertokensto each place meaning ‘any natural
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number’). Anw-markingm is denoted either adm (p1), m(pz), ..., m(pyp|)) (vec-
tOI’) , Of as{m(pn)pil ) m(piz )piw s ’m(pik )plk} (mUItiset)1 Wherq)h yDigs o5 Piy,
are exactly the places that contain at least one token (wewrfy) when it is equal
to 1). For example(0, 1,0, w, 2) and{p2, wp4, 2ps} denote the same-marking. An
w-markingm is amarkingiff Vp € P : m(p) # w.

Let N = (P, T) be aPN, m be anw-marking of A andt = (I,0) € T be a
transition. Thent is enabledin m iff m(p) > I(p) for anyp € P (we assume that
w > wandw > cforanyc € N). In that caset canfire and transformsn into a
neww-markingm'’ s.t. for anyp € P: m’(p) = m(p) — I(p) + O(p) (assuming that
w—c=w = w+cforanyc € N). We denote this byn L, m’, and extend the notation

to sequences of transitions= t,ty---t;, € T*, i.e., m - m’ iff either o = ¢ (the
/ t1 to th
empty sequence) and = m’, or there aran;, ..., my_; Stm — m; — -+ —
m’. Given anw-markingm of somePN N = (P, T), we letPost (m) = {m’ | 3t €
T:mL m’} andPost* (m) = {m’ | 30 € T* : m % m’}. Given a sequence of
transitionss = t1ty - - - ¢, with ¢; = (I;, O;) forany1 < i < k, we let, for any place,
o(p) = S8 (Li(p) — 0i(p)), i.e., the effect of onp.
In the following, we use the ordef for w-markings.

Definition 2. Let P be a set of places of sonRN. Then,<C (N U {w})Pl x (NU
{wh)Plis the relation s.t. for angh;, my € (NU{w})Pl, m; < m, iffforanyp € P:
m; (p) < my(p).

We writem < m’ whenm < m’ butm # m’.
Finally, it is well-known thaPN arestrictly monotonicThat is, ifm;, ms; andmg

are threes-markings and is a transition of somEN A/ s.t.m; 4 ms andm; < mg,
then,t is enabled inm3 and the markingn, with mg L4 my iS S.t.ms < my.

Covering and coverability sets Given a setM of w-markings, we define the set of
maximal elements oM asMax™ (M) = {m € M | #m’ € M : m < m’}. Given
an w-markingm (ranging over set of placeB), its downward-closuras the setof
markings|S(m) = {m’ € NIl | m’ 5 m}. Given a setM of w-markings, we let
1¥(M) = Umenr | ¥(m). A setD of markings is said to béownward-closedhenever
1¥(D) = D. Then:

Definition 3. Let ' = (P, T) be aPN and letm, be the initialw-marking of N (for
my). Thecovering sebf \V, denoted a€over (N, my) is the set| <(Post™ (my)).

Given aPN A with initial marking mg, a coverability setfor A" andm, is a finite
sub-setS C (N U {w})!*! such that 5(S) = Cover (N, my). Such a set always exists
because any downward-closed set of markings can be repedsey a finite set of
w-markings:

Lemma 1 ([7]). For any subsetD C N* such that|<(D) = D there exists a finite
subsetS C (NU {w})* such that<(S) = D.

It is also well-known [2] that there exists one minimal (imntes of C) coverability set
(called theminimal coverability sgt
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Labeled trees Finally, let us introduce the notion tdbeled tree

Definition 4. Given a set of placeB, a labeled tree is a tuplE = (N, B, root, A), s.t.
(N, B, root) forms a tree ¥V is the set of noded3 C N x N is the set of edges and
root € N is the root node) and : N — (N U {w})I”lis a labeling function of the
nodes byw-markings.

Given two nodes andn’ in N, we write respectively3(n,n’), B*(n,n’) BT (n,n’)
instead of(n,n’) € B, (n,n’) € B*, (n,n’) € B*.

3 The Karp&Miller and the MCT algorithms

The Karp and Miller algorithm The Karp&Miller algorithm [1] is a well-known
solution to compute a coverability set ofPAN. It consists in building a labeled tree
whose root is labeled bing. The tree is obtained by unfolding the transition relatiébn o
the PN, and by applyingccelerationswhich exploit the strict monotonicity property
of PN. That is, let us assume that; andm, are twow-markings s.tm; < m, and
there exists a sequence of transitienaith m; % ms,. By (strict) monotonicityg is
firable fromms and produces a-markingms s.t. m, < ms. As a consequence, all
the place® s.t. m;(p) < my(p) are unbounded. Hence, themarkingm,, defined
asm, = w if m;(p) < ma(p), andm, = m;(p) otherwise, has the property that
1¥(m,,) C [¥(Post™ (m;)). This can be generalized to the case where we consider an
w-markingm and a sefS of w-markings s.t. for anyn’ € S: m € Post™ (m’). Hence,
the following acceleration function:

_ Jw ifdm’ €S :m’ <mandm’(p) < m(p)
Vp € P: Accel (S,m) (p) = {m(p) Otherwise
The Karp&Miller procedure (see Algorithm 1) relies on thim€tion: when developing
the successors of a nodegit calls the acceleration function on evary € Post (A (n)),
by letting S be the set of all the markings that are met along the brancimgria .
This procedure terminates and computes a coverability set:

Theorem 1 ([1]). For anyPN N = (P, T') with initial w-markingm,, the KM pro-
cedure produces a finite labeled trée= (N, B, root, A), s.t. |[S({A(n)|n € N}) =
Cover (M, my).

Properties of the Karp&Miller tree Letn # root be a node of some Karp&Miller
tree. Henceyl (n) has been obtained by callifg:celerate with parameters’ andm.
In this case, we say thathas been obtainday the acceleration afa (with S). For any
noden # root of any Karp&Miller tree, we assume that the functiilin) returns the
markingm s.t. /A (n) has been obtained by the acceleratiomofRemark that, for any
noden # root, M(n) € Post (A (n’)) wheren’ is the father of:. Remark that it might
be the case that (n) = M(n).

Let AV = (P, T) be aPN with initial markingmy, and let7 = (N, B, root, A) be
its Karp&Miller tree. Theng : N — T* is a function that associates a sequence of
transitions to every node, as follows.(i) If n = root, theng (n) returns the empty
sequence(ii) If thereisnon’ € N s.t. BT (n',n), A(n') # A(n)andA (n') < A(n)
(hence,n is such thatl (n) = M(n)), theng (n) returns the empty sequendgii)
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Data: A PN A = (P, T) and an initiako-markingm,.
Result The minimal coverability set o/ for m,.
KM (N, mg) begin
T < (N, B,ng, Ay whereN = {ng}, B = andA (ng) = my ;
to_treat < {no};
while to_treat # () do
let n be a node ofo_treat ;
to_treat < to_treat \ {n} ;
if 7n: BT (m,n) A A(R) = A(n) then
foreachm € Post (A (n)) do
S — {A(n') | B*(n,n)};
Letn’ be a new node s.tl (n') = Accel (S, m) ;
N—Nu{n'};
B« BU{(n,n")};
to-treat < to_treat U {n'} ;

return({A(n) [ne NAPn € N: A(@W) = A()}) ;
end
Algorithm 1 : TheKM algorithm.

