
Asynchronous Signal Passing for Tile Self-Assembly:

Fuel Efficient Computation and Efficient Assembly of Shapes

Jennifer E. Padilla ∗ Matthew J. Patitz† Raul Pena ‡ Robert T. Schweller§

Nadrian C. Seeman ¶ Robert Sheline ‖ Scott M. Summers ∗∗ Xingsi Zhong ††

Abstract

In this paper we demonstrate the power of a model of tile self-assembly based on active glues which
can dynamically change state. We formulate the Signal-passing Tile Assembly Model (STAM), based
on the model of Padilla, et al. [20] to be asynchronous, allowing any action of turning a glue on or off,
attaching a new tile, or breaking apart an assembly to happen in any order. Within this highly generalized
model we provide three new solutions to tile self-assembly problems that have been addressed within the
abstract Tile Assembly Model and its variants, showing that signal passing tiles allow for substantial
improvement across multiple complexity metrics. Our first result utilizes a recursive assembly process
to achieve tile-type efficient assembly of linear structures, using provably fewer tile types than what
is possible in standard tile assembly models. Our second system of signal-passing tiles simulates any
Turing machine with high fuel efficiency by using only a constant number of tiles per computation
step. Our third system assembles the discrete Sierpinski triangle, demonstrating that this pattern can
be strictly self-assembled within the STAM. This result is of particular interest in that it is known that
this pattern cannot self-assemble within a number of well studied tile self-assembly models. Notably, all
of our constructions are at temperature 1, further demonstrating that signal-passing confers the power
to bypass many restrictions found in standard tile assembly models.

1 Introduction

The abstract Tile Assembly Model (aTAM) [32] created a paradigm for computation to be carried out by a
physical assembly process that captured the essence of the Wang tiling model [30]. Turing machine simulation
within the aTAM demonstrated its capacity for universal computation, and many subsequent assembly
programs shifted focus to patterns, shapes and structures as the output of tile computation [13, 24, 25, 29].
Many modifications to the standard aTAM have been investigated, including several variants that capture
the notion of hierarchical assembly [2–5, 7, 20]. Previous work introduced the notion of using signaled glue
activation [18, 20], in particular to guide hierarchical assembly, enabling recursive self assembly [20]. Here
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we develop a general model of signaled tile self-assembly to enrich the tile assembly paradigm with greater
capabilities that anticipate advancing techniques in the field of DNA nanotechnology and allow tile assembly
to more closely emulate biological and natural processes.

Signaled glue activation was introduced in [20] for the purpose of establishing communication inside an
assembly so that by activating glues at the exterior of the assembly it may take on new identities or roles.
Interactions between assemblies, as described in hierarchical models such as the 2-HAM [1,5], can simulate
the interactions of individual tiles, coordinated in the STAM by the introduction of signals. In particular,
recursive assembly results when supertiles simulate the original tiles of the tile set [20], a strategy outlined
here in section 4 in a scheme for efficient line assembly.

Cooperativity, where more than one tile must be in place to determine which tile may be added next, is
an important aspect of tile assembly systems. A binding threshold is included in the aTAM, given as the
temperature, τ of the system. Tiles can bind only if the sum of glue interactions at a particular site meet or
exceed τ , thus a system at temperature 2 readily includes cooperativity, whereas it is not as readily achieved
at temperature 1. In the STAM, cooperativity can occur at temperature 1 via a query process, where a tile
binds to an assembly at one edge, then queries a neighboring tile by turning on a set of glues. Information
about the neighboring tile is gained based on which of these glues binds to its match. This cooperative
effect differs from the aTAM in that STAM tiles may also respond to the identities and binding events of
more distant tiles, enabling the constructions given in this paper to operate at temperature 1. Though the
constructions here do not demonstrate a full simulation of the aTAM at temperature 2 by the STAM at
temperature 1, the results here are significant given the known and conjectured limitations to temperature
1 computation in the aTAM and its variants [6, 12].

