
Algorithms for Jumbled Pattern Matching in
Strings
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Abstract. The Parikh vector p(s) of a string s over a finite ordered alphabet
Σ = {a1, . . . , aσ} is defined as the vector of multiplicities of the characters,
p(s) = (p1, . . . , pσ), where pi = |{j | sj = ai}|. Parikh vector q occurs in s if s
has a substring t with p(t) = q. The problem of searching for a query q in a
text s of length n can be solved simply and worst-case optimally with a sliding
window approach in O(n) time. We present two novel algorithms for the case
where the text is fixed and many queries arrive over time.
The first algorithm only decides whether a given Parikh vector appears in a
binary text. It uses a linear size data structure and decides each query in O(1)
time. The preprocessing can be done trivially in Θ(n2) time.
The second algorithm finds all occurrences of a given Parikh vector in a text
over an arbitrary alphabet of size σ ≥ 2 and has sub-linear expected time
complexity. More precisely, we present two variants of the algorithm, both
using an O(n) size data structure, each of which can be constructed in O(n)
time. The first solution is very simple and easy to implement and leads to an
expected query time of O(n( σ

log σ
)1/2 logm√

m
), where m =

∑
i qi is the length of

a string with Parikh vector q. The second uses wavelet trees and improves the
expected runtime to O(n( σ

log σ
)1/2 1√

m
), i.e., by a factor of logm.

Keywords: Parikh vectors, permuted strings, pattern matching, string algorithms,
average case analysis, text indexing, non-standard string matching
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1 Introduction

Parikh vectors of strings count the multiplicity of the characters. They have been
reintroduced many times by different names (compomer [5], composition [3], Parikh
vector [22], permuted string [7], permuted pattern [10], and others). They are natural
objects to study, due to their numerous applications; for instance, in computational
biology, they have been applied in alignment algorithms [3], SNP discovery [5], re-
peated pattern discovery [10], and, most naturally, in interpretation of mass spec-
trometry data [4]. Parikh vectors can be seen as a generalization of strings, where we
view two strings as equivalent if one can be turned into the other by permuting its
characters; in other words, if the two strings have the same Parikh vector.

The problem we are interested in here is answering the question whether a query
Parikh vector q appears in a given text s (decision version), or where it occurs (oc-
currence version). An occurrence of q is defined as an occurrence of a substring t
of s with Parikh vector q. The problem can be viewed as an approximate pattern
matching problem: We are looking for an occurrence of a jumbled version of a query
string t, i.e. for the occurrence of a substring t′ which has the same Parikh vector. In
the following, let n be the length of the text s, m the length of the query q (defined
as the length of a string t with Parikh vector q), and σ the size of the alphabet.

The above problem (both decision and occurrence versions) can be solved with
a simple sliding window based algorithm, in O(n) time and O(σ) additional storage
space. This is worst case optimal with respect to the case of one query. However, when
we expect to search for many queries in the same string, the above approach leads
to O(Kn) runtime for K queries. To the best of our knowledge, no faster approach
is known. This is in stark contrast to the classical exact pattern matching problem,
where all exact occurrences of a query pattern of length m are sought in a text of
length n. In that case, for one query, any naive approach leads to O(nm) runtime,
while quite involved ideas for preprocessing and searching are necessary to achieve an
improved runtime of O(n + m), as do the Knuth-Morris-Pratt [17], Boyer-Moore [6]
and Boyer-Moore-type algorithms (see, e.g., [2, 14]). However, when many queries are
expected, the text can be preprocessed to produce a data structure of size linear in
n, such as a suffix tree, suffix array, or suffix automaton, which then allows to answer
individual queries in time linear in the length of the pattern (see any textbook on
string algorithms, e.g. [23, 18]).

1.1 Related work

Jumbled pattern matching is a special case of approximate pattern matching. It has
been used as a filtering step in approximate pattern matching algorithms [15], but
rarely considered in its own right.

The authors of [7] present an algorithm for finding all occurrences of a Parikh
vector in a runlength encoded text. The algorithm’s time complexity is O(n′ + σ),
where n′ is the length of the runlength encoding of s. Obviously, if the string is not
runlength encoded, a preprocessing phase of time O(n) has to be added. However,
this may still be feasible if many queries are expected. To the best of our knowledge,
this is the only algorithm that has been presented for the problem we treat here.
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An efficient algorithm for computing all Parikh fingerprints of substrings of a given
string was developed in [1]. Parikh fingerprints are Boolean vectors where the k’th
entry is 1 if and only if ak appears in the string. The algorithm involves storing a
data point for each Parikh fingerprint, of which there are at most O(nσ) many. This
approach was adapted in [10] for Parikh vectors and applied to identifying all repeated
Parikh vectors within a given length range; using it to search for queries of arbitrary
length would imply using Ω(P (s)) space, where P (s) denotes the number of different
Parikh vectors of substrings of s. This is not desirable, since, for arbitrary alphabets,
there are non-trivial strings of any length with quadratic P (s) [8].