Otherwise,n has been obtained by the accelerationviin). Let P, = {p € P |
A(n) (p) = wandM(n) (p) # w} and letP, = {p € P | A(n)(p) = M(n) (p) =
w}. In that cases (n) returns one of the finite non-empty sequences such that for an
p € P,is(n)(p) > 0;foranyp € P\ (P, UP,): ¢(n)(p) = 0; andc (n) is firable
from M(n).

The existence of (n) in the third case is guaranteed by the following lemma, that
can be extracted from the main proof of the Algorithm 1, in [1]

Lemma 2 ([1]). Let NV = (P, T) be aPN with initial w-markingm, and let7 =
(N, B, root, A) be its Karp&Miller tree. Letn # root be a node off . LetP, = {p €
P | A(n)(p) = wandM(n) (p) # w} and P, = {p € P | A(n) (p) = M(n) (p) =
w}. Then, there exists a sequence of transitieng T* s.t.: (i) for anyp € P,:
o(p) > 0. (i7) foranyp € P\ (P, UP,): o(p) = 0. (iii) o is firable fromM(n).

The MCT algorithm The minimal coverability tree algorithrdMCT for short) has
been introduced by Finkel in [2], as an optimization of thep&Miller algorithm. It

is recalled in Algorithm 2, and relies on two auxiliary fuitets: given a labeled tree
7 and a noden of 7, removeSubtree(n,7) removes the subtree rooted byfrom

7. The functionremoveSubtreeExceptRoot(n, T) is similar toremoveSubtree(n, 7))
except that the root node is not removed. The main idea consists in exploiting the
monotonicity property oPN in order to avoid developing part of the nodes of the
Karp&Miller tree, as well as removing some subtrees durimg ¢onstruction. With
respect to the Karp&Miller algorithm, three main differesacan be noted. Letbe a
node picked fromo_treat. First, when there already exists another noaéth A (n) =

A (m) inthe treep, is not developed (line (a)). Second, wheis accelerated (line (b)),
the result of the acceleration is assigned to the label bfgisest ancestar s.t. A (7) <

A (n), and the whole subtree @fis removed from the tree. Third, the algorithm avoids
adding a node:’ to the tree if there is another nodies.t. A (1) = A (n’) (line (c)).
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Data: A PN A = (P, T) and an initial markingmg

Result The minimal coverability set o/

MCT (N, my) begin

T «— (N, B,no, Ay whereN = {no}, B = 0 andA(no) = my ;
to_treat < {no};

while to_treat # () do
Select some node in to_treat and remove it;

@ if 7w € N s.t. A (@) = A (n) then
foreachm € Post (A (n)) do
(b) if 3n: B*(m,n) and A (@) < m then

Letm be the highest node sB*(m,n) A A(T) < m ;
A(m) « Accel ({n’ € N | B* (n n) ,m);
to_treat «— (to_treat \ {n' | B*(m,n’)}) U{m};
removeSubtreeExceptRoot (7, 7') ;
| break;
© else iffm € N s.t.m < A (7m) then

Letn’ be anew node s.fl (n') = m ;

N~ NuU{n'}; B« BU(n,n');
| to_treat — to_treat U {n'};

(d) while Ini,n2 € N : A(n1) < A(n2) do
to_treat «— to_treat \ {n | B*(n1,n)};
| removeSubtree(ni,7T);

return({A(n)|ne N}) :
end
Algorithm 2 : TheMCT algorithm [2].

Moreover, the adjunction of’ to the tree (when it happens) triggers the deletion of all
the subtrees rooted in some nodés.t. A (n”) < A (n) (line (d)).

Remark that this algorithm ison-deterministicin the sense that no ordering is
imposed on the nodes i _treat. Hence, any strategy that fixes the exploration order
(which can possibly improve the efficiency of the algorithoah be chosen.

4 Counter-example to the MCT algorithm

In this section, we introduceRN on which the MCT algorithm might computestrict
under-approximatiorf the covering set (see Fig. 1). Fig 1(a) is A on which we
run the MCT algorithm, and Fig. 1(b) through 1(f) are the keynps of the execution.
Let us briefly comment on this execution. First remark thatpps of the PN in

Fig. 1(a) is unbounded, because marking} is reachable from the initial marking
mgy = {p1} by firing ¢1¢2, and the sequenagt, can be fired an arbitrary number of
times from{ps }, and strictly increases the markingggf Then, one possible execution
of MCT is as follows (markings in the frontier are underlined):

Fig. 1(b) The three successorsuf, are computed. Then, the branch rootedin} is
unfolded, by firingts, t3 andt,. At that point, two comparable markingss } and
{ps,ps} are met with and an acceleration occurs (line (b) of Algonit®) . The
result is{ps, wps }, which is put intoto_treat.
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Fig. 1(c) The subtree rooted ifips} is unfolded. After the firing oftst4, Oone ob-
tains{ps, 3ps }, which is smaller thad ps, wps }. Hence {ps, 3ps} is not put into
to_treat and the branch is stopped (line (c)).

Fig. 1(d) The subtree rooted ifip;} is developed. The unique succes$ps, ps} of
{p7} is larger than{p, }. Hence, the subtree rooted {p} (including {ps, wps},
still in the frontier) is removed (line (d)).

Fig. 1(e) and 1(f) The tree (actually a single branch) rooted{im, ps} (only node
in the frontier) is further developed through the firingtefandts. The resulting
node{ps, ps} is strictly smaller thar{p4, 2ps }. Hence, that branch is stopped too
(line (c)), and the frontier becomes empty. The final resiithe algorithm is shown
in Fig. 1(f). It is not difficult to see that the set of labelstbis tree does not form a
coverability set, because it contains no marking.t. m(ps) = w.

Comment on the counter-exampleThis counter-example allows us to identify a flaw
in the logic of the MCT algorithm. The algorithm stops the elepment of a node

or removes the subtree rootedsinbecause its has found another nodes.t. A (n’)

is larger than/ (n). In that case, we say that is a proof forn. The intuition behind
this notion is that, by monotonicity, all the successors should be covered by some
successor of)’. Thus, whenn' is a proof forn, the algorithm makes implicitly the
hypothesis that either all the successors/ofvill be fully developed, or that they will
be covered by some other nodes of the tree.

In our counter-example, that reasoning fails becaysdesappear in ‘proofs’. In
Fig. 1, we have drawn a thick gray arrow framto »" whenn’ is a proof forn. On
Fig. 1(d), the node labeled byps,wps}, which is a proof for{ps, 3ps} is deleted,
because ofps, ps}. Hence {p2, ps}, becomes the proof dfps, 3ps} (see Fig. 1(e)).
The cycle clearly appears in Fig 1(f): all the successorfef2ps} will be eventually
covered under the assumption that all the successdis;0ps } are covered. However,
this happens under only if all the successor$of, 2ps } are eventually covered.

Implementation of the MCT in the Pep tool Actually, the flaw in the MCT algorithm
has already been independently discovered by the team &f Peter Starke. They
have implemented in INA (a component of the toolkit Pep [3yg&iation of the MCT

which is supposed to correct the aforementioned bug. To ¢isé df our knowledge,
this implementation (and the discovery of the bug) has bewmmumented only in a
master’s thesis in German [8]. Unfortunately, their vemsad the MCT contains a flaw
too, because it offers no guarantee of termination [9, 1@jpagh [8] contains a proof
of termination. See [11] for a counter-example to termomatiThus, from our point of
view, fixing the bug of the MCT algorithm seems to be a diffi¢atk.

