
Hyper-Minimization

for Deterministic Tree Automata

Artur Je»1,? and Andreas Maletti2,??

1 Institute of Computer Science, University of Wrocªaw
ul. Joliot-Curie 15, 50-383 Wrocªaw, Poland

email: aje@cs.uni.wroc.pl
2 Institute for Natural Language Processing, Universität Stuttgart

Pfa�enwaldring 5b, 70569 Stuttgart, Germany
email: andreas.maletti@ims.uni-stuttgart.de

Abstract. Hyper-minimization aims to reduce the size of the represen-
tation of a language beyond the limits imposed by classical minimization.
To this end, the hyper-minimal representation can represent a language
that has a �nite di�erence to the original language. The �rst hyper-
minimization algorithm is presented for (bottom-up) deterministic tree
automata, which represent the recognizable tree languages. It runs in
time O(`mn), where ` is the maximal rank of the input symbols, m is
the number of transitions, and n is the number of states of the input tree
automaton.

1 Introduction

Hyper-minimization for deterministic �nite-state string automata (dfa) [17] al-
lows us to reduce the size of a dfa at the expense of a �nite number of errors. The
original article [2] that introduced hyper-minimization and its theoretical foun-
dations also presented the �rst hyper-minimization algorithm, which was subse-
quently improved toO(mn) [1] and toO(m log n) [4, 8], wherem is the number of
transitions and n is the number of states of the input dfa. Thus, the fastest hyper-
minimization algorithms have the same asymptotic time complexity as the fastest
algorithms for dfa minimization [9]. Since hyper-minimization trivially reduces
to minimization [8], faster hyper-minimization algorithms would imply faster
minimization algorithms, which have remained elusive. Hyper-minimization was
already generalized to weighted dfa [13] and to dfa over in�nite strings [15]. An
overview of existing hyper-minimization algorithms can be found in [12].

We generalize hyper-minimization to deterministic tree automata (dta) [5,
6], which have applications in XML processing [10] and natural language pro-
cessing [11]. We faithfully generalize the existing de�nitions from dfa to dta.

? Financial support provided by the Polish National Science Centre (NCN) grant DEC-
2011/01/D/ST6/07164.

?? Financial support provided by the German Research Foundation (DFG) grant
MA 4959/1-1.

...

...
�

...

...
�

γ

σ

α ...

σ

α σ

α/β/γ α/β/γ

Fig. 1. Illustration of the di�erence locations in a context: along the path to the root
(left) and o� this path (middle), and illustration of the tree language L(Mex) of Ex. 2.

Thus, our hyper-minimization for dta is based on a congruence that is similar
to the context-language equivalence used in dta minimization [3]. The fastest
known algorithm for dta minimization [7] runs in time O(`m log n), where ` is
the maximal rank of the input symbols, m is the number of transitions, and n is
the number of states of the input dta. The hyper-minimization algorithm that
we present has the run-time complexity O(`mn), which is slightly worse than
traditional minimization, but we believe that our algorithm can be improved
using the standard techniques used in hyper-minimization of dfa. We sketch the
improved version in Sect. 5.

Dta hyper-minimization is not a straightforward adjustment of dfa hyper-
minimization. While they share the same principal structure, the actual prop-
erties used in the algorithms are di�erent. The main reason for the di�erences
is the location of the errors in the recognized context language. They can not
only occur in the successor states (as for dfa) but can also occur in sibling
states (see Fig. 1). This yields that several foundational results for dfa hyper-
minimization [2] do not faithfully generalize to dta. Nevertheless, we borrow
much of the surrounding infrastructure from the existing hyper-minimization
algorithms [8, 14] and despite the theoretical di�erences, we obtain an e�cient
hyper-minimization algorithm following the approach of [1].

2 Preliminaries

The set of all nonnegative integers is IN, and we let [k] = {i ∈ IN | 1 ≤ i ≤ k} for
every k ∈ IN. The cardinality of a �nite set S is denoted by |S|. The symmetric
di�erence S 	 T of sets S and T is (S − T) ∪ (T − S). If S 	 T is �nite, then
S and T are almost equal. A binary relation ∼= on S is an equivalence if it is
re�exive, symmetric, and transitive. We often present them as partitions of S.