1.2 Results

In this paper, we present two novel algorithms which perform significantly better than
the simple window algorithm, in the case where many queries arrive.

For the binary case, we present an algorithm which answers decision queries in
O(1) time, using a data structure of size O(n) (Interval Algorithm, Sect. 3). The data
structure is constructed in Θ(n2) time.

For general alphabets, we present an algorithm with expected sublinear runtime
which uses O(n) space to answer occurrence queries (Jumping Algorithm, Sect. 4).
We present two different variants of the algorithm. The first one uses a very simple
data structure (an inverted table) and answers queries in time O(σJ log(nJ + m)),
where J denotes the number of iterations of the main loop of the algorithm. We then
show that the expected value of J for the case of random strings and patterns is
O( n√

m
√
σ log σ

), yielding an expected runtime of O(n( σ
log σ )1/2 logm√

m
), per query

The second variant of the algorithm uses wavelet trees [13] and has query time
O(σJ), yielding an overall expected runtime of O(n( σ

log σ )1/2 1√
m

), per query. (Here

and in the following, log stands for logarithm base 2.)
Our simulations on random strings and real biological strings confirm the sublinear

behavior of the algorithms in practice. This is a significant improvement over the
simple window algorithm w.r.t. expected runtime, both for a single query and repeated
queries over one string.

The Jumping Algorithm is reminiscent of the Boyer-Moore-like approaches to
the classical exact string matching problem [6, 2, 14]. This analogy is used both in
its presentation and in the analysis of the number of iterations performed by the
algorithm.

2 Definitions and problem statement

Given a finite ordered alphabet Σ = {a1, . . . , aσ}, a1 ≤ . . . ≤ aσ. For a string s ∈ Σ∗,
s = s1 . . . sn, the Parikh vector p(s) = (p1, . . . , pσ) of s defines the multiplicities of
the characters in s, i.e. pi = |{j | sj = ai}|, for i = 1, . . . , σ. For a Parikh vector p,
the length |p| denotes the length of a string with Parikh vector p, i.e. |p| =

∑
i pi. An

occurrence of a Parikh vector p in s is an occurrence of a substring t with p(t) = p.
(An occurrence of t is a pair of positions 0 ≤ i ≤ j ≤ n, such that si . . . sj = t.)
A Parikh vector that occurs in s is called a sub-Parikh vector of s. The prefix of
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length i is denoted pr(i) = pr(i, s) = s1 . . . si, and the Parikh vector of pr(i) as
prv(i) = prv(i, s) = p(pr(i)).

For two Parikh vectors p, q ∈ Nσ, we define p ≤ q and p + q component-wise:
p ≤ q if and only if pi ≤ qi for all i = 1, . . . , σ, and p + q = u where ui = pi + qi for
i = 1, . . . , σ. Similarly, for p ≤ q, we set q − p = v where vi = qi − pi for i = 1, . . . , σ.

Jumbled Pattern Matching (JPM). Let s ∈ Σ∗ be given, |s| = n. For
a Parikh vector q ∈ Nσ (the query), |q| = m, find all occurrences of q in s.
The decision version of the problem is where we only want to know whether
q occurs in s.

We assume that K many queries arrive over time, so some preprocessing may be
worthwhile.

Note that for K = 1, both the decision version and the occurrence version can
be solved worst-case optimally with a simple window algorithm, which moves a fixed
size window of size m along string s. Maintain the Parikh vector c of the current
window and a counter r which counts indices i such that ci 6= qi. Each sliding step
costs either 0 or 2 update operations of c, and possibly one increment or decrement of
r. This algorithm solves both the decision and occurrence problems and has running
time Θ(n), using additional storage space Θ(σ).

Precomputing, sorting, and storing all sub-Parikh vectors of s would lead to Θ(n2)
storage space, since there are non-trivial strings with a quadratic number of Parikh
vectors over arbitrary alphabets [8]. Such space usage is inacceptable in many appli-
cations.

For small queries, the problem can be solved exhaustively with a linear size index-
ing structure such as a suffix tree, which can be searched down to length m = |q| (of
the substrings), yielding a solution to the decision problem in time O(σm). For finding
occurrences, report all leaves in the subtrees below each match; this costs O(M) time,
where M is the number of occurrences of q in s. Constructing the suffix tree takes
O(n) time, so for m = o(log n), we get a total runtime of O(n), since M ≤ n for any
query q.

3 Decision problem in the binary case

In this section, we present an algorithm for strings over a binary alphabet which,
once a data structure of size O(n) has been constructed, answers decision queries in
constant time. It makes use of the following nice property of binary strings.

Lemma 1. Let s ∈ {a, b}∗ with |s| = n. Fix 1 ≤ m ≤ n. If the Parikh vectors
(x1,m − x1) and (x2,m − x2) both occur in s, then so does (y,m − y) for any x1 ≤
y ≤ x2.