5 The covering sequence

Instead of trying to fix the bug in the MCT algorithm, we propa@sdifferent solution
based on novel ideas. To introduce our new solution, let ak lack at the basics.
Remember that we want to compute an effective representafig<(Post™ (my)).

It is easy to show that this set is the limit of the followindinite sequence of sets:
Xo = |¥({my}), and fori > 1, X; = |S(X;_1 UPost (X;_1)). Note that by strict
monotonicity of Petri nets, we can instead consider thefalig sequence that handles
maximal elements onlyt, = Max™ ({mg}), andY; = Max™ (Y;_; U Post (Y;_1))
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(a) ThePN.

{p1} {p1} {p1}

A AN AN

y 4 Y AN
{ps} {plz} {p7} {ps}  A{pe}  {prd|| {ps}  {p2}  A{p7}

A T A Y

<

Y Y ~ Y
{pls} {pa, |2p5} {ps, wps} {pa, 2ps ¥ {p3,wps} {p2,ps}
L v <
{ps,ps5} {ps,3ps}
(b) Step 1. (c) Step 2. (d) Step 3.
{p1} {p1}
{Pf} {117} {ps} {p7}
{pa, 2ps} {p2,p5} {p4,2ps} {p2,p5}
tL
|
. {ps]p5} {ps,ps}
t3
Y
{pa, ps}
(e) Step 4. (f) The result.

Fig. 1. A counter-example to the MCT algorithm. Underlined markimage in the frontier. A gray
arrow fromn to n’ means that is a ‘proof’ for n.
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for anyi > 1. Unfortunately, this is not an effective way to compute thaimal cov-
erability set as we do not know how to compute the limit of #eguence. To compute
that limit, we need accelerations. Accelerations are cdetpfrom pairs of markings.
Our solution constructs a sequence of sets of pairs of mgslan which we systemati-
cally apply a variant of th®ost operator and a variant of the acceleration function. By
defining an adequate orderon pairs of markings, we show that we can concentrate on
maximal elements for.

Preliminaries Let m; andm, be twow-markings. Thenm; © m, is a function
P — ZU{—w,w} s.t. for any place: (m; © m,)(p) is equal taw if m; (p) = w; —w

if mo(p) = w andm;(p) # w; mi(p) — ma(p) otherwise. Then, given two pairs of
w-markings(m;, my) and(m/, m}), we have(m;, m5) C (m}, m}) iff m; < m/,
m; < m) and for any place: (mz © m;)(p) < (m} & m})(p).

For any(m;, ms), we let|~((m;, my)) = {(m}, mj) | (m},m}) C (m;, my)}.
We extend this to sets of paif as follows: |<(R) = U, m,)er!=((m1, my)).
Given a sef of pairs of markings, we léflax= (R) = {(m;, my) € R | #(m/, m}) €
R:(m;,my) # (m},mj) A (my,my) C (mf, mb)}

Our new solution relies on a weaker acceleration functian that of Karp&Miller
(because its first argument is restricted to a single maikistgad of a set of markings).
Given twow-markingsm; andms s.t. m; < ms, we letAccelPair (m;, ms) = m,,
s.t. for any placey, m,,(p) = m;(p) if m;(p) = ms(p); m,(p) = w otherwise.
According to the following lemma, this acceleration fuoctis sound:

Lemma 3. Let AV be aPN and letm; and m, be twow-markings of\/ that re-
spectm; < my and [¥(mgz) C |¥(Post™ (m;)). Then,|~(AccelPair (m;, mz)) C
1= (Post® (my)).

Moreover, given a labeled tre€ = (N, B, root, A), we let, for anyn € N,
Anc(7T,n) = {n’ | B*(n/,n)} (that is,Anc(7,n) is the set of ‘ancestors’ of in
7T, n included). Then, the following lemma draws a link betwe®rtelPair and the
Karp&Miller acceleration. It shows that, althouditcelPair is weaker, it can produce
the same results than the Karp&Miller acceleration, wheperly applied.

Lemma4. Let N = (P, T) be a Petri net with initial markingm, and let7 =
(N, B, root, A) be its Karp&Miller tree. Letn # root be a node off. Let m’ be

st.M(n) 2L m’. ThenA (n) < AccelPair (M(n) , m’).

Proof. Let P, = {p € P | A(n) (p) = w A M(n) (p) # w}. By construction, for any
placep, A (n) (p) = wif p € P,; A(n) (p) = M(n) otherwise. Moreover, by definition
of AccelPair, for any placep, AccelPair (M(n),m’) (p) = w if ¢(n)(p) > 0; and
AccelPair (M(n),m’) (p) = M(n) (p) otherwise. By def. o (n), p € P, implies
¢(n)(p) > 0,andp ¢ P, impliesA (n) (p) = M(n) (p). Hence the lemma. 0

Finally, we introduce several operators that work directty pairs of markings.
Given a sef? of pairs ofw-markings, we leElatten (R) = {m | 3m’ : (m’, m) € R}.
Given a pair of markingém;, m), we letPost ((m;, ms)) = {(m;, m’), (my, m’) |
m’ € Post(ms)} andAccel ((my, ms)) = {(my, AccelPair (my, my))} if my; <
my; andAccel ((m;, mo)) is undefined otherwise. We extend these two functions to
setsR of pairs in the following wayPost (R) = U, ms)erPost ((m1, m3)) and

Accel (R) = U(m] ,m2)€R,m; <my {ACCQ' (mlv m2)}
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Definition of the sequenceWe are now ready to introduce the covering sequence. We
will define the sequence in a way that allows for optimizagiofio incorporate those
optimizations elegantly, we allow our construction to bépkd by an oracle which is a
procedure that produces pairs of markings. This oraclenpiatly allows for the early
convergence of the covering sequence. However, we willgtbat our sequence con-
verges even if the oracle is trivial (returns always an ensptyof pairs of markings). In
the next section, we will show that the oracle can be impldéetehy a recursive call to
the covering sequence, by consideringnarkings where the number ofis increasing
as initialw-markings in the recursive call. This will lead to an effidipnocedure as we
will see in the next section.

In the following, given a Petri ne¥/ and an initial markingn,, we call anoracle
any functionOracle : N — (NU {w})I”! x (NU {w})I"l that returns, for any > 0, a
set of pairs ofv-markings s.t.

1=(Post (Flatten (Oracle (i)))) C |¥(Flatten (Oracle (i))) 1)

and
1= (Flatten (Oracle (i))) C Cover (N). ()

Let N = (P, T) be aPN, m, be an initial marking, an@racle be an oracle. Then,
the covering sequence @f, notedCovSeq (N, mg, Oracle) is the infinite sequence
(Vi, F;, Oy)i>0, defined as follows:

- Vo =0,00 =0andF, = {(mg, my)};

— Foranyi > 1: O; = Max"= (O;_1 U Oracle ());

— Foranyi > 1: V; = Max= (Vi1 U Fi_1) \ |5(0));

— Foranyi > 1: F; = Max"= (Post (F;_1) U Accel (F;_1)) \ |5(V; U O;).

It is not difficult to see that this sequence enjoys the follmythree properties:

Lemma 5. Let N be aPN, m, be its initial marking,Oracle be an oracle, and let
CovSeq (N, my, Oracle) = (V;, F;, Oi)iZO- Then, for alli > 0:

1. Post (V;) U Accel (V;) C |5(V; U F, U O;);
2. |S(Flatten (V; U 0;)) C |S(Flatten (Viz1 U O;41));
3. forall (m;, ms) € F; UV;: |¥(my) C |¥(Post™ (my)).