An alphabet Σ is a �nite set, and a ranked alphabet (Σ, rk) consists of an
alphabet Σ and a mapping rk : Σ → IN, which assigns a rank to each symbol
of Σ. For every k ∈ IN, we let Σk = rk−1(k) be the set of all symbols of rank k.
In the following, we typically denote the ranked alphabet (Σ, rk) by just Σ. For
a set T , we let Σ(T) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T}. The set TΣ(Q)
of Σ-trees with states Q is the smallest set T such that Q ∪ Σ(T) ⊆ T . We

write TΣ for TΣ(∅). The height ht(t) of t ∈ TΣ(Q) is recursively de�ned as
follows: ht(q) = 0 for all q ∈ Q and ht(σ(t1, . . . , tk)) = 1 + max {ht(ti) | i ∈ [k]}
for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). The set states(t) is the minimal set Q such
that t ∈ TΣ(Q). The set of positions of a tree t ∈ TΣ(Q) is denoted by pos(t),
of which those that are labeled by q ∈ Q form the set posq(t). Finally, for every
t ∈ TΣ(Q), q, q′ ∈ Q, and w ∈ posq(t), the tree t[q′]w is obtained from t by
relabeling the occurrence of q at w to q′.

A context c is a tree of TΣ∪{�}(Q), in which the special nullary symbol �

occurs exactly once. The set of all such contexts is CΣ(Q), and we write CΣ
for CΣ(∅). For every c ∈ CΣ(V) and t ∈ TΣ∪{�}(Q), the tree c[t] ∈ TΣ∪{�}(Q)
denotes the tree obtained from c by replacing the unique occurrence of � by t. A
tree t′ ∈ TΣ(Q) is a subtree of t ∈ TΣ(Q) if there exists a context c ∈ CΣ(Q) such
that t = c[t′]. The subtree is strict if t 6= t′. The depth of a context c ∈ CΣ(Q)
is recursively de�ned by dp(�) = 0 and

dp(σ(t1, . . . , ti−1, c, ti+1, . . . , tk)) = 1 + dp(c)

for every σ ∈ Σk, index i ∈ [k], context c ∈ CΣ(Q), and t1, . . . , tk ∈ TΣ(Q).
A deterministic tree automaton (dta) [5, 6] is a tupleM = (Q,Σ, δ, F) where

Q is a �nite set of states, Σ is a ranked alphabet of input symbols, δ : Σ(Q)→ Q
is a (partial) transition function, and F ⊆ Q is a set of �nal states. The dtaM is
total if δ is total. The transition function δ extends to δ : TΣ(Q)→ Q by δ(q) = q
for every q ∈ Q and δ(σ(t1, . . . , tk)) = δ(σ(δ(t1), . . . , δ(tk))) for every σ ∈ Σk
and t1, . . . , tk ∈ TΣ(Q). We let L(M)qq′ = {c ∈ CΣ | δ(c[q′]) = q} for every

q, q′ ∈ Q. Moreover, L(M)q′ =
⋃
f∈F L(M)fq′ contains all contexts c such that

c[q′] takes M into a �nal state and L(M)q = δ−1(q)∩TΣ contains all (stateless)
trees that take M into the state q. The dta M recognizes the tree language
L(M) =

⋃
f∈F L(M)f . In the following, we assume that every considered dtaM

is trim (or equivalently: has only reachable states), which means that L(M)q 6= ∅
for every q ∈ Q.

An equivalence ∼= on Q is a congruence (on the dta M) if we have that
δ(σ(q1, . . . , qk)) ∼= δ(σ(q′1, . . . , q

′
k)) for every σ ∈ Σk and q1 ∼= q′1, . . . , qk

∼= q′k.
Two states q, q′ ∈ Q are equivalent, which is denoted by q ≡M q′ (or just q ≡ q′),
if L(M)q = L(M)q′ . We sometimes use those notions for states from di�erent
dta over the same ranked alphabet with the obvious meaning. Note that ≡M is a
congruence, and actually, the coarsest (i.e., least re�ned) congruence on M that
respects F , which means that a �nal state cannot be equivalent to a non�nal
state. The dta M is minimal if there exists no equivalent dta with strictly fewer
states. It is well-known that M is minimal if and only if it does not have two
di�erent, but equivalent states. For every dta M , an equivalent minimal dta can
be computed e�ciently using an adaptation [7] of Hopcroft's algorithm [9],
which runs in time O(`m log n) where ` = max rk(Σ) is the maximal rank of
the input symbols, m = |dom(δ)| is the number of transitions, and n = |Q| is
the number of states. From now on, let M = (Q,Σ, δ, F) be a minimal dta,
which automatically yields that M is trim. Finally, we recall a central notion
from [2] that will also be important in our setting. A state q ∈ Q is a kernel

state if L(M)q is in�nite. Otherwise q is a preamble state. The sets of kernel and
preamble states are denoted by Ker(M) and Pre(M), respectively.