Proof. Consider a sliding window of fixed size m moving along the string and let
(p1, p2) be the Parikh vector of the current substring. When the window is shifted by
one, the Parikh vector either remains unchanged (if the character falling out is the
same as the character coming in), or it becomes (p1 +1, p2−1) resp. (p1−1, p2 +1) (if
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they are different). Thus the Parikh vectors of substrings of s of length m build a set
of the form {(x,m − x) | x = pmin(m),pmin(m) + 1, . . . ,pmax(m)} for appropriate
pmin(m) and pmax(m). ut

Assume that the algorithm has access to the values pmin(m) and pmax(m) for
m = 1, . . . , n; then, when a query q = (x, y) arrives, it answers yes if and only if
x ∈ [pmin(x+ y),pmax(x+ y)]. The query time is O(1).

The table of the values pmin(m) and pmax(m) can be easily computed in a pre-
processing step in time Θ(n2) by scanning the string with a window of size m, for
each m. Alternatively, lazy computation of the table is feasible, since for any query
q, only the entry m = |q| is necessary. Therefore, it can be computed on the fly as
queries arrive. Then, any query will take time O(1) (if the appropriate entry has
already been computed), or O(n) (if it has not). After n queries of the latter kind,
the table is completed, and all subsequent queries can be answered in O(1) time. If
we assume that the query lengths are uniformly distributed, then this can be viewed
as a coupon collector problem where the coupon collector has to collect one copy of
each length m. Then the expected number of queries needed before having seen all n
coupons is nHn ≈ n lnn (see e.g. [11]). The algorithm will have taken O(n2) time to
answer these n lnn queries.

The assumption of the uniform length distribution may not be very realistic; how-
ever, even if it does not hold, we never take more time than O(n2 +K) for K many
queries. Since any one query may take at most O(n) time, our algorithm never per-
forms worse than the simple window algorithm. Moreover, for those queries where
the table entries have to be computed, we can even run the simple window algorithm
itself and report all occurrences, as well. For all others, we only give decision answers,
but in constant time.

The size of the data structure is 2n = O(n). The overall running time for either
variant is Θ(K + n2). As soon as the number of queries is K = ω(n), both variants
outperform the simple window algorithm, whose running time is Θ(Kn).

Example 1. Let s = ababbaabaabbbaaabbab. In Table 1, we give the table of pmin and
pmax for s. This example shows that the locality of pmin and pmax is preserved only
in adjacent levels. As an example, the value pmax(3) = 3 corresponds to the substring
aaa appearing only at position 14, while pmax(5) = 4 corresponds to the substring
aabaa appearing only at position 6.

Table 1. An example of the linear data structure for answering queries in constant time.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pmin 0 0 0 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9 10

pmax 1 2 3 3 4 4 4 5 5 6 7 7 7 8 8 9 9 9 10 10
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4 The Jumping Algorithm

In this section, we introduce our algorithm for general alphabets. We first give the
main algorithm and then present two different implementations of it. The first one,
an inverted prefix table, is very easy to understand and to implement, takes O(n)
space and O(n) time to construct (both with constant 1), and can replace the string.
Then we show how to use a wavelet tree of s to implement our algorithm, which has
the same space requirements as the inverted table, can be constructed in O(n) time,
and improves the query time by a factor of logm.

4.1 Main algorithm

Let s = s1 . . . sn ∈ Σ∗ be given. Recall that prv(i) denotes the Parikh vector of the
prefix of s of length i, for i = 0, . . . , n, where prv(0) = p(ε) = (0, . . . , 0). Consider
Parikh vector p ∈ Nσ, p 6= (0, . . . , 0). We make the following simple observations:

Observation 1 1. For any 0 ≤ i ≤ j ≤ n, p = prv(j) − prv(i) if and only if p
occurs in s at position (i+ 1, j).

2. If an occurrence of p ends in position j, then prv(j) ≥ p.

The algorithm moves two pointers L and R along the text, pointing at these
potential positions i and j. Instead of moving linearly, however, the pointers are
updated in jumps, alternating between updates of R and L, in such a manner that
many positions are skipped. Moreover, because of the way we update the pointers,
after any update it suffices to check whether R−L = |q| to confirm that an occurrence
has been found (cf. Lemma 2 below).

We first need to define a function firstfit, which returns the smallest potential
position where an occurence of a Parikh vector can end. Let p ∈ Nσ, then

firstfit(p) := min{j | prv(j) ≥ p},

and set firstfit(p) =∞ if no such j exists. We use the following rules for updating
the two pointers, illustrated in Fig. 1.

Updating R: Assume that the left pointer is pointing at position L, i.e. no un-
reported occurrence starts before L + 1. Notice that, if there is an occurrence of q
ending at any position j > L, it must hold that prv(L) + q ≤ prv(j). In other words,
we must fit both prv(L) and q at position j, so we update R to

R← firstfit(prv(L) + q).