Completeness of the sequencé-or all markingm computed by the Karp&Miller
algorithm, we show that there exists a finite valug.t. m € |~(Flatten (V})), where
k depends on the depth of the node labeledibin the Karp&Miller tree:

Lemma 6. Let ' be aPN, m, be its initial marking,Oracle be an oracle,7 =
(N, B, root, A) be the K&M tree of\ andCovSeq (N, my, Oracle) = (V;, F;, O0;)i>0.
Thenvn € N:Vk = 32 canc( ny (S (77) [+3): 1S(A(n)) C | S(Flatten (Vi U O)).

Proof. Sketch.We show by induction on the depfof nodes in the Karp&Miller tree
that the lemma holds for al € N. For a node: at depth?, we prove that there exists
i and a paifm;, mz) € V; UO; s.t. [S(A(n)) C |S(my), as follows. By induction

! The complete proof can be found in appendix.
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hypothesis, there iss.t.| S(A (n’)) C | <(Flatten (O; U V;)), wheren' is the father of
n. The value s.t. A (n) C |S(Flatten (O; U V;)) depends on and the length of (n).
Hence, a second induction on the size ¢f) is used. That induction is applied in the
case wheré¢ ¢ (n) |> 0 and allows to prove that there is a péins, my) € V;_; U

O;_1 such thafM(n) ,m) C (mg3, m4) wherem is such thatvi(n) ", m. Once

that result is obtained, we have by Lemma 4 thdt) < Accel (M(n),m)), since
M(n) < m, and thatAccel ((M(n),m)) < Accel ((m3, m4)) = m’ by definition of
Accel andC. Hence(my, m’) € |5(0;_1 U F;_; UV;_1) by Lemma 5.1. Finally, by
construction of0; andV;, we conclude thatm,, m’) € |5(0; UV;), with A (n) <
m’, henced (n) € |¥(Flatten (O; UV;)). O

As a consequence, the covering sequence is complete:

Corollary 1. Let N' be aPN, mg be its initial marking,Oracle be an oracle, and
CovSeq (N, myg, Oracle) = (V;, F;, O;)i>0. There existg& > 0 such that for allk’ > &
we haveCover (N, mg) C |S(Flatten (Vi U Og/)).

Soundness of the sequencén order to show that the covering sequence is correct,
it remains to show that any marking produced by the sequence is $.€(m) C
Cover (N, my). For that purpose, we need the two following lemmata:

Lemma 7. Let A/ be aPN let A and B be two sets ab-markings of\. Then,| S(A) C
1¥(Post™ (B)) implies that| <(Post* (A4)) C |¥(Post” (B)).

Lemma 8. Let V' be aPN, mq be its initial marking,Oracle be an oracle, and let
CovSeq (N, myg, Oracle) = (V;, Fi, 0;)i>0. Then¥i > 1: Vm € Flatten (T; U F; U O;),
1¥(m) C |¥(Post” (my)).

As a consequence, we directly obtain our soundness result:

Corollary 2. Let N' be aPN, my be its initial marking,Oracle be an oracle, and
CovSeq (N, mg, Oracle) = (V;, F;, O;)i>0. ThenVi > 1, |S(Flatten (V; UO;)) C
1¥(Post™ (my)).

Corollary 1 and 2 allow us to obtain the next Theorem.

Theorem 2. Let ' be aPN, mg be its initial marking,Oracle be an oracle, and
CovSeq (N, myg, Oracle) = (V;, F;, 0;)i>0. Then, there existe > 0 such that

1. forall1 <i < k: |S(Flatten (V; UO;)) C | S(Flatten (V;—1 U O;—1));
2. foralli >k : |S(Flatten (V; U O;)) = Cover (N, my).

Proof. By Corollary 1 and 2, we conclude that there exists at leastkog N such
that | =(Flatten (Vi U Og)) = |S(Flatten (Vix11 U Ok41)). Let us consider the small-
estk € N that satisfies that condition and let us prove tfiatFlatten (V, U Oy)) =
Cover (NV). Note that by Lemma 5.2 we have for@lK i < k : |S(Flatten (V; U O;)) C
1S (Flatten (Vig1 U O4y1))-

First, we prove that =(Flatten (F)) C |=(Flatten (V4 U Oy)). By construction,
lE(Fk) - lE(Vk—f—l U Ok+1)- Hence,ﬁ(Flatten (Fk)) - l‘(FIatten (Vi1 U Og41)),
by definition of C. However,|<(Flatten (Vi1 U Ok41)) = | S(Flatten (Vi U Oy)),
by definition ofk.
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By Lemma 5.1 Post (V4,) U Accel (Vi) € |5(V4 U Fy, U Oy), which implies that
| = (Flatten (Post (V;) U Accel (Vk))) C |S(Flatten (Vi U F), U Oy)). In particular,
|=(Flatten (Post (V4))) C |¥(Flatten (Vi U Fy, U Oy)). Sincel*(FIatten (Fy)) C
|=(Flatten (Vi U Oy)), we have| = (Flatten (Post (Vi))) € |S(Flatten (V3 U Oy)).
This means that = (Post (Flatten (V}))) C (Flatten (Vi U Ok)). Furthermore, by
(1) and definition ofOy, | < (Post (Flatten (Or))) € |=(Flatten (Oy)). We conclude
that | S(Post (Flatten (Vi U Og))) C |(Flatten (V4 U Og)). Then, by Lemma 5.2,
and sincam,, € |~(Flatten (V; U O,)), we havam, € | (Flatten (Vi U Oy)). Hence,
1¥(Flatten (V}; U Oy,)) is aPost fixpoint that coversng. Thus| = (Flatten (V;, U Oy)) 2
1¥(Post™ (my)). Since, by Corollary 2| =(Flatten (O} U V})) C Cover (N, my), we
conclude that, ¥(Flatten (Vi U Oy)) = Cover (N, my). Finally, by Lemma 5.2 and
Corollary 2, |S(Flatten (V; UO;)) = |=(Flatten (Vi UOy)) = Cover (N), for all
i > k. Hence, the lemma. O

6 Practical implementation

To implement the method in practice, we have to instantiagedracle. First, note
that theempty oraclei.e. Oracle (i) = @ for all i > 1, is a correct oracle. Indeed,
1¥(Post (0)) = 0 C |S(0) and | (D) C | (Post™ (myg)) for all me. Thus, the oracle
can be regarded as an optional optimization of our algoritfety this optimization can
be very powerful, as we show now. When using the empty oraglenethod performs
a breadth first search. In particular, if several accelenatcan be applied from ao-
markingm, each of them putting’s in different places (for instance a first acceleration
puts onev in placep; and a second one puts ans p-), then all the possible orders for
their application will be investiguated ( i.e. first put then placep; in m and then an
w in po; and vice-versa). However, all the possible orders leatiécsamev-marking
(with anw in p; andp,) that covers the intermediate ones (where there is.oaiher
in p1 or po). Thus, in order to improve our method, only one possiblepstould be
explored. To achieve that goal, we present in the next papdgtheCovProc procedure
where the oracle is implemented as a recursive calbanarkings resulting from an
acceleration. As a consequence, the initial breadth fiestchels mixed with a depth
first search that allows to develop first themarkings resulting from an acceleration.

