
November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

International Journal of Foundations of Computer Science
Vol. 22, No. 7 (2011) 1655–1668
c© World Scientific Publishing Company
DOI: 10.1142/S0129054111008945

SCHEMA FOR PARALLEL INSERTION AND

DELETION: REVISITED

LILA KARI∗ and SHINNOSUKE SEKI†

Department of Computer Science, The University of Western Ontario

London, Ontario, N6A 5B7, Canada
∗lila@csd.uwo.ca
†sseki@csd.uwo.ca

Received 16 November 2010
Accepted 28 February 2011
Communicated by Sheng Yu

A general framework of parallel insertion and deletion based on p-schemata is proposed.
A p-schema is a set of tuples of words. When being used for parallel insertion of a
language into a word, an element of p-schema specifies how to split the word into factors
between which the language to be inserted. As its inverse operation, parallel deletion
based on the p-schema is defined. Several algebraic properties of these operations such
as closure properties of language classes under them are proved. The main contribution of
this paper is to propose algorithms to solve language equations involving p-schema-based
insertions or deletions based on syntactic congruence. These algorithms not only decide
whether a given equation has a solution but construct the set of all of its maximal or
minimal solutions. The algorithms are extensible so as to solve some multiple-variables
equations and inequalities. Related undecidability results are also presented.

Keywords: Contextual parallel insertion and deletion; p-schema; syntactic congruence;
algorithms to solve multiple-variables language equations; language inequalities.

1. Introduction

Contextual insertion and deletion are our central interest in this paper. The

fact that one can actually implement these operations in the laboratory [5] as

sole primitives to model DNA computation gives practical significance to the re-

search on these operations. They are also of theoretical interest; indeed, they have

been proved Turing-universal [14]. The first aim of this paper is to propose a

method to parallelize contextual insertion and deletion. For words x and y, (x, y)-

contextual insertion of a language L into a word w [14] results in the language

{w1xvyw2 | w1, w2 are words such that w = w1xyw2 and v ∈ L}. In other words,

w is cut into two pieces so that the first piece ends with x and the second piece

begins with y, and between them L is inserted. This operation suggests that for any

†Corresponding author.

1655

http://dx.doi.org/10.1142/S0129054111008945

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1656 L. Kari & S. Seki

positive integer n, an n-tuple (w1, w2, . . . , wn) of words may implement insertion

of n − 1 instances of L into the word w = w1w2 · · ·wn to generate the language

w1Lw2L · · ·Lwn−1Lwn. More generally, we have it that a set of tuples of words

implements a parallel insertion so that we call such a set of tuples a parallel opera-

tion schema or p-schema for short. We call the parallel insertion thus implemented

the insertion based on the p-schema. The use of p-schema is not used exclusively

to parallelize contextual insertion. Parallel deletion of L from a word w based on a

given n-tuple (u1, u2, . . . , un) deletes n−1 non-overlapping elements of L from w so

as to leave this n-tuple, and concatenate them to generate the word u = u1u2 · · ·un.

That is to say, if w ∈ u1Lu2L · · ·Lun, then this deletion results in the word u, and

otherwise it results in nothing. Indeed, various known sequential as well as parallel

operations are special instances of insertion and deletion based on p-schemata (see

Section 3).

Our main interest lies in the language equations which involve p-schema-based

insertion and deletion. Solving equations of the form X1⋄X2 = X3 is a core research

object in formal language theory (see, e.g., [1, 3, 4, 7, 10, 11, 14]), where ⋄ is a binary

operation on languages, some of X1, X2, X3 are fixed languages (denoted by L,R

with subscripts in this paper), and the others are unknowns (denoted by X,Y, Z).

In this paper, we focus on such language equations with ⋄ being insertion (denoted

by ֋F) or deletion (denoted by ֌F) based on a p-schema F . According to the

definitions of p-schema-based insertion and deletion in Section 3, language equations

X ֋F L2 = L3, L1 ֋X L2 = L3, and their deletion variants are guaranteed to

have a unique maximum solution as long as they have a solution, while neither

L1 ֋F X = L3 nor L1 ֌F X = L3 possesses this property, and as such, a classical

well-known technique proposed by Kari [11] is not applicable for solving these. Based

on syntactic congruence, we will design algorithms to solve these equations, which

lie at the center of our contributions in this paper. Our algorithms work not only

as a procedure to decide the existence of solutions to a given equation, but as a

procedure to construct all of its maximal solutions (Theorem 13 and Corollary 17).

Moreover, combining these algorithms with the algorithms to solve the equations

of the first or second form enables us to solve two-variables equations of the form

X ֋F Y = R3 (Theorem 19), R1 ֋X Y = R3 (Theorem 20), and R1 ֌X Y =

R3 (Theorem 21) for regular languages R1, R2, R3 and a regular p-schema F (a

natural way to classify sets of tuples of words in the Chomsky-hierarchy manner

is mentioned at the beginning of Section 4). The proposed algorithms have further

extensibility so that a slight modification makes possible for them to solve inequality

(set inclusion) variants of the above-mentioned equations. One of its applications of

interest is that for a given regular language R, it can output the set of all maximal

languages L satisfying L∗ ⊆ R.

This is a journal version of our paper presented in DLT 2010 [13], but due to

space limitation, this paper omits proofs and some results which appeared in [13],

and hence, works rather as its complementary material.