Updating L: Assume that R has just been updated. Thus, prv(R) − prv(L) ≥ q
by definition of firstfit. If equality holds, then we have found an occurrence of q in
position (L+ 1, R), and L can be incremented by 1. Otherwise prv(R)− prv(L) > q,
which implies that, interspersed between the characters that belong to q, there are
some “superfluous” characters. Now the first position where an occurrence of q can
start is at the beginning of a contiguous sequence of characters ending in R which all
belong to q. In other words, we need the beginning of the longest suffix of s[L+ 1, R]
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L R

pr(L) q' >= q

L R

q' >= q

q'' <= q

Fig. 1. The situation after the update of R (above) and after the update of L (below). R is
placed at the first fit of prv(L) + q, thus q′ is a super-Parikh vector of q. Then L is placed
at the beginning of the longest good suffix ending in R, so q′′ is a sub-Parikh vector of q.

with Parikh vector ≤ q, i.e. the smallest position i such that prv(R)− prv(i) ≤ q, or,
equivalently, prv(i) ≥ prv(R)− q. Thus we update L to

L← firstfit(prv(R)− q).

Finally, in order to check whether we have found an occurrence of query q, after
each update of R or L, we check whether R − L = |q|. In Figure 2, we give the
pseudocode of the algorithm.

Algorithm Jumping Algorithm
Input: query Parikh vector q
Output: A set Occ containing all beginning positions of occurrences of q in s
1. set m← |q|;Occ← ∅; L← 0;
2. while L < n−m
3. do R← firstfit(prv(L) + q);
4. if R− L = m
5. then add L+ 1 to Occ;
6. L← L+ 1;
7. else L← firstfit(prv(R)− q);
8. if R− L = m
9. then add L+ 1 to Occ;
10. L← L+ 1;
11. return Occ;

Fig. 2. Pseudocode of Jumping Algorithm

It remains to see how to compute the firstfit and prv functions. We first prove
that the algorithm is correct. For this, we will need the following lemma.

Lemma 2. The following algorithm invariants hold:
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1. After each update of R, we have prv(R)− prv(L) ≥ q.
2. After each update of L, we have prv(R)− prv(L) ≤ q.
3. L ≤ R.

Proof. 1. follows directly from the definition of firstfit and the update rule for R.
For 2., if an occurrence was found at (i, j), then before the update we have L = i− 1
and R = j. Now L is incremented by 1, so L = i and prv(R)− prv(L) = q − esi < q,
where ek is the k’th unity vector. Otherwise, L ← firstfit(prv(R) − q), and again
the claim follows directly from the definition of firstfit. For 3., if an occurrence
was found, then L is incremented by 1, and R − L = m − 1 ≥ 0. Otherwise, L =
firstfit(prv(R)− q) = min{` | prv(`) ≥ prv(R)− q} ≤ R. ut

Theorem 1. Algorithm Jumping Algorithm is correct.

Proof. We have to show that (1) if the algorithm reports an occurrence, then it is
correct, and (2) if there is an occurrence, then the algorithm will find it.

(1) If the algorithm reports an index i, then (i, i + m − 1) is an occurrence of q:
An index i is added to Occ whenever R − L = m. If the last update was that of R,
then we have prv(R)− prv(L) ≥ q by Lemma 2, and together with R−L = m = |q|,
this implies prv(R) − prv(L) = q, thus (L + 1, R) = (i, i + m − 1) is an occurrence
of q. If the last update was L, then prv(R) − prv(L) ≤ q, and it follows analogously
that prv(R)− prv(L) = q.

(2) All occurrences of q are reported: Let’s assume otherwise. Then there is a
minimal i and j = i + m − 1 such that p(s[i, j]) = q but i is not reported by the
algorithm. By Observation 1, we have prv(j)− prv(i− 1) = q.

Let’s refer to the values of L and R as two sequences (Lk)k=1,2,... and (Rk)k=1,2,....
So we have L1 = 0, and for all k ≥ 1, Rk = firstfit(prv(Lk)+q), and Lk+1 = Lk+1
if Rk−Lk = m and Lk+1 = firstfit(prv(Rk)−q) otherwise. In particular, Lk+1 > Lk
for all k.

First observe that if for some k, Lk = i − 1, then R will be updated to j in
the next step, and we are done. This is because Rk = firstfit(prv(Lk) + q) =
firstfit(prv(i − 1) + q) = firstfit(prv(j)) = j. Similarly, if for some k, Rk = j,
then we have Lk+1 = i− 1.

So there must be a k such that Lk < i−1 < Lk+1. Now look at Rk. Since there is an
occurrence of q after Lk ending in j, this implies that Rk = firstfit(prv(Lk)+q) ≤ j.
However, we cannot have Rk = j, so it follows that Rk < j. On the other hand,
i − 1 < Lk+1 ≤ Rk by our assumption and by Lemma 2. So Rk is pointing to a
position somewhere between i − 1 and j, i.e. to a position within our occurrence of
q. Denote the remaining part of q to the right of Rk by q′: q′ = prv(j) − prv(Rk).
Since Rk = firstfit(prv(Lk) + q), all characters of q must fit between Lk and Rk,
so the Parikh vector p = prv(i) − prv(Lk) is a super-Parikh vector of q′. If p = q′,
then there is an occurrence of q at (Lk + 1, Rk), and by minimality of (i, j), this
occurrence was correctly identified by the algorithm. Thus, Lk+1 = Lk + 1 ≤ i − 1,
contradicting our choice of k. It follows that p > q′ and we have to find the longest
good suffix of the substring ending in Rk for the next update Lk+1 of L. But s[i, Rk]
is a good suffix because its Parikh vector is a sub-Parikh vector of q, so Lk+1 =
firstfit(prv(Rk)− q) ≤ i− 1, again in contradiction to Lk+1 > i− 1. ut
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We illustrate the proof in Fig. 3.