The CovProc procedure TheCovProc procedure is shown in Algorithm 3. It closely
follows the definition of the covering sequence. At each stethe oracle is imple-
mented as a finite number of recursive callovProc, where the initialo-markings
are the results of the accelerations occurring at this s$tepe that a recursive call
is not applied on all the acceleratedmarkings but a non-deterministically chosen
subsetS. Indeed, in practice, if we have two accelerated markimgsandms with
1¥(mg2) C |¥(Post® (m;)) thenitis not necessary to applpvProc onm; to explore
the markings that are reachable from.

This strategy allows to mix the breadth-first exploratiortlté covering sequence
and the depth-first exploration due to the recursive callglwvfavorw-markings with
morew. It turns out to be very efficient in practice (see hereundgirce, for any pair
(m1, ms), AccelPair (m;, ms) contains strictly mores's thanm,; andms, and since
the number of places of tHeN is bounded, the depth of recursion is bounded too, which
ensures termination.
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Data: A PN N = (P, T), an initial w-markingmy
Result A set of pairs of markings.
CovProc (N, my)

begin B B _
i:=0;00:=0;Vo:=0; Fo:={(mo,mo)};
repeat
=i+ 1;

R; := UmesCovProc (M, m) whereS C Flatten (m (Fifl));

62‘ = MaxE (61'71 U RL) )

Vi = '\/laXE (Vi71 UF7;71) \lg(bz) )

Fi = MaxE (% (Fi71) U Accel (F271)) \ Lg(a U VZ) ,
until L*(Flatten (62' U VZ)) C (Flatten (62;1 U Vz;l)) ;
return(O; UVy) ;

end
Algorithm 3: The CovProc algorithm.

Let us show that this solution is correct and terminates argrmarkingm, we let
Nbw (m) = |{p | m(p) = w}|, i.e. the number of unbounded placesin We first
state the following technical lemma:

Lemma 9. Let A/ be aPN, m, be aw-marking, and letF’; be the sets computed by
CovProc (N, my). Then, for anyi > 0: for anym € Flatten (F;): Nbw (m) >
Nbw (my).

Then, the proof of total correctness@bvProc is as follows:

Theorem 3. For anyPN A and anyw-markingmy: CovProc (N, mg) terminates and
1¥(Flatten (CovProc (N, my))) = Cover (N, my).

Proof. The proof works by induction oNbw (my).
Base caseNbw (mgy) = |P[) In that caseCovProc (N, mg) finishes after two it-
erations and return®, U V, = {(mg, mg)}. Remark that no recursive call is per-
formed becaus®&; = Accel (Fiy) = ) andR, = Accel ({(mg, mg)}) = (). Moreover,
1¥(Flatten (CovProc (N, my))) = | ¥(mg) = Cover (N, my).
Inductive case (\bw (mo) = k& < |P|) We consider two cases. First, assume that
the algorithm terminates aftéiterations, i.e., assume thaf (Flatten (O, UV,)) =
l*(FIatten (65_1 UVg_l)), but for anyl < j < /-1: l‘(Flatten (67 UVJ')) #+
|¥(Flatten (O;—1 UV;_1)). By Lemma 9, foranyl < j < ¢, for any (m;, my) €
F;j: Nbw (m3) > k. Hence, for anyt < j < ¢, for anym € Flatten (Accel (F;)):
Nbw (m) > k + 1. Thus, by induction hypothesis, for aiy < j < ¢, for any
m € Flatten (Accel (F;)), CovProc (A, m) terminates and returns a set of pairs such
that | ¥(Flatten (CovProc (N, m))) = Cover (A, m). As a consequence, and since
Flatten (Accel (F;)) is afinite set forany < j < ¢, we conclude thak; is computed
in a finite amount of time and that~(Post (Flatten (R;))) C |¥(Flatten (R;)) C
Cover (N, my), foranyl < j < /.

Let 2 denote the function s.t., for any < j < ¢ 2(j) = R;, and, for any
Jj >4, 2(j) = 0. Thus, {2 is an oracle. Let us assume thavSeq (N, my, 2) =
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(V;, F;,0;)i>1. Clearly, foranyd < j < ¢, V; = V; andO; = O;. Thus, by The-
orem 2, there exists s.t. | ¥ (Flatten (V—1 UOy_1)) = |¥(Flatten (V, UOy)) =
Cover (M, my), and s.t. for everyl < j < k — 1: |¥(Flatten (V;_1 UO;_1)) C
|¥(Flatten (V; U O;)). Hencek = ¢, and we conclude th&ovProc (A, my) termi-
nates and returns¥(Flatten (V, U Oy)) = Cover (N, my).

In the latter case, we assume that the algorithm does nointatenand derive a
contradiction. This can happen for two reasons: either imxéhe test of theepeat
loop is never fulfilled, or because some stepf the loop takes an infinite time to
complete. By re-using the arguments of the first part of thi®fj we can show that the
latter is not possible. Indeef,; is computed in a finite amount of time and the functions
Max"=, Flatten, Post, Accel, and the test that guards the "until” are computable, ie. th
computation of the se3;, V; andF; always takes a finite amount of time. Thus, if the
algorithm does not terminates, it computes an infinite seqeief set§V;, F;, 0,);>0-
Symmetrically to the first part of this proof, we build an de@ s.t. 2(j) = R; for
anyj > 1. Let us assume th&lovSeq (N, mg, 2) = (V;, F;, O;)i>0. Clearly, for any
j > 0, we haveV; = V; andO; = O,. Hence, by Theorem 2, we conclude that
there exists; > 1 s.t.|¥(Flatten (V, UOy,)) = | ¥(Flatten (V—1 UOk—1)), which
compels the algorithm to terminate at stegContradiction. a

Empirical evaluation We have implemented a prototype that computes the coverabil
ity set of aPN, thanks to the covering sequence method and the Karp&Millgo-
rithm. We have selected five boundBdll and eight unboundeBIN. Those examples
describes (mutual exclusion) protocols (bounBé&f, parameterized systems and com-
munication protocols (unbound@&iN). The prototype has been written in theoN
programming language in a very straightforward way. As aseguence the running
times of the prototype are given for the sake of comparisdn devertheless, as can
be seen in Table 1, this prototype performs very well on otiokexamples$.

More precisely, we have compared two implementations aftivering sequence to
theKM algorithm. The former (colum@ov. Seq. w/o oraclgis the covering sequence
where we letOracle (i) = ) for anys > 0 (that is, the oracle-based optimization is
disabled). In that case the sets of pairs built by our algoriare small (see column
Max P.) compared to the size of the Karp& Miller tree (columodgs), although the
number of pairs created by the algorithm is not dramaticathall compared to the size
of the K&M tree (see column Tot. P.). This shows the efficieatgur approach based
on pairs of markings (and on th& order), with respect to the classical approach.

The latter implementation is theéovProc procedure (Algorithm 3) where we have
implemented the oracle as follows: we consider the acdeldtamarkings one by one.

