Unambiguous Constrained Automata

Michaél Cadilhac!, Alain Finkel?>:*, and Pierre McKenzie!**

1 DIRO, Université de Montréal
C.P. 6128 succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada
{cadilhac,mckenzie}@iro.umontreal.ca
2 LSV, ENS Cachan, CNRS
61 avenue du Président Wilson, 94235 Cachan Cedex, France
finkel@lsv.ens-cachan.fr

Abstract. The class of languages captured by Constrained Automata
(CA) that are unambiguous is shown to possess more closure properties
than the provably weaker class captured by deterministic CA. Problems
decidable for deterministic CA are nonetheless shown to remain decidable
for unambiguous CA, and testing for regularity is added to this set of
decidable problems. Unambiguous CA are then shown incomparable with
deterministic reversal-bounded machines in terms of expressivity, and a
deterministic model equivalent to unambiguous CA is identified.

Keywords: unambiguity, constrained automata, regularity test.

1 Introduction

A recent trend in automata theory is to study flavors of nondeterminism, which
are introduced to provide a scale of expressiveness in different models (see [4]
for a survey). The usual goal is to strike a balance between the expressiveness of
nondeterministic models and the undecidability properties that often come with
nondeterminism. A natural restriction to nondeterminism is unambiguity, i.e.,
the property that despite the underlying nondeterminism, there be at most one
way to accept an input word. Within the context of finite automata, unambiguity
and nondeterminism are equally expressive, but many open problems concerning
the state complexity of unambiguity remain. Within more general contexts, the
first question is often whether unambiguity offers more expressiveness than de-
terminism; if so, then the examination of the closure and decidability properties
of the new class often reveals that it inherits good properties. Another line of
attack is to find a deterministic model equivalent to an unambiguous model, so
as to understand how unambiguity affects a given model.

In [9], Klaedtke and RueR studied Constrained Automata (CA)[] a model
whose expressive power lies between regular languages and context-sensitive

* Ce travail a bénéficié d’une aide de I’Agence Nationale de la Recherche portant la
référence “REACHARD-ANR-11-BS02-001".
** Supported by the Natural Sciences and Engineering Research Council of Canada.
! In [9], the model under study is called Parikh automata. CA are but an effectively
equivalent model with an arguably simpler definition.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 239 2012.
© Springer-Verlag Berlin Heidelberg 2012

240 M. Cadilhac, A. Finkel, and P. McKenzie

languages [3]. Klaedtke and Ruef successfully used the CA in the model check-
ing of hardware circuits, suggesting that CA is a model of interest for real-life
applications. The deterministic variant (DetCA) of the CA enjoys more closure
properties (e.g., complement) and decidability properties (e.g., universality) than
the CA, but is unable to express languages as simple as {a, b}*-{a”b™ | n > 1} [3].
Buoyed by Colcombet’s recent systematic examination of unambiguity [4], here
we initiate the study of unambiguous CA (UnCA).

We show that UnCA enjoy more closure properties than DetCA, while being
more expressive. The class of languages UnCA defines is indeed closed under
Boolean operations, reversal, and right and left quotient. We show that the
problems known to be decidable for DetCA (emptiness, universality, finiteness,
inclusion) remain decidable for UnCA. As the main technical result of this paper,
we show that regularity is decidable for UnCA; by contrast, regularity is known
to be undecidable for CA [3], while its status was unknown for DetCA. Finally,
although DetCA are less powerful than UnCA, we present a natural deterministic
model equivalent to UnCA; as a result of independent interest, we show that the
nondeterministic variant of this model has the same expressive power as CA.

Section] contains preliminaries, settles notation, and defines the models in
play. Section [3] investigates the closure and expressiveness properties of UnCA
and compares it to deterministic reversal-bounded counter machines. Section M
proceeds with the decidability properties of UnCA and proves regularity decid-
able. Section [shows that there is a natural deterministic model equivalent to
UnCA. Section [@] concludes with a brief discussion.

2 Preliminaries

Integers, Vectors, Monoids. We write N for the nonnegative integers. Let d > 1.
Vectors in N? are noted in bold, e.g., v whose elements are v, v, . . . , vg. We write
e; € {0,1}¢ for the vector having a 1 only in position i and 0 for the all-zero
vector. We view N? as the additive monoid (N¢ +), with + the component-
wise addition and O the identity element. Given an order on some set X =
{a1,az,...,a,} we often refer to the components of a vector v € NI*I by z,,
instead of x;. In particular, for a € X, z, refers to the i-th component of x
where 7 is such that a; = a. Let s > 0 and p > 1, we define the congruence =; ,
by z=s,yiff (x=y<s)V(zx,y>sAz=y (mod p)), for z,y € N; we write
[x]s,p for the equivalence class of x under = ,. We extend =, component-wise
to vectors @,y € N? by letting « =, , y iff 7; =, y; for all 1 < i < d; similarly,
[x]s,p is the equivalence class of & under this relation.