We expect glue deactivation to be as easy to implement as glue activation based on plausible DNA strand
displacement mechanisms. Therefore, we utilize this new capability to design a Turing Machine that is fuel
efficient (Section 5), and to implement the strict self-assembly of the Sierpinski triangle (Section 6). While
on first consideration, glue deactivation might be thought to be on par with negative glues, it never requires
repulsive forces between tiles, a necessity for negative glues that to our knowledge has yet to be implemented.
Glue deactivation serves here to produce a fuel efficient Turing Machine that does not need to copy the state
of unchanged positions on the tape. A halting computation produces an output tape, not a transcript of
the computation as in the traditional aTAM simulation of a Turing Machine. Strict self assembly of the
Sierpinski triangle is achieved by releasing tiles that are not part of the target structure.

The addition of signaled glue activation and deactivation to tile assembly brings it one step closer to
emulating biological processes of self assembly, where communication within a developing and growing living
organism are crucial to its survival and success. In this construction, it becomes easier to view the Turing
Machine plus its tape as a developing entity, that by following its input instructions, much as a cell follows
its genetic recipe, goes through a metamorphosis and emerges from a halting computation as a new entity.
The asynchronous growth process of the strict Sierpinski triangle in this model resembles the growth of
something such as coral, where the “living” functional part of the system inhabits the growing frontier of
the structure, laying down an enduring structure before dying and being washed away. The constructions
presented in this paper demonstrate not only a more efficient use of materials (Table 1) in certain cases, but
also serve to make the model more relevant in a biological context. The STAM anticipates the increasing
sophistication of molecular computation systems, as described in the next section.

2 Physical Basis for the Model

The generalized model presented here has been designed to take into consideration a DNA implementation
of all aspects of signaled assembly. We envision a physical implementation where Watson-Crick DNA base
pairing provides specific glue interactions as it has done before for DNA implementations of the aTAM [25,32].
Additionally, we suggest that toehold-mediated DNA strand displacement reactions [35] may be the basis for
the new elements of our model: binding-induced signaling, and glue activation or deactivation. The physical
body of a tile might be composed entirely from a DNA origami structure [16, 26] in order to provide more
room for signal pathways than the smaller DNA structures that have been used to implement the passive
tiles of the aTAM [33]. Many known and tested DNA strand exchange mechanisms [23,34,36], cascades [9],
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n× 1 Lines Tiles Signals Temperature Glue Activation Glue Deactivation
aTAM n - 1 - -
STAM (Thm.4.2) O(1) O(logn) 1 Yes. No.

Turing Machine Space Fuel Temp Tiles Signals Glue Act. Glue Deact.
aTAM ( [24]) O(

∑
Si) O(Si) 2 O(Q) - - -

3D aTAM ( [6]) O(
∑

Si) O(Si) 1 O(Q) - - -
Negative Glues ( [11]) O(Si) O(Si) 2 O(Q) - - -
Negative Glues ( [27]) O(Si) O(1) 8 O(Q) - - -
STAM (Thm.5.1) O(Si) O(1) 1 O(Q) O(1) Yes. Yes.

Sierpinski Triangle Strict Tiles Signals Temp Scale Glue Act. Glue Deact.
aTAM ( [25]) No. 7 - 2 1 - -
STAM (Thm.6.2) Yes. 19 5 1 2 Yes. Yes.
STAM (Thm.6.1) No. 5 4 1 1 Yes. No.

Table 1: Summary of our Results in the context of previous work in the field. In the Turing machine results, Q is the number
of states of the Turing machine being simulated and Si is the length of the tape at step i in the computation.

and walkers [17, 19, 31, 34] suggest possibilities for implementing the signal pathway, including logic gates
for responding to multiple inputs and transducers for ensuring that the activated glue can have a different
sequence from the glues on the input edges [28]. Details of a plausible DNA origami tile construction are
given in [20].