Lk Rk

q

i ji-1

q'p

Fig. 3. Illustration for proof of correctness.

4.2 Variant using an inverted table

Storing all prefix vectors of s would require O(σn) storage space, which may be
too much. Instead, we construct an “inverted prefix vector table” I containing the
increment positions of the prefix vectors: for each character ak ∈ Σ, and each value
j up to p(s)k, the position in s of the j’th occurrence of character ak. Formally,
I[k][j] = min{i | prv(i)k ≥ j} for j ≥ 1, and I[k][0] = 0. Then we have

firstfit(p) = max
k=1,...,σ

{I[k][pk]}.

We can also compute the prefix vectors prv(i) from table I: For k = 1, . . . , σ,

prv(j)k = max{i | I[k][i] ≤ j}

The obvious way to find these values is to do binary search for j in each row
of I. However, this would take time Θ(σ log n); a better way is to use information
already acquired during the run of the algorithm. By Lemma 2, it always holds that
L ≤ R. Thus, for computing prv(R)k, it suffices to search for R between prv(L)k and
prv(L)k+(R−L). This search takes time proportional to log(R−L). Moreover, after
each update of L, we have L ≥ R −m, so when computing prv(L)k, we can restrict
the search for L to between prv(R)k −m and prv(R)k, in time O(logm). For more
details, see Section 4.4.

Table I can be computed in one pass over s (where we take the liberty of identifying
character ak ∈ Σ with its index k). The variables ck count the number of occurrences
of character ak seen so far, and are initialized to 0.

Algorithm Construct I
1. for i = 1 to n
2. csi = csi + 1;
3. I[si][csi ] = i;



10 Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták

Table I requires O(n) storage space (with constant 1). Moreover, the string s can
be discarded, so we have zero additional storage. (Access to si, 1 ≤ i ≤ n, is still
possible, at cost O(σ log n).)

Example 2. Let Σ = {a, b, c} and s = cabcccaaabccbaacca. The prefix vectors of s are
given below. Note that the algorithm does not actually compute these.

pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
s c a b c c c a a a b c c b a a c c a
# a’s 0 0 1 1 1 1 1 2 3 4 4 4 4 4 5 6 6 6 7
# b’s 0 0 0 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3
# c’s 0 1 1 1 2 3 4 4 4 4 4 5 6 6 6 6 7 8 8

The inverted prefix table I:

0 1 2 3 4 5 6 7 8
a 0 2 7 8 9 14 15 18
b 0 3 10 13
c 0 1 4 5 6 11 12 16 17

Query q = (3, 1, 2) has 4 occurrences, beginning in positions 5, 6, 7, 13, since (3, 1, 2) =
prv(10) − prv(4) = prv(11) − prv(5) = prv(12) − prv(6) = prv(18) − prv(12). The
values of L and R are given below:

k, see proof of Thm. 1 1 2 3 4 5 6 7
L 0 4 5 6 7 10 12
R 8 10 11 12 14 18 18

occurrence found? – yes yes yes – – yes

4.3 Variant using a wavelet tree

A wavelet tree on s ∈ Σ∗ allows rank, select, and access queries in time O(log σ). For
ak ∈ Σ, rankk(s, i) = |{j | sj = ak, j ≤ i}|, the number of occurrences of character
ak up to and including position i, while selectk(s, i) = min{j | rankk(s, j) ≥ i}, the
position of the i’th occurrence of character ak. When the string is clear, we just use
rankk(i) and selectk(i). Notice that

– prv(j) = (rank1(j), . . . , rankσ(j)), and
– for a Parikh vector p = (p1, . . . , pσ), firstfit(p) = maxk=1,...,σ{selectk(pk)}.

So we can use a wavelet tree of string s to implement those two functions. We give
a brief recap of wavelet trees, and then explain how to implement the two functions
above in O(σ) time each.

A wavelet tree is a complete binary tree with σ = |Σ| many leaves. To each inner
node, a bitstring is associated which is defined recursively, starting from the root, in
the following way. If |Σ| = 1, then there is nothing to do (in this case, we have reached
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a leaf). Else split the alphabet into two roughly equal parts, Σleft and Σright. Now
construct a bitstring of length n from s by replacing each occurrence of a character
a by 0 if a ∈ Σleft, and by 1 if a ∈ Σright. Let sleft be the subsequence of s consisting
only of characters from Σleft, and sright that consisting only of characters from Σright.
Now recurse on the left child with string sleft and alphabet Σleft, and on the right
child with sright and Σright. An illustration is given in Fig. 4. At each inner node, in
addition to the bitstring B, we have a data structure of size o(|B|), which allows to
perform rank and select queries on bit vectors in constant time ([20, 9, 21]).