3 Hyper-minimal automata

The goal of hyper-minimization for a given dta M is the e�cient computation
of a dta that is as small as possible (measured by the number of states) and
recognizes a tree language with �nite di�erence to L(M). A dta for which such a
strictly smaller dta does not exist is called `hyper-minimal', and we investigate
the properties of these dta here. Before we can start, we need to introduce the
main notions of this contribution and some essential properties.

For the rest of the section, we consider a minimal dta M = (Q,Σ, δ, F).
To simplify the theoretical discussion, we assume that M is total. This can be
achieved by adding a sink state ⊥ as the target of all missing transitions of a
partial dta. It should be noted that all properties of this section trivially extend
to partial dta. The totality assumption made is purely a convenience.

A minimal dta is obtained by identifying and merging equivalent states. Ac-
cordingly, our goal is to obtain a hyper-minimal dta by identifying and merging
almost equivalent states, where `almost equivalent' has the usual mathematical
meaning (i.e., equivalent up to a �nite number of di�erences).

De�nition 1 (cf. [2, Def. 2.2]). The states q, q′ ∈ Q are almost equivalent,
written q ∼ q′, if L(M)q 	 L(M)q′ is �nite.

Example 2. The running example dta Mex is (Q,Σ, δ, F), where

� Q = {qα, qβ , qγ , qσ,⊥},
� Σ = Σ0 ∪Σ2 with Σ0 = {α, β, γ} and Σ2 = {σ},
� F = {qσ, qγ}, and
� δ returns ⊥ except that for every σ0, σ

′
0 ∈ Σ0 we have

δ(σ0) = qσ0
δ(σ(qσ0

, qσ′0)) = qσ δ(σ(qα, qσ)) = qσ .

It recognizes the tree language {γ} ∪ {cn[σ(σ0, σ′0)] | n ∈ IN, σ0, σ
′
0 ∈ Σ0}, where

c = σ(α,�), c0 = �, and cn+1 = cn[c] for every n ∈ IN (see Fig. 1). Note thatMex

is minimal. However, qβ and qγ are almost equivalent because

L(Mex)qβ = {cn[σ(�, σ0)] | n ∈ IN, σ0 ∈ Σ0} ∪ {cn[σ(σ0,�)] | n ∈ IN, σ0 ∈ Σ0}
L(Mex)qγ = {�} ∪ L(Mex)qβ .

The state qα is neither almost equivalent to qβ nor to qσ. �

We immediately observe that for all q1 ∼ q2 there is an integer k ∈ IN such
that δ(c[q1]) = δ(c[q2]) for all c ∈ CΣ with dp(c) > k. Since the di�erence
L(M)q1 	L(M)q2 is �nite, we can select k such that it is strictly larger than the
depth of any context in the di�erence. For any context c of depth at least k we
obtain that δ(c[q1]) and δ(c[q2]) are equivalent, and thus, equal by minimality.

In contrast to the string case, the converse of the previous statement is not true,
which shows that the generalization is nontrivial. In a dta not only the succes-
sor, but also the sibling states determine the almost equivalence (see Fig. 1).
Although qα and qβ have the same successor states in Ex. 2, they are not almost
equivalent as they expect di�erent sibling states.

Clearly, almost equivalence is an equivalence on Q. Next, we show that it is
even a congruence onM . In contrast to the context equivalence that respects F ,
the almost equivalence ∼ clearly need not respect F (see Ex. 2 where qγ ∼ qβ
but qγ ∈ F and qβ /∈ F).

Lemma 3 (see [2, Lm. 2.10]). For all q ∼ q′ and contexts c ∈ CΣ, we have

δ(c[q]) ∼ δ(c[q′]). In particular, ∼ is a congruence.

Proof. For each context c′ ∈ L(M)δ(c[q])	L(M)δ(c[q′]) we have that the context
c′[c] ∈ L(M)q	L(M)q′ . Clearly, di�erent c

′ yield di�erent contexts c′[c], so there
can only be �nitely many such contexts c′ because L(M)q 	 L(M)q′ is �nite,
which proves that δ(c[q]) ∼ δ(c[q′]). The latter property is a simple consequence
of the former via particular contexts of depth 1 and the standard piecewise
replacement. Let σ ∈ Σk and q1 ∼ q′1, . . . , qk ∼ q′k be almost equivalent states.
Moreover, for each q ∈ Q, let tq ∈ L(M)q be arbitrary. Then

δ(σ(q1, . . . , qk)) = δ(σ(�, tq2 , . . . , tqk)[q1])

∼ δ(σ(�, tq2 , . . . , tqk)[q′1]) = δ(σ(q′1, q2, . . . , qk)) = δ(σ(tq′1 ,�, tq3 , . . . , tqk)[q2])

∼ . . .
∼ δ(σ(tq′1 , . . . , tq′k−1

,�)[q′k]) = δ(σ(q′1, . . . , q
′
k)) . ut

To complete the essential de�nitions, two dtaM and N are almost equivalent
if L(M) and L(N) are almost equal. Naturally, this is an equivalence relation on
dta. Next, we relate the states of almost equivalent dta in order to prepare our
characterization of hyper-minimal dta.