For a monoid (M, -) and S C M, we write S* for the monoid generated by S,
i.e., the smallest submonoid of (M,) containing S. A (monoid) morphism from
(M,-) to (N,o) is a function h: M — N such that h(mq - mz) = h(my) o h(ma),
and, with eps (resp. en) the identity element of M (resp. N), h(ey) = en.
Moreover, if M = S* for some finite set of symbols S (and this will always be
the case), then h need only be defined on the elements of S. In this case, h is
said to be erasing if there is an s € S such that h(s) = ey. If in addition N = T*

Unambiguous Constrained Automata 241

for some finite set of symbols T, h is said to be length-preserving if for all s € .S,
h(s)eT.

Semilinear Sets, Parikh Image. A subset C of N? is linear if there exist ¢ € N¢
and a finite P C N¢ such that C' = ¢+ P*. The subset C is said to be semilinear
if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is semilinear
while {2" | n > 0} is not. We will often use the fact that the semilinear sets
are those sets of natural numbers definable in first-order logic with addition [5].
A semilinear set is said to be effectively semilinear if its description as a set of
c¢’s and P’s, or equivalently as a formula, can be computed from the data at
hand. Let X' = {a1, a9, ...,a,} be an (ordered) alphabet with e the empty word.
The Parikh image is the morphism @: ¥* — N™ defined by &(a;) = e;, for
1 < ¢ < n — in particular, we have that @(¢) = 0. For w € X*, with ¢(w) = x
and a € X, we write |w|, for z,. The Parikh image of a language L is defined
as ¢(L) = {&(w) | w € L}. The name of this morphism stems from Parikh’s
theorem [I1], stating that for L context-free, &(L) is semilinear. For L C X* and
C C N", define Ll¢ = {w € L | $(w) € C}.

Languages, Operations. For u = wjug---u, € X*, define u® = u, ---ugu; as
the reversal of u. For Ly, Lo C X*, define Llf“ as the set of the reversals of each
word in Ly; (L1)™'La = {v | (Bu € Li)[u-v € La]} as the left quotient of
Ly by Ly; and Li(L2)™! = {u | (v € La2)[u-v € Lq]} as the right quotient
of L1 by Lo. A language L C X* is bounded [0] if there exist n > 0 and a

sequence of words w1, ws,...,w, € YT, which we call a socle of L, such that
L C wiws; ---wy,. The dteration set of L w.r.t. this socle is (uniquely) defined as
[ter(w, wg,...wn) (L) = {(i1, 42, ... ,in) € N* | w]'wg? - --wjr € L}.

Automata. An automaton is a quintuple A = (Q, X, J, qo, F') where @ is a finite
set of states, X is an alphabet, § C @ x X' x Q) is a set of transitions, ¢y € @ is the
initial state, and F' C @ is a set of final states. For a transition t = (¢,a,q’) € ¢,
we write t = ge-a~¢’ and define From(t) = ¢ and To(t) = ¢’. We define p4: §* —
X* as the length-preserving morphism given by pa(t) = a, with, in particular,
pa(e) = e, and write g when A is clear from the context. A path m on A is
a word m = tyty---t, € &* such that To(t;) = From(t;y1) for 1 < 4 < n; we
extend From and To to paths, letting From(7) = From(¢1) and To(w) = To(ty).
We say that u(m) is the label of . A path 7 is initial if From(w) = qo, final
if To(r) € F, and accepting if it is both initial and final; we write Run(A)
for the language over § of accepting paths (or runs) on A. We write L(A) for
the language of A, i.e., the labels of the accepting paths. The automaton A is
deterministic if (pe-a-q € 0 A pe-a»q’ € ¢§) implies ¢ = ¢’. An e-automaton is
an automaton A = (Q, X, d, qo, F') as above, except with 6 C Q x (X U{e}) x Q
so that in particular g4 becomes an erasing morphism. An (e-)automaton A is
unambiguous if each word in L(A) is the label of only one path in Run(A).