Now, using the wavelet tree of s, any rank or select operation on s takes time
O(log σ), which would yieldO(σ log σ) time for both prv(j) and firstfit(p). However,
we can implement both in a way that they need only O(σ) time: In order to compute
rankk(j), the wavelet tree, which has log σ levels, has to be descended from the root
to leaf k. Since for prv(j), we need all values rank1(j), . . . , rankσ(j) simultaneously,
we traverse the complete tree in O(σ) time.

For computing firstfit(p), we need maxk{selectk(pk)}, which can be computed
bottom-up in the following way. We define a value xu for each node u. If u is a leaf,
then u corresponds to some character ak ∈ Σ; set xu = pk. For an inner node u, let Bu
be the bitstring at u. We define xu by xu = max{select0(Bu, xleft), select1(Bu, xright)},
where xleft and xright are the values already computed for the left resp. right child of
u. The desired value is equal to xroot.

Example 3. Let s = bbacaccabaddabccaaac (cp. Fig. 4). We demonstrate the com-
putation of firstfit(2, 3, 2, 1) using the wavelet tree. We have firstfit(2, 3, 2, 1)
= max{selecta(s, 2), selectb(s, 3), selectc(s, 2), selectd(s, 1)}, where in slight abuse of
notation we put the character in the subscript instead of its number. Denote the
bottom left bitstring as Ba,b, the bottom right one as Bc,d, and the top bitstring
as Ba,b,c,d. Then we get max{select0(Ba,b, 2), select1(Ba,b, 3)} = max{4, 6} = 6, and
max{select0(Bc,d, 2), select1(Bc,d, 1)} = max{2, 4} = 4. So at the next level, we com-
pute max{select0(Ba,b,c,d, 6), select1(Ba,b,c,d, 4)} = max{9, 11} = 11.

b b a c a c c a b a d d a b c c a a c

0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1

1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0

a

1 2 63 84 5 7 9 10 11 12 13 1514 16 17 18 19 20

b b a a a ba a b a aa
1 2 63 84 5 7 9 10 11 12

cc c d d c c c
1 2 63 84 5 7

a,b c,d

Fig. 4. The wavelet tree for string bbacaccabaddabccaaac. For clarity, the leaves have been
omitted. Note also that the third line at each inner node (the strings over the alphabet
{a, b, c, d}) are only included for illustration.
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4.4 Algorithm Analysis

Let A1(s, q) denote the running time of the Jumping Algorithm using inverted tables
over a text s and a Parikh vector q, and A2(s, q) that of the Jumping Algorithm using
a wavelet tree. Further, let J = J(s, q) be the number of iterations performed in the
while loop in line 2, i.e., the number of jumps performed by the algorithm on the
input q.

The time spent in each iteration depends on how the functions firstfit and prv
are implemented (lines 3 and 7). In the wavelet tree implementation, as we saw before,
both take time O(σ), so the overall runtime of the algorithm is

A2(s, q) = O(σJ). (1)

For the inverted table implementation, it is easy to see that computing firstfit
takes O(σ) time. Now denote, for each i = 1, . . . , J, by L̂i, R̂i the value of L and R
after the i’th execution of line 3 of the algorithm, respectively.5 The computation of
prv(L̂i) in line 3 takes O(σ logm): For each k = 1, . . . , σ, the component prv(L̂i)k can
be determined by binary search over the list I[k][prv(R̂i−1)k −m], I[k][prv(R̂i−1)k −
m+ 1], . . . , I[k][prv(R̂i−1)k]. By L̂i ≥ R̂i−1 −m, the claim follows.

The computation of prv(R̂i) in line 7 takes O(σ log(R̂i − R̂i−1 + m)). Simply
observe that in the prefix ending at position R̂i there can be at most R̂i − L̂i more
occurrences of the k’th character than there are in the prefix ending at position
L̂i. Therefore, as before, we can determine prv(R̂i)k by binary search over the list
I[k][prv(L̂i)k], I[k][prv(L̂i)k + 1], . . . , I[k][prv(L̂i)k + R̂i − L̂i]. Using the fact that
L̂i ≥ R̂i−1 −m, the desired bound follows.

The last three observations imply

A1(s, q) = O

(
σJ logm+ σ

J∑
i=1

log(R̂i − R̂i−1 +m)

)
.

Notice that this is an overestimate, since line 7 is only executed if no occurrence was
found after the current update of R (line 4). Standard algebraic manipulations using

Jensen’s inequality (see, e.g. [16]) yield
∑J
i=1 log(R̂i − R̂i−1 + m) ≤ J log

(
n
J +m

)
.

Therefore we obtain

A1(s, q) = O
(
σJ log

(n
J

+m
))

. (2)

Average case analysis of J The worst case running time of the Jumping Algorithm,
in either implementation, is superlinear, since there exist strings s of any length n
and Parikh vectors q such that J = Θ(n): For instance, on the string s = ababab . . . ab
and q = (2, 0), the algorithm will execute n/2 jumps.