If an accelerated-marking is already covered by thiéatten of the pairs computed by
previous recursive calls, it is forgotten; otherwise a reiue call is applied on it. In the
case ofboundedPN, CovProc performs as the covering sequence with trivial oracle,
which is not surprising since no acceleration occur on tleasanples. In the case of
unboundedPN, the optimization based on the oracle turns to be usefukdddthe
sets of pairs built byCovProc are much smaller than the respective K&M trees, and
negligible with respect to the sets built with the trivialole. Hence, th€ovProc
procedure terminates within 20 minutes with reasonableuwgien time (and memory

2Seeht t p: // www. ul b. ac. be/ di / ssd/ ggeer aer / eec for a complete description.
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Table 1.Empirical evaluation of the covering sequence. Experisientan NTEL XEON 3GHz.
Times in secondsx = no result within 20 minutes). P = number of places; T = numifer
transitions; MCS = size of the minimal coverability set ; TBeunded or UnboundedN; Max
P.=max{|V;UO;UF}|,i > 1} ; Tot. P. = total number of pairs created along the whole ei®cu

Example KM Cov. Seq. w/o Oraclsﬁ CovProc
Name [[P|T[MCS[Tp Nodeg Time]|| Max P]Tot. P| Time|[Max P] Tot. P| Time

RTP 91120 9 |B 16| 0.18 47/ 47/ 0.10 47| 47| 0.13
lamport |11/ 9| 14 |B 83 0.18 115 115 0.17| 11§ 115 0.17
peterson(|14(12| 20 |B 609 2.19 170 170 0.23; 170 170 0.25
dekker ||16/14) 40 |B 7,939 258.95 765 765 1.13| 765 765 1.03
readwrite|13| 9| 41 |B 11,139 529.91] 1,103 1,103 1.43| 1,103 1,103 1.7
manuf. |13/ 6] 1 |U 32| 0.19 9 101 0.18 2 47 0.14
kanban [|16/16 1 |U 9,8391221.9 593 9,855 95.05 4| 110 0.19
basicME||5|4| 3 |U 5 0.10 5 5 0.12 5 5 0.12
CSM 14/13 16 |U[[>2.4010° X 371 3,324 14.38| 178 248 0.34
FMS 22|20 24 |U[|>6.2610° x || >4,460 X X 477 866 2.10
PNCSA [[31/36] 80 [U[[>1.0210° % ||>5,896 X x| 2,61713,408113.79
multipoll ||18[21] 220 | U [[>1.1610° X ||>7,396 X % (|14,03414,113365.9(
mesh2x2|32[32| 256 | U |[>8.0310° % ||>6,369 X % (|10,48312,735330.95

consumption) and outperforms the covering sequence witialtoracle. Finally, the
execution times o€ovProc are several order of magnitudes smaller than those of the
KM procedure, showing the interest of our new algorithm.
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A Proof of Lemma 3

Let P’ be the set of place§p | mi(p) < ms(p)}. Remark that, sincen; < mo,
m;(p) = mz(p) for anyp ¢ P'. Since|~(mz) C |S(Post™ (m1)), andm; < m;
there must exist a sequence of transitienthat is firable fromm; and allows to in-
crease the number of tokens in the place$6fThat is, there exists and a marking
m s.t. (i) my % mm, (ii) m; < ™ and(4ii) for any placep € P/, m(p) > my(p).
Indeed, letm’ be defined as follows:

0 if p¢ P'andm; (p) = w

my (p) if p ¢ P’ andm; (p) # w
my(p)+1ifpe P’

Vpe P:m!(p) =

By Definition, we havem’ € |<(m3) butm’ ¢ |<(m;) (remark in particular that
p € P’ implies thatm; (p) # w andmy(p) > m;(p) + 1). Sincem’ € |S(my) C
|S(Post™ (m)), there exists a markingz and a sequence of transitions.t. m; %
m andm’ < m. Hencem'(p) < m(p) for every place. We consider three cas€s)
whenm; (p) = w, we have necessariyz(p) = w. Hencem, (p) < m(p) for every
placep s.t.m;(p) = w. (ii) whenm; (p) # w andp ¢ P’, we havem’(p) = m;(p),
by definition ofm’. Hencem, (p) < m(p). (ii4) whenp € P’ (hencem; (p) # w), we
havem; (p) < m’(p), by definition ofm’ again. Hencen, (p) < m(p). We conclude
thatm; < 77 and thatm, (p) < m(p) for everyp € P’.

Letm; (: > 1) be the marking s.tm; <, m;, i.e. the marking obtained after
having firedi timeso from m;. Thus, sincé’N transitions have constant effect,

Vi>1:Vp:my(p) =m(p) +i- (M(p) — mi(p)) 3)

Remark that, for any > 1 : m; € Post® (m;), and that, by monotonicity/i > 1 :
m; XMy
In the case wherg € P’ the valuemz(p) — m; (p) is > 0. Hence, by (3), we have:

Vpe P :VneN:3k:mui(p) >n (4)

On the other hand, by definition of the acceleration funcgterd sincemn; = m; for
any: > 1:

Vp & P': Vi >1:m;(p) > my(p) =ms(p)=AccelPair (m;, ms)(p) (5)

Letm be in|~(AccelPair (m, m2)). Thus,m < AccelPair (m;, my) and for any
placep: m(p) # w. Hence, by (5), for any ¢ P’, for anyi > 1, m(p) < m;(p).
Moreover, by (4), there exists, forapye P’, avaluek(p) s.t.my, ) (p) > m(p). Since
the sequencer;, T, . . . is <-increasing, the markingzy, with & = max{k(p) | p €
P’} is s.t. foranyp € P’ : m(p) > m(p). We conclude that there exists> 1
with 72, = m. Sincem, € Post™ (m;), and sincamn, = mj, there exists, by mono-
tonicity, @ markingm’ s.t. m’ € Post® (m») andm’ > T, = m. Since this is true
foranym € |~(AccelPair (m;, my)), we conclude that} =(AccelPair (m;, ms)) C
1= (Post® (my)). 0
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B Proof of Lemma 5

First remark that, by definition gf= andMax=, the following holds for any set of pairs
S:15(S) = lg(MaxE (S)). Then, we prove the three properties independently.

B.1 foranyi > 0: Post(V;) UAccel (V;) C |5(V; UF; UO;)

The proofis by induction oi.
Base casei(= 0) V; = () implies thatPost (V5) = () andAccel (V;) = (. We conclude
thatPost (V) U Accel (Vo) =0 C |5(Vo U Fy U Op).
Inductive case ¢ > 0) Let us consider a paifm, m’) € V; and let us show that
Post ((m, m’)) UAccel (m,m’)) C |5(V; U F; U O;). We consider two cases: either
(m,m’) € V;_jor(m,m’) € F;,_;\ V;_;.
In thefirst case (m, m’) € V;_;. Bylnductlon hyp.Post (V; 1)UAcce| (Vicq) €

U

1E(Viet U Fiy U Oi1). Note that| (Vs U Py U0,1) = L5(Viey UFi)
15(0;_1). Hence, since=(0;_1) C |5(0;):
Post (V;_ )Um(v 1)
CE(Vici UFE_1) U [5(0;-1)
glE(V L UFi 1) ULE(0;)
We also have that:
lE( i— IUFz I)Ul ( )
= 15(m fm_lum-_l)) 15(00)
= 15(MaxE (Vit UF 1)\ L5(0))) U 15(0)
= |5V )ULE(OZ')
= |E(Viu0y)

We conclude that:
Post ((m, m’)) U Accel (m,m’)) C |5(V; U 0O;) C |5(V; UF, U0;)
In thesecond casgm, m’) ¢ V;_; but(m, m’) € F;_;. We have:

ISV, UF,u0;)
= 1E(Vi) U L5(F) U [5(09)
= |5V, )ULE(I\/Iax ((Post (F,_1) U Accel (F,_1)) \ |= (ViUOi)))UlE(Oi)

Furthermore, we have that:
lE(MaxE ((Post (Fy_,) UAccel (F;_1)) \ LE(V; U Oi)))
= lg((Wst (Fifl) U ACCQ' ( 1',1)) \ l_(‘/z U Ol))
Hence, it follows that:

IEV;UF,U0))

S(Vi) U [E((Post (Fi—1) UAccel (Fi—1)) \ 5(Vi U 0y)) U |5(0;)
E((Post (F;—1) UAccel (F;—1)) \ |E (VUO)UViUOi)

= |5(V; UPost (F;— )UAcceI( 1) U0;)

I
— — —
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Hence, for all(m;, m}) € Post ((m, m’)) U Accel ((m, m’)) we have(m;, m}) €
15(V; U F; U O;). We conclude thaost (Vi) U Accel (V; 1) ClEViUFuU0;). O

B.2 foranyi: > 0: l‘(FIatten (V; @] Ol)) l‘(FIatten (V;.,.l @] Oi+1))

By definition,vi > 1: V; U O; = (MaxE (Vica UF;_1)\ lE(OZ—)) U O;. Hence:

I5(V;U0,)
= 15(((Max® (Vi U 1))\ 15(0) U O))
= 15(Max= (Vi1 U 1) U 0))

Furthermore,
= (Max (Viet UE,_1) U O ) = |E(ViL  UF_, U0y

Hence,|5(V; UO;) = |E(V; 1 UF,_1U0;) 2 |5V, UO;_1), becaus®; ; C
O;. It follows that for all palr(ml, mj) eV, U0 there exists a paiims, mj) €
V; U O; such that(m;, m}) C (m2, m}); and for allm € Flatten (V;_1 UO;_1)
there ism’ € Flatten (V; U O;) such thatm < m’. Hence,|¥(Flatten (V; U 0;)) C
l<(FIatten (V;.,.l U Oi+1)) forall¢ > 0. O

B.3 foranyi > 1, forany (m;,mz) € F; UV;: |[S(my) C |S(Post™ (my))

The proof is by induction on.

Base casei(= 1) Fy = {(mg, mg)} by definition. Hence}; = {(mg, m)} and
mg € Post™ (myg). Thus,|=(mg) € |~(Post” (my)) since|~ is monotonic. For any
(m;,my) € Fy, we have(m;, ms) € Post ((mg, my)). Hence, for anymy, ms) €
F;, m; = mo and{ms} € Post (my). It follows that{ms} C Post”* (m;), hence
1¥(m3) C | ¥(Post” (m1)) by C-monotony of| <.

Inductive case ¢ = k+1) By construction(m;, ms) € Vj41 impliesthatm;, my) €

Vi U Fy. By induction hypothesis we conclude that(mz) C | ~(Post”™ (m1)). For
any (mi, ms) € Fy: |S(mg2) C |S(Post” (m;)). Let us show that the same holds for
any(mj, my) in Fj41. We consider two cases:

Fr,m3 < m,

1. If (my, my) € Accel (F}), then, there existms s.t. (m3,m1)
1) C |S(Post® (m3)).

andms = AccelPair (m3, m;). By induct. hypoth.|~(m
By Lemma 3, this implies that~(mz) C |¥(Post* (my)).
2. If (m1, my) € Post (F}), then there exists, by construction, a faits, m,) € Fj,
such thatm, € Post (m4) and eitherms = m; or my = m;. In the first case,
by induction hypothesig<(m,) € |~(Post* (m;)), hence|=(Post (m,)) C
1= (Post™ (m;)) by Lemma 7 since ¥(Post (my)) C |~(Post™ (my)). Finally,
m, € Post (my) by construction. It implieg ~(msy) C |¥(Post (m4)) by mono-
tonicity of | <. We conclude that<(mz) C |¥(Post* (m;)). In the second case,
we have thatm, € Post (m;), hence{my} C Post® (m;). Thus, |~(mz) C
1¥(Post” (m1)) by monotonicity of| <. 0
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C Proof of Lemma 6

The proof is by induction on the length of the branch ending in.

Base case{ = 1) In that casen = root and A (root) = my. By construction,
Vi = {(mg, mg)} \ [¥(01), hencem, € | (Flatten (V3 U Oy)). Moreover, we have
thatl < 3 canerroon (15 (1) | +3) = Is (root) | +3 = 3.

Inductive case ¢ > lﬁ Let ny,no,...,n¢_1,n¢ be a branch off (hence,n; =
root) of length¢. By induction hypothesis, there exists< Zﬁ;}(k (n;) | +3) s.t.
15(A(ne—1)) C Flatten (T U O). We consider two cases: eithef (A (ny_1)) C
Flatten (Oy) or not.

In the first case| ¥ (Post (| (Flatten (Oracle (i))))) C |~(Flatten (Oracle (7)))
for all i« > 0, by property of the oracle. From the construction®f (i > 0), we
have:| = (Post (|<(Flatten (0;)))) C |¥(Flatten (O;)). As a consequence, we have:
|¥(Post™ (1¥(A (ne-1)))) S |¥(Flatten (Og)). On the other hand~(A (n¢)) C
¥ (Post™ (1¥(A (ne—1)))) by prop. of the Karp& Miller tree [1]. Hence, ¥ (A (ny)) €
1¥(Flatten (Oy)). Finally, | ¥(Flatten (O;)) C | <(Flatten (O;41)), for anyi > 0 We
conclude that:

l_“<(/1 (ng)) - L‘(Flatten (Ok/)) - L‘(Flatten (Vi U Ok/))

forall ¥ > k.
In the second cas¢F (A (ny—1)) C |¥(Flatten (V%)). Let us consider the sequence
of transitions; (n,). We consider two cases:

1. In the case where(n,) is the empty sequence, there exists a transitict.
A(ne—1) LA (n¢). Furthermore, there exist&,_, € Flatten (V}) s.t.my_; =

A (ng¢—1) by induction hypothesis. Hengas firable fromm,_; andmz,_; Lo

implies thatA (n,) < m. By Lemma 5.1 and sinc&,_, € Flatten (V},), we have
that(m,_,,m) € lE(Vk UF,UO) = lE(Vk U Fk)UlE(Ok) - lE(Vk U Fi)U

15(Ok41) = |5(Vie U Fi, U Og1) since|5(0x) € |5(Op41). Hence:

(Ae-1,7) € 15((Max= (Vi U Fi) \ 15(0k41) ) U Ok ) = 15(Vieys U O)

We conclude thatd (ny) € |~(Flatten (Vi1 U Ogy1)). Hence|S(A (ng)) C
1= (Flatten (V11 U Ok41)). Moreoverk+1 < k+3 < Zﬁ;}(k (nj)|+3)+3 =
Z§:1(|g(nj)| + 3). Finally, by Lemma 5.2 we conclude thet’ > &k + 1 :
l<(/1 (ng)) - l<(F|atten (Vi U Fk/))

2. In the case where(n,) is not empty, then lem’ be s.t.M(ny) ), By
Lemma 4, we havéccelPair (M(n,),m’) = A(n;). Let us show, by induction
on the length of (n;), that either (ny) € |¥(Flatten (O |c(n,)+3)) OF there
exists ind+|§(n[)‘+2 U Ok+|§(ne)|+2 a pair(mm, m’) s.t.(M(n¢) ,m’) C (T, m’).
Firstremark that there is, iflatten (V11 U Oxt1), amarkingm s.t.M(n,) < m,
because, by definition dfl(n,), there exists a transitions.t. A (ny—1) 5 M(ng).