Affine Functions. A function f: N — N9 is a (total and positive) affine function
of dimension d if there exist a matrix M € N%*¢ and v € N? such that for
any * € N¢, f(x) = M.z + v. We abusively write f = (M,v). We let Fy
be the monoid of such functions under the operation ¢ defined by (f ¢ g)(x)

242 M. Cadilhac, A. Finkel, and P. McKenzie

= g(f(x)), where the identity element is the identity function, i.e., (Id,0) with
Id the identity matrix of dimension d. Let U be a monoid morphism from X*
to Fq. For w € X*, we write U, for U(w), so that the application of U(w) to a
vector v is written U, (v), and U, is the identity function. We define M(U) as
the multiplicative matrix monoid generated by the matrices used to define U,
ie, MU)={M | (a € 2)(Fv)[U, = (M, v)]}*.

Definition 1 (Constrained automaton [3]). A constrained automaton (CA)
is a pair (A, C) where A is an e-automaton with d transitions and C C N% is
semilinear. Its language is L(A,C) = pa(Run(A)[¢). The CA is said to be:

— Deterministic (DetCA) if A is a deterministic automaton;

— Unambiguous (UnCA) if A is an unambiguous e-automaton.

We write Lca, EDetCAE and Lunca for the classes of languages recognized by
CA, DetCA, and UnCA, respectively.

3 Closure Properties and Expressiveness of UnCA

We show closure and nonclosure properties, and we give languages witnessing
the strictness of Lpetca © Lunca S Lcoa. Lemma [is a tool that will prove
useful when combining UnCA. Tt is shown by applying the standard procedure of
backward-closure (e.g., [I2]) and keeping track of the closure in the constraint set:

Lemma 1. For any UnCA (A, C), there is an UnCA (A',C’) where A" has no
e-transition, L(A) = L(A"), and L(A,C) = L(A’,C").

Proposition 1. Lyyca is closed under union.

Proof (sketch). First, we note that for an UnCA (A, C) over the alphabet X,
there is an UnCA (A’,C") with L(A") = X* and L(A’,C") = L(A,C). The
e-automaton A’ is defined as —o<= A , A where A is a deterministic au-
tomaton for L(A) and the two new transitions are labeled by e. Then C’ is
defined to reject if the transition to A is taken, and to accept if the run is in A
and its Parikh image is in C. Clearly, A’ is unambiguous.

Now let (A, C) and (B, D) be two UnCA over the same alphabet X' (w.l.0.g.),
and with L(A) = L(B) = X*, as per the previous discussion. We design an
automaton that runs A and B in parallel. We rely on Lemma [l to synchronize
the two automata. For any word w, there will be exactly one way to read w over
A and B, thus only one way to read w over both at the same time. Finally, we
constrain this automaton by extracting the paths in A and B and checking that
at least one of them is in its respective constraint set. O

As L(A,C) = L(A) U L(A, C), we have:
Proposition 2. Lynca is closed under complement and intersection.

Note that Lpetca is not closed under reversal, as {a,b}* - {a™b™ | n > 1} is not
in Lpetca while its reversal is [3]. Thus it is a curiosity, especially for a class
described by a deterministic model (forthcoming Theorem M), that we have:

2In [Bl, Lca and Lpetca are written Lpa and Lpetpa, in reference to Parikh
automata [9], which are equivalent to CA.

Unambiguous Constrained Automata 243

Proposition 3. Lynca is closed under reversal.

Proof. Let (A,C) be an UnCA. Let B be the e-automaton A in which a fresh
state ¢r is set to be the only final state, and with a transition from each for-
mer final state to gr labeled e. Clearly, B is unambiguous. Adjust C' into C’
so that the added transitions in B do not affect the acceptance of a word, i.e.,
L(B,C") = L(A,C). Then define D as the e-automaton B in which every transi-
tion is reversed, i.e., (¢, a,q’) is a transition of B iff (¢, a, q) is a transition of D;
the order on the transition set of D is the same as that of B. Additionally, set g¢
as the initial state and the former initial state of B as the only final state. Then
D is unambiguous: clearly, Run(B) = {7® | 7 € Run(D)}, thus the accepting
paths in D labeled w are the reversal of the accepting paths in B labeled w?.
As B is unambiguous, only one such path may exist, thus D is unambiguous.
Hence L(D,C") = (L(B,C")R = (L(A, C))R. O

Proposition 4. Let Ly € Loa and Ls € Lynca. Then L1_1L2 € LUnCA-

Proof. Let (A,C) be a CA, (B, D) be an UnCA, with A = (Q4,%,4,40,4,Fa)
and B = (@B, Y, 9B,9,8, Fp). We suppose, thanks to Lemmalll that no transi-
tion of B is labeled by ¢, and that each state of B is reachable from ¢ g and can
reach a final state. For ¢ € Qp, define B?? (resp. B?) to be the e-automaton
B where the initial state (resp. the only final state) is ¢, and note that B~? is
unambiguous, as any path from ¢ to a final state can be prefixed with a path
from g, p to ¢ to make an accepting path in B. First note that:

Claim 1. For any qp € Qp, the set £ = {(&(7),P(p)) | # € Run(A) Ap €
Run(B2) A pa(m) = up(p)} is effectively semilinear.