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

Schema for Parallel Insertion and Deletion 1657

2. Preliminaries

Let Σ be a finite alphabet, and let Σ∗ denote the set of words over Σ, which includes

the empty word λ. Let Σ+ = Σ∗ \ {λ}. For a word w ∈ Σ∗, its length is denoted by

|w|. A word u is called a factor (prefix, suffix) of a word w if w = xuy (resp. w = uy,

w = xu) for some words x, y ∈ Σ∗. Let us denote the set of all prefixes (suffixes) of

w by Pref(w) (resp. Suf(w)). For a language L ⊆ Σ∗, its complement is denoted by

Lc, i.e., Lc = Σ∗ \L. For an integer n ≥ 0, Σn, Σ≤n, and Σ≥n denote the respective

sets of all words of length exactly n, of length at most n, and of length at least n.

As customary in formal language theory, a singleton language {w} is quite often

identified with its element w.

Regular languages are languages accepted by a finite automaton. We describe

a (non-deterministic) finite automaton (NFA) by a 5-tuple (Q,Σ, δ, s, F), where Q

is a finite set of states including the start state s and a set of final states F , and

δ : Q × Σ → Q is a transition relation. An NFA is said to be deterministic if its

transition relation is actually a function. The deterministic property of a machine

is stated explicitly by denoting with the capital D. These hold for other acceptors.

By REG, LIN, DCFL, and CFL, we denote the respective classes of regular, linear,

deterministic context-free, and context-free languages.

A characterization of languages can be given in terms of syntactic semigroup.

For a language L ⊆ Σ∗, there exists a maximal congruence ≡L which saturates L

(i.e., L is a union of equivalence classes in Σ∗/ ≡L). This is called the syntactic

congruence of L, which is defined as follows: for u, v ∈ Σ∗,

u ≡L v ⇐⇒ for any x, y ∈ Σ∗, xuy ∈ L if and only if xvy ∈ L.

For a word w ∈ Σ∗, [w]≡L
= {u ∈ Σ∗ | w ≡L u} is called an equivalence class with

w as its representative. The number of equivalence classes is called the index of ≡L.

Theorem 1 ([16]) A language L is regular if and only if the index of ≡L is finite.

For technical reasons, we define a function called saturator with respect to a

language L1 as a function σL1
from a word w into the equivalence class [w]≡L1

. It

is naturally extended for a language L as σL1
(L) =

⋃

w∈L[w]≡L1
.

Theorem 2. For a regular language R, each equivalence class in Σ∗/ ≡R is regular.

3. Schema for Parallel Insertion and Deletion

Imagine that we will insert a language L into a word u in parallel. Let F =
⋃

n≥1 Σ
∗ × Σ∗ × · · · × Σ∗

︸ ︷︷ ︸

n times

. As abstracted before, a subset F of F can be used to

control the parallel insertion of a language L in a sense that if (u1, u2, . . . , un) ∈ F ,

then the word u = u1u2 · · ·un is split in the manner dictated by the n-tuple in F ,

and L is inserted between ui and ui+1 for all 1 ≤ i < n to generate the language

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1658 L. Kari & S. Seki

u1Lu2L · · ·un−1Lun. We will see that the set can also be used to implement a par-

allel deletion. For this intended end-usage, we call a subset of F a parallel operation

schema, or shortly p-schema, over Σ.

A p-schema F enables us to define the insertion ֋F as: for a word u ∈ Σ∗ and

a language L ⊆ Σ∗,

u֋F L =
⋃

n≥1,u=u1···un,
(u1,...,un)∈F

u1Lu2L · · ·un−1Lun.

Note that an n-tuple in F parallel-inserts n − 1 words from L into u. Similarly,

we define the deletion ֌G based on a p-schema G as: for a word w ∈ Σ∗ and a

language L ⊆ Σ∗,

w ֌G L = {u1 · · ·un | n ≥ 1, (u1, . . . , un) ∈ G,w ∈ u1Lu2L · · ·un−1Lun}.

These operations are extended in a natural way for a language L1 ⊆ Σ∗ as L1 ֋F

L =
⋃

u∈L1
u֋F L and L1 ֌G L =

⋃

u∈L1
u֌G L.

The following well-known operations are particular cases of p-schema-based

insertion and deletion: catenation and right quotient (Fcat = Σ∗ × λ), reverse cate-

nation and left quotient (Frcat = λ×Σ∗), sequential insertion and deletion (Fsins =

Σ∗ × Σ∗), and parallel insertion and deletion (Fpins =
⋃

n≥0(λ× Σ× · · · × Σ
︸ ︷︷ ︸

n times

×λ)).

Example 3. Parallel insertion (deletion) of exactly n words, at most n words, or

arbitrary number of words are instances of insertion (resp. deletion) based on:

Fpins(n) = Σ∗ × · · · × Σ∗

︸ ︷︷ ︸

n+ 1 times

, Fpins(≤n) =

n⋃

i=0

Fpins(i), F∗ =

∞⋃

i=0

Fpins(i).

Using F∗, even the unary operation Kleene-star is implemented as L∗ = {λ} ֋F∗
L.

