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Permutation Complexity and the Letter Doubling Map

Steven Widmer∗

Abstract

Given a countable set X (usually taken to be N or Z), an infinite permutation π of X is a linear ordering
≺π of X, introduced in [6]. This paper investigates the combinatorial complexity of infinite permutations
on N associated with the image of uniformly recurrent aperiodic binary words under the letter doubling
map. An upper bound for the complexity is found for general words, and a formula for the complexity
is established for the Sturmian words and the Thue-Morse word.
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1 Introduction

Permutation complexity of aperiodic words is a relatively new notion of word complexity which is based on
the idea of an infinite permutation associated to an aperiodic word. For an infinite aperiodic word ω, no two
shifts of ω are identical. Thus, given a linear order on the symbols used to compose ω, no two shifts of ω
are equal lexicographically. The infinite permutation associated with ω is the linear order on N induced by
the lexicographic order of the shifts of ω. The permutation complexity of the word ω will be the number of
distinct subpermutations of a given length of the infinite permutation associated with ω.

Infinite permutations associated with infinite aperiodic words over a binary alphabet act fairly well-
behaved, but many of the arguments used for binary words break down when used with words over more than
two symbols. Given a subpermutation of length n of an infinite permutation associated with a binary word,
a portion of length n− 1 of the word can be recovered from the subpermutation. This is not always the case
for subpermutations associated with words over 3 or more symbols. For binary words the subpermutations
depend on the order on the symbols used to compose ω, but the permutation complexity does not depend
on the order. For words over 3 or more symbols, not only do the subpermutations depend on the order on
the alphabet but so does the permutation complexity.

We start with some basic notation and definitions. Some properties of infinite permutations are given in
Section 2. In Section 3 we introduce a mapping, δ, on the set of subpermutations of an uniformly recurrent
word, and an upper bound for the complexity function is calculated for the image of an aperiodic uniformly
recurrent word under the letter doubling map. We then show that when the mapping δ is injective it implies
that restricting an image of δ is also injective in Section 4. The complexity function is established for the
image of a Sturmian word in Section 5, and for the image of the Thue-Morse word in Section 6.

1.1 Words

A word is a finite, (right) infinite, or bi-infinite sequence of symbols taken from a finite non-empty set, A,
called an alphabet. The standard operation on words is concatenation, and is represented by juxtaposition
of letters and words. A finite word over A is a word of the form u = a1a2 . . . an with n ≥ 0 (if n = 0 we say
u is the empty word, denoted ǫ) and each ai ∈ A; the length of the word u is the number of symbols in the
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sequence and is denoted by |u| = n. For a ∈ A, let |u|a denote the number of occurrences of the letter a

in the word u. The set of all finite words over the alphabet A is denoted by A∗, and is a free monoid with
concatenation of words as the operation.

A (right) infinite word over A is a word of the form ω = ω0ω1ω2 . . . with each ωi ∈ A, and the set of all
infinite words over A is denoted AN. Given ω ∈ A∗ ∪ AN, any word of the form u = ωiωi+1 . . . ωi+n−1, with
i ≥ 0, is called a factor of ω of length n ≥ 1. The set of all factors of a word ω is denoted by F(ω). The set
of all factors of length n of ω is denoted Fω(n), and let ρω(n) = |Fω(n)|. The function ρω : N → N is called
the factor complexity function, or subword complexity function, of ω and it counts the number of factors of
length n of ω. For a natural number i we denote by ω[i] = ωiωi+1ωi+2ωi+3 . . . the i-letter shift of ω. For
natural numbers i ≤ j, ω[i, j] = ωiωi+1ωi+2 . . . ωj denotes the factor of length j − i+ 1 starting at position
i in ω.

For words u ∈ A∗ and v ∈ A∗ ∪ AN where ω = uv, we call u a prefix of ω and v a suffix of ω. A word
ω is said to be periodic of period p if for each i ∈ N, ωi = ωi+p, and ω is said to be eventually periodic of
period p if there exists an N ∈ N so that for each i > N , ωi = ωi+p; or equivalently, ω has a periodic suffix.
A word ω is said to be aperiodic if it is not periodic or eventually periodic.

The infinite word ω ∈ AN is said to be recurrent if for any prefix p of ω there exists a prefix q of ω so
that q = pvp for some v ∈ A∗. Equivalently, a word ω is recurrent if each factor of ω occurs infinitely often
in ω. The word ω ∈ AN is uniformly recurrent if each factor occurs infinitely often with bounded gaps. Thus
if ω is uniformly recurrent, for each integer n > 0 there is a positive integer N so that for each factor v of ω
with |v| = N , Fω(n) ⊂ F(v).

Let A and B be two finite alphabets. A map ϕ : A∗ → B∗ so that ϕ(uv) = ϕ(u)ϕ(v) for any u, v ∈ A∗

is called a morphism of A∗ into B∗, and ϕ is defined by the image of each letter in A. A morphism on A is
a morphism from A∗ into A∗, also called an endomorphism of A. A morphism ϕ is said to be non-erasing if
the image of any non-empty word is not empty. The morphism d : A∗ 7→ A∗ defined by d(a) = aa for each
a ∈ A is called the letter doubling map.

1.2 Permutations from words

The idea of an infinite permutation that will be here used was introduced in [6]. This paper will be dealing
with permutation complexity of infinite words so the set used in the following definition will be N rather
than an arbitrary countable set. To define an infinite permutation π, start with a total order ≺π on N,
together with the usual order < on N. To be more specific, an infinite permutation is the ordered triple
π = 〈N,≺π, <〉, where ≺π and < are total orders on N. The notation to be used here will be π(i) < π(j)
rather than i ≺π j.

Given an infinite aperiodic word ω = ω0ω1ω2 . . . on an alphabet A, fix a linear order on A. We will
use the binary alphabet A = {0, 1} and use the natural ordering 0 < 1. Once a linear order is set on the
alphabet, we can then define an order on the natural numbers based on the lexicographic order of shifts of
ω. Considering two shifts of ω with a 6= b, ω[a] = ωaωa+1ωa+2 . . . and ω[b] = ωbωb+1ωb+2 . . ., we know that
ω[a] 6= ω[b] since ω is aperiodic. Thus there exists some minimal number c ≥ 0 so that ωa+c 6= ωb+c and for
each 0 ≤ i < c we have ωa+i = ωb+i. We call πω the infinite permutation associated with ω and say that
πω(a) < πω(b) if ωa+c < ωb+c, else we say that πω(b) < πω(a).

For natural numbers a ≤ b consider the factor ω[a, b] = ωaωa+1 . . . ωb of ω of length b − a + 1. Denote
the finite permutation of {1, 2, . . . , b− a+1} corresponding to the linear order by πω[a, b]. That is πω[a, b] is
the permutation of {1, 2, . . . , b− a+1} so that for each 0 ≤ i, j ≤ (b− a), πω[a, b](i) < πω[a, b](j) if and only
if πω(a + i) < πω(a + j). Say that p = p0p1 · · · pn is a (finite) subpermutation of πω if p = πω[a, a + n] for
some a, n ≥ 0. For the subpermutation p = πω [a, a+ n] of {1, 2, · · · , n+ 1}, we say the length of p is n+ 1.

Denote the set of all subpermutations of πω by Permω, and for each positive integer n let

Permω(n) = { πω [i, i+ n− 1] | i ≥ 0 }

denote the set of distinct finite subpermutations of πω of length n. The permutation complexity function of ω
is defined as the total number of distinct subpermutations of πω of a length n, denoted τω(n) = |Permω(n)|.
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Example Let’s consider the well-known Fibonacci word,

t = 0100101001001010010100100101 . . . ,

with the alphabet A = {0, 1} ordered as 0 < 1. We can see that t[2] = 001010 . . . is lexicographically less
than t[1] = 100101 . . ., and thus πt(2) < πt(1).

Then for a subpermutation, consider the factor t[3, 5] = 010. We see that πt[3, 5] = (231) because in
lexicographic order we have πt(5) < πt(3) < πt(4).

2 Some General Permutation Properties

Initially work has been done with infinite binary words (see [2, 6, 9, 10, 11]). Suppose ω = ω0ω1ω2 . . . is an
aperiodic infinite word over the alphabet A = {0, 1}. First let’s look at some remarks about permutations
generated by binary words where we use the natural order on A.

Claim 2.1 ([9]) For an infinite aperiodic word ω over A = {0, 1} with the natural ordering we have:
(1) πω(i) < πω(i+ 1) if and only if ωi = 0.
(2) πω(i) > πω(i+ 1) if and only if ωi = 1.
(3) If ωi = ωj, then πω(i) < πω(j) if and only if πω(i + 1) < πω(j + 1)

Lemma 2.2 ([9]) Given two infinite binary words u = u0u1 . . . and v = v0v1 . . . with πu[0, n+1] = πv[0, n+
1], it follows that u[0, n] = v[0, n].

We do have a trivial upper bound for τω(n) being the number of permutations of length n, which is n!.
Lemma 2.2 directly implies a lower bound for the permutation complexity for a binary aperiodic word ω,
namely the factor complexity of ω. Thus, initial bounds on the permutation complexity can be seen to be:

ρω(n− 1) ≤ τω(n) ≤ n!

For a ∈ A = {0, 1}, let ā denote the complement of a, that is 0̄ = 1 and 1̄ = 0. If u = u1u2u3 · · · is a
word over A, the complement of u is defined to be the word composed of the complement of the letters in u,
that is ū = ū1ū2ū3 · · · . The following lemma shows the relationship of the complexity function between an
aperiodic binary word ω and its complement ω. This lemma will be used when calculating the permutation
complexity of the image of Sturmian words under the doubling map in Section 5.

Lemma 2.3 Let ω = ω0ω1ω2 · · · be an infinite aperiodic binary word, and let ω = ω0ω1ω2 · · · be the com-
plement of ω. For each n ≥ 1,

τω(n) = τω(n).

Proof For some a 6= b, suppose ω[a] < ω[b]. Thus there is some (possibly empty) factor u of ω so that
ω[a] = u0 · · · and ω[b] = u1 · · · . Then we see ω[a] = u1 · · · and ω[b] = u0 · · · , so we have ω[a] > ω[b].

For both ω and ω it should be clear τω(1) = τω(1) = 1, namely the subpermutation (1). Let n ≥ 2. For
a permutation p of {1, 2, . . . , n}, define the permutation p̃ of {1, 2, . . . , n} by

p̃i = n− pi + 1

for each i.
Let p = πω [a, a+ n− 1] be a subpermutation of πω and q = πω[a, a+ n− 1] be a subpermutation of πω.

For each 0 ≤ i, j ≤ n− 1, i 6= j, if pi < pj then qi > qj .
Let 0 ≤ i ≤ n− 1. There are pi − 1 many j so that pj < pi and there are n− pi many j so that pj > pi.

Therefore there are exactly n − pi many j so that qj < qi, so qi = n − pi + 1. Thus q = p̃ and for any
p ∈ Permω(n) we have p̃ ∈ Permω(n), so

|Permω(n)| ≤
∣

∣Permω(n)
∣

∣ .

3



By a similar argument we can see p = q̃ and for q ∈ Permω(n) we have q̃ ∈ Permω(n), so
∣

∣Permω(n)
∣

∣ ≤ |Permω(n)| .

Therefore |Permω(n)| =
∣

∣Permω(n)
∣

∣ and τω(n) = τω(n).