3 The length of a tree’s branch is defined as the number of nodestiains.
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Hence, we can invoke the arguments used in point 1 of the pr@seof. Thus,
¢ (ng) is firable fromm € Flatten (Vi1 U Opy1).

Base case|( (n¢) | = 1) In this caseg (ng) =t € T. Eithernu € Flatten (Op41)
or not. In the first case, note that for alk- 1: | ¥(m;) C |¥(Post” (m)), wherem,

is the marking s.tm - m;. Furthermore| (A (ny)) = U;>; 1 ¥(m;) by prop-
erty of the Karp& Miller tree [1]. Hence, ¥ (A (ny)) C | ¥(Post™ (m)). Following
the same reasoning as above, we obtain tfgPost (| ¥(Flatten (Ox+1)))) C
|¥(Flatten (Og41)). Sincem € |S(Flatten (Ok11)), we have|~(A (ng)) C
|¥(Flatten (Og41)). Finally, sincevi > 0 : | S(Flatten (O;)) C | (Flatten (O;41))
we conclude that (A (ny)) € | S (Flatten (Oky(c(no)+3))-

In the other case, we have that € Flatten (V,.1). Sincet is firable fromm and

m € Flatten (Vi41), by Lemma 5.1 we have that the péif, m’) with m = m/
is in |5(Viy1 U Fry1 UOgy1). Remark thatM(n,), m’) C (m,m’) because
PN transitions have constant effects. By construction, tigire| = (V.2 U Oy42)

a pair(m,m') s.t.(m,m') C (,m'), henceM(n,) ,m’) C (7, 7).
Inductive case (s (n¢)| = m + 1) Let us assume that(n,) = o - t, where
lo| = m. Letm” be the marking s.tM(n,) = m” %, m’. By induction hy-
pothesis, eithet S(A (ng)) € |¥(Flatten (Oky(c(n,)+3)) OF there exists a pair
(m,m") € Vitmsz S.t.(M(ng) ,m”) C (m,m"”) (hence;m” = m”). Let us
consider the second case. The transitimfirable fromm” . Letm’ be the marking
s.tm” L m’. By monotonicity;m’ < m’ and by Lemma 5.1 (sindgm,m") €
Vi+m+2) We have thatm, m') € |5(Viirm+2 U Frpmi2 U Ogprmo2). Further-
more,(M(n,), m’) C (T, m’) since transitions d?PN have constant effect. Hence,
(M(ng),m’) € |5(Viymi2 U Fiyma2 UOkirmaz). By construction oV, 13
andOy 1,13, the pair(M(n,) , m”) is in |5(Vitmis U Okrmas) (With | o -t |=
m+1).

Thus, eitherd (ng) € | S (Flatten (Oky(c(n,)+3)) OF there is iV c(n,) 42 @ pair
(m,m’) s.t. (M(ny),m’) C (e, m’). In the second case, by Lemma 5.1, we
have that(m’, m") € |=(Vijc(ne)+2 U Fiet cno)+2 U Oktls(ne)+2) ST =
AccelPair (T, m’). By def. of C, AccelPair (T, ™) = AccelPair (M(n;), m’).
Moreover, by Lemma 4AccelPair (M(n,),m’) = A(ng). By construction of
Vitls(ne)+3 @A Ogy () 43, there igm’, m") in Vi cny)43 U Okt fe(ng)|+3

— —I

s.t.(m',m") C (m',m" ). Hence, we have:

—1!

A(ng) < AccelPair (M(n;) , m’) < AccelPair (m,m') =m"’ xm

with m” € Flatten (Thy|c(ng)|+3 YU Ok-tlc(n)|+3)- Thus, there exists a marking
m in Flatten (Tht (c(n)|+3 Y Okt fc(ne)|+3) S-t. 0 = A (ng). Moreover, using in-
duction hypothesis, we obtait: + |s (ny) | + 3 < Z§:1(|< (nj)| + 3). Hence
the lemma. Finally, by Lemma 5 we conclude th&t > &k + | (n¢)| + 3 :
l_“<(/1 (nz)) - l‘(FIatten (Vk/ U Ok/)) O
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D Proof of Lemma 7

By monotonicity ofPost, and sincans € Post(m; ) implies|~(m2) C |¥(Post(m;))
(see [12, Lemma 7]) we have:

vX € (NU{w])!™: |5 (Post™ (X)) = |(Post” (13(X))) (6)
Thus:
15(A) C [F(Post™ (B))
= |S(Post” (15(A))) C |S(Post” (|¥(Post” (B)))) Monotonicity ofPost and | <
= 1S (Post™ (A)) C | S(Post” (Post® (B))) By (6)
= 1= (Post™ (A4)) C |S(Post” (B)) 0

E Proof of Lemma 8

The proofis by induction oi.
Base casei(= 0) Trivial.
Inductive case ¢ = k+1) By definition ofV;, (m;, ms) € V; implies thatim;, ms) €
Vi_1 U F;_;. By induction hypothesis, we conclude that(m,) € |<(Post™ (my)).
FurthermoreFlatten (Oracle (i)) C | S(Post™ (myg)), by property of the oracle. Hence,
forall m € |S(Flatten (0;)): |¥(m) C |¥(Post™ (my)).

We now show thafm’,m) € F; implies that|~(m) € |~(Post* (my)). We
consider two cases:

1. If (m’,m) € Post (F;_,), then by construction it implies that there exists a pair
(mi,ms) € F;_; such that eithem; = m’ orm, = m’ andm € Post (my). By
induction hypothesis, sinam, € |~(Flatten (F;_1)), we know that|~(m2) C
1= (Post” (my)). By Lemma 7, it follows that < (Post™ (mz)) C | ¥(Post™ (my)).
Sincem € Post (my) C Post” (my), we conclude that~(m) C | <(Post” (mz)),
by monotonicity of| <. Hence,| <(m) C |¥(Post* (my)).

2. If (m’,m) € Accel (F;_1), then there exists, by construction, a paii”, m’) €
F;_y suchthaim” < m’ andm = AccelPair (m”, m’). By Lemma5.3,~(m’) C
1¥(Post* (m')). Hence, by Lemma 3, we conclude thatm) C | (Post™ (m')).
Furthermore,|~(m’) C |¥(Post* (my)), by induction hypothesis. By Lemma 7,
it follows that | S(Post™ (m’)) C |~(Post™ (my)). We conclude that~(m) C
1¥(Post™ (my)). 0

F Proof of Lemma 9

The proofis by induction oi.

Base casei(= 0) Trivial.

Inductive case {( = k& > 0) First remark that, for any markinga, the follow-
ing holds: for anym’ € Post (m), Nbw (m’) = Nbw (m), becauséN transitions
have constant effect. Moreover, for any pair of markifigs,, m,) s.t. m; < ms:
Nbw (AccelPair (m1,ms)) > Nbw (m2). Thus, by definition off}, for anym €
Flatten (F}), there existan’ € | (Flatten (Fj;_1)) S.t.Nbw (m) > Nbw (m’). How-
ever, by induction hypothesiblbw (m’) > Nbw (my) for anym’ € Flatten (Fi_1).
Hence the lemma. O