All operations mentioned so far are “syntactic” in the sense that they do not

rely on the context of their first operand to determine where to insert their second

operand, and hence, we can say that the corresponding p-schemata are “syntac-

tic.” On the other hand, p-schemata have a potential to endow insertion (deletion)

with semantic control on where to insert (resp. delete). C-contextual (sequential)

insertion [14] is a good example, where C ⊆ Σ∗ × Σ∗. This is an insertion based

on the p-schema Fcsins(C) =
⋃

(x,y)∈C Σ∗x× yΣ∗. The following p-schema naturally

parallelizes this operation as C-contextual parallel insertion:

Fcpins(C) = {(u1, . . . , un) | n ≥ 1, ∀1 ≤ i < n,
(
Suf(ui)× Pref(ui+1)

)
∩C 6= ∅}.

It may be worth noting that our framework and I-shuffle proposed by Do-

maratzki, Rozenberg, and Salomaa [6] are incomparable in the above sense. Indeed,

only I-shuffle can specify contexts not only on the left operand but also on the

right operand, while p-schemata allow operations to insert or delete more than one

copies of right operand. Thus, the insertion based on a p-schema which is a subset

of Fpins(≤1) is a special instance of I-shuffle.

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

Schema for Parallel Insertion and Deletion 1659

4. Hierarchy of p-Schemata and Closure Properties

Besides the class of syntactic p-schemata, one can come up with various classi-

fications of p-schemata. One natural way to classify them is according to how

strong computational power is required to recognize them. Using a special sym-

bol # 6∈ Σ as “linker”, we can convert a tuple of words over Σ into a language over

Σ ∪ {#}. A mapping ψ : F → (Σ ∪ {#})∗ defined as ψ((u1, u2, . . . , un−1, un)) =

u1#u2# · · ·#un−1#un achieves this task. Extending ψ to p-schemata brings us the

notion of p-schema language ψ(F) for a p-schema F , that is, ψ(F) = {ψ(f) | f ∈ F}.

A one-to-one relationship between p-schemata and p-schema languages is clear, and

as such, it is natural to say that a p-schema F is in a language class L if ψ(F) ∈ L.

For instance, a p-schema F is regular if ψ(F) is regular: that is to say, being encoded

by ψ, a finite automaton recognizes F .

In this section, we investigate closure properties of classes of finite-state machines

augmented with one-reversal counters [2, 8, 9] under the p-schema-based insertions

and deletions. A counter is a pushdown stack whose alphabet is unary so that

one can check whether a counter is zero or non-zero, but cannot tell the exact

count stored in the counter. A one-reversal(-bounded) counter is a counter which

can change from its non-decrementing mode to non-incrementing mode only once

during any computation.

By augmenting an NFA with k one-reversal counters, a machine called one-

reversal k-counter machine can be defined. A one-reversal k-counter machine is for-

mally represented by a 6-tuple M = (k,Q,Σ, δ, s, F), where Q,Σ, s, F are defined

in the same way as done for NFA, while δ is a relation from Q × Σ × {0, 1}k into

Q×{−1, 0,+1}k. A configuration ofM is given by a (k+2)-tuple (q, w, c1, c2, . . . , ck)

denoting the fact thatM is in the state q, w is the pending input, and c1, . . . , ck are

the counts stored in the k counters. Then we can define a relation ⇒ among config-

urations as: (q, aw, c1, . . . , ck) ⇒ (p, w, c1+d1, . . . , ck+dk) if δ(q, a, ζ(c1), . . . , ζ(ck))

contains (p, d1, . . . , dk), where ζ(ci) = 0 if ci = 0 and ζ(ci) = 1 if ci > 0. We assume

that δ is defined carefully so as to prevent the counters from storing a negative

count. Let NCM(k) be the class of one-reversal k-counter machines, and NCM be

the union of such classes over all k’s.

The class of machines obtained by further augmenting a one-reversal k-counter

machine with one pushdown stack is denoted by NPCM(k). NPCM is the union of

NPCM(k) over all k’s. Any notation obtained by replacing N with D denote the

corresponding deterministic subclass. It is especially worth of note that NCM(0) =

REG, DPCM(0) = DCFL, and NPCM(0) = CFL.

Now we start our study on the closure properties of non-deterministic classes

NCM and NPCM under p-schema-based insertions and deletions. First of all, we

prove that REG is closed under insertion and deletion based on a regular p-schema

as a corollary of the following stronger result.

Proposition 4. For L1 ∈ NCM(k1), a regular language R2, and an NCM(kψ)

p-schema F , both L1 ֋F R2 and L1 ֌F R2 are in NCM(k1 + kψ).

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1660 L. Kari & S. Seki

Proof. Let A2 be a finite automaton for R2, and M1,Mψ be NCMs with k1, kψ
counters for L1, ψ(F), respectively. We describe two respective ways of constructing

an NCM M with k1 + kψ counters which accepts L1 ֋F R2 and L1 ֌F R2.

Let us begin with the p-schema-based insertion. M expects its input to be

of the form u1x1u2x2 · · ·xn−1un for some integer n ≥ 1, u1u2 · · ·un ∈ L1,

x1, x2, . . . , xn−1 ∈ R2, and u1#u2# · · ·#un ∈ ψ(F). M simulates M1 and Mψ

simultaneously. Guessing non-deterministically that the prefix u1x1 · · ·xi−1ui has

been read, M pauses the simulation of both M1 and Mψ and instead activates the

simulation of A2 on xi after having Mψ make a #-transition. When A2 is in one of

its accepting states,M non-deterministically resumes the simulation ofM1 andMψ

on the suffix ui+1xi+1 · · ·xn−1un of the input. The simulation of A2 is initialized

every time it is invoked.