A word w is in (L(A,C))"'L(B, D) iff there is a state gz € Qp and a word
u € L(A, C) such that u € L(B7), w € L(B?), and the Parikh image of one
(in fact, the only) path for w in B8~ concatenated with the path for w in B?5
is in D. This is the case iff there is a state ¢gg € Qp and a pair (z,y) € E
such that * € C and the Parikh image z of the only path in B8 labeled
w plus y is in D. In symbols, a word w is in (L(A4,C))"'L(B, D) iff it is in
Ugpeq, LB, {z | B(z,y) € E%)[x € C Ay + z € D]}). O

Remark 1. We note that a similar proof shows that Ly,ca is closed under right
quotient. Also, similar proofs show that Lpetca is closed under both right and
left quotient, settling those two closure properties that were left open in [9].

Let P, = {w = wiwz---wi € {T, 3} | (Vi)[|lwiwsz - wi|z > |wrws - - - wi| 4]}

be the prefixes of the semi-Dyck language with one set of parentheses. Then:
Proposition 5. P; ¢ Lca and Py € Loa \ Lunca-

Proof. (Sketch: Py ¢ Loa and Pi € Lca.) An expressiveness lemma for CA
similar to [3, Lemma 1] shows that P; ¢ Lca. Moreover, we can design a simple
CA for P; which guesses a position in the input word at which the number of
C’s read so far is less than the number of I’s.

(P1 ¢ Lunca.) It Py € Lynca, then Py € Lynca (Proposition), but as
Lunca C Lca, this contradicts Py ¢ Lca. O

244 M. Cadilhac, A. Finkel, and P. McKenzie

Theorem 1. Lpetca S Lunca S Lca.

Proof. The chain of inclusion is immediate. The strictness of Lpetca & Lunca is
witnessed by {a,b}*-{a"b" | n > 1}, as previously mentioned, and the strictness
of Lunca C Lca is witnessed by Py (Proposition B). m]

Proposition 6. Lyyca is neither closed under concatenation with a regular
language, nor under length-preserving morphisms, nor under starring.

Proof. (Concatenation.) Let X = {C,3}. The language Lo = {w € X* |
|lw|e < |w|5} is in Lpetca and such that Py = Lo - X* ¢ Lynca-
(Length-preserving morphisms and starring.) Let T = {C, 3}, then L. -T* €
Lunca. The length-preserving morphism h: (X UT)* — X* defined by h(C) =
h(C) =, h(3) = h(3) = 3 is such that A(L< - T*) = L< - X* ¢ Lynca. For
starring, it is shown in [3, Proposition 10] that with L = {a"b" | n € N} €
Lpetca, L* ¢ Loa 2 Lunca-]

UnCA and RBCM. 1t is known that one-way reversal-bounded counter ma-
chines (RBCM) [8] are as powerful as CA [9], while deterministic such machines
(DetRBCM) are more powerful than DetCA [3].

Definition 2 (RBCM [8]). A one-way counter machine is a finite-state read-
only device that decides at each point whether to move its input head one step
to the right and uses a finite number of counters holding natural numbers,
which can be incremented, decremented, and tested for 0. It is reversal-bounded
(RBCM) if there is a constant r such that each accepting run changes between
increment and decrement at most r times for each counter. It is deterministic
(DetRBCM) if at any point the next values of the counters and the device’s state
are uniquely determined by the symbol currently read, the counter values, and

the device’s state. We write LpetreMm for the class of languages recognized by
DetRBCM.

Proposition 7. Lpetrom and Lunca are incomparable.

Proof (sketch). A DetRBCM can deterministically use extra information pro-
vided in the input word to check for a certain property later in the input; this
is illustrated by L = {a™w | w € {C, O}* A |[wiws - - - wp|c < |wiws -+ wp|5} €
LDetRBCM -
Suppose L € Lynca. Propositiond then asserts that ({a}*)~1LN{C, O}* is in
Lunca. But this latter language is Py ¢ Lunca (Proposition [), a contradiction.
In the other direction, {a,b}* - {a™b"™ | n > 1} € Lunca \ Lpetkaem [B12]. O

4 Decision Problems for UnCA

We recall the following decidability results, that hold equally well for UnCA:

Proposition 8 ([9)3]). Given a CA, it is decidable whether its language is
empty, and whether its language is finite.