Details of our model come from a consideration of possible DNA strand displacement mechanisms that
might be used to implement signal-passing tiles. The physical basis of the three glue states are illustrated
in Figure 1, where a glue may be considered ‘latent’ or ‘off’ (Figure 1c) if enough of its DNA sticky end,
including the toehold, is blocked by being bound to a complementary DNA protection strand. Activation
of a latent glue involves the toe-hold mediated removal of that strand as a result of a signal cascade (Figure
1d). The difference between the ‘on’ state (Figure 1a) and the ‘latent’ or ‘off’ state (Figure 1c) is based on
the availability of toeholds and whether or not there could be any opportunity for them to initiate binding
to another tile in the system. Deactivation is merely a reversal of this process, making it just as feasible as
activation.

The limitation to pass a given signal only once, and to activate and deactivate a specific glue on a
single tile only once comes from the inherent consumption of “DNA fuel” associated with DNA strand
displacement cascades, where the production of more DNA base pairs in the products drives the process
forward. Thus, the model is designed to emphasize this fuel-consumption aspect by making each use of a
signal count as another signal path. The asynchronous nature of our model reflects the likewise asynchronous
nature of the molecular events we envision for the physical implementation. In particular, DNA strand
displacement reactions proceed via a branch migration resembling a random walk at a rate that can vary
widely depending on toehold length and composition [36]. We allow for the time taken by these signaling
or glue activation events by storing actions triggered by various events in STAM assembly in a queue for
asynchronous processing. Together, these model details capture to the best of our ability and in the most
general way possible the capabilities reported in the field of DNA nanotechnology that we see as plausible
additions to the molecular implementation of tile assembly, particularly if DNA continues to play a significant
role in these implementations.

3 STAM Notation and Model

In this section we define the Signal-passing Tile Assembly Model (STAM), an extension of the 2-Handed
Assembly Model (2HAM) [3–5,7], which itself is an extension of the Tile Assembly Model (TAM) [32]. The
STAM is a refined version of the model presented in [20], in which the basic tiles of the TAM are augmented
with the ability to receive information, in the form of signals, from neighboring tiles in an assembly, and
to pass signals to neighboring tiles. A very important feature of signals is that each signal can only move
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Figure 1: DNA mechanisms for triggering a signal cascade and glue activation. Single-stranded DNA is depicted as
a line with an arrow at the 3’ end and double-stranded DNA is shown as two parallel lines connected by a ladder
representing base pairs. Letters such as a and y indicate short sequences of DNA bases and a star indicates the
complementary sequence. Rectangles indicate the edges of structures, possibly composed of DNA origami, to which
the relevant strands of DNA are attached. a) Complementary DNA strands of active glues can initiate binding at
the toehold c∗. Both glues here are in the “on” state because complementary toehold sequences are exposed on both
tiles. b) Toehold binding initiates a 3-strand DNA branch migration in which the abc strand displaces the yba strand
as the tiles bind to one another, freeing the yba strand to trigger a signal cascade. c) The strand zdf is presumed to
be unavailable until freed by a previous step in the signal cascade (not shown). The sequence labeled z may then bind
at the toehold z∗ on the protection strand f∗d∗z∗, removing it from the glue strand def via strand displacement.
The glue strand def is in the “latent” state in which the entire glue strand is protected either by the complementary
sequence on the protection strand f∗d∗z∗, or by inclusion in a small bulge loop, a structure known to protect short
DNA sequences from initiating base-pairing with a complementary sequence [9]. This scheme prevents the signal
strand zdf from containing a full copy of (and therefore being functionally equivalent to) the glue strand. d) Once
the protection strand is removed, the glue strand abc is active or on.
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across any given tile one time - they are not reusable.
The STAM that we define is a highly generalized model which imposes minimal restrictions on aspects

such as the speed of signals and orderings of events. This generalized version, while perhaps difficult to create
well-behaved constructions within, provides a framework that is intended to be maximally independent of the
specific details of potential physical implementations of actual signal tiles, such as those using mechanisms
suggested in [20]. Valid constructions within this model, such as all of the constructions presented within
the following sections of this paper, will therefore also work correctly within more restricted versions of the
model (for instance, where signal timing or ordering can be guaranteed).