For the p-schema-based deletion, M assumes that its input can be split into

u1, u2, . . . , un. This split is no more than a non-deterministic guess, and M takes

all of such splits into consideration. For each i,M first simulatesM1 andMψ on ui.

Then M pauses Mψ after having it make a #-transition, and without moving its

input head, M guesses symbol-by-symbol a string xi and on this string continues

the simulation of M1 as well as invokes and runs A2. When A2 accepts the guessed

xi, M ends the simulation of A2, and proceeds to the process for ui+1.

Corollary 5. For regular languages R1, R2 and a regular p-schema F , both R1 ֋F

R2 and R1 ֌F R2 are regular and effectively constructible.

In the problem setting considered in Proposition 4, if the recognition of L2

requires a counter (i.e., L2 ∈ NCM(k) for some k ≥ 1), then it might be the case

that L1 ֋F L2 or L1 ֌F L2 is not in NCM. This is because we might have to

call the one-reversal counter machine for L2 arbitrary many times, and each time

at least 1 one-reversal counter is “consumed.” Therefore, if we know beforehand at

most how many times L2 to be inserted (deleted), then we can resource the machine

with sufficient amount of counters.

Corollary 6. Let L1 ∈ NCM(k1), L2 ∈ NCM(k2), and F be a p-schema in

NCM(kψ). If there exists an integer n ≥ 0 such that F ⊆ Fpins(≤n), then both

L1 ֋F L2 and L1 ֌F L2 are in NCM(k1 + nk2 + kψ).

Let us enlarge our interest onto the closure properties of NPCM. Even in the

cases when we extend some classes which L1, L2, or F belongs to NPCM, the proof

idea of Proposition 4 works. We present two of such cases here.

Proposition 7. For L1 ∈ NPCM(k1), L2 ∈ CFL, and an NCM(kψ) p-schema F ,

L1 ֋F L2 is in NPCM(k1 + kψ).

Proof. LetM1 be an NPCM(k1) for L1,M2 be a pushdown automaton for L2, and

Mψ be an NCM(kψ) for ψ(F). We can construct an NPCMM accepting L1 ֋F L2

as done in the proof of Proposition 4. Indeed, it suffices to describe the strategy of

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

Schema for Parallel Insertion and Deletion 1661

howM1 andM2 share only one pushdown store inM . When pausing the simulation

ofM1 in order to activateM2,M marks the top of the stack by some special symbol

so thatM can resume the simulation ofM1 with the same stack after the simulation

of M2. For this strategy to work, the stack alphabet must be non-unary.

Analogous to Corollary 5, the case of k1 = kψ = 0 in Proposition 7 is of interest;

CFL is closed under insertion based on a regular p-schema. The next result should

be clear from the proof of Proposition 7.

Proposition 8. For L1 ∈ NCM(k1), L2 ∈ CFL, and an NPCM(kψ) p-schema F ,

L1 ֋F L2 is in NPCM(k1 + kψ).

Note that our construction ofM (for insertion) described in Proposition 4 cannot

let both L1 and F require a pushdown stack because M needs to run machines

for these languages at the same time. In addition, that of M for deletion needs

to run also machines for L1 and L2 simultaneously. Thus, the deletion variant of

Proposition 8 holds, while we cannot say that that of Proposition 7 holds.

To argue the closure properties of non-deterministic counter machine classes

further would carry us too far away from the purpose of this paper; algorithms to

solve language equations or to decide whether a given equation has a solution. This

decision task turns out to be undecidable very likely once some language involved

is allowed to be NCM(1) because it is undecidable for an arbitrary L ∈ NCM(1)

whether L = Σ∗ [9]. By contrast, the deterministic classes DCM and DPCM possess

the following decidability property as proved by Ibarra as Corollary 5.4 in [9].

Theorem 9 ([9]) For arbitrary L1 ∈ DCM(k1) and L2 ∈ DPCM(k2) with k1, k2 ≥

0, it is decidable whether L1 = L2.

5. Language Equations with p-Schema-Based Insertions and

Deletions

Having defined p-schema-based insertion and deletion properly and proved algebraic

properties of these operations, now we commence the investigation on language

equations with these operations. The last decades saw the intensive investigations

on language equations with special instances of p-schema-based insertions and dele-

tions such as catenation and quotient, sequential insertion and deletion as well as

incomparable operations like shuffle [3, 7, 10, 11, 15]. A method to solve language

equations which are guaranteed to have the maximum solution (if it has any) has

been established by Kari [11] based on the notion of inverseness of operations, and

it can be extended to solve X ֋F L2 = L3, L1 ֋X L2 = L3, and their deletion

variants [13]. In this section, we propose algorithms to solve L1 ֋F X = L3 and

its deletion variant for the case of L1, L3, F being regular.

Let us begin our investigation with exemplifying that such equations can have

multiple maximal solutions as follows:

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1662 L. Kari & S. Seki

Example 10. Let Leven = {a2n | n ≥ 0}, Lodd = {a2m+1 | m ≥ 0}, and F =

Fpins(2) ∪ Fpins(0). Both Leven and Lodd are (maximal) solutions to Leven ֋F X =

Leven and Leven ֌F X = Leven. On the other hand, Leven ֋F (Leven ∪ Lodd) and

Leven ֌F (Leven ∪ Lodd) can generate the elements of Lodd.