With the closure properties of Lunca of Proposition 2] this implies:

Unambiguous Constrained Automata 245

Proposition 9. Given an UnCA, it is decidable whether its language is X*.
Given two UnCA, it is decidable whether the language of the first is included in
the language of the second.

The rest of this section is devoted to the main technical result of our paper,
namely that it is decidable whether the language of an UnCA is regular. Our
technique is mainly in two steps: we first show that it is decidable whether a
bounded CA language (given additionally a socle of the language) is regular
(Lemma [) then reduce the decision in the general case to the decision with
bounded CA languages.

Definition 3 ([7]). A set C is unary if it is equal to a finite union of linear
sets, each period of each linear set having at most one nonzero coordinate.

Lemma 2 (|7, Theorem 1.3]). Let L C wiwj ---w}. The language L is reg-
ular iff 1ter(y, s, wy) (L) is unary.

Lemma 3. Given a CA (A,C) and words wy,wa,...,w, such that L(A,C) C
wiws - --wk, it is decidable whether L(A, C) is regular.

Proof. Let (A,C) be a CA with L(A,C) Cwjws - -w. Let T = {a1,a2,...,an}
be a set of fresh symbols and define the morphism h: T* — X* by h(a;) = w;
for all i. Now let (A’,C") be the CA with language h=!(L(A,C)) Najaj---a},
obtained by the (effective) closures of CA. Then for i € N", a}'a?---air €
L(A,C") iff wi'w ---wir € L(A,C); hence the Parikh image of L(A’,C") is
[ter(w, ws,....wn) (L(A, C)). Now S(L(A’,C")) is an effectively semilinear set [9,
Lemma 5|, hence we can decide whether it is a unary set (see [, Section 3]).
This amounts to deciding, by Lemma [2] whether L(A, C) is regular. O

Lemma 4. The language of an UnCA (A, C) is regular iff Run(A)[¢c is regular.

Proof. First, suppose Run(4) [¢ is regular, for a CA (A,C). As L(A,C)
= p(Run(4) [¢) and regular languages are closed under morphisms, L(A,C)
is regular. This part does not rely on unambiguity.

Second, consider an UnCA (A, C'). We remark that if an accepting path of A is
labeled by a word in L(A, C'), then it is in Run(A)[¢ (the converse is true of any
CA). Indeed, since a path labeled by a word w in L(A, C) is, by unambiguity,
the only path labeled w in Run(A), it has its Parikh image in C. In other words,
Run(A4) [c = p Y (L(A,C)) N Run(A). Now, as the class of regular languages
is closed under inverse morphisms and intersection, if L(A,C) is regular then
Run(4)[¢ is regular. O

Remark 2. The inclusion Run(A)c 2 p~'(L(A,C)) N Run(A) is crucial to the
proof of Lemma [and to the decidability of regularity for UnCA. Indeed, both
this inclusion and Lemma [fail for CA — in fact, regularity is undecidable for
CA [3]. For example, let A be the automaton: ¢ Q@) — a »Eo a with r
initial. Define C' to constrain the two loops on r and s to occur the same number
of times. Then L(A,C) = {a®"*! | n € N}, a regular language. But with 1,2, t3
the three transitions of A, from left to right, Run(A)lc = {t7t2t% | n € N}, a
nonregular language.

246 M. Cadilhac, A. Finkel, and P. McKenzie

As Run(A) is effectively obtainable from A, we need only focus on the decidability
of the regularity of Run(A)[¢c . Note that “moving a cycle” within a run affects
neither its being an accepting path, nor its Parikh image. Repeatedly moving
the cycles to the leftmost position in the run at which they can occur will be a
key ingredient in the following proof. This operation, in particular, will allow to
convert the language of runs in an e-automaton to a set of bounded languages,
with the property that a path is in Run(A)[¢ iff the repeated moving of cycles
leads to a path in one of the bounded languages.

Theorem 2. [t is decidable whether the language of an UnCA is regular.

Proof. Let (A,C) be a UnCA with A = (Q, X, 6, qo, F'). Thanks to Lemma [l we
need only show the decidability of the regularity of R = Run(A)[¢ .

We first formalize the discussion made before this theorem. In the following,
we use Latin letters b, u, v, w to denote paths, and more generally words over 4§,
as we no longer consider words over Y. We use the term cycle for nonempty
paths starting and ending in the same state and with no other state appearing
twice, i.e., an elementary cycle in the underlying multigraph. Fix an ordering
on the cycles of A: {b1,ba,...,be} C 6*. Let S be the set of initial paths in A,
including the empty path. For w € S, define States(w) as the set of states visited
by w. We see the empty path as from and to gg, so that States(e) = {go} and
From(e) = To(e) = qo. Define a: S — (S x N¥) by a(e) = (¢,0) and, for u-t € S
where ¢t € § and a(u) = (v, x):

o t) = (W, x+e;) if v-t=1v'b; AStates(b;) C States(v’) ,
| (w-tx) otherwise .