Lemma 4. Let M = (Q,Σ, δ, F) and N = (P,Σ, µ,G) be minimal dta that are

almost equivalent. Then L(M)δ(t) and L(N)µ(t) are almost equal for all t ∈ TΣ.

Proof. For every L ⊆ TΣ , let t−1L = {c ∈ CΣ | c[t] ∈ L}. Since L(M) and L(N)
are almost equal, also t−1L(M) and t−1L(N) are almost equal. Together with
t−1L(M) = L(M)δ(t) and t

−1L(N) = L(N)µ(t), we proved the statement. ut

Now we make hyper-minimality precise. The dtaM is hyper-minimal if all al-
most equivalent dta are at least as large (i.e., have at least as many states). We al-
ready remarked that we want to obtain hyper-minimal dta with the help of merg-
ing. In amerge of q ∈ Q into q′ ∈ Q we redirect all transitions leading to q into q′.
Formally, for every two di�erent states q, q′ ∈ Q, the dta merge(M, q → q′) is
(Q− {q}, Σ, δ′, F − {q}) where for every s ∈ Σ(Q− {q})

δ′(s) =

{
q′ if s ∈ δ−1(q)
δ(s) otherwise.

Lemma 5. If q ∼ q′ and q is a preamble state, then merge(M, q → q′) and M
are almost equivalent.

Proof. Let merge(M, q → q′) = (Q′, Σ, δ′, F ′). The set D = L(M)q 	 L(M)q′

is �nite because q ∼ q′. We select ` with ` > ht(c) for every c ∈ D. Let
t ∈ TΣ be such that ht(t) ≥ ` + |Q|. First we replace all subtrees t′ ∈ L(M)q

in t by just q. In this way, we obtain the tree u. Note that δ(t) = δ(u) and
ht(u) ≥ ` because ht(t′) ≤ |Q| for all t′ ∈ L(M)q since q is a preamble state. Let
posq(u) = {w1, . . . , wn} with w1 < · · · < wn be the occurrences of q in u. For
each i ∈ [n], let ci = (u[q′]w1

· · · [q′]wi−1
)[�]wi be the context obtained from u by

replacing the �rst i− 1 occurrences by q′ and the occurrence wi by �. Note that
ht(ci) = ht(u) ≥ `, which allows us to obtain

δ(t) = δ(u) = δ(c1[q]) = δ(c1[q
′]) = δ(c2[q]) = · · · = δ(cn[q

′])
†
= δ′(t) ,

where † holds because δ and δ′ coincide on all transitions not involving q. Con-
sequently, merge(M, q → q′) and M agree on all tall trees as desired. ut

Example 6. Recall the dta Mex = (Q,Σ, δ, F) of Ex. 2. If we merge qβ into qγ ,
then we obtain the dta merge(Mex, qβ → qγ), which is (Q−{qβ}, Σ, δ′, F) where
δ′ returns ⊥ except that for every σ0, σ

′
0 ∈ Σ0 we have

δ′(α) = qα δ′(β) = qγ δ′(γ) = qγ

δ′(σ(qσ0 , qσ′0)) = qσ δ′(σ(qα, qσ)) = qσ . �

Now we can characterize hyper-minimality [2]. The characterization allows
us to easily determine whetherM is hyper-minimal. Recall that a dta is minimal
if and only if it does not have two di�erent, but equivalent states. The condition
for hyper-minimality is similar, but adds a restriction to preamble states.

Theorem 7. The minimal dta M is hyper-minimal if and only if every pair of

di�erent, but almost equivalent states consists of only kernel states.