We would like to define some terms that will be used repeatedly in this paper.

Definition Two permutations p and q of {1, 2, . . . , n} have the same form if for each i = 0, 1, . . . , n − 1,
pi < pi+1 if and only if qi < qi+1. For a binary word u of length n− 1, say that p has form u if

pi < pi+1 ⇐⇒ ui = 0

for each i = 0, 1, . . . , n− 2.

Definition Let p = π[a, a + n] be a subpermutation of the infinite permutation π. The left restriction of
p, denoted by L(p), is the subpermutation of p so that L(p) = π[a, a + n − 1]. The right restriction of p,
denoted by R(p), is the subpermutation of p so that R(p) = π[a + 1, a + n]. The middle restriction of p,
denoted by M(p), is the subpermutation of p so that M(p) = R(L(p)) = L(R(p)) = π[a+ 1, a+ n− 1].

For each i, there are pi − 1 terms in p that are less than pi and there are n− pi terms that are greater
than pi. Thus consider some 0 ≤ i ≤ n − 1 and the values of L(p)i and R(p)i. If p0 < pi+1 there will be
pi+1 − 2 terms in R(p) less than R(p)i so we have R(p)i = pi+1 − 1. In a similar sense, if pn < pi we have
L(p)i = pi − 1. If p0 > pi+1 there will be pi+1 − 1 terms in R(p) less than R(p)i so we have R(p)i = pi+1.
In a similar sense, if pn > pi we have L(p)i = pi.

The values in M(p) can be found by finding the values in R(L(p)) or L(R(p)). Since R(L(p)) or L(R(p))
correspond to the same subpermutation of p, R(L(p))i < R(L(p))j if and only if L(R(p))i < L(R(p))j .
Therefore R(L(p)) = L(R(p)).

It should also be clear that if there are two subpermutations p = πT [a, a+n] and q = πT [b, b+n] so that
p = q then L(p) = L(q), R(p) = R(q), and M(p) = M(q).

3 Uniformly Recurrent Words

Let ω be an aperiodic infinite uniformly recurrent word over A = {0, 1}, and πω be the infinite permutation
associated with ω using the natural order on the alphabet. We would like to describe the infinite permutation
associated with d(ω), the image of ω under the doubling map. If u = ω[a, a+n− 1] is a factor of ω of length
n, it is helpful to note d(u) = d(ω)[2a, 2a+ 2n− 1] will be a factor of d(ω) of length 2n.

Since ω is a uniformly recurrent word it will not contain arbitrarily long strings of contiguous 0 or 1.
Thus there are k0, k1 ∈ N so that

10k01

01k10
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are factors of ω, but 0k0+1 and 1k1+1 are not. We then define the following classes of words:

C0 = 0k0

C1 = 0k0−11

C2 = 0k0−21

...

Ck0−1 = 01

Ck0
= 10

Ck0+1 = 120

...

Ck0+k1−1 = 1k1 .

For each i ∈ N, ω[i] = ωiωi+1 · · · can have exactly one the above classes of words as a prefix. It should
be clear C0 < C1 < · · · < Ck0+k1−1, and so d(Ci) < d(Cj) for i < j since the doubling map d is order
preserving, as shown in Lemma 3.1. The next lemma will not only show that the doubling map is an order
preserving map, but also the order of the image of ωi under the doubling map.

Lemma 3.1 Let ω be as above. Suppose ω[a] and ω[b] are two shifts of ω for some a 6= b so that ω[a] < ω[b].
Moreover, suppose Ci is a prefix of ω[a] and Cj is a prefix of ω[b] where i ≤ j. Then d(ω[a]) < d(ω[b]), and

(a) If ωa = ωb = 0 and i < j, then d(ω)[2a] < d(ω)[2a+ 1] < d(ω)[2b] < d(ω)[2b+ 1].

(b) If ωa = ωb = 0 and i = j, then d(ω)[2a] < d(ω)[2b] < d(ω)[2a+ 1] < d(ω)[2b+ 1].

(c) If ωa = 0 and ωb = 1, then d(ω)[2a] < d(ω)[2a+ 1] < d(ω)[2b+ 1] < d(ω)[2b].

(d) If ωa = ωb = 1and i < j, then d(ω)[2a+ 1] < d(ω)[2a] < d(ω)[2b+ 1] < d(ω)[2b].

(e) If ωa = ωb = 1and i = j, then d(ω)[2a+ 1] < d(ω)[2b+ 1] < d(ω)[2a] < d(ω)[2b].

Proof Since ω[a] < ω[b], there is some (possibly empty) factor u of ω so that

ω[a] = u0 · · ·

ω[b] = u1 · · ·

and thus
d(ω[a]) = d(u)00 · · ·

d(ω[b]) = d(u)11 · · ·

so d(ω[a]) < d(ω[b]) and d is an order preserving map.
Each of the cases will be looked at independently.

(a) Suppose ωa = ωb = 0 and i < j. Since both ω[a] and ω[b] start with 0, ω[a] has 0k0−i1 as a prefix
and ω[b] has 0k0−j1 as a prefix. Thus d(ω)[2a] has 02(k0−i)1 as a prefix and d(ω)[2b] has 02(k0−j)1 as a prefix,
and

02(k0−i)1 < 02(k0−i)−11 < 02(k0−j)1 < 02(k0−j)−11.
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(b) Suppose ωa = ωb = 0 and i = j. Since both ω[a] and ω[b] start with 0, for n = k0 − i, ω[a] and ω[b]
have 0n1 as a prefix. Thus d(ω)[2a] and d(ω)[2b] have 02n1 as a prefix. Since ω[a] < ω[b] is given and d is
an order preserving map we have

d(ω)[2a] < d(ω)[2b]

d(ω)[2a+ 1] < d(ω)[2b + 1]

02n1 < 02n−11.

Thus d(ω)[2a] < d(ω)[2b] < d(ω)[2a+ 1] < d(ω)[2b+ 1].

(c) Suppose ωa = 0 and ωb = 1, so i < j. Since ω[a] start with 0 and ω[b] start with 1, there are numbers
n and m so that ω[a] has 0n1 as a prefix and ω[b] has 1m0 as a prefix. Thus d(ω)[2a] has 02n1 as a prefix
and d(ω)[2b] has 12m0 as a prefix, and

02n1 < 02n−11 < 12m−10 < 12m0.

(d) Suppose ωa = ωb = 1 and i < j. Since both ω[a] and ω[b] start with 1, ω[a] has 1i−k0+10 as a prefix
and ω[b] has 1j−k0+10 as a prefix. Thus d(ω)[2a] has 12(i−k0)+20 as a prefix and d(ω)[2b] has 12(j−k0)+20 as
a prefix, and

12(i−k0)+10 < 12(i−k0)+20 < 12(j−k0)+10 < 12(j−k0)+20.

(e) Suppose ωa = ωb = 1 and i = j. Since both ω[a] and ω[b] start with 1, for n = i − k0 + 1, ω[a] and
ω[b] have 1n0 as a prefix. Thus d(ω)[2a] and d(ω)[2b] have 12n0 as a prefix. Since ω[a] < ω[b] is given and d

is an order preserving map we have

d(ω)[2a] < d(ω)[2b]

d(ω)[2a+ 1] < d(ω)[2b + 1]

12n−10 < 12n0.

Thus d(ω)[2a+ 1] < d(ω)[2b+ 1] < d(ω)[2a] < d(ω)[2b].

For k = sup{k0, k1}, there is an Nk so any factor u of ω of length n ≥ Nk will contain all factors of
length k as a subword, and so u will have Cj as a subword for each j. One note about the factors of d(ω).
For n ≥ Nk and two factors u = d(ω)[2x, 2x + 2n] and v = d(ω)[2y + 1, 2y + 2n + 1] of d(ω), then u 6= v.
This is because a prefix of u will begin with an even number of one letter (either 02m1 or 12m0 for some m),
and a prefix of v will begin with an odd number of one letter (either 02m+11 or 12m+10 for some m).

Let u be a factor of ω of length n ≥ Nk. There is an a so that u = ω[a, a+n− 1]. For each 0 ≤ i ≤ n− 1
there is one j so that ω[a+ i] has Cj as a prefix. In the factor ω[a, a+ n+ k− 2] of length n+ k− 1, we will
know explicitly which Cj is a prefix of the shift ω[a+ i] for each 0 ≤ i ≤ n− 1. Let p = πω[a, a+ n+ k − 1]
be a subpermutation of πω of length n+ k. The factor ω[a, a+ n+ k − 2] of length n+ k − 1 is the form of
p, and has u as a prefix.

For each j ∈ {0, 1, . . . , k0 + k1 − 1} define

γj = { 0 ≤ i ≤ n− 1 | Cj is a prefix of ω[a+ i] } .

So |γ0| + |γ1| + · · · + |γk0+k1−1| = n and γi ∩ γj = ∅ for i 6= j. Since |u| ≤ Nk, we know |γj | ≥ 1 for each
j. We can see d(u) = d(ω)[2a, 2a + 2n − 1], and let p′ be the subpermutation p′ = πd(ω)[2a, 2a + 2n − 1].
Using Lemma 3.1 and the size of each of the γj sets we can determine the values of p′ based on the values
of Lk(p), the k-left restriction of p. For each j ∈ {0, 1, . . . , k0 + k1 − 1} define

Sj =

j
∑

i=0

|γi|
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and say S−1 = 0.

Proposition 3.2 Let ω, u, p, and p′ be as above. For each 0 ≤ i ≤ n− 1, there is a j so ω[a+ i] has Cj as
a prefix.

(a) If pi < pi+1 then p′2i = Lk(p)i + Sj−1 and p′2i+1 = Lk(p)i + Sj

(b) If pi > pi+1 then p′2i = Lk(p)i + Sj and p′2i+1 = Lk(p)i + Sj−1

Proof Let 0 ≤ i ≤ n− 1 and suppose that Cj is a prefix of ω[a+ i] for some 0 ≤ j ≤ k0 + k1 − 1.

(a) Suppose pi < pi+1, and so ωa+i = ui = 0.
For p′2i, there are Lk(p)i − 1 many h so that pi > ph, and thus Lk(p)i − 1 many h so that p′2i > p′2h.

Likewise there are n−Lk(p)i many h so that p′2i < p′2h. By Lemma 3.1 if m < j and h ∈ γm then p′2i > p′2h+1,
and if m ≥ j and h ∈ γm then p′2i < p′2h+1. Thus there are Sj−1 many h so that p′2i > p′2h+1, and likewise
there are n − Sj−1 many h so that p′2i < p′2h+1. Therefore there are exactly Lk(p)i − 1 + Sj−1 many h so
that p′2i > p′h, and

p′2i = Lk(p)i − 1 + Sj−1 + 1 = Lk(p)i + Sj−1.

For p′2i+1, since there are Lk(p)i − 1 many h so that pi > ph, there are Lk(p)i − 1 many h so that
p′2i > p′2h and p′2i+1 > p′2h+1. Likewise there are n−Lk(p)i many h so that p′2i+1 < p′2h+1. By Lemma 3.1 if
m ≤ j and h ∈ γm then p′2i+1 > p′2h, and if m > j and h ∈ γm then p′2i+1 < p′2h. Thus there are Sj many h

so that p′2i+1 > p′2h, and likewise there are n− Sj many h so that p′2i+1 < p′2h. Therefore there are exactly
Lk(p)i − 1 + Sj many h so that p′2i > p′h, so

p′2i+1 = Lk(p)i − 1 + Sj + 1 = Lk(p)i + Sj .