Note that « is well-defined and that, for any u € S, a(u) = (w,) is such that
w is indeed in S.

In words, applying o removes most of the cycles in a path, and counts them.
Hence, if we see a(u) = (w, x) as the path w in which b; is placed x; times on the
first occurrence of From(b;) in w, we may interpret the action of o as “moving to
the left” each cycle read, while “removing their nesting.” Additionally, this path
isin R iff u is in R.

In order to make the preceding intuition formal, we define the different bounded
languages that represent Run(A) when the cycles are moved to the leftmost po-
sition where they fit. First, for ¢ € @, fix a compatible ordering on the cycles
with ¢ as their origin: {b(qJ),b(q,g), .. -ab(q,Zq)}v ie., if b; = b(q,z”)a b; = b(q,j/),
and i < j then ¢’ < j'. We write, as usual, bg for (b(q71)7b(q72)7...,b(q,[q)). De-
fine, for ¢ € @, the regular language Bq = b{, 11b(, 2) """ biq,e,)- Now for w € S,
let (go,q1,---,qn) be an ordering of States(w) such that if ¢; is first met before
g; in w, then ¢ < j — that is, the ¢;’s are ordered in their order of first ap-
pearance in w. Further, let 1 = ig,4y,...,4, be the positions in w of the first
appearance of qo, q1,...,qn, respectively. Then we define the bounded regular
language E,, € S by Ey = By Wiy, —1)* By - Wiy i—1)*** By, - Wi, Jw]], Where
W= WiW2 Wiy|s Wap) = WalWatl " Wh- In particular, E. = Bg,. Let C,

Unambiguous Constrained Automata 247

be the set Iter(p, y(Ew N R) and define I,, using C,, and

focusing on the cycles, i.e., for € N, z € I, iff:
(wq(w 17331117 17 .. 7qu7 1) S Cw A (VQ S Q \ {QO7(117 .. 7Qn})[xq = 0])

where x4 € N' and T(q,i) is understood as the variable z; for which b; = b, ;.
Note that if I, # @, then w € Run(A). We are now ready to clarify the informal
discussion made before the theorem:

Claim 2. For all u € S, v € Riff a(u) € {(w,z) | x € I, }.

Wlig,iq—1]50an Wiy, [w]]

If R is regular, then any F,, N R is regular. We will show, using the previous
claim as a decision procedure for R, that if all the E, N R are regular, then
R is regular. The function « gives a hint of an automaton for R; however, the
“accepting set” of Claim [clearly establishes that the state set is infinite. To
circumvent this problem, we show that we can consider only finite objects with
the two following claims, the second being a consequence of Lemma

Claim 3. There is a computable finite set Sf" such that any word w appearing
as a(u) = (w,) is in S0

Claim 4. Suppose that for all w € Sfi*, E, N R is regular. There exist s > 0,
p > 1 such that for any « € N, z € I, iff [z]5,, C L.

Suppose that for all w € S, E,,N R is regular, and let s, p be given by Claim @l
We define a deterministic automaton B for R by:

B = (Sﬁn X (Nlél/z&p)v 9, A4, (57 [O]S,p)v T) ’
A={(u,[®lsp)et= (', [z +elsp) [u-tESNa(u-t) = (v e)} ,
T ={(w,[]sp) | [x]sp € Lw} -

The set A is well-defined as & =, «’ implies + e =, , ' + e. Also, for any
word u € S (and only for them) there is a path from the initial state labeled wu.

Claim 5. Suppose that for all w € S E,, N R is regular. Let u € S, a(u) =
(w,x), and IT be the initial path on B labeled u. Then To(IT) = (w, [x]s,p).

Let u € S and o(u) = (w,). Then u € L(B) iff, by the Claim[, (w, [x]s,) € T,
that is, iff [x]s, C I,. By Claim @] this is the case iff © € I,. By Claim [this
is the case iff u € RN S, i.e., iff u € R. Thus L(B) = R and R is regular.

We now conclude the proof of Theorem Pl As R is regular iff all the £, N R
are regular, for w € S, it is sufficient to check whether the latter part is true.
Now, for w € Sfi", we can construct a CA for E, N R and we know a socle of
E, N R (as we know a socle for E,); hence Lemma [3 allows to check whether
FE, N R is regular. a

A DetCA is an UnCA; moreover, DetCA are effectively equivalent [9] to deter-
ministic extended finite automata over (Z*, +,0) (defined in [10]). Thus:

Corollary 1. Given a DetCA or an extended finite automaton over (Z*,+,0),
it is decidable whether its language is regular.