Proof. We start with the �only if�-direction. Suppose that there exist two dif-
ferent, but almost equivalent states q, q′ ∈ Q such that q is a preamble state.
Then M is not hyper-minimal because merge(M, q → q′) is strictly smaller and
almost equivalent to M by Lm. 5. For the converse, let N = (P,Σ, µ,G) be a
hyper-minimal dta that is strictly smaller (i.e., |P | < |Q|) and almost equivalent
to M . The product dta M ′ = (Q× P,Σ, δ × µ, F ×G) is given by

(δ × µ)(σ(〈q1, p1〉, . . . , 〈qk, pk〉)) = 〈δ(σ(q1, . . . , qk)), µ(σ(p1, . . . , pk))〉

for every σ ∈ Σk and 〈q1, p1〉, . . . , 〈qk, pk〉 ∈ Q × P . Since M is minimal, let
tq ∈ L(M)q for every q ∈ Q. If q ∈ Ker(M), then select tq such that ht(tq) ≥ |Q|2.
By the pigeon-hole principle with |P | < |Q|, there must exist di�erent q1, q2 ∈ Q
and p ∈ P such that (δ × µ)(tq) = 〈q, p〉 for q ∈ {q1, q2}. Consequently, q1 ∼ q2
because L(M)q1 and L(N)p as well as L(M)q2 and L(N)p are almost equal by
Lm. 4. This in turn yields that q1 and q2 are kernel states of M by assumption.

Algorithm 1 Structure of our dta hyper-minimization algorithm [2, 8].

Require: a dta M
Return: an almost equivalent hyper-minimal dta

M ←Minimize(M) // complexity: O(`m logn)
2: K ← ComputeKernel(M) // complexity: O(`m)

∼ ← {〈q, q′〉 ∈ Q2 | L(M⊗)〈q,q′〉 is �nite} // see Sect. 4

4: for all B ∈ (Q/∼) do
select qB ∈ B such that qB ∈ K if possible

6: for all q ∈ B −K do

M ← merge(M, q → qB) // complexity: O(1)
8: return M

Moreover, 〈q1, p〉 and 〈q2, p〉 are kernel states of M ′ by the selection of the ac-
cess trees with ht(tq1) ≥ |Q|2 ≤ ht(tq2) (because the trees tq1 and tq2 can be
pumped [5, 6]). Now, for the sake of a contradiction, let c ∈ L(M)q1 	 L(N)p.
Then {c[t] | t ∈ L(M ′)〈q1,p〉} ⊆ L(M) 	 L(N). Since 〈q1, p〉 is a kernel state
of M ′, the set L(M ′)〈q1,p〉 is in�nite. This contradicts that M and N are almost
equivalent, so consequently, L(M)q1 	 L(N)p = ∅, and L(M)q2 	 L(N)p = ∅ in
the same manner. Thus, q1 and q2 are equivalent and q1 = q2 by the minimality
of M , which shows that the dta N cannot exist. ut

Example 8. The dta Mex of Ex. 2 is not hyper-minimal since qβ ∼ qγ and both
states are preamble states (see Ex. 2). However, with a little e�ort we can show
that the dta merge(Mex, qβ → qγ) is hyper-minimal (see Ex. 6). �

4 Hyper-minimization

The previous results suggest a hyper-minimization algorithm, which we sketch
in Alg. 1. We work with the (potentially non-total) dta M = (Q,Σ, δ, F) now.
In addition, we let ` = max rk(Σ), m = |dom(δ)|, and n = |Q|. Algorithm 1
simply determines the kernel states and the almost equivalence using methods
that we describe later. It then merges states (by simply changing a reference)
according to the conditions of Lm. 5, which guarantees that the result is almost
equivalent. Finally, Thm. 7 shows that the obtained dta is hyper-minimal.

Corollary 9 (of Lm. 5 and Thm. 7). Algorithm 1 returns a hyper-minimal

dta that is almost equivalent to M .

In Alg. 1 we use Minimize, which implements classical dta minimization [5,
6, 3] in time O(`m log n) using an adaptation of Hopcroft's algorithm [9, 7].
The procedure ComputeKernel computes the kernel states of M using any
fast algorithm for computing strongly connected components in a graph (e.g.,
Tarjan [16]). The next proposition shows the trivial problem translation.

Proposition 10. Ker(M) can be computed in time O(`m).

qσ ⊥

qα qβ qγ

Fig. 2. The graph derived from the dta of Ex. 2.

Proof. We turn our dta M into the graph (Q,E), where

E = {(q, δ(t)) | t ∈ dom(δ), q ∈ states(t)} .

It is simple to observe that q ∈ Ker(M) if and only if it is reachable from a non-
trivial strongly connected component of the graph (Q,E) [see [8] for details]. ut

Example 11. The kernel states of the dta Mex of Ex. 2 are {qσ,⊥}, which is
easily determined from the graph displayed in Fig. 2.