(b) Suppose pi > pi+1, and so ωa+i = ui = 1.
For p′2i, there are Lk(p)i − 1 many h so that pi > ph, and thus Lk(p)i − 1 many h so that p′2i > p′2h.

Likewise there are n−Lk(p)i many h so that p′2i < p′2h. By Lemma 3.1 if m ≤ j and h ∈ γm then p′2i > p′2h+1,
and if m > j and h ∈ γm then p′2i < p′2h+1. Thus there are Sj many h so that p′2i > p′2h+1, and likewise
there are n − Sj many h so that p′2i < p′2h+1. Therefore there are exactly Lk(p)i − 1 + Sj many h so that
p′2i > p′h, and

p′2i = Lk(p)i − 1 + Sj + 1 = Lk(p)i + Sj .

For p′2i+1, since there are Lk(p)i−1 many h so that pi > ph, there are Lk(p)i−1 many h so that p′2i > p′2h
and p′2i+1 > p′2h+1. Likewise there are n − Lk(p)i many h so that p′2i+1 < p′2h+1. By Lemma 3.1 if m < j

and h ∈ γm then p′2i+1 > p′2h, and if m ≥ j and h ∈ γm then p′2i+1 < p′2h. Thus there are Sj−1 many h so
that p′2i+1 > p′2h, and likewise there are n − Sj−1 many h so that p′2i+1 < p′2h. Therefore there are exactly
Lk(p)i − 1 + Sj−1 many h so that p′2i+1 > p′h, and

p′2i+1 = Lk(p)i − 1 + Sj−1 + 1 = Lk(p)i + Sj−1.

The following corollaries show some nice properties that follow from Proposition 3.2. The first corollary
(3.3) gives an example of when distinct subpermutations of πω will lead to the same subpermutation of
πd(ω). The next corollary (3.4) shows when two subpermutations of πω will definitely lead to distinct
subpermutations of πd(ω).

Corollary 3.3 Let ω be as defined above. If πω [a, a + n + k − 1] and πω[b, b + n + k − 1], a 6= b, are
subpermutations of πω where πω [a, a+ n− 1] = πω[b, b+ n− 1] and for each 0 ≤ i ≤ n− 1, there is some j

so that both ω[a+ i] and ω[b+ i] have Cj as a prefix. Then πd(ω)[2a, 2a+ 2n− 1] = πd(ω)[2b, 2b+ 2n− 1].
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Proof Let p = πω [a, a+ n + k − 1] and q = πω[b, b + n + k − 1], a 6= b, with p and q as in the hypothesis.
For each 0 ≤ i ≤ n − 1, Lk(p)i = Lk(q)i and each of ω[a + i] and ω[b + i] have the same Cj as a prefix for
some j, so p′2i = q′2i and p′2i+1 = q′2i+1 by Proposition 3.2 so p′ = q′.

Corollary 3.4 Let ω be as defined above. If p = πω [a, a + n + k − 1] and q = πω[a, a + n + k − 1] are
subpermutations of πω where one of the following conditions is true

(a) ω[a, a+ n− 1] 6= ω[b, b+ n− 1]

(b) Lk(p) 6= Lk(q)

then p′ 6= q′.

Proof (a) Since ω[a, a + n − 1] 6= ω[b, b + n − 1], then there is an 0 ≤ i ≤ n − 1 so that, without loss of
generality, ωa+i = 0 and ωb+i = 1. Thus d(ω)[2a+ 2i, 2a+ 2i + 1] = 00 and d(ω)[2b + 2i, 2b+ 2i + 1] = 11
so p′2i < p′2i+1 and q′2i > q′2i+1, and p′ 6= q′.

(b) Since Lk(p) 6= Lk(q), then there are 0 ≤ i, j ≤ n − 1, i 6= j, so that, without loss of generality,
Lk(p)i < Lk(p)j and Lk(q)i > Lk(q)j , so ω[a + i] < ω[a+ j] and ω[b + i] > ω[b + j]. Thus d(ω)[2a + 2i] <
d(ω)[2a+ 2j] and d(ω)[2b+ 2i] > d(ω)[2b+ 2j] so p′2i < p′2j and q′2i > q′2j , and p′ 6= q′.

Fix a subpermutation p = πω[a, a+n+ k− 1], and let p′ = πd(ω)[2a, 2a+2n− 1]. The terms of p′ can be
defined using the method given in Proposition 3.2. Let q = πω[b, b+ n+ k − 1], b 6= a, be a subpermutation
of πω and let q′ = πd(ω)[2b, 2b+ 2n− 1] as in Proposition 3.2. The following lemma shows that if p = q we
know p′ = q′, but the converse of this is not necessarily true. The objective here is using the idea of p′ to
define a map from the set of subpermutations of πω to the set of subpermutations of πd(ω), and this map
will be well-defined by Proposition 3.2.

Lemma 3.5 If p = q, then p′ = q′.

Proof Suppose that p = q. So pi = qi and thus Lk(p)i = Lk(q)i for each 0 ≤ i ≤ n− 1. Since p = q, p and
q have the same form, so ω[a, a+ n+ k − 1] = ω[b, b+ n+ k − 1] and if ω[a+ i] has Cj as a prefix, for some
j, then ω[b+ i] has Cj as a prefix as well. Thus by Corollary 3.3, p′ = q′.

Thus there is a well-defined function from the set of subpermutations of πω to the set of subpermutations
of πd(ω). Let p = πω[a, a + n + k − 1], and define δ(p) = p′ = πd(ω)[2a, 2a + 2n − 1] using the formula in
Proposition 3.2. Thus we have the map

δ : Permω(n+ k) → Permd(ω)(2n)

Not all subpermutations of πω will be the image under δ of another subpermutation.
Let n > 2Nk and a be natural numbers. Then n and a can be either even or odd, and for the subper-

mutation πd(ω)[a, a+ n− 1], there exist natural numbers b and m so that one of 4 cases hold:

1. πd(ω)[a, a+ n] = πd(ω)[2b, 2b+ 2m], even starting position with odd length.

2. πd(ω)[a, a+ n] = πd(ω)[2b, 2b+ 2m− 1], even starting position with even length.

3. πd(ω)[a, a+ n] = πd(ω)[2b+ 1, 2b+ 2m], odd starting position with even length.

4. πd(ω)[a, a+ n] = πd(ω)[2b+ 1, 2b+ 2m− 1], odd starting position with odd length.

Consider two subpermutations πd(ω)[2c, 2c + n] and πd(ω)[2d + 1, 2d + n + 1], with n > 2Nk. The
subpermutation πd(ω)[2c, 2c+ n] will have form d(ω)[2c, 2c+ n − 1], and πd(ω)[2d+ 1, 2d+ n + 1] will have
form d(ω)[2d + 1, 2d+ n]. Since the length of these factors is at least 2Nk, we know d(ω)[2c, 2c+ n− 1] 6=
d(ω)[2d + 1, 2d + n], and thus πd(ω)[2c, 2c + n] 6= πd(ω)[2d + 1, 2d + n + 1] because they do not have the

same form. Thus we can break up the set Permd(ω)(n) into two classes of subpermutations, namely the
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subpermutations that start at an even position or an odd position. So say that Permd(ω)
ev (n) is the set of

subpermutations p of length n so that p = πd(ω)[2b, 2b+ n− 1] for some b, and that Perm
d(ω)
odd (n) is the set

of subpermutations p of length n so that p = πd(ω)[2b+ 1, 2b+ n] for some b. Thus

Permd(ω)(n) = Permd(ω)
ev (n) ∪ Perm

d(ω)
odd (n),

where
Permd(ω)

ev (n) ∩ Perm
d(ω)
odd (n) = ∅.

Thus for n ≥ Nk, Permd(ω)
ev (2n) is the set of all subpermutations of length 2n starting at an even

position. So for πd(ω)[2a, 2a+2n− 1], we have the subpermutation p = πω[a, a+n+ k− 1], and δ(p) = p′ =
πd(ω)[2a, 2a+ 2n− 1]. Thus the map

δ : Permω(n+ k) 7→ Permd(ω)
ev (2n)

is a surjective map.
For p = πd(ω)[a, a + n + k − 1], we can then define three additional maps by looking at the left, right,

and middle restrictions of δ(p) = p′. These maps are

δL : Permω(n+ k) 7→ Permd(ω)
ev (2n− 1)

δR : Permω(n+ k) 7→ Perm
d(ω)
odd (2n− 1)

δM : Permω(n+ k) 7→ Perm
d(ω)
odd (2n− 2)

and are defined by

δL(p) = L(δ(p)) = L(p′)

δR(p) = R(δ(p)) = R(p′)

δM (p) = M(δ(p)) = M(p′)

It can be readily verified that these three maps are surjective. To see an example of this, consider the map δL,
and let πd(ω)[2b, 2b+2n−2] be a subpermutation of πd(ω) in Permd(ω)

ev (2n−1). Then for the subpermutation
p = πω[b, b + n+ k − 1], δL(p) = L(p′) = πd(ω)[2b, 2b+ 2n − 2] so δL is surjective. A similar argument will
show that δR and δM are also surjective.

Lemma 3.6 For n ≥ Nk:

τd(ω)(2n− 1) ≤ 2(τω(n+ k))

τd(ω)(2n) ≤ τω(n+ k) + τω(n+ k + 1)

Proof Let n ≥ Nk. We have:
∣

∣

∣
Permd(ω)

ev (2n− 1)
∣

∣

∣
≤ |Permω(n+ k)|

∣

∣

∣
Perm

d(ω)
odd (2n− 1)

∣

∣

∣
≤ |Permω(n+ k)|

∣

∣

∣
Permd(ω)

ev (2n)
∣

∣

∣
≤ |Permω(n+ k)|

∣

∣

∣
Perm

d(ω)
odd (2n)

∣

∣

∣
≤ |Permω(n+ k + 1)|
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since the maps δ, δL, δR, and δM are all surjective. Thus we have the following inequalities:

τd(ω)(2n− 1) =
∣

∣

∣
Permd(ω)(2n− 1)

∣

∣

∣
=

∣

∣

∣
Permd(ω)

ev (2n− 1)
∣

∣

∣
+
∣

∣

∣
Perm

d(ω)
odd (2n− 1)

∣

∣

∣

≤ |Permω(n+ k)|+ |Permω(n+ k)| = 2(τω(n+ k))

τd(ω)(2n) =
∣

∣

∣
Permd(ω)(2n)

∣

∣

∣
=

∣

∣

∣
Permd(ω)

ev (2n)
∣

∣

∣
+
∣

∣

∣
Perm

d(ω)
odd (2n)

∣

∣

∣

≤ |Permω(n+ k)|+ |Permω(n+ k + 1)| = τω(n+ k) + τω(n+ k + 1)

The maps δ, δL, δR, and δM can be, but are not necessarily, injective maps. To see this, consider
the following example. For this example we will use the Thue-Morse word T , defined in Section 6, and
subpermutations of πT , the infinite permutation associated with T . There will be 4 classes of Cj words for
the Thue-Morse word (namely C0 = 00, C1 = 01, C2 = 10, and C3 = 11), and any factor of length n ≥ 9 will
contain each of these 4 classes. The following example will use subpermutations of length 9, with n = 7 and
k = 2, to keep the example subpermutations short. Examples like this (as in Corollary 3.3) can be found for
subpermutations of πT of length 2r + 1 for any r ≥ 3.