248 M. Cadilhac, A. Finkel, and P. McKenzie

5 A Deterministic Form of UnCA

We present a deterministic model equivalent to UnCA. This model is a restriction
of the affine Parikh automaton [3] and can be seen as a simple register automaton.
As a result of independent interest, we show that CA are equivalent to the
nondeterministic variant of this model, and that a seemingly more powerful
model (so-called finite-monoid affine Parikh automata [2]) is in fact equivalent
to CA (resp. UnCA) in its nondeterministic (resp. deterministic) form.

Definition 4 (Affine Parikh automaton [3]). An affine Parikh automaton
(APA) of dimension d is a triple (A, U, C) where A is an automaton with tran-
sition set 8, U: 0* — Fy is a morphism, and C C N? is semilinear. Its language
is L(A,U,C) = pa({m € Run(A) | U;(0) € C}). The APA is said to be:

— Deterministic (DetAPA) if A is deterministic;

— Finite-monoid (FM-APA, FM-DetAPA) [2] if M(U) is finite;

— Moving (M-APA, M-DetAPA) if for all t € §, Uy = (M,v) is such that M

is a 0-1-matriz with exactly one 1 per row.
We consider only FM- and M-(Det)APA in the present work. We write Lpy-Apa,

LEM-DetAPA, LM-APA, and Lyipetapra for the classes of languages recognized by
FM-APA, FM-DetAPA, M-APA, and M-DetAPA respectively.

Remark 3. An M-(Det)APA of dimension d can be seen as a finite-state
(deterministic) register automaton with d registers ri,79,...,74: each transi-
tion performs actions of the type r; « rj, + ki, with k; € N, 1 < j; < d, for
1 < i < d, and the device accepts iff the underlying automaton accepts and
the values of the registers at the end of the computation belong to a prescribed
semilinear set.

Theorem 3. £CA = ACM-APA = ACFM-APA'

Proof. We ounly show Lpyapa € Lcea. Let (A, U,C) be an FM-APA, where
A=(Q,%,8,q,F). For t € §, we write U; = (My,v¢), and for t1ty---t, € 57,
we let My ¢yt = My, -+ My, - My, . As it is consistent to do, we set M. = Id,
the identity matrix. We show that L(A, U, C) can be expressed as the union of
the languages of a finite number of CA, and that those CA are unambiguous if
A is deterministic. We work in 3 steps. (1.) We devise a finite set of automata
and show that they recognize the runs 7 on A while “knowing” M, (Claim []).
(2.) We show that this extra knowledge allows for the extraction of U, (0) when
7 is read (Claim [7). We design a semilinear set to constrain this extracted value
by C. (3.) We conclude that replacing the labels ¢ of those CA by p4(t) gives a
finite set of CA recognizing L(A, U, C).

Step 1: Automata for the Paths of A. The simplest way to construct an au-
tomaton for Run(A) is by replacing the label of each transition ¢ of A by ¢
itself, i.e., we obtain the automaton (Q,d, A, qo, F) where t = ge-a~¢' € § &
qe-t-q' € A. This is the first idea of the present construction. The second idea
is that we want, when in a state ¢, all the possible M,’s for 7w accepted from
q to be the same. Write M = M(U). We define, for ¢ € Q and M € M,

Unambiguous Constrained Automata 249

B*@M) — (Q x M, §, A, (¢, M), F x {M.}), where A = {(q, M)et-(¢', M") |
t=qep(t)»q €5 AM .M, = M}.

It is important to note that even if A is deterministic, B*(¢™) may not be
deterministic. Indeed, let Z be the all-zero matrix, and suppose that, for some
t €6, My = Z. Then any matrix M’ verifies M'.M; = Z, thus from the state
(From(t), Z) there is a transition labeled ¢ to any state (To(t), M') for M’ € M.
We now show that these automata indeed recognize the paths m in A, while
“knowing” M. In order to produce a simple statement, write A?? for A where
the initial state is set to ¢, then:

Claim 6. For any ¢ € Q and M € M, L(B*@M)) = {r € Run(A>9) | M, = M}.
In particular, Run(4) = U e L(B>(20:M)),

Step 2: Retrieving U,(0). In this step, we argue that our previous construction
helps in retrieving the value of U,(0) when 7 is read over some B*(@). The
main ingredient is the following simple property: for ¢t € § and p € 6*, Uy,(0) =
M,.v¢ + U,(0). We now show a property on paths over B*(@M)_ First, identify
A with {T1,T5,...,T,}, and each T; with (g;, M;)e-t;~(q., M]); next, write up

for the p function of one of the Bﬁ(q’)’s — this morphism does not depend on
the choice of (g, M). Then:

Claim 7. For any ¢ € Q, M € M, and IT € Run(B*(¢M)), we have Uy m)(0)
=2 (M].vy,).