The �nal component is the identi�cation of the almost equivalent states,
which also determines the overall run-time of our hyper-minimization algorithm.
For this �nal component, we use an adapted version of an algorithm from [1],
which is simple but not the fastest. In the next section, we sketch how the
currently fastest algorithms for dfa almost equivalence [4, 8] can be adjusted to
our dta setting.

To simplify the presentation, we assume that δ(s) = ⊥ for the special to-
ken ⊥ /∈ Q if δ(s) is unde�ned. Note that we do not add ⊥ to Q, so we do not
make M total. In contrast, we just introduce a notational convenience.

De�nition 12. The exclusive-or single-point self-product of M is the dta

M⊗ = (P ∪ P 2, Σ, δ ∪ δ′, F ′)

such that P = Q ∪ {⊥} with ⊥ /∈ Q,

� F ′ = {〈q, q′〉 | either q ∈ F or q′ ∈ F}, and
� for every σ ∈ Σk, i ∈ [k] and q, q′, q1, . . . , qk ∈ P

δ′(σ(c[〈q, q′〉])) = 〈δ(c[q]), δ(c[q′])〉 ,

where c = σ(q1, . . . , qi−1,�, qi+1, . . . , qk) and at least one of the δ-entries has
to be de�ned (i.e., Q ∩ {δ(c[q]), δ(c[q′])} 6= ∅).

� δ′ is unde�ned otherwise. �

In other words, only the paired states in which one state is �nal and the other
is non�nal are now �nal states in M⊗. The transitions on pairs run componen-
twise with an explicit sink state component as long as at least one component
is still a �normal� state. This special treatment is necessary to correctly handle
partial dta.

Proposition 13. We can construct M⊗ in time O(`mn).

Proof. Clearly, we can create the states in time O(n2). Since M is minimal, we
have n ≤ m, which yields O(n2) ⊆ O(mn). Clearly, for each transition in M ,
we construct at most O(`n) copies of that transition, which yields that we can
construct all transitions in time O(`mn), where we assume that transition look-
ups run in constant time. ut

Example 14. Now we can handle the dta Mex of Ex. 2 as a partial dta. The
dta (Mex)⊗ is (Q ∪Q2, Σ, δ ∪ δ′, F ′), where

� F ′ = {〈qσ, qα〉, 〈qσ, qβ〉, 〈qσ,⊥〉, 〈qγ , qα〉, 〈qγ , qβ〉, 〈qγ ,⊥〉}sym, where Lsym is
the symmetric closure of L, and

� some interesting transitions of δ′ include

δ′(σ(〈qα, qβ〉, qσ)) = δ′(σ(qα, 〈qσ,⊥〉)) = 〈qσ,⊥〉

δ′(σ(〈qβ , qγ〉, qα)) = δ′(σ(〈qβ , qγ〉, qβ)) = δ′(σ(〈qβ , qγ〉, qγ)) = 〈qσ, qσ〉
δ′(σ(qα, 〈qβ , qγ〉)) = δ′(σ(qβ , 〈qβ , qγ〉)) = δ′(σ(qγ , 〈qβ , qγ〉)) = 〈qσ, qσ〉 .

For the sake of the next theorem, we assume that M⊗ is total to avoid
a distinction between ⊥ and unde�nedness. It can easily be checked that the
argument also works for partial dta.

Theorem 15. L(M⊗)〈q,q′〉 is �nite if and only if q ∼ q′ for every q, q′ ∈ Q.

Proof. Let M⊗ = (Q′, Σ, δ′, F ′). Clearly, δ′(c[〈q, q′〉]) = 〈δ(c[q]), δ(c[q′])〉 for ev-
ery c ∈ CΣ , which can be proven using standard induction. Now

c ∈ L(M⊗)〈q,q′〉 ⇐⇒ δ′(c[〈q, q′〉]) ∈ F ′ ⇐⇒ 〈δ(c[q]), δ(c[q′])〉 ∈ F ′

⇐⇒ either δ(c[q]) ∈ F or δ(c[q′]) ∈ F ⇐⇒ c ∈ L(M)q 	 L(M)q′ .

This strong correspondence shows the statement because the �niteness of either
set (L(M⊗)〈q,q′〉 or L(M)q 	 L(M)q′) implies the �niteness of the other and
L(M)q 	 L(M)q′ is �nite if and only if q ∼ q′. ut

The �niteness of L(M⊗)〈q,q′〉 for all states 〈q, q′〉 can be determined easily (us-
ing standard algorithms) in linear time in the number of transitions ofM⊗. Since
the number of transitions of M⊗ is O(`mn), we can obtain ∼ in time O(`mn).