Let p = πT [0, 8] = (4 9 7 2 6 1 3 8 5) and q = πT [12, 20] = (5 9 7 2 6 1 3 8 4). So p 6= q and both of these
subpermutations have form T [0, 7] = T [12, 19] = 01101001. Then applying the map δ we see:

p′ = δ(p) = (5 8 14 13 12 10 3 6 11 9 1 2 4 7) = δ(q) = q′

So p′ = q′ which implies δL(p) = δL(q), δR(p) = δR(q), and δM (p) = δM (q). Thus these 4 maps are not
injective in general and the values in Lemma 3.6 are only an upper bound.

4 Injective Restriction Mappings

In this section we will investigate when the restriction mappings are injective. If δ is not injective, then δR,
δL, and δM will not be injective. But when δ is injective it implies δR and δL are injective in general, as
shown by Proposition 4.4. Unfortunately, this does not imply that the map δM is injective, as can be seen
in Lemma 6.7.

Lemma 4.1 For the word ω, let p = πω [a, a + n + k − 1], q = πω[b, b + n + k − 1], p′, and q′ be as above.
Suppose Lk(p) = Lk(q), but ω[a + n − 1] and ω[b + n − 1] each have a different Cj class as a prefix and
ω[a+ n− 1] < ω[b+ n − 1]. Then there is a j so that ω[a+ n− 1] has Cj as a prefix and ω[b + n− 1] has
Cj+1 as a prefix. Moreover,

∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 1 and
∣

∣p′2n−1 − q′2n−1

∣

∣ ≥ 1.

Proof Let u = ω[a, a+ n− 1] and v = ω[b, b+ n− 1]. Since Lk(p) = Lk(q) we know for each 0 ≤ i ≤ n− 2
Lk(p)i < Lk(p)i+1 if and only if Lk(q)i < Lk(q)i+1, so ui = vi and thus u[0, n− 2] = v[0, n− 2].

We will use the following notation

Uj = { 0 ≤ i ≤ n− 1 | ω[a+ i] has Cj as a prefix. }

Vj = { 0 ≤ i ≤ n− 1 | ω[b+ i] has Cj as a prefix. }

and due to the length of u and v we know |Uj | ≥ 1 and |Vj | ≥ 1 for each j.
First we will show there is a j so that ω[a+n−1] has Cj as a prefix and ω[b+n−1] has Cj+1 as a prefix.

Assume there is an i > 1 so that ω[a+ n− 1] has Cj as a prefix and ω[b+ n− 1] has Cj+i as a prefix. Then
there is an l so that ω[a+ l] and ω[b + l] each have Cj+1 as a prefix. Thus we see that Lk(p)l > Lk(p)n−1

and Lk(q)l < Lk(q)n−1, which implies Lk(p) 6= Lk(q). Thus we find a contradiction to the assumption, so
there is some j so that ω[a+ n− 1] has Cj as a prefix and ω[b+ n− 1] has Cj+1 as a prefix.
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We now show that the difference in the values in p′ and q′ differs by at least 1. Since ω[a+ n − 1] has
Cj as a prefix for each l ∈ Uj+1 we know pn−1 < pl, and so qn−1 < ql since Lk(p) = Lk(q). Likewise, since
ω[b + n − 1] has Cj+1 as a prefix, for each l ∈ Vj we know qn−1 > ql and so pn−1 > pl. Thus pn−1 is the
greatest of all occurrences of Cj and qn−1 is the least of all occurrences of Cj+1. So Lk(p)n−1 = Lk(q)n−1

and we see

Lk(p)n−1 = |U0|+ · · ·+ |Uj|

Lk(q)n−1 = |V0|+ · · ·+ |Vj |+ 1.

We will now consider the cases when un−1 6= vn−1 and when un−1 = vn−1.

(a) First, suppose un−1 6= vn−1. Thus we have that un−1 = 0 and vn−1 = 1, because ω[a+n−1] < ω[b+n−1]
is given.

Recall that |u|0 is the number of occurrences of the letter 0 in the word u. Thus |u|0 = |v|0 + 1, and
we also have p′2n−2 < p′2n−1 and q′2n−2 > q′2n−1. Thus there are exactly |v|0 many j so that qn−1 > qj , thus
Lk(p)n−1 = Lk(q)n−1 = |v|0 + 1 = |u|0. By Proposition 3.2 we see

p′2n−1 = Lk(p)n−1 + |u|0 = 2 |u|0 = 2 |v|0 + 2

q′2n−1 = Lk(q)n−1 + |v|0 = 2 |v|0 + 1

and thus
∣

∣p′2n−1 − q′2n−1

∣

∣ ≥ 1.
Fix an 0 ≤ i ≤ n − 3 so that u[i, i + 1] = v[i, i + 1] = 01 and an 0 ≤ î ≤ n − 3 so that u[̂i, î + 1] =

v[̂i, î+ 1] = 10. Because ω[a+ i] and ω[a+ n− 1] both have 01 as a prefix and pn−1 > pi, and ω[b+ î] and
ω[b+ n− 1] both have 10 as a prefix and qn−1 < qi, we have

p′2n−2 < p′2i+1 < p′2n−1 = 2 |v|0 + 2, q′2n−2 > q′
2̂i+1

> q′2n−1 = 2 |v|0 + 1

and thus
p′2n−2 < 2 |v|0 + 1 = 2 |v|0 + 2− 1 < q′2n−2 − 1.

Therefore
∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 2 which satisfies the lemma. The fact that this difference is at least 2 will be
used again in Claim 4.3.

(b) Now suppose u = v, so there is an α ∈ {0, 1} so that un−1 = vn−1 = α.
Now we investigate how the size of the Ui sets are related to the size of the Vi sets. Since u = v, and

these words have α as a suffix, there is some m ≥ 1 so that βαm, where β = α, is a suffix of both u and v.
Thus for each 0 ≤ h ≤ n−m− 1, there is some i so ω[a+ h] and ω[b+ h] have Ci as a prefix, so h ∈ Ui and
h ∈ Vi. Moreover, this prefix is totally contained within u and v, respectively, because ω[a+ n−m− 1] and
ω[b+ n−m− 1] begin with the class βα.

The proofs for when α = 0 or α = 1 are slightly different. We now consider the case when α = 0, and
will then give justification why the other case is also true. Because n− 1 ∈ Uj and n− 1 ∈ Vj+1 and α = 0,
the organization of the Ui and Vi sets is as follows

n−m ∈ Uj−m+1, n−m+ 1 ∈ Uj−m+2, · · · , n− 2 ∈ Uj−1, n− 1 ∈ Uj

n−m ∈ Vj−m+2, n−m+ 1 ∈ Vj−m+3, · · · , n− 2 ∈ Vj , n− 1 ∈ Vj+1.

For example, if m = 1 we have n− 1 ∈ Uj and n− 1 ∈ Vj+1, so

|Uj | = |Vj |+ 1 |Uj+1| = |Vj+1| − 1

and |Ui| = |Vi| for all other i. Since |Vj | ≥ 1 we see |Uj| ≥ 2.
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If m = 2 we have n− 2 ∈ Uj−1, n− 2 ∈ Vj , n− 1 ∈ Uj, and n− 1 ∈ Vj+1, so

|Uj−1| = |Vj−1|+ 1 |Uj | = |Vj | |Uj+1| = |Vj+1| − 1

and |Ui| = |Vi| for all other i.
Thus for a general m ≥ 1,

|Uj−m+1| = |Vj−m+1|+ 1 |Uj+1| = |Vj+1| − 1

and |Ui| = |Vi| for all other i. Since |Vj−m+1| ≥ 1 we see |Uj−m+1| ≥ 2. Each occurrence of Cj−m+1 which
is contained in u will have Cj as a suffix, and since n − 1 ∈ Uj we have |Uj | ≥ |Uj−m+1| ≥ 2. Thus by
Proposition 3.2

p′2n−2 = Lk(p)n−1 + |U0|+ · · ·+ |Uj−1|

q′2n−2 = Lk(q)n−1 + |V0|+ · · ·+ |Vj−1|+ |Vj | = Lk(p)n−1 + |U0|+ · · ·+ |Uj−1|+ |Uj | − 1

= p′2n−2 + |Uj| − 1 ≥ p′2n−2 + 1

p′2n−1 = Lk(p)n−1 + |U0|+ · · ·+ |Uj |

q′2n−1 = Lk(q)n−1 + |V0|+ · · ·+ |Vj |+ |Vj+1| = Lk(p)n−1 + |U0|+ · · ·+ |Uj|+ |Uj+1|

= p′2n−1 + |Uj+1| ≥ p′2n−1 + 1

and we see
∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 1 and
∣

∣p′2n−1 − q′2n−1

∣

∣ ≥ 1.
When considering the case when α = 1 we see u and v will have 01m as a suffix, so we find |Vj+m| =

|Uj+m|+ 1, |Vj | = |Uj | − 1, and |Ui| = |Vi| for all other i. We then find |Vj | ≥ |Vj+1| ≥ |Vj+m| ≥ 2, q′2n−2 =
p′2n−2 + |Vj+1| − 1, and q′2n−1 = p′2n−1 + |Vj |. Thus again,

∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 1 and
∣

∣p′2n−1 − q′2n−1

∣

∣ ≥ 1.

The following definitions describe patterns which can occur within a set of subpermutations.

Definition A subpermutation p = π[a, a+ n] is of type k, for k ≥ 1, if p can be decomposed as

p = (α1 · · ·αkλ1 · · ·λlβ1 · · ·βk)

where αi = βi + ε for each i = 1, 2, . . . , k and an ε ∈ {−1, 1}.

Some examples of subpermutations of type 1, 2, and 3 (respectively) are:

(2 3 5 4 1) (2 5 4 1 3 6) (3 7 5 1 2 6 4)

Definition Suppose that the subpermutation p = π[a, a+n] is of type k so that for ε ∈ {−1, 1}, αi = βi+ ε

for each i = 1, 2, . . . , k. If there exists a subpermutation q = π[b, b + n] of type k so that p and q can be
decomposed as:

p = πT [a, a+ n] = (α1 · · ·αkλ1 · · ·λlβ1 · · ·βk)

q = πT [b, b+ n] = (β1 · · ·βkλ1 · · ·λlα1 · · ·αk)

then p and q are said to be a complementary pair of type k. If p and q are a complementary pair of type
k ≤ 0 then p = q.

The subpermutations
(2 3 5 4 1) (1 3 5 4 2)

are a complementary pair of type 1.
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Lemma 4.2 For the word ω, let p, q, p′, and q′ be as above, then p′ and q′ are not a complementary pair
of type 1.

Proof This proof will be done by contradiction, so we assume that p′ and q′ are a complementary pair of
type 1. Thus there is an x, where 1 ≤ x ≤ 2n− 1, so p′ and q′ can be decomposed as

p′ = πd(w)[2a, 2a+ 2n− 1] = (x λ1 · · ·λ2n−3 (x+ 1))

q′ = πd(w)[2b, 2b+ 2n− 1] = ((x+ 1) λ1 · · ·λ2n−3 x)

where each λi ∈ {1, 2, . . . , 2n}.
Note that for each i, λi is not x or x + 1. So for each 0 ≤ i, j ≤ n− 1 we have p′2i < p′2j if and only if

q′2i < q′2j . Because the letter doubling map is order preserving, we then see Lk(p)i < Lk(p)j if and only if
Lk(q)i < Lk(p)j , so Lk(p) = Lk(q).