5 The L̂i and R̂i coincide with the Lk and Rk from the proof of Theorem 1 almost but not
completely: When an occurrence is found after the update of L, then the corresponding
pair Lk, Rk is skipped here. The reason is that now we are only considering those updates
that carry a computational cost.
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This sharply contrasts with the experimental evaluation we present later. The
Jumping Algorithm appears to have in practice a sublinear behavior. In the rest of
this section we provide an average case analysis of the running time of the Jumping
Algorithm leading to the conclusion that its expected running time is sublinear.

We assume that the string s is given as a sequence of i.i.d. random variables
uniformly distributed over the alphabetΣ. According to Knuth et al. [17] “It might be
argued that the average case taken over random strings is of little interest, since a user
rarely searches for a random string. However, this model is a reasonable approximation
when we consider those pieces of text that do not contain the pattern [. . . ]”. The
experimental results we provide will show that this is indeed the case.

Let us concentrate on the behaviour of the algorithm when scanning a (piece of
the) string which does not contain a match. According to the above observation we
can reasonably take this as a measure of the performance of the algorithm, considering
that for any match found there is an additional step of size 1, which we can charge
as the cost of the output.

Let Em,σ denote the expected value of the distance between R and L, following
an update of R, i.e. if L is in position i, then we are interested in the value ` such
that firstfit(prv(i) + q) = i + `. Notice that the probabilistic assumptions made
on the string, together with the assumption of absence of matches, allows us to treat
this value as independent of the position i. We will show the following result about
Em,σ. For the sake of the clarity, we defer the proof of this technical fact to the next
section.

Lemma 3. Em,σ = Ω
(
m+

√
mσ lnσ

)
.

At each iteration (when there is no match) the L pointer is moved forward to
the farthest position from R such that the Parikh vector of the substring between L
and R is a sub-Parikh vector of q. In particular, we can upper bound the distance
between the new positions of L and R with m. Thus for the expected number of jumps
performed by the algorithm, measured as the average number of times we move L,
we have

E[J ] =
n

Em,σ −m
= O

(
n√

mσ lnσ

)
. (3)

Recalling (1) and (2), and using (3) for a random instance we have the following
result concerning the average case complexity of the Jumping Algorithm.

Theorem 2. Let s ∈ Σ∗ be fixed. Algorithm Jumping Algorithm finds all occurrences
of a query q

1. in expected time O(n( σ
log σ )1/2 logm√

m
) using an inverted prefix table of size O(n),

which can be constructed in a preprocessing step in time O(n);
2. in expected time O(n( σ

log σ )1/2 1√
m

) using a wavelet tree of s of size O(n), which

can be computed in a preprocessing step in time O(n).

We conclude this section by remarking once more that the above estimate ob-
tained by the approximating probabilistic automaton appears to be confirmed by the
experiments.
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The proof of Lemma 3 We shall argue asymptotically with m and according to
whether or not the Parikh vector q is balanced, and in the latter case according to
its degree of unbalancedness, measured as the magnitude of its largest and smallest
components.

Case 1. q is balanced, i.e., q = (mσ , . . . ,
m
σ ). Then, from equations (7) and (12) of [19],

it follows that

Em,σ ≈ m+

m2−m
(
m
m/2

)
if σ = 2,√

2mσ ln σ√
2π

otherwise.
(4)

The author of [19] studied a variant of the well known coupon collector problem
in which the collector has to accumulate a certain number of copies of each coupon. It
should not be hard to see that by identifying the characters with the coupon types, the
random string with the sequence of coupons obtained, and the query Parikh vector
with the number of copies we require for each coupon type, the expected time when
the collection is finished is the same as our Em,σ. It is easy to see that (4) provides
the claimed bound of Lemma 3.

Case 2. q = (q1, . . . , qσ) 6= (mσ , . . . ,
m
σ ). Assume, w.l.o.g., that q1 ≥ q2 ≥ · · · ≥ qσ. We

shall argue by cases according to the magnitude of q1.

Subcase 2.1. Suppose q1 = m
σ +Ω

(√
m lnσ
σ

)
. Let us consider again the analogy with

the coupon collector who has to collect qi copies of coupons of type i, with i = 1, . . . , σ.
Clearly the collection is not completed until the q1’th copy of the coupon of type 1
has been collected. We can model the collection of these type-1 coupons as a sequence
of Bernoulli trials with probability of success 1/σ. The expected waiting time until
the q1’th success is σq1 and from the previous observation this is also a lower bound
on Em,σ. Thus,

Em,σ ≥ σq1 = σ

(
m

σ
+Ω

(√
m lnσ

σ

))
= Ω

(
m+

√
mσ lnσ

)
,

which confirms the bound claimed, also in this case.