5.1. Solving L1 ֋F X = L3

Let us propose one approach to solve the existence of right operand. The idea

originates from Conway (Chapter 6 of [3]) to solve f(Σ∪{X1, X2, . . .}) ⊆ R, where

f is a regular function over Σ and variables X1, X2, . . ., and R is a regular language,

based on syntactic congruence. Here the idea is briefly explained in terms of p-

schema-based insertions and deletions in order to take a step into more general

cases than the case when both L1 and F are regular.

Lemma 11. Let L,L1 ⊆ Σ∗ be languages and F be a p-schema. Then for any

word w ∈ Σ∗ and language L2 ⊆ Σ∗, (L1 ֋F (L2 ∪ {w})) ∩ L 6= ∅ if and only if

(L1 ֋F (L2 ∪ [w]≡L
)) ∩ L 6= ∅, where ≡L is the syntactic congruence of L.

Proof. Assume the non-emptiness of (L1 ֋F (L2 ∪ [w]≡L
)) ∩ L. This means that

there exist n ≥ 1, u1, · · · , un ∈ Σ∗, and x1, · · · , xn−1 ∈ L2 ∪ [w]≡L
such that

u1 · · ·un ∈ L1 and u1x1u2x2 · · ·un−1xn−1un ∈ (L1 ֋F (L2 ∪ [w]≡L
))∩L. Consider

a word u1x
′
1u2x

′
2 · · ·un−1x

′
n−1un, where x

′
i = w if xi ∈ [w]≡L

or x′i = xi otherwise.

This word is in L1 ֋F (L2 ∪w), and by the definition of syntactic congruence ≡L,

this word is also in L. Thus, (L1 ֋F (L2 ∪ w)) ∩ L is not empty.

Imagine that we are given a “safe” partial solutionX in a sense that L1 ֋F X ⊆

L3. Substituting L
c
3 into L in Lemma 11 gives us one implication of importance to

solve L1 ֋F X = L3. That is to say, if X∪{w} is guaranteed to be safe in this sense,

X ∪ [w]≡L3
is also safe (recall that ≡L3

is equivalent to ≡Lc

3
). One interpretation of

this is that we can handle equivalence classes as an “atomic unit” as long as maximal

solutions are concerned. Hence, Lemma 11 encourages us to introduce the notion

of syntactic solution. Given a language L, we say that a solution to a one-variable

language equation is syntactic with respect to L if it is a union of equivalence classes

in Σ∗/ ≡L. The previous lemma implies that if L2 is its solution, then σL3
(L2) is

its syntactic solution.

Proposition 12. For languages L1, L3 and a p-schema F , the equation L1 ֋F

X = L3 has a solution if and only if it has a syntactic solution with respect to L3.

As a result, the problem of deciding whether L1 ֋F X = L3 has a solution is

reduced to the problem of deciding whether this equation has a syntactic solution. If

L3 is regular, then the number of all of its syntactic solutions is finite (Theorem 1),

and the syntactic solution is regular (Theorem 2). Let us present a pseudocode of

the algorithm to solve the equation in this case. Let ß =
⋃

L⊆Σ∗ σR3
(L), the set of

all candidates of syntactic solutions.

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

Schema for Parallel Insertion and Deletion 1663

Algorithm to solve L1 ֋F X = R3

(1) Construct ß and order its elements in some way (let us denote the i-th element

of ß by ß[i]).

(2) for each 1 ≤ i ≤ |ß|, test whether L1 ֋F ß[i] is equal to R3.

Due to the algorithm above, Theorem 9, and Corollary 5, it is decidable whether

R1 ֋F X = R3 has a solution or not for regular languages R1, R3 and a regular

p-schema F . However, this algorithm provides us with a stronger result than the

decidability. Note that all maximal solutions of L1 ֋ X = L3 are syntactic because

σL3
saturates a non-syntactic solution, and a properly-bigger syntactic solution

results. As a result, if L3 is regular, then the equation L1 ֋ X = L3 has at most

a finite number of maximal solutions.

Theorem 13. For regular languages R1, R3 and a regular p-schema F , the set of

all maximal solutions to R1 ֋F X = R3 is effectively constructible.

The regularity of L3 is necessary for the algorithm to solve L1 ֋F X = L3,

whereas such a condition is not imposed on L1 or on F . Since the equality test is

decidable between DPCM and REG (Theorem 9), under conditions that substitut-

ing any union of equivalence classes in Σ∗/ ≡L3
into L1 ֋F X yields a DPCM,

the existence of a solution to L1 ֋F X = L3 remains decidable. Finding such

conditions, however, seems to be hard as suggested in Proposition 2 of [13].

5.2. Solving L1 ֌F X = L3

A similar approach based on the syntactic congruence works for the equations of

the form L1 ֌F X = L3.

Lemma 14. Let L1 ⊆ Σ∗ be a language and F be a p-schema. Then for any word

w ∈ Σ∗ and language L2 ⊆ Σ∗, L1 ֌F (L2 ∪ {w}) = L1 ֌F (L2 ∪ [w]≡L1
).

Proof. It suffices to prove that L1 ֌F ({w} ∪ L2) ⊇ L1 ֌F ([w]≡L1
∪ L2)

holds. Let u ∈ L1 ֌F ([w]≡L1
∪ L2). This means that there exist v ∈ L1, n ≥ 0,

(u1, u2, . . . , un+1) ∈ F , and x1, . . . , xn ∈ [w]≡L1
∪ L2 such that u = u1u2 · · ·un+1

and v = u1x1u2x2 · · ·unxnun+1. Now on v if xi ∈ [w]≡L1
, then we replace xi with

w, and this process converts v into a word v′. Note that this replacement process

guarantees that v′ ∈ L1 because the replaced factors are equal to w with respect to

≡L1
. Moreover, u ∈ v′ ֌F ({w} ∪ L2). Thus, the inclusion holds.