3.1 Informal Description of the 2HAM

Since the STAM is an extension of the 2HAM, we now give a brief, informal description of the 2HAM.
A tile type is a unit square with four sides, each having a glue consisting of a label (a finite string) and

strength (a positive integer value). We assume a finite set T of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. A supertile (a.k.a., assembly) is a positioning of tiles on the
integer lattice Z2. Two adjacent tiles in a supertile interact if the glues on their abutting sides are equal (in
both label and strength) and bind with that shared strength. Each supertile induces a binding graph, a grid
graph whose vertices are tiles, with an edge between two tiles if they interact and where the weight of that
edge is the strength of their bond. The supertile is τ -stable if every cut of its binding graph has strength at
least τ . That is, the supertile is stable if at least energy τ (i.e. a cut across bonds whose strengths sum to at
least τ) is required to separate the supertile into two parts. A tile assembly system (TAS) is a pair T = (T, τ),
where T is a finite tile set (or more generally a finite set of supertiles) and τ is the temperature, a parameter
specifying the minimum binding energy required for a supertile to be stable. Given a TAS T = (T, τ), a
supertile is producible if either it is an element of T , or it is the τ -stable result of translating two producible
assemblies without overlap or rotation. A supertile α is terminal if for every producible supertile β, α and β
cannot be τ -stably attached. A TAS is directed (a.k.a., deterministic, confluent) if it has only one terminal,
producible supertile. Given a connected shape X ⊆ Z2, a TAS T strictly self-assembles X (also produces X
uniquely) if every producible, terminal supertile places tiles exactly on those positions in X (appropriately
translated if necessary). Given a pattern Y ⊆ Z2 (which must not necessarily be connected), a TAS T
weakly self-assembles Y if every producible, terminal supertile places a subset of tiles B ⊆ T exactly on
those positions in Y (appropriately translated if necessary). Weak self-assembly can be thought of as using
a subset of tile types to “paint a picture” of Y on a possibly larger canvas of tiles composing a terminal
assembly.

3.2 Informal Description of the STAM

In the STAM, tiles are allowed to have sets of glues on each edge (as opposed to only one glue per side as
in the TAM and 2HAM). Tiles have an initial state in which each glue is either “on” or “latent” (i.e. can
be switched on later). Tiles also each implement a transition function which is executed upon the binding
of any glue on any edge of that tile. The transition function specifies a set of glues (along with the sides
on which those glues are located) and an action for each: 1. turn that glue on (only valid if it is currently
latent), or 2. turn that glue off (valid if it is currently on or latent). This means that glues can only be
on once (although may remain so for an arbitrary amount of time or permanently), either by starting in that
state or being switched on from latent, and if they are ever switched to off then no further transitions are
allowed for that glue. This essentially provides a single “use” of a glue (and thus the implicit signal sent by
its activation and binding). Note that turning a glue off breaks any bond that the glue may have formed
with a neighboring tile. Also, since tile edges can have multiple active glues, when tile edges with multiple
glues are adjacent, it is assumed that all glues in the on state bind (for a total binding strength equal to the
sum of the strengths of the individually bound glues). The transition function defined for each tile type is
allowed a unique set of output actions for the binding event of each glue along its edges, meaning that the
binding of any particular glue on a tile’s edge can initiate a set of actions to turn an arbitrary set of the
glues on the sides of the same tile either on or off. As the STAM is an extension of the 2HAM, binding
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and breaking can occur between tiles contained in pairs of arbitrarily sized supertiles. In order to allow for
physical mechanisms which implement the transition functions of tiles but are arbitrarily slower or faster
than the average rates of (super)tile attachments and detachments, rather than immediately enacting the
outputs of transition functions, each output action is put into a set of “pending actions” which includes
all actions which have not yet been enacted for that glue (since it is technically possible for more than one
action to have been initiated, but not yet enacted, for a particular glue).