Subcase 2.2. Finally, assume that q1 = m
σ + o

(√
m lnσ
σ

)
. Then, for the smallest

component qσ of q we have qσ ≥ m− (σ − 1)q1 = m
σ − o

(√
mσ lnσ

)
. Consider now

the balanced Parikh vector q′ = (qσ, . . . , qσ). We have that q′ ≤ q and |q′| = σqσ.
By the analysis of Case 1., above, on balanced Parikh vectors, and observing that
collecting q implies collecting q′ also, it follows that
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Em,σ ≥ Eσqσ,σ
= Ω

(
σqσ +

√
σ2qσ lnσ

)
= Ω

(
σ
(m
σ
− o

(√
mσ lnσ

))
+

√
σ2
(m
σ
− o

(√
mσ lnσ

))
lnσ

)
= Ω

(
m− o

(
σ
√
mσ lnσ

)
+

√
mσ lnσ − o

(
σ2 lnσ

√
mσ lnσ

))
,

in agreement with the bound claimed. This completes the proof.

4.5 Simulations

We implemented the Jumping Algorithm in C++ in order to study the number of
jumps J . We ran it on random strings of different lengths and over different alphabet
sizes. The underlying probability model is an i.i.d. model with uniform distribution.
We sampled random query vectors with length between log n (= log2 n) and

√
n,

where n is the length of the string. Our queries were of one of two types:

1. Quasi-balanced Parikh vectors: Of the form (q1, . . . , qσ) with qi ∈ (x − ε, x + ε),
and x running from log n/σ to

√
n/σ. For simplicity, we fixed ε = 10 in all our

experiments, and sampled uniformly at random from all quasi-balanced vectors
around each x.

2. Random Parikh vectors with fixed length m. These were sampled uniformly at
random from the space of all Parikh vectors with length m.

The rationale for using quasi-balanced queries is that those are clearly worst-
case for the number of jumps J , since J depends on the shift length, which in turn
depends on firstfit(prv(L) + q). Since we are searching in a random string with
uniform character distribution, we can expect to have minimal firstfit(prv(L) + q)
if q is close to balanced, i.e. if all entries qi are roughly the same. This is confirmed
by our experimental results which show that J decreases dramatically if the queries
are not balanced (Fig. 7, right).

We ran experiments on random strings over different alphabet sizes, and observe
that our average case analysis agrees well with the simulation results for random
strings and random quasi-balanced query vectors. Plots for n = 105 and n = 106 with
alphabet sizes σ = 2, 4, 16 resp. σ = 4, 16 are shown in Fig. 6.

In Fig. 5 we show comparisons between the running time of the Jumping algorithm
and that of the simple window algorithm. The simulations over random strings and
Parikh vectors of different sizes appear to perfectly agree with the guarantees provided
by our asymptotic analyses. This is of particular importance from the point of view of
the applications, as it shows that the complexity analysis does not hide big constants.

To see how our algorithm behaves on non-random strings, we downloaded human
DNA sequences from GenBank [12] and ran the Jumping Algorithm with random
quasi-balanced queries on them. We found that the algorithm performs 2 to 10 times
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Fig. 5. Running time comparisons between the Jumping Algorithm and the window algo-
rithm. The text is a random string (uniform i.i.d.) of size 9000000 from a four letter alphabet.
Parikh vectors of different sizes between 10 and 2000 were randomly generated and the re-
sults averaged over all queries of the same size. On the left are the results for quasi-balanced
Parikh vectors (cf. text). On the right are the results for random Parikh vectors.

fewer jumps on these DNA strings than on random strings of the same length, with
the gain increasing as n increases. We show the results on a DNA sequence of 1 million
bp (from Chromosome 11) in comparison with the average over 10 random strings of
the same length (Fig. 7, left).
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Fig. 6. Number of jumps for different alphabet sizes for random strings of size 100 000 (left)
and 1 000 000 (right). All queries are randomly generated quasi-balanced Parikh vectors (cf.
text). Data averaged over 10 strings and all random queries of same length.

5 Conclusion

Our simulations appear to confirm that in practice the performance of the Jumping
Algorithm is well predicted by the average case analysis we proposed. A more precise
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Fig. 7. Number of jumps in random vs. nonrandom strings: Random strings over an alphabet
of size 4 vs. a DNA sequence, all of length 1 000 0000, random quasi-balanced query vectors.
Data averaged over 10 random strings and all queries with the same length (left). Comparison
of quasi-balanced vs. arbitrary query vectors over random strings, alphabet size 4, length
1 000 000, 10 strings. The data shown are averaged over all queries with same length m
(right).

analysis is needed, however. Our approach seems unlikely to lead to any refined average
case analysis since that would imply improved results for the intricate variant of the
coupon collector problem of [19].

Moreover, in order to better simulate DNA or other biological data, random string
models other than uniform i.i.d. should also be analysed, such as first or higher order
Markov chains.

We remark that our wavelet tree variant of the Jumping Algorithm, which uses
rank/select operations only, opens a new perspective on the study of Parikh vector
matching. We have made another family of approximate pattern matching problems
accessible to the use of self-indexing data structures [21]. We are particularly interested
in compressed data structures which allow fast execution of rank and select operations,
while at the same time using reduced storage space for the text. Thus, every step
forward in this very active area can provide improvements for our problem.
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