Compare this with Lemma 11. A weaker statement of this lemma “(L1 ֌F

(L2 ∪ {w})) ∩ Lc3 6= ∅ if and only if (L1 ֌F (L2 ∪ [w]≡L1
)) ∩ Lc3 6= ∅” is enough to

reduce the existence of a solution to L1 ֌F X = L3 to that of its syntactic solution

with respect to L1. The algorithm to construct the set of all syntactic solutions to

L1 ֌F X = L3 should be quite straightforward from the explanation in Section 5.1.

Note that a prerequisite for L1 ֌F X = L3 to be solvable by this algorithm is that

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1664 L. Kari & S. Seki

the index of ≡L1
be finite, that is, the regularity of L1 (not that of L3). This causes

a difference between L1 ֌F X = L3 and its insertion variant in the conditions

on L1, F, L3 under which our syntactic-congruence-oriented algorithms work. For

instance, the algorithm for L1 ֌F X = L3 allows L3 to be DPCM as long as L1

and F are regular due to Theorem 9 and Proposition 4.

One should not overlook the fact that Lemma 14 is more than the analog of

Lemma 11. A correct interpretation of this lemma is that the representatives of

equivalence classes in Σ∗/ ≡L1
can achieve whatever the elements of these classes do

in terms of p-schema-based deletion, not depending on the choice of representatives.

Let us describe this formally as follows.

Lemma 15. Let L1 ⊆ Σ∗ be a language and F be a p-schema. Then for a language

L2 and a complete system of representatives R(L1) of Σ∗/ ≡L1
, L1 ֌F L2 =

L1 ֌F (σL1
(L2) ∩R(L1)).

Since the choice of R(L1) is arbitrary, Lemma 15 implies that all of the solutions

to L1 ֌F X = L3 can be completely characterized by only the solutions which are

a subset of some fixed complete system R(L1) of representatives of Σ∗/ ≡L1
. Let

us fix R(L1) to be the set of smallest words of each equivalence class according to

the lexicographical order. Note that when L1 is regular, we can effectively construct

R(L1) from the minimal DFA for L1.

Theorem 16. For a regular language R1, a regular p-schema F , L3 ∈ DPCM, and

a complete system R(R1) of representatives of Σ∗/ ≡R1
, the set of all solutions to

R1 ֌F X = L3 which are a subset of R(R1) is effectively constructible.

Lemma 15 and Theorem 16 have at least two corollaries of significance. The first

is of syntactic solutions: from Lemma 15, it is evident that syntactic solutions to

L1 ֌F X = L3 are no more than an image of its solution in R(L1) by the saturator

σL1
. The second is of minimal solutions: due to Lemma 15, none of two words in a

minimal solution to L1 ֌F X = L3 belong to the same equivalence class.

Corollary 17. For a regular language R1, a regular p-schema F , and L3 ∈ DPCM,

the set of all syntactic solutions to R1 ֌F X = L3 is effectively constructible.

Corollary 18. For a regular language R1, a regular p-schema F , and L3 ∈ DPCM,

the set of all minimal solutions to R1 ֌F X = L3 modulo ≡R1
is effectively

constructible.

As might be obvious already, another corollary of them is that the number of

languages which can be obtained from a regular language R1 by the deletion based

on a given p-schema F is at most |2Σ
∗/≡R1 |. If F is regular, then all of these resulting

languages are not only regular but effectively constructible (Corollary 5). A special

case of this result with the operation being sequential deletion is known [10].

We cannot say that we have got the most out of the decidability of equivalence

in Theorem 9 for the proposed algorithm. Indeed, we can compare not only regular

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

Schema for Parallel Insertion and Deletion 1665

languages but also DCM with DPCM. Due to this, the equation L1 ֌F X = L3

whose lefthand side is guaranteed to be no more than DPCM is of interest. Since the

regularity of L1 being essential at least for our algorithm, we should study weaker

conditions on F than the regularity. This, however, involves difficulties because

deleting even a word (i.e., a singleton language) from a regular language based on

a DCM(1) p-schema can generate a non-DPCM language (Proposition 4 of [13]).

5.3. Solving multiple-variables equations

There is one thing which deserves explicit emphasis: the set of all candidates of

syntactic solutions is solely determined by L3 and does not depend on L1 or F

at all. This property paves the way to algorithms to solve two-variables language

equations of the form X ֋F Y = L3 and L1 ֋X Y = L3 under the assumption

that L3 be regular. The special instance of this problem with ֋ being catenation

has been investigated in the name of decomposition of regular languages and proved

to be decidable [15, 17].

Note that if an equation X ֋F Y = L3 has a solution (L1, L2), then

(L1, σL3
(L2)) is also its solution. This means that if the equation has a solution (pair

of languages), then it also has a solution whose second element is a union of equiva-

lence classes in Σ∗/ ≡L3
. In other words, in order to decide whether X ֋F Y = L3

has a solution, it suffices to decide whether at least one of the one-variable equations

obtained by substituting such unions of equivalence classes into X ֋F Y = L3 as

Y has a solution or not. As a whole, this paragraph works as an algorithm we have

been looking for.