Let u = ω[a, a+ n− 1], and v = ω[b, b+ n− 1]. Since p′ and q′ are a complementary pair they have the
same form, and since d(u)2n−1 = d(u)2n−2 = d(v)2n−2 = d(v)2n−1 we find that d(u) = d(v) and u = v. Let
α ∈ {0, 1} so that u0 = v0 = α. If d(u)2n−1 = d(v)2n−1 6= α we find p′0 < p′2n−1 if and only if q′0 < q′2n−1, so
un−1 = vn−1 = α.

Then α will either be 0 or 1. We will now consider the case when α is 0.
Suppose α = 0, so q′0 < q′1 and q′2n−2 < q′2n−1 (likewise p′0 < p′1 and p′2n−2 < p′2n−1). Thus from the

decomposition of q′ above we see
q′2n−2 < q′2n−1 < q′0 < q′1

and by Lemma 3.1 we know there is a i 6= j so that ω[b] has Cj as a prefix and ω[b + n − 1] has Ci as a
prefix. Since u = v, we know that ω[a] has Cj as a prefix as well. Then from Lemma 3.1 the ordering of
these same terms from p′ must be

p′2n−2 < p′0 < p′2n−1 < p′1

because α = 0 and p′0 < p′2n−1, so both ω[a] and ω[a+ n− 1] have Cj as a prefix.
Thus Lk(p) = Lk(q) and each of ω[a + n − 1] and ω[b + n − 1] have different Cj classes as a prefix.

Thus we know that p′2n−2 6= q′2n−2 from Lemma 4.1 which is a contradiction to the assumption. A similar
contradiction is found if α = 1. In this case we see p′1 < p′0 < p′2n−1 < p′2n−2 and q′1 < q′2n−1 < q′0 < q′2n−2,
so ω[a], ω[b], and ω[b+ n− 1] each have Cj as a prefix while ω[a+ n− 1] has Cj+1 as a prefix.

Claim 4.3 Suppose f is a restriction map, so either f = R, f = L, or f = M . If f(p′) = f(q′) then
d(u) = d(v).

Proof Again we have p = πω[a, a+n+k−1], q = πω[b, b+n+k−1], u = ω[a, a+n−1], and v = ω[b, b+n−1].

(a) Suppose f = R, so R(p′) = R(q′). For each 0 ≤ i ≤ 2n − 3, R(p′)i < R(p′)i+1 is and only if
R(q′)i < R(q′)i+1 and thus d(u)i+1 = d(v)i+1. Since d(u)0 = d(u)1 and d(v)0 = d(v)1, we see d(u)0 =
d(u)1 = d(v)1 = d(v)0. In a similar fashion we see d(u)2n−1 = d(u)2n−2 = d(v)2n−2 = d(v)2n−1. Thus
d(u) = d(v) and u = v.

(b) Suppose f = L, so L(p′) = L(q′) and assume d(u) 6= d(v). Thus for each 0 ≤ i, j ≤ n − 1,
L(p′)2i < L(p′)2j if and only if L(q′)2i < L(q′)2j , so Lk(p)i < Lk(p)j if and only if Lk(q)i < Lk(q)j so
Lk(p) = Lk(q). Thus ω[a, a+n−2] = ω[b, b+n−2] and so d(ω)[2a, 2a+2n−3] = d(ω)[2b, 2b+2n−3]. Thus
d(ω)[2a+ 2n− 2, 2a+ 2n− 1] 6= d(ω)[2b+ 2n− 2, 2b+ 2n− 1], and so un−1 6= vn−1. Thus ω[a+ n− 1] and
ω[b+n− 1] not only have different Cj classes as a prefix, but they begin with different letters. So as seen in
Lemma 4.1,

∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 2 and thus L(p′)2n−2 and L(p′)2n−2 can not be equal which is a contradiction
to the assumption. Therefore d(u) = d(v) and u = v.

(c) Suppose f = M , so M(p′) = M(q′). For 0 ≤ i ≤ 2n − 3, d(u)i = d(v)i as in part (a). Then
assuming d(u) 6= d(v) we find a contradiction as in part (b), so d(u) = d(v). Therefore if M(p′) = M(q′)
then d(u) = d(v), and u = v.

13



We are now to the main result of this section. We show that when δ is injective we find that both of δL
and δR are injective.

Proposition 4.4 For the word ω, let p, q, p′, and q′ be as above. Then

(a) p′ = q′ if and only if R(p′) = R(q′).

(b) p′ = q′ if and only if L(p′) = L(q′).

Proof Again we have p = πω[a, a+n+k−1], q = πω[b, b+n+k−1], u = ω[a, a+n−1], and v = ω[b, b+n−1].
For both of these cases it should be clear that if p′ = q′ then each of R(p′) = R(q′) and L(p′) = L(q′).

We will again use the notation

Uj = { 0 ≤ i ≤ n− 1 | ω[a+ i] has Cj as a prefix. }

Vj = { 0 ≤ i ≤ n− 1 | ω[b+ i] has Cj as a prefix. }

and due to the length of u and v we know |Uj | ≥ 1 and |Vj | ≥ 1 for each j.

(a) Suppose p′ 6= q′, and assume R(p′) = R(q′). So by Claim 4.3 we know d(u) = d(v) and u = v.
For each pair of real numbers i 6= j where 0 ≤ i, j ≤ 2n− 2,

R(p′)i < R(p′)j ⇐⇒ R(q′)i < R(q′)j

and thus
p′i+1 < p′j+1 ⇐⇒ q′i+1 < q′j+1.

Since p′ 6= q′ there must be some 1 ≤ i ≤ 2n− 1 so, without loss of generality,

p′0 < p′i and q′0 > q′i.

There is an α ∈ {0, 1} so d(u)1 = d(v)1 = α, and so d(u)0 = d(v)0 = α. If d(u)i = d(v)i 6= α we have p′0 < p′i
if and only if q′0 < q′i, which would be a contradiction. So d(u)i = d(v)i = α.

Case a.1: Suppose for 1 ≤ i ≤ 2n − 2 we have p′0 < p′i and q′0 > q′i. If d(u)i+1 = d(v)i+1 6= α we
have d(u)[0, 1] = αα and d(u)[i, i + 1] = αβ, so p′0 < p′i if and only if q′0 < q′i, which is a contradiction, so
d(u)i+1 = d(v)i+1 = α. Thus d(u)[i, i+ 1] = d(v)[i, i + 1] = αα and

p′0 < p′i =⇒ p′1 < p′i+1 =⇒ R(p′)0 < R(p′)i

q′0 > q′i =⇒ q′1 > q′i+1 =⇒ R(q′)0 > R(q′)i

by Claim 2.1 which contradicts the assumption. Therefore R(p′) 6= R(q′).

Case a.2: Suppose p′0 < p′2n−1 and q′0 > q′2n−1, and for each other i we have p′0 < p′i if and only if q′0 < q′i.
So as above, we have d(u)[0, 1] = d(v)[0, 1] = αα and d(u)[2n− 2, 2n− 1] = d(v)[2n− 2, 2n− 1] = αα. Thus
p′0 < p′2n−1 and q′0 > q′2n−1 imply

p′2n−1 − 1 = R(p′)2n−2 = R(q′)2n−2 = q′2n−1.

For each 1 ≤ j ≤ 2n− 2 we know

p′0 < p′j ⇐⇒ q′0 < q′j =⇒ R(p′)j−1 = p′j ⇐⇒ R(q′)j−1 = q′j

and so p′j = q′j for each 1 ≤ j ≤ 2n − 2. So only p′0 6= q′0 and p′2n−1 6= q′2n−1. Since p′2n−1 = q′2n−1 + 1, it
must be

p′0 = p′2n−1 − 1 and q′0 = q′2n−1 + 1.

14



Let 1 ≤ x ≤ 2n so that p′0 = q′2n−1 = x and q′0 = p′2n−1 = x + 1. Thus p′ and q′ can be decomposed as
p′ = (x λ1 · · ·λ2n−3 (x+1)) and q′ = ((x+1) λ1 · · ·λ2n−3 x). So we have that p′ and q′ are a complementary
pair of type 1, which is a contradiction by Lemma 4.2. Thus R(p′) 6= R(q′).

Therefore p′ = q′ if and only if R(p′) = R(q′).

(b) Suppose p′ 6= q′, and assume L(p′) = L(q′). So by Claim 4.3 we know d(u) = d(v) and u = v.
For each pair of real numbers i 6= j where 0 ≤ i, j ≤ 2n− 2,

L(p′)i < L(p′)j ⇐⇒ L(q′)i < L(q′)j

and thus
p′i < p′j ⇐⇒ q′i < q′j .

As in Claim 4.3 we can also see that Lk(p) = Lk(q).
Since p′ 6= q′ there must be some 0 ≤ i ≤ 2n− 2 so, without loss of generality,

p′2n−1 < p′i and q′2n−1 > q′i.

There is an α ∈ {0, 1} so d(u)2n−2 = d(v)2n−2 = α, so d(u)[2n − 2, 2n − 1] = d(v)[2n − 2, 2n − 1] = αα.
If d(u)i = d(v)i 6= α we have p′2n−2 < p′i if and only if q′2n−2 < q′i, which would be a contradiction, so
d(u)i = d(v)i = α. It should be noted that i 6= 2n− 2, because d(u)2n−2 = d(v)2n−2 = α so p′2n−2 < p′2n−1

if and only if q′2n−2 < q′2n−1.

Case b.1: Suppose for 1 ≤ i ≤ 2n− 2 we have p′2n−1 < p′i and q′2n−1 > q′i. If d(u)i−1 = d(v)i−1 = α we
have d(u)[2n− 2, 2n− 1] = αα and d(u)[i− 1, i] = αα, so

p′2n−1 < p′i =⇒ p′2n−2 < p′i−1

q′2n−1 > q′i =⇒ q′2n−1 > q′i−1

which contradicts the assumption. So d(u)i−1 = d(v)i−1 6= α, say d(u)i−1 = d(v)i−1 = β. Thus d(u)[i −
1, i+ 1] = βαα and i is an even number, so rather than using i we will use 2c.

Because d(u)[2n − 2, 2n − 1] = d(v)[2n − 2, 2n − 1] = αα we know p′2n−2 < p′2n−1 if and only if
q′2n−2 < q′2n−1, and thus p′2n−2 = L(p′)2n−2 if and only if L(q′)2n−2 = q′2n−2, so p′2n−2 = q′2n−2 because
L(p′) = L(q′).

If α = 0 we find

p′2n−2 < p′2n−1 < p′2c < p′2c+1 and q′2n−2 < q′2c < q′2n−1 < q′2c+1,

and if α = 1 we find

q′2c+1 < q′2c < q′2n−1 < q′2n−2 and p′2c+1 < p′2n−1 < p′2c < p′2n−2.

In either case, ω[a+ n− 1] and ω[b+ n− 1] each have a different Cj class as a prefix. So by Lemma 4.1 we
have

∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 1, which is a contradiction to the assumption, and L(p′) 6= L(q′).