Example 16. In the dta Mex of Ex. 2 we have qα 6∼ qβ as demonstrated by the
recursive transitions for 〈qα, qβ〉 in Ex. 14. Moreso, qβ ∼ qγ because the language
L((Mex)⊗)〈qβ ,qγ〉 is �nite (it contains only �).

Since we already proved that Alg. 1 is correct and have now established the
run-time, we can state our main theorem.

Theorem 17. Hyper-minimization of M can be performed in time O(`mn).

Proof. We run Alg. 1, which runs in time O(`mn) because Line 3 runs in this
time bound as demonstrated in this section. Finally, Cor. 9 proves the algorithm's
correctness. ut

5 Discussion

In this section, we shortly discuss two minor issues. First, we demonstrate that
dta minimization can be reduced in linear time to dta hyper-minimization. In
the string case, this is achieved [8] with a new distinguished symbol that takes
every state back to the initial state, thus making all states kernel states. Since
we do not have a single initial state in a dta, we use a slightly di�erent con-
struction. Let M = (Q,Σ, δ, F) be a dta that is not necessarily minimal. For
every q ∈ δ(Σ0), let

−→q /∈ Σ be a new symbol of rank 1. Moreover, we use
the two new symbols → and 	, which are of rank 0 and 1, respectively, and
a new state ı /∈ Q. We construct the dta M ′ = (Q ∪ {ı}, Σ′, δ′, F) such that

ı M
→

−→q1

−→qn

	

Fig. 3. Illustration.

� Σ′ = Σ ∪ {−→q | q ∈ δ(Σ0)} ∪ {→,	},
� δ′(t) = δ(t) for all t ∈ dom(δ),
� δ′(→) = ı and δ′((ı)) = ı, and
� δ′(−→q (ı)) = q for all q ∈ δ(Σ0).
� All remaining transitions are unde�ned.

Clearly, M ′ can be constructed in linear time
in the size of M . The construction is illus-
trated in Fig. 3. Clearly, all reachable states inM ′ are kernel states. It is easy to
see that a dta in which all reachable states are kernel states is hyper-minimal if
and only if it is minimal. Consequently, we can hyper-minimize M ′ to obtain a
minimal dtaM ′′ for L(M ′). FromM ′′ we can obtain a minimal dta for L(M) by
dropping all transitions involving the newly introduced symbols. Thus, we have
reduced minimization to hyper-minimization, which shows that the complexity
of dta minimization is a lower bound on the complexity of hyper-minimization.

Second, we sketch an improved version of our hyper-minimization algorithm,
which uses the structure of the fastest dfa hyper-minimization algorithms [4, 8].
First of all, we assume that M is total. We only present the computation of the
almost equivalence because only this part needs to be improved to obtain the
time bound O(`m log n), which is also the time complexity of the fastest dta
minimization algorithm [7]. Before we present the algorithm, we establish an
auxiliary result.

Proposition 18. Let M be minimal and q, q′ ∈ Q. We have q ∼ q′ if and only

if for each context c ∈ CΣ(Q) we have

� δ(c[q]) ∼ δ(c[q′]), and
� δ(c[q]) = δ(c[q′]) if states(c) ∩Ker(M) 6= ∅.

Proof. The �only if� direction is a straightforward generalization of Lm. 3. For
the converse, we simply take the trivial context �. ut

Proposition 18 shows that we need a completely new mechanism (compared
to the string case) to compute the successor states. We de�ne the successor
states, where we keep two dta: (i) the original dta M0 to enforce the equality
constraints of the second item of Prop. 18 and (ii) a dtaM obtained by successive
merges to capture the almost equivalence.

Algorithm 2 Algorithm computing ∼.
Require: minimal dta M = (Q,Σ, δ, F)
Return: the almost equivalence ∼ represented as a partition

M0 ←M where M0 = (Q,Σ, δ0, F) // keep a copy of the input dta M
2: π(q)← {q} for all q ∈ Q // trivial initial blocks
h← ∅ // empty hash map of type h : QC → Q

4: I ← Q; P ← Q // states that need to be considered and current states

while I 6= ∅ do
6: select q ∈ I and remove it from I

if HasValue(h, succM,M0
q) then

8: q′ ← Get(h, succM,M0
q) // retrieve state in bucket succM,M0

q of h
Swap(q′, q) if |π(q′)| ≥ |π(q)| // exchange roles of q′ and q

10: P ← P − {q′} // state q′ will be merged into q
I ← I ∪{r ∈ P | t ∈ δ−1(q′), r ∈ states(t)} // add predecessors of q′ in P to I