For regular languages R1, R3 and a regular p-schema F , this algorithm works

effectively to solve X ֋F Y = R3 (R1 ֋X Y = R3). We replace the second step

of the previous algorithm with the process to solve X ֋F ß[i] = R3 (resp. R1 ֋X

ß[i] = R3) for each 1 ≤ i ≤ n using the Kari’s technique based on the inverse

operation mentioned previously.

Theorem 19. For a regular language R3 and a regular p-schema F , it is decidable

whether the equation X ֋F Y = R3 has a solution or not.

Theorem 20. For regular languages R1, R3, it is decidable whether the equation

R1 ֋X Y = R3 has a solution or not.

Using the algorithm to solve L1 ֌F X = L3 and the above approach, we can

solve the problem of deciding whether the equation L1 ֌X Y = L3 has a solution or

not provided both L1 and L3 are regular. Note that the regularity of L3 is required

(cf. Corollary 17) for the second step (inverse-operation-based approach to solve

L1 ֌X ß[i] = L3) to work.

Theorem 21. For regular languages R1, R3, it is decidable whether the equation

R1 ֌X Y = R3 has a solution.

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1666 L. Kari & S. Seki

Unlike p-schema-based insertions, our proposal does not work to solve the equa-

tion X ֌F Y = L3. This is because in this case it is not L3 but L1 with respect to

which the syntactic solutions of L1 ֌F Y = L3 to be considered.

5.4. Inequalities with p-schema-based insertion

The usage of the proposed algorithm is not exclusive to solving equations, but

of use in solving inequalities such as L1 ֋F X ⊆ R3. In the investigation on such

inequalities, our interest lies in their maximal solutions. Due to Lemma 11, maximal

solutions to L1 ֋F X ⊆ R3 have to be unions of equivalence classes in Σ∗/ ≡R3
.

Hence, by replacing equality test in the step 2 with the inclusion test: “for each

1 ≤ i ≤ n, test whether L1 ֋F ß[i] is a subset of R3,” we can modify the algorithm

so as to solve the problem of finding maximal solutions to L1 ֋F X ⊆ R3. Note

that inclusion test between regular languages is also decidable. As a corollary, for

example, for a regular language R, we can compute the set of all languages X

satisfying X∗ ⊆ R and maximal with this inclusion property since this inequality

can be rewritten as {λ} ֋F∗
X ⊆ R3.

It should now be obvious that the further extension introduced in Section 5.3 is

applicable to modify the above algorithm so as to solve language inequalities of the

form X ֋F Y ⊆ R3 and R1 ֋X Y ⊆ R3. We can easily prove that X ֋F ß[i] ⊆

R3 has a unique maximal solution and it is represented as (Rc3 ֌F ß[i])c.

5.5. Undecidability of L1 ֋F X = L3 and L1 ֌F X = L3

Having proposed the algorithm to solve the equation L1 ֋F X = L3 in the case of

L1, F, L3 being regular, i.e., NCM(0), our interest shifts onto the extent to which we

can weaken the hypothesis on the three languages involved. Actually, we shall prove

that once one of them becomes NCM(1), then this problem immediately turns into

undecidable. Note that the universe problem for NCM(1) is undecidable while the

emptiness for this class is decidable [9].

Weakening the hypothesis on L1 was considered in [12] for parallel insertion, i.e.,

֋Fpins
, and proved to be undecidable when L1 is context-free even if X is limited

to be a singleton language. For this purpose, using a special symbol ♮ 6∈ Σ (this

special symbol will be employed in the following without being defined each time),

they proved that for a context-free language L, L♮ ֋Fpins
X = Σ∗♮ has a solution

if and only if L = Σ∗. It is clear that this proof works even if L is restricted to be

in NCM(1). As a result, the next proposition holds.

Proposition 22. For L1 ∈ NCM(1), a regular language R3, and a syntactic regular

p-schema F , it is undecidable whether L1 ֋F X = R3 has a solution or not.

Next we consider the case when L3, instead of L1, is in NCM(1).

Proposition 23. For a regular language R1, L3 ∈ NCM(1), and a syntactic regular

p-schema F , it is undecidable whether R1 ֋F X = L3 has a solution or not.

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

Schema for Parallel Insertion and Deletion 1667

Proof. Let F = λ×Σ∗×λ, which is syntactic and regular. For an arbitrary NCM(1)

L, we claim that Σ∗
֋F X = ♮L♮ has a solution if and only if L = Σ∗. The converse

implication is evident; if L = Σ∗, then X = {♮} is a solution. Indeed, we can see

that this is the only one possible solution to this equation. If X contains a word

which begins (ends) with a ∈ Σ, then Σ∗
֋F X can produce a word which begins

(resp. ends) with a, and hence, X is not a solution to the equation. In the same

way, we can see that any word in X cannot contain two ♮’s. Thus, if the equation

has a solution, then its left-hand side becomes ♮Σ∗♮ so that L has to be Σ∗ for this

equation to hold.

What remains to be investigated is whether the NCM(1) p-schema brings the

undecidability to solving L1 ֋F X = L3. The proof of this can be found in [13].

Proposition 24. For regular languages R1, R3 and a syntactic NCM(1) p-schema

F , it is undecidable whether R1 ֋F X = R3 has a solution or not.

Let us keep investigating the undecidability of the existence of a right operand

by switching the operation involved to p-schema-based deletion. Kari proved the

undecidability of the problem of whether L1X
−1 = R3 has a solution, and its

singleton variant, for a context-free language L1 by reducing the universe problem

to this problem, where −1 is right quotient [10, 11]. Right quotient is the deletion

based on the syntactic regular p-schema Fcat. Thus, we have the following result.