Case b.2: Suppose p′2n−1 < p′0 and q′2n−1 > q′0, and for each other i we have p′0 < p′i if and only if
q′0 < q′i. So as above we have d(u)[0, 1] = d(v)[0, 1] = αα and d(u)[2n−2, 2n−1] = d(v)[2n−2, 2n−1] = αα.
Thus p′2n−1 < p′0 and q′2n−1 > q′0 imply p′0 = L(p′)0 = L(q′)0 = q′0 − 1. For each 1 ≤ j ≤ 2n− 2 we know the
following

p′2n−1 < p′j ⇐⇒ q′2n−1 < q′j , L(p′)j = p′j ⇐⇒ L(q′)j = q′j ,

and thus p′j = q′j for each 1 ≤ j ≤ 2n− 2, because L(p′)j = L(q′)j .
So only p′0 6= q′0 and p′2n−1 6= q′2n−1. Since q′0 = p′0 + 1, it must be p′2n−1 = p′0 − 1 and q′2n−1 = q′0 + 1.

Let 1 ≤ x ≤ 2n so that p′2n−1 = q′0 = x and q′2n−1 = p′0 = x+ 1. So once again we have that p′ and q′ are a
complementary pair of type 1, which is a contradiction by Lemma 4.2. Thus L(p′) 6= L(q′).

Therefore p′ = q′ if and only if L(p′) = L(q′).
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Therefore when δ is injective, δR and δL are both injective as well. A troubling fact is the map δ being
injective does not imply δM is injective. As will be shown for the Thue-Morse word T , there are cases
of distinct subpermutations p and q where δ(p) 6= δ(q) but δ(p)M = δM (q). The following sections deal
with some different words and we will show when δ and δM are injective, but these proofs will use special
properties of the words considered.

5 Sturmian Words

In this section we will investigate the permutation complexity of Sturmian words under the doubling map.
An infinite word s is a Sturmian word if for each n ≥ 0, s has exactly n+ 1 distinct factors of length n, or
ρs(n) = n + 1 (the only factor of length n = 0 being the empty-word). Thus since ρs(1) = 2, it should be
clear that Sturmian words are binary words. The class of Sturmian words have been a topic of much study
(see [3, 5, 7]). An equivalent definition for Sturmian words is that they are the class of aperiodic balanced
binary words. A word is balanced if for all factors u and v with |u| = |v|, ||u|a − |v|a| ≤ 1 for each a in the
alphabet.

First we will show when the map δ is applied to permutations from a Sturmian word, δ is injective and
thus a bijection. Then we show the maps δR, δL, and δM are injective as well and thus also bijections. First
we look at the permutation complexity of the Sturmian words which has been calculated.

Lemma 5.1 ([10]) Let s be a Sturmian word. For natural numbers a1 and a2 we have πs[a1, a1 + n+ 1] =
πs[a2, a2 + n+ 1] if and only if s[a1, a1 + n] = s[a2, a2 + n].

Theorem 5.2 ([10]) Let s be a Sturmian word. For each n ≥ 2, τs(n) = n .

If s is a Sturmian word, then d(s) is not Sturmian. The word d(s) will contain both 00 and 11 as factors
and is not balanced. Thus we know τd(s)(n) > n.

Fix a Sturmian word s over {0, 1}. Since s is balanced, there is some k > 0 so that for α, β ∈ {0, 1},
with α 6= β, every α is followed by either k or k − 1 β’s. So consecutive α’s will look like either αβkα or
αβk−1α. For example consider the Fibonacci word, t = 01001010010010100101 · · · , where consecutive 1’s
look like either 1001 or 101.

Let d(s) be the image of s under the doubling map. Let πs be the infinite permutation associated to s,
and πd(s) be the infinite permutation associated to d(s). We will now calculate the permutation complexity
of d(s). By Lemma 2.3 we may assume there is a natural number k > 0 so that each 1 is followed by either
0k1 or 0k−11, because d(s) and d(s) have the same permutation complexity. There will be k + 1 classes of
factors of s, which are C0 = 0k, C1 = 0k−11, · · · , Ck−1 = 01, Ck = 10. For each i ∈ N, s[i] = sisi+1 · · · will
have exactly one the above classes of words as a prefix. Since Sturmian words are uniformly recurrent ([5]),
there is an N ∈ N so that each factor of s of length n ≥ N will contain each of C0, C1, . . ., Ck.

Let u = s[a, a+ n− 1] and v = s[b, b+ n− 1], a 6= b, be factors of s of length n ≥ N , so Cj is a factor of
both u and v for each 0 ≤ j ≤ k. For 0 ≤ j ≤ k define

Uj = { 0 ≤ i ≤ n− 1 | T [a+ i] has Cj as a prefix. }

Vj = { 0 ≤ i ≤ n− 1 | T [b+ i] has Cj as a prefix. }

and |U0| + |U1| + · · · + |Uk| = |V0| + |V1| + · · · + |Vk| = n. Since |u| = |v| ≥ N we know for each j

there is an occurrence of Cj in both u and v so |Uj | ≥ 1 and |Vj | ≥ 1. Let p = πs[a, a + n + k − 1] and
q = πs[b, b+n+k−1] be subpermutations of πs. Then define subpermutations δ(p) = p′ = πd(s)[2a, 2a+2n−1]
and δ(q) = q′ = πd(s)[2b, 2b+ 2n− 1] as in Proposition 3.2. The following lemma concerns the relationship
of p and q to p′ and q′.

Lemma 5.3 For the Sturmian word s, let p, q, p′, and q′ be as above. Then p = q if and only if p′ = q′.
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Proof If p = q, then it follows from Lemma 3.5 that p′ = q′.
Then suppose that p 6= q. Thus p and q have a different form by Lemma 5.1. Thus there is an

0 ≤ i ≤ n + k − 2 so that, without loss of generality, pi < pi+1 and qi > qi+1. We will look at the least
i where this happens and it will be handled in two cases. First when 0 ≤ i ≤ n − 1, and then when
n ≤ i ≤ n+ k − 2.

Case a: Suppose 0 ≤ i ≤ n− 1 is the least i where pi < pi+1 and qi > qi+1. Then p′ 6= q′ follows from
Corollary 3.4.

Case b: Suppose n ≤ i ≤ n + k − 2 is the least i where pi < pi+1 and qi > qi+1. Thus we know
u = s[a, a+ n− 1] = s[b, b+ n− 1] = v, and so Lk(p) = Lk(q) by Lemma 5.1.

If un−1 = vn−1 = 1, then both u and v are followed by 0k−1 so s[a, a+n+k−2] = s[b, b+n+k−2] = u0k−1

and p = q contradicting the assumption. Thus un−1 = vn−1 = 0, and letting m = i− n+ 1

s[a] = u0m1 · · · , s[b] = u0m−11 · · · .

Thus we can see that s[a+ n− 1] and s[b + n− 1] each have a different Cj class as a prefix. So by Lemma
4.1,

∣

∣p′2n−2 − q′2n−2

∣

∣ ≥ 1 and
∣

∣p′2n−1 − q′2n−1

∣

∣ ≥ 1 and thus p′ 6= q′.
Therefore p = q if and only if p = q.

Thus the map δ is injective when applied to permutations associated with a Sturmian word, and is therefore
bijective. When Lemma 5.3 is used with Proposition 4.4 we see the maps δL and δR are also injective, and
thus are bijections. We will now show the map δM is also injective when applied to permutations associated
with a Sturmian word.

Lemma 5.4 For the Sturmian word s, let p, q, p′, and q′ be as above. Then p′ = q′ if and only if M(p′) =
M(q′).

Proof It should be clear that if p′ = q′ then M(p′) = M(q′).
Suppose p′ 6= q′, and assume M(p′) = M(q′). For each pair of real numbers i 6= j where 0 ≤ i, j ≤ 2n−3,

M(p′)i < M(p′)j ⇐⇒ M(q′)i < M(q′)j =⇒ p′i+1 < p′j+1 ⇐⇒ q′i+1 < q′j+1.

From Claim 4.3 we know d(u) = d(v) and u = v, so Lk(p) = Lk(q) because they have the same form.
From Proposition 4.4 we know R(p′) 6= R(q′) and L(p′) 6= L(q′) because p′ 6= q′, but

R(L(p′)) = M(p′) = M(q′) = R(L(q′)).

Thus there is an 1 ≤ i ≤ 2n− 2 so that L(p′)0 < L(p′)i and L(q′)0 > L(q′)i.
If 1 ≤ i ≤ 2n− 3, we find a contradiction in the same fashion as in Proposition 4.4, case (a.1). Thus we

can assume that i = 2n− 2 is the only i so that L(p′)0 < L(p′)i and L(q′)0 > L(q′)i. Thus

L(p′)0 < L(p′)2n−2 =⇒ p′0 < p′2n−2 =⇒ p0 < pn−1 =⇒ Lk(p)0 < Lk(p)n−1

L(q′)0 > L(q′)2n−2 =⇒ q′0 > q′2n−2 =⇒ q0 > qn−1 =⇒ Lk(q)0 > Lk(q)n−1,

and Lk(p) 6= Lk(q), and so by Lemma 5.1 we see u 6= v and d(u) 6= d(v) which is a contradiction to the
assumption. Therefore M(p′) 6= M(q′).

Therefore p′ = q′ if and only if M(p′) = M(q′).

Thus we see, for a Sturmian word s,

p = q ⇐⇒ δ(p) = δ(q) ⇐⇒ δM (p) = δM (q)

and thus the map δM is also injective, and thus is a bijection. The following theorem will give the permutation
complexity of the image of a Sturmian word under the letter doubling map.
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Theorem 5.5 Let s be a Sturmian word over A, where for α, β ∈ A, α 6= β, there are strings of either k or
k − 1 α between each β. There is an N so that each factor of s of length at least N will contain each of αk,
αk−1β, . . . , αβ, β. For each n ≥ 2N the permutation complexity of d(s) is

τd(s)(n) = n+ 2k + 1

Proof Let s be a Sturmian word as in the hypothesis, and let n ≥ 2N . Then there is m ≥ N so that either
n = 2m or n = 2m− 1. Since s is Sturmian, each of δ, δL, δR, and δM are bijections, and so

∣

∣

∣
Permd(s)

ev (2m− 1)
∣

∣

∣
= |Perms(m+ k)|,

∣

∣

∣
Permd(s)

ev (2m)
∣

∣

∣
= |Perms(m+ k)|,

∣

∣

∣
Perm

d(s)
odd (2m− 1)

∣

∣

∣
= |Perms(m+ k)|,

∣

∣

∣
Perm

d(s)
odd (2m)

∣

∣

∣
= |Perms(m+ k + 1)| .

Thus

τd(s)(2m− 1) =
∣

∣

∣
Permd(s)(2m− 1)

∣

∣

∣
=

∣

∣

∣
Permd(s)

ev (2m− 1)
∣

∣

∣
+
∣

∣

∣
Perm

d(s)
odd (2m− 1)

∣

∣

∣

= (m+ k) + (m+ k) = (2m− 1) + 2k + 1

τd(s)(2m) =
∣

∣

∣
Permd(s)(2m)

∣

∣

∣
=

∣

∣

∣
Permd(s)

ev (2m)
∣

∣

∣
+
∣

∣

∣
Perm

d(s)
odd (2m)

∣

∣

∣

= (m+ k) + (m+ k + 1) = 2m+ 2k + 1

Therefore for either n = 2m or n = 2m− 1, τd(s)(n) = n+ 2k + 1.