Now define C" C N" by (z1,%2,...,2,) € C' & (31, x; X (M].vy,))
Claim [6 and Claim [@imply that, for ¢ € Q and M € M, L(B*(@M) C") =
Run(A*?) | M, = M ANU,(0) € C}.

Step 3: from Paths to their Labels. For ¢ € Q and M € M, define D*(@M) to
be the automaton B*(¢M) where a transition labeled ¢ in B*(@M) is relabeled
pa(t) in D?@M) Then L(D?@M) C") = pa(L(B*@M) C")). Since Run(A) =
Unread B71M) this implies that L(A,U,C) = e L(D7 (@M C7). As M
is finite by hypothesis, L(A, U, C) is the finite union of CA languages. The closure
of Loa under union [9] implies that L(A,U,C) € Lca. O

€
{

Theorem 4. Lynca = LM-DetAPA = LFM-DetAPA -

Proof (sketch). Lunca C Lm-Detapa is shown in [2 Lemma 5]; Ly.petapa C
LEM-DetAPA 18 immediate.

For Ley.petara € Lunca, we simply add a step to the proof of the inclusion
Lry-apa € Lca of Theorem [Bl We note, using the same notations, that if A is
deterministic, then for any ¢ € Q and M € M, D?>(@M) is unambiguous. Lunca
being closed under union (Proposition[I]) this proves the inclusion. a

Remark 4. Theorems [B] and [are effective, in the sense that one can go from
one model to another following an algorithm. This implies in particular, from
Theorem [that regularity is decidable for FM-DetAPA; we note that it is not
decidable for DetAPA [2], which describes a class of languages strictly larger
than that of UnCA though expected to be incomparable with that of CA.

250 M. Cadilhac, A. Finkel, and P. McKenzie

6 Conclusion

We showed that Lynca is a class of languages that is closed under the Boolean
operations, reversal, and right and left quotient, and that provably fails to
be closed under concatenation with a regular language, length-preserving mor-
phisms, and starring. Further, the following problems are decidable for Ly,ca:
emptiness, universality, finiteness, inclusion, and regularity. Deciding regularity
for UnCA and DetCA is our main result.

We propose three future research avenues. First, the properties of UnCA in-
dicate its suitability for model-checking, and we could envisage real-world appli-
cations of verification using UnCA. Second, we translated unambiguous CA to
a natural model of deterministic register automata; the close inspection of this
translation can lead to further advances in our understanding of unambiguity, in
particular in the open problems dealing with unambiguous finite automata [4].
Third, we note that the closure properties of Luynca imply that this class can
be described by a natural algebraic object (see [I]). This will certainly help in
linking UnCA to a first-order logic framework, and thus to some Boolean circuit
classes. Hence we hope that UnCA can shed a new light on the classes of circuit
complexity.

Acknowledgement. We thank Andreas Krebs for stimulating discussions and
comments concerning this work and the anonymous referees their careful reading.
The first author thanks Benno Salwey and Dave Touchette for comments on early
versions of this paper.

References

1. Behle, C., Krebs, A., Reifferscheid, S.: Typed Monoids — An Eilenberg-Like Theo-
rem for Non Regular Languages. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742,
pp. 97-114. Springer, Heidelberg (2011)

2. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: WORDS,
pp. 93-102 (2011)

3. Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata
and related models. In: NCMA, pp. 103-119 (2011)

4. Colcombet, T.: Forms of determinism for automata. In: STACS, pp. 1-23 (2012)

5. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages. Pacific
Journal of Mathematics 16(2), 285-296 (1966)

6. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages (1964)

7. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American
Mathematical Society 17(5), 1043-1049 (1966)

8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116-133 (1978)

9. Klaedtke, F., Ruefs, H.: Monadic Second-Order Logics with Cardinalities. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 681-696. Springer, Heidelberg (2003)

10. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Appl.
Math. 108(3), 287-300 (2001)

11. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570-581 (1966)

12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

	Unambiguous Constrained Automata
	Introduction
	Preliminaries
	Closure Properties and Expressiveness of UnCA
	Decision Problems for UnCA
	A Deterministic Form of UnCA
	Conclusion
	References