Proposition 25. For L1 ∈ NCM(1), a regular language R3, and a syntactic regular

p-schema F , it is undecidable whether L1 ֌F X = R3 has a solution or not.

The next proposition for the case of L3 being in NCM(1) can be proved basically

using the same idea as the one used in the proof of Proposition 23. Due to the space

limitation, its proof is omitted.

Proposition 26. For a regular language R1, L3 ∈ NCM(1), and a syntactic regular

p-schema F , it is undecidable whether R1 ֌F X = L3 has a solution or not.

Proposition 27. For regular languages R1, R3 and a syntactic NCM(1) p-schema

F , it is undecidable whether the equation R1 ֌F X = R3 has a solution or not.

Proof. Let h′ be a homomorphism {0, 1}∗ → (Σ∪{#})∗ defined as h′(0) = Σ#Σ#

and h′(1) = ΣΣ##. Note that for an arbitrary λ-free NCM(1), it is undecidable

whether the language is equal to Σ+. Let F,G be p-schemata with ψ(F) = #Σh′(L)

and ψ(G) = #Σ. F ∪G is a syntactic NCM(1) p-schema.

Let $ be a special symbol not in Σ. We claim that [b${abcb, cabb}∗ ∪ (Σ∗ \

{b})a] ֌F∪G X = ${ac, ca}∗ has a solution if and only if L = {0, 1}+. The only

one element in the first operand from which deleting X based on F can result in $

is b$, and hence, b ∈ X . If another word w is in X , then a ∈ (wa ֌G X); however,

a is not included in the right-hand side of this equation. Thus, the only one possible

solution to this equation is X = {b}. Note that both (Σ∗ \ {b})a ֌F {b} and

November 22, 2011 13:24 WSPC/INSTRUCTION FILE
S0129054111008945

1668 L. Kari & S. Seki

(Σ∗ \ {b})a֌G {b} are empty. Indeed, the emptiness of the first is due to the fact

that any element of #Σh′(L) ends with #, but a 6= b. Hence, the equation holds

if and only if b${abcb, cabb}∗ ֋F∪G {b} = ${ac, ca}∗. The latter equation holds if

and only if L = {0, 1}+.

Acknowledgments

The authors appreciate anonymous referees for their carefully reading the earlier

version of this paper and making valuable comments on them. This research was

supported by Natural Sciences and Engineering Research Council of Canada Dis-

covery Grant R2824A01, and Canada Research Chair Award to L. K.

References

[1] M. Anselmo and A. Restivo. On languages factorizing the free monoid. International
Journal of Algebra and Computations, 6:413–427, 1996.

[2] B. S. Baker and R. V. Book. Reversal-bounded multipushdown machines. Journal of
Computer and System Sciences, 8:315–332, 1974.

[3] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
1971.

[4] M. Daley, O. Ibarra, and L. Kari. Closure and decidability properties of some lan-
guage classes with respect to ciliate bio-operations. Theoretical Computer Science,
306:19–38, 2003.

[5] C. W. Dieffenbach and G. S. Dveksler, editors. PCR Primer: A Laboratory Manual.
Cold Spring Harbor Laboratory Press, 2003.

[6] M. Domaratzki, G. Rozenberg, and K. Salomaa. Interpreted trajectories. Fundamenta

Informaticae, 73:81–97, 2006.
[7] M. Domaratzki and K. Salomaa. Decidability of trajectory-based equations. Theoret-

ical Computer Science, 345:304–330, 2005.
[8] S. Ginsburg. Algebraic and Automata-Theoretic Properties of Formal Languages.

Elsevier Science Inc., New York, 1975.
[9] O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems.

Journal of the ACM, 25:116–133, 1978.
[10] L. Kari. On Insertion and Deletion in Formal Languages. PhD thesis, University of

Turku, Department of Mathematics, SF-20500 Turku, Finland, 1991.
[11] L. Kari. On language equations with invertible operations. Theoretical Computer

Science, 132:129–150, 1994.
[12] L. Kari, G. Rozenberg, and A. Salomaa. L systems. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, volume 1, pages 253–328. Springer, 1997.
[13] L. Kari and S. Seki. Schema for parallel insertion and deletion. In Y. Gao, H. Lu,

S. Seki, and S. Yu, editors, DLT 2010, volume 6224, pages 267–278, 2010.
[14] L. Kari and G. Thierrin. Contextual insertions/deletions and computability. Infor-

mation and Computation, 131:47–61, 1996.
[15] L. Kari and Gabriel Thierrin. Maximal and minimal solutions to language equations.

Journal of Computer and System Sciences, 53:487–496, 1996.
[16] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal

of Research and Development, 3:114–125, 1959.
[17] A. Salomaa and S. Yu. On the decomposition of finite languages. In G. Rozenberg

and W. Thomas, editors, Developments in Language Theory, pages 22–31, 1999.

	Introduction
	Preliminaries
	Schema for Parallel Insertion and Deletion
	Hierarchy of p-Schemata and Closure Properties
	Language Equations with p-Schema-Based Insertions and Deletions
	Solving L1 F X = L3
	Solving L1 F X = L3
	Solving multiple-variables equations
	Inequalities with p-schema-based insertion
	Undecidability of L1 F X = L3 and L1 F X = L3