6 Thue-Morse Word

In this section we will investigate the permutation complexity of d(T ), the image of the Thue-Morse word,
T , under the doubling map, d. The Thue-Morse word is:

T = 01101001100101101001011001101001 · · · ,

and the Thue-Morse morphism is:
µT : 0 → 01, 1 → 10.

This word was introduced by Axel Thue in his studies of repetitions in words ([12]). For a more in depth
look at further properties, independent discoveries, and applications of the Thue-Morse word see [1].

A nice property of the factors of T is that any factor of length 5 or greater contains either 00 or 11.
Another interesting property is that for any i ∈ N, T [2i, 2i+1] will be either 01 or 10. Thus any occurrence
of 00 or 11 must be a factor of the form T [2i+ 1, 2i+ 2] for some i ∈ N. Therefore any factors T [2i, 2i+ n]
and T [2j + 1, 2j + 1 + n] where n ≥ 4 cannot be equal based on the location of the factors 00 or 11.

The factor complexity of the Thue-Morse word was computed independently by two groups in 1989 ([4]
and [8]). The calculation of the permutation complexity of d(T ) will use the formula for the factor complexity
of T . We will use the formula calculated by S. Brlek.

Proposition 6.1 ([4]) For n ≥ 3, the function ρT (n) is given by

ρT (n) =

{

6 · 2r−1 + 4p 0 < p ≤ 2r−1

8 · 2r−1 + 2p 2r−1 < p ≤ 2r

where r and p are uniquely determined by the equation

n = 2r + p+ 1, 0 < p ≤ 2r
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Let πT be the infinite permutation associated to the Thue-Morse word T . In [13], the permutation
complexity of T was calculated.

Theorem 6.2 ([13]) For any n ≥ 6, where n = 2r + p with 0 < p ≤ 2r,

τT (n) = 2(2r+1 + p− 2).

We will now investigate the permutation complexity of d(T ). To begin, we consider complementary pairs
which occur in πT .

Theorem 6.3 ([13]) Let p and q be distinct subpermutations of πT . Then p and q have the same form if
and only if p and q are a complementary pair of type k, for some k ≥ 1.

The left and right restrictions preserve complementary pairs of type k ≥ 2, and middle restrictions
preserve complementary pairs of type k ≥ 3. Proposition 6.4 follows directly from [13], Proposition 4.1. We
then see when complementary pairs of type k can occur, for each k ≥ 0.

Proposition 6.4 ([13]) Suppose p = πT [a, a + n] and q = πT [b, b + n] are a complementary pair of type
k ≥ 1.

(a) L(p) and L(q) are a complementary pair of type k − 1.

(b) R(p) and R(q) are a complementary pair of type k − 1.

(c) M(p) and M(q) are a complementary pair of type k − 2.

Proposition 6.5 ([13]) Let n > 4 be a natural number and let p and q be subpermutations of πT of length
n+ 1 with the same form. There exist r and c so that n = 2r + c, where 0 ≤ c < 2r.

(a) If 0 ≤ c < 2r−1 + 1, then either p = q or p and q are a complementary pair of type c+ 1.

(b) If 2r−1 + 1 ≤ c < 2r, then p = q.

Thus only subpermutations of length 2r +1, for some r ≥ 1, can be complementary pair of type 1, and only
subpermutations of length 2r + 2, for some r ≥ 1, can be complementary pair of type 2.

Now to calculate the permutation complexity of d(T ) we need to identify the classes of factors of T with
blocks of the same letter. Since T is overlap-free, and thus cube free, we can identify the 4 classes of factors
of T , which are C0 = 00, C1 = 01, C2 = 10, and C3 = 11. For each i ∈ N, T [i] = TiTi+1 · · · will have exactly
one the above classes of words as a prefix. Since the Thue-Morse word is uniformly recurrent ([1]), there is
an N ∈ N so that each factor of T of length n ≥ N will contain each of C0, C1, C2, and C3. It is readily
verified that any factor of length n ≥ 9 will contain these 4 classes of words.

Let u = T [a, a+ n− 1] and v = T [b, b+ n− 1], a 6= b, be factors of T of length n ≥ 9, so Cj is a factor
of both u and v for each 0 ≤ j ≤ 3. Let p = πT [a, a+ n+ 1] and q = πT [b, b+ n+ 1] be subpermutations of
πT . Then define subpermutations δ(p) = p′ = πd(T )[2a, 2a+2n− 1] and δ(q) = q′ = πd(T )[2b, 2b+2n− 1] as
in Proposition 3.2, with k = 2. The following lemma concerns the relationship of p and q to p′ and q′.

Lemma 6.6 Let p and q be subpermutations of length n + 2 of πT , with n ≥ 9, and let p′ = δ(p) and
q′ = δ(p).

(a) If n 6= 2r − 1 or 2r for any r ≥ 3, p = q if and only if p′ = q′.

(b) If n = 2r − 1 or 2r for some r ≥ 3, p and q have the same form if and only if p′ = q′.
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Proof Let p = πT [a, a+ n + 1] and q = πT [b, b + n + 1], a 6= b, be subpermutations of πT of length n+ 2,
with n ≥ 9, and let u = T [a, a + n − 1] and v = T [b, b + n − 1]. Since the length of u and v is at least
9, each of C0, C1, C2, and C3 occurs in both of u and v. Then let p′ = δ(p) = πd(T )[2a, 2a+ 2n − 1] and
q′ = δ(q) = πd(T )[2b, 2b+ 2n− 1] as in Proposition 3.2.

(a) Suppose n 6= 2r − 1 or 2r for any r ≥ 3. If p = q then p′ = q′ by Lemma 3.5.
Suppose p 6= q. Then either p and q have the same form, or they do not have the same form. These

cases will be handled independently.
Case (a.1) Suppose p and q have the same form. Since n 6= 2r − 1 or 2r and p and q have the same

form, p and q are a complementary pair of type k ≥ 3, by Theorem 6.3 and Proposition 6.4. Thus L2(p) and
L2(q) are a complementary pair of type k− 2, where k− 2 ≥ 1, and so L2(p) 6= L2(q). Therefore p′ 6= q′, by
Corollary 3.4.

Case (a.2) Suppose p and q do not have the same form. Thus there is an 0 ≤ i ≤ n so that, without
loss of generality, pi < pi+1 and qi > qi+1. We may say i = n is the only i so that pi < pi+1 and qi > qi+1,
because if there is an 0 ≤ i ≤ n − 1 so pi < pi+1 and qi > qi+1 then u 6= v, and p′ 6= q′ by Corollary 3.4.
We may also say L2(p) = L2(q), because if L2(p) 6= L2(q) then p′ 6= q′ be Corollary 3.4. Thus u = v and
pn < pn+1 and qn > qn+1 and we see

T [a] = u0 · · · T [b] = v1 · · · = u1 · · · .

Thus T [a+n−1] and T [b+n−1] each have a different Cj class as a prefix and by Lemma 4.1,
∣

∣p′2n−2 − q′2n−2

∣

∣ ≥

1 and
∣

∣p′2n−1 − q′2n−1

∣

∣ ≥ 1 so p′ 6= q′.
Therefore if p and q are subpermutations of πT of length n + 2, with n 6= 2r − 1 or 2r for any r ≥ 3,

p = q if and only if p′ = q′.

(b) Suppose n = 2r−1 or 2r for some r ≥ 3. If p and q do not have the same form, there is an 0 ≤ i ≤ n

so that, without loss of generality, pi < pi+1 and qi > qi+1 and p 6= q. Thus p and q are as in Case (a.2),
and p′ 6= q′.

Suppose p and q have the same form, so for each 0 ≤ i ≤ n− 1, there is some j so that both T [a+ i] and
T [b + i] have Cj as a prefix. We can say p 6= q, because if p = q then p′ = q′ by Lemma 3.5. By Theorem
6.3 and Proposition 6.5, p and q are a complementary pair of type 1 or 2 and L2(p) = L2(q) by Proposition
6.4. So by Corollary 3.3, p′ = q′.

Therefore if p and q are subpermutations of πT of length n+ 2, with n = 2r − 1 or 2r for some r ≥ 3, p
and q have the same form if and only if p′ = q′.

Thus, for n ≥ 9, the maps δ, δL, and δR when applied to permutations associated with the Thue-

Morse word are injective when n 6= 2r − 1 or 2r for any r ≥ 3, so
∣

∣

∣
Permd(T )

ev (2n)
∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣,
∣

∣

∣
Permd(T )

ev (2n− 1)
∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣, and
∣

∣

∣
Perm

d(T )
odd (2n− 1)

∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣.

When n = 2r − 1 or 2r for some r ≥ 3 the maps δ, δR, and δL are surjective, but not injective because
complementary pairs of type 1 or 2 will give the same subpermutation under δ. In this case, if p and q are
subpermutations of πT of length n+ 2, where p has form u and q has form v, |u| = |v| = n+ 1, δ(p) = δ(q)
if and only if u = v. Thus with Proposition 4.4 we see δL(p) = δL(q) and δR(p) = δR(q) if and only if u = v.
Thus the number of subpermutations of πd(T ) for these lengths are determined by the number of factors of T ,

so
∣

∣

∣
Permd(T )

ev (2n)
∣

∣

∣
= |FT (n+ 1)|,

∣

∣

∣
Permd(T )

ev (2n− 1)
∣

∣

∣
= |FT (n+ 1)|, and

∣

∣

∣
Perm

d(T )
odd (2n− 1)

∣

∣

∣
= |FT (n+ 1)|.

The following lemma shows when the map δM is injective when applied to permutations associated with
the Thue-Morse word.

Lemma 6.7 For the Thue-Morse word T , let p, q, p′, and q′ be as above. Then

(a) If n 6= 2r − 1, 2r, or 2r + 1 for any r ≥ 3, p′ = q′ if and only if M(p′) = M(q′).
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(b) If n = 2r − 1, 2r, or 2r +1 for some r ≥ 3, p and q have the same form if and only if M(p′) = M(q′).

Proof Let p = πT [a, a+ n+1] and q = πT [b, b+ n+1] be subpermutations of πT of length n+2 ≥ 11, and
p′ = δ(p) and q′ = δ(q) as in Proposition 3.2. Let u = T [a, a+ n − 1] and v = T [b, b+ n− 1]. It should be
clear for either case that if p′ = q′ then M(p′) = M(q′).

We will again use the notation

Uj = { 0 ≤ i ≤ n− 1 | T [a+ i] has Cj as a prefix. }

Vj = { 0 ≤ i ≤ n− 1 | T [b+ i] has Cj as a prefix. }

and due to the length of u and v we know |Uj | ≥ 1 and |Vj | ≥ 1 for each j.

(a) Let n 6= 2r − 1, 2r, or 2r + 1 for any r ≥ 3. It should be clear that if p′ = q′ then M(p′) = M(q′).
Suppose p′ 6= q′, so p 6= q by Lemma 6.6, and assume M(p′) = M(q′). For each pair of real numbers

i 6= j where 0 ≤ i, j ≤ 2n− 3,

M(p′)i < M(p′)j ⇐⇒ M(q′)i < M(q′)j =⇒ p′i+1 < p′j+1 ⇐⇒ q′i+1 < q′j+1.