12: M ← merge′(M, q′ → q) // merge state q′ into q (do not remove q′)
π(q)← π(q) ∪ π(q′) // q′ and q are almost equivalent

14: h← Put(h, succM,M0
q , q) // store q in h under key succM,M0

q

return π

De�nition 19. Let M0 = (Q,Σ, δ0, F) and M be dta. For every state q ∈ Q,
let succM,M0

q : C → Q be the mapping such that for every c ∈ C

succM,M0
q (c) =

{
δ0(c[q]) if states(c) ∩Ker(M) 6= ∅
δ(c[q]) otherwise,

where C = {σ(q1, . . . , qi−1,�, qi+1, . . . , qk) | σ ∈ Σk, i ∈ [k], q1, . . . , qk ∈ Q}.

In other words, we compute with the original transition mapping δ0 for all
transition contexts containing a kernel state and use the current transition map-
ping δ for all other transition contexts. Let us attempt to explain Algorithm 2.
Its overall structure is the same as in the string case [4, 8]. We only changed the
details to suit the new needs in the dta case. Roughly speaking, the algorithm
�rst copies the input dta in order to have the original transition mapping avail-
able. Then it creates a block for each state. In I it keeps a set of states that need
to be processed, and in P it stores the set of states that are still useful. Both are
initially Q and we also create a hash map h of type h : QC → Q, which initially
has no entries. Clearly, the key set of this hash map is highly complex. The algo-
rithm iteratively extracts a state q from I and computes its successors succM,M0

q .

It then looks succM,M0
q up in the hash-map h, and simply stores them in h if

they are so far unassociated. If the successors already have an entry in h, then
the algorithm extracts the state with the same successors from h, compares the
sizes of their respective blocks, and merges the state q′ belonging to the smaller
block into the one belonging to the bigger block. We use a variant of our merging
procedure here, which does not delete the state q′. It also updates the blocks to
re�ect the merge, and it adds all states that have transitions leading to q′ to I

for processing because their successors have changed. The algorithm terminates
when the set I is empty. The time complexity of this algorithm can be analyzed
as in the string case [8]. Finally, its correctness still needs to be established.

References

1. Badr, A.: Hyper-minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), 735�746
(2009)

2. Badr, A., Ge�ert, V., Shipman, I.: Hyper-minimizing minimized deterministic �nite
state automata. RAIRO Theor. Inf. Appl. 43(1), 69�94 (2009)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata: Techniques and applications. Available
on: http://tata.gforge.inria.fr/ (2007)

4. Gawrychowski, P., Je», A.: Hyper-minimisation made e�cient. In: Proc. 34th Int.
Symp. Mathematical Foundations of Computer Science. LNCS, vol. 5734, pp. 356�
368. Springer (2009)

5. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
6. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, chap. 1, pp. 1�68. Springer (1997)
7. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization

of tree automata. Theoret. Comput. Sci. 410(37), 3539�3552 (2009)
8. Holzer, M., Maletti, A.: An n logn algorithm for hyper-minimizing a (minimized)

deterministic automaton. Theoret. Comput. Sci. 411(38�39), 3404�3413 (2010)
9. Hopcroft, J.E.: An n logn algorithm for minimizing states in a �nite automaton.

In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189�196.
Academic Press (1971)

10. Hosoya, H.: Foundations of XML Processing: The Tree-Automata Approach. Cam-
bridge University Press (2011)

11. Knight, K.: Capturing practical natural language transformations. Machine Trans-
lation 21(2), 121�133 (2007)

12. Maletti, A.: Notes on hyper-minimization. In: Proc. 13th Int. Conf. Automata and
Formal Languages. pp. 34�49. Nyíregyháza College (2011)

13. Maletti, A., Quernheim, D.: Hyper-minimisation of deterministic weighted �nite
automata over semi�elds. In: Proc. 13th Int. Conf. Automata and Formal Lan-
guages. pp. 285�299. Nyíregyháza College (2011)

14. Maletti, A., Quernheim, D.: Optimal hyper-minimization. Int. J. Found. Comput.
Sci. 22(8), 1877�1891 (2011)

15. Schewe, S.: Beyond hyper-minimisation � minimising DBAs and DPAs is NP-
complete. In: Proc. 30th Int. Conf. Foundations of Software Technology and Theo-
retical Computer Science. LIPIcs, vol. 8, pp. 400�411. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2010)

16. Tarjan, R.E.: Depth-�rst search and linear graph algorithms. SIAM J. Comput.
1(2), 146�160 (1972)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, chap. 2, pp. 41�110. Springer (1997)