Since M(p′) = M(q′) then d(u) = d(v), by Claim 4.3, and so u = v.
Case (a.1) Suppose p and q have the same form. By Theorem 6.3 and Proposition 6.5, p and q are a

complementary pair of type k ≥ 4. By Proposition 6.4, L2(p) and L2(q) are a complementary pair of type
k−2 ≥ 2. Thus, without loss of generality, L2(p)k−2−1+1 = L2(p)n−1 and L2(q)n−1+1 = L2(q)k−2−1. Thus
L2(p)k−3 < L2(p)n−1 and L2(q)k−3 > L2(q)n−1, so p′2k−6 < p′2n−2 and q′2k−6 > q′2n−2. Thus M(p′)2k−5 <

M(p′)2n−3 and M(q′)2k−5 > M(q′)2n−3 so M(p′) 6= M(q′) which is a contradiction.
Case (a.2) Suppose p and q do not have the same form. Because p′ 6= q′, R(p′) 6= R(q′) and L(p′) 6= L(q′)

by Proposition 4.4, but
R(L(p′)) = M(p′) = M(q′) = R(L(q′)).

Thus there is an 1 ≤ i ≤ 2n − 2 so that L(p′)0 < L(p′)i and L(q′)0 > L(q′)i. If 1 ≤ i ≤ 2n − 3, we find a
contradiction in the same fashion as in Proposition 4.4, case (a.1). Thus we can assume that i = 2n− 2 is
the only i so that L(p′)0 < L(p′)i and L(q′)0 > L(q′)i. Thus

L(p′)0 < L(p′)2n−2 =⇒ p′0 < p′2n−2 =⇒ p0 < p2n−1 =⇒ L2(p)0 < L2(p)n−1

L(q′)0 > L(q′)2n−2 =⇒ q′0 > q′2n−2 =⇒ q0 > q2n−1 =⇒ L2(q)0 > L2(q)n−1

so L2(p) 6= L2(q), and u = v. Thus, by Theorem 6.3 and Proposition 6.5, L2(p) and L2(q) are a complemen-
tary pair of type k ≥ 2. Thus, without loss of generality, L2(p)k−1 < L2(p)n−1 and L2(q)k−1 > L2(q)n−1,
so p′2k−2 < p′2n−2 and q′2k−2 > q′2n−2. Thus M(p′)2k−1 < M(p′)2n−3 and M(q′)2k−1 > M(q′)2n−3, which
contradicts the assumption that M(p′) = M(q′).

Therefore if n 6= 2r − 1, 2r, or 2r + 1 for any r ≥ 3, p′ = q′ if and only if M(p′) = M(q′).

(b) Let n = 2r − 1, 2r, or 2r + 1 for some r ≥ 3.
Case (b.1) Suppose p and q have the same form. So for each 0 ≤ i ≤ n,

pi < pi+1 ⇐⇒ qi < qi+1.

So we know for each i, T [a+ i] and T [b+ i] both have the same Cj as a prefix, so

i ∈ Uj ⇐⇒ i ∈ Vj

and so |Uj | = |Vj | for each j.
If p = q, then p′ = q′ and M(p′) = M(q′), so we can say p 6= q. If n = 2r−1 or 2r then p′ = q′ by Lemma

6.6 and M(p′) = M(q′), so we can say n = 2r + 1 for some r ≥ 3. Thus p and q are a complementary pair
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of type 3 by Theorem 6.3 and Proposition 6.5, and L2(p) and L2(q) are a complementary pair of type 1 by
Proposition 6.4. So, without loss of generality, there is some 1 ≤ x ≤ n − 1 so that L2(p)0 = L2(q)n−1 = x

and L2(p)n−1 = L2(q)0 = x+ 1, and for each 1 ≤ i ≤ n− 2 L2(p)i = L2(q)i.
Since p and q are a complementary pair of type 3 we know T [a, a+1] = T [a+n−1, a+n], thus we know

T [b, b+1] = T [b+n− 1, b+n] = T [a, a+1] because u = v. So there is a j so that each of T [a], T [a+n− 1],
T [b], and T [b+ n− 1] each have Cj as a prefix. So by Proposition 3.2, there are some y and z so that

p′0 = y q′0 = y + 1

p′1 = z q′1 = z + 1

p′2n−2 = y + 1 q′2n−2 = y

p′2n−1 = z + 1 q′2n−1 = z

and for each 2 ≤ i ≤ 2n − 3, p′i = q′i. The order of y and z will be either y < y + 1 < z < z + 1 (so
Ta = Tb = 0) or z < z + 1 < y < y + 1 (so Ta = Tb = 1). If y < y + 1 < z < z + 1, then M(p′)0 =
z − 1 = M(q′)0 and M(p′)2n−2 = y = M(q′)2n−2. If z < z + 1 < y < y + 1, then M(p′)0 = z = M(q′)0 and
M(p′)2n−2 = y − 1 = M(q′)2n−2. In either case we have, for 2 ≤ i ≤ 2n− 3,

p′i < y ⇐⇒ q′i < y + 1 and p′i < z + 1 ⇐⇒ q′i < z

so M(p′)i−1 = M(q′)i−1. Therefore M(p′) = M(q′).
Therefore if p and q have the same form then M(p′) = M(q′).
Case (b.2) Suppose p and q do not have the same form, and assume M(p′) = M(q′). If p and q do

not have the same form, there is an 0 ≤ i ≤ n so that, without loss of generality, pi < pi+1 and qi > qi+1

and p 6= q. By Lemma 6.6, p′ 6= q′. Then as in Case (a.2) we find a contradiction to the assumption, so
M(p′) 6= M(q′).

Therefore p and q have the same form if and only if M(p′) = M(q′).

Thus, for n ≥ 9, the map δM when applied to permutations associated with the Thue-Morse word are

injective when n 6= 2r − 1, 2r, or 2r + 1 for any r ≥ 3, so
∣

∣

∣
Perm

d(T )
odd (2n− 2)

∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣.

When n = 2r − 1, 2r, or 2r + 1 for some r ≥ 3 the map δM is surjective, but not injective. In
this case, if p and q are subpermutations of πT of length n + 2, where p has form u and q has form v,
|u| = |v| = n + 1, δM (p) = δM (q) if and only if u = v. Thus the number of subpermutations of πd(T ) of
length 2n− 2 which start in an odd position are determined by the number of factors of T of length n+ 1,

so
∣

∣

∣
Perm

d(T )
odd (2n− 2)

∣

∣

∣
= |FT (n+ 1)|.

We are now ready to calculate the permutation complexity of d(T ).

Theorem 6.8 For the Thue-Morse word T , let n ≥ 9.

(a) If n = 2r, then
τd(T )(2n− 1) = 2r+2 + 2r+1

τd(T )(2n) = 2r+2 + 2r+1 + 4

(b) If n = 2r + p for some 0 < p ≤ 2r − 1, then

τd(T )(2n− 1) = 2r+3 + 4p

τd(T )(2n) = 2r+3 + 4p+ 2

Proof Let n ≥ 9.

(a) Suppose n = 2r. So 2n = 2(2r) = 2(2r + 1) − 2, and from Lemma 6.6 and Lemma 6.7 each of the
maps δ, δL, δR, and δM are only surjective.
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So n+ 1 = 2r + 1 = 2r−1 + 2r−1 + 1, and n+ 2 = 2r + 2 = 2r + 1 + 1. So by Proposition 6.1

τd(T )(2n− 1) =
∣

∣

∣
Permd(T )

ev (2n− 1)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n− 1)

∣

∣

∣
= |FT (n+ 1)|+ |FT (n+ 1)|

= 8(2r−2) + 2(2r−1) + 8(2r−2) + 2(2r−1) = 2r+2 + 2r+1

τd(T )(2n) =
∣

∣

∣
Permd(T )

ev (2n)
∣

∣

∣
+

∣

∣

∣
Perm

d(T )
odd (2n)

∣

∣

∣
= |FT (n+ 1)|+ |FT (n+ 2)|

= 8(2r−2) + 2(2r−1) + 6(2r−1) + 4(1) = 2r+2 + 2r+1 + 4

(b) Suppose n = 2r + p. There will be 3 cases to consider. First when 0 < p ≤ 2r − 3, next when
p = 2r − 2, and finally when p = 2r − 1.

(b.1) Suppose 0 < p ≤ 2r − 3. So 2n = 2(2r + p) = 2(2r + p+ 1)− 2, and from Lemma 6.6 and Lemma
6.7 each of the maps δ, δL, δR, and δM are injective.

So n+ 2 = 2r + p+ 2, and n+ 3 = 2r + p+ 3. So by Theorem 6.2

τd(T )(2n− 1) =
∣

∣

∣
Permd(T )

ev (2n− 1)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n− 1)

∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣+
∣

∣PermT (n+ 2)
∣

∣

= 2(2r + p+ 2− 2) + 2(2r + p+ 2− 2) = 2r+2 + 4p

τd(T )(2n) =
∣

∣

∣
Permd(T )

ev (2n)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n)

∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣+
∣

∣PermT (n+ 3)
∣

∣

= 2(2r + p+ 2− 2) + 2(2r + p+ 3− 2) = 2r+2 + 4p+ 2

(b.2) Suppose p = 2r − 2, so n = 2r + 2r − 2 = 2r+1 − 2. From Lemma 6.6 each of the maps δ, δL, and
δR are injective. Then we have 2n = 2(2r+1 − 2) = 2(2r+1 − 1)− 2 and by Lemma 6.7 the map δM is only
surjective.

So n+ 2 = 2r+1 = 2r + 2r = 2r + (2r − 1) + 1. So by Proposition 6.1 and Theorem 6.2

τd(T )(2n− 1) =
∣

∣

∣
Permd(T )

ev (2n− 1)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n− 1)

∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣+
∣

∣PermT (n+ 2)
∣

∣

= 2(2r+1 + 2r − 2) + 2(2r+1 + 2r − 2) = 2r+3 + 2r+2 − 8 = 2r+3 + 4(2r − 2)

τd(T )(2n) =
∣

∣

∣
Permd(T )

ev (2n)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n)

∣

∣

∣
=

∣

∣PermT (n+ 2)
∣

∣+ |FT (n+ 2)|

= 2(2r+1 + 2r − 2) + 8(2r−1) + 2(2r − 1) = 2r+3 + 2r+2 − 6 = 2r+3 + 4(2r − 2) + 2

(b.3) Suppose p = 2r − 1, so n = 2r + 2r − 1 = 2r+1 − 1. So 2n = 2(2r+1 − 1) = 2(2r+1)− 2, and from
Lemma 6.6 and Lemma 6.7 each of the maps δ, δL, δR, and δM are only surjective.

So n+ 1 = 2r+1 = 2r + (2r − 1) + 1, and n+ 2 = 2r+1 + 1 = 2r + 2r + 1. So by Proposition 6.1

τd(T )(2n− 1) =
∣

∣

∣
Permd(T )

ev (2n− 1)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n− 1)

∣

∣

∣
= |FT (n+ 1)|+ |FT (n+ 1)|

= 8(2r−1) + 2(2r − 1) + 8(2r−1) + 2(2r − 1) = 2r+3 + 2r+2 − 4 = 2r+3 + 4(2r − 1)

τd(T )(2n) =
∣

∣

∣
Permd(T )

ev (2n)
∣

∣

∣
+
∣

∣

∣
Perm

d(T )
odd (2n)

∣

∣

∣
= |FT (n+ 1)|+ |FT (n+ 2)|

= 8(2r−1) + 2(2r − 1) + 8(2r−1) + 2(2r) = 2r+3 + 2r+2 − 2 = 2r+3 + 4(2r − 1) + 2
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