An STAM system consists of a set of tiles and a temperature value. To define what is producible from
such a system, we use a recursive definition of producible assemblies which starts with the initial tiles and
includes any supertiles which can be formed by doing the following to any producible assembly: 1. executing
any entry from the pending actions of any one glue within a tile within that supertile (and then that action
is removed from the pending set), 2. binding with another supertile if they are able to form a τ -stable
supertile, or 3. breaking apart into two separate supertiles along a cut whose total strength is less than τ .

As an overview, tiles in the STAM pass signals to neighboring tiles simply by activating glues which can
bind with glues on adjacent edges of neighboring tiles. The information content of a signal is dependent
upon the transition function of the receiving tile, that is, by what glue actions the receiving tile initiates
upon the binding of its glue. By subsequently activating and deactivating its own glues, the receiving tile
can propagate the signal to any of its neighbors. Solely by utilizing the mechanism of glue activation and
deactivation initiated and carried out on individual tiles but chained together through series of glue bindings,
a global network which is capable of passing information across entire assemblies (and also of allowing them
to selectively enable sites for further growth or to discard arbitrary portions of the assembly), is created.
However, an important restriction is the “fire once” nature of the signals, meaning that each glue can only
transition to any given state once, and therefore the number of signals which a tile can process is a constant
dependent upon the definition of the tile type.

The STAM, as formulated, is intended to provide a model based on experimentally plausible mechanisms
for glue activation and deactivation, but to abstract them in a manner which is implementation independent.
Therefore, no assumptions are made about the speed or ordering of the completion of signaling events (i.e.
the execution of the transition functions which activate and deactivate glues and thus communicate with
other tiles via binding events). This provides a highly asynchronous framework in which care must be made
to guarantee desired results, but which then provides robust behavior independent of the actual parameters
realized by a physical system. Furthermore, while the model allows for the placement of an arbitrary number
of glues on each tile side and for each of them to signal an arbitrary number of glues on the same tile, this
would obviously be limited in physical implementations. Therefore, each system can be defined to take into
account a desired threshold for each of those parameters, not exceeding it for any given tile type, and we
have also defined the notion of signal complexity, as the maximum number of glues on any side of any tile
in a given set, to capture the complexity of a tile set.

3.3 Formal Definition of the Signal Passing Tile Assembly Model

This section presents a formal definition of the STAM. In order to help clarify many aspects, a consistent
example is provided and referenced throughout.

3.3.1 Basic Notation

Let D denote the set of labels {north, south, east, west}, or {N,S,E,W}.

Active Glues and Glue States Let Γ denote a set of glue types. A glue is an ordered pair (g, s) where
g ∈ Γ is the glue type and s ∈ Z is the glue strength. Note that throughout the remainder of this paper,
unless specifically stated, all glues will have strength 1 and as shorthand will be denoted simply by their
glue types with the strength omitted.

Let Q = {latent, on, off} be the set of possible states for a glue. Intuitively, on is the “normal”, active
state of a glue, meaning that it is either able to bind or currently bound. A glue in the latent state is
inactive (and therefore unable to bind), and also has never been on (or off). A glue in the off state is also
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inactive and unable to bind, but can never be (re)activated. We define an active glue as an ordered pair
(g, q) where g ∈ Γ is a glue type and q ∈ Q is a state.

latent on off

Figure 2: The valid state transitions for active glues

Active Labels As in the original TAM, we define a label as an arbitrary string over some fixed alphabet
and labels will be used as non-functional (i.e. they don’t participate in tile bindings) means of identifying tile
types. Denote as Σ the set of all valid labels. For the self-assembly of patterns (e.g. the weak self-assembly
of the Sierpinski triangle), tile labels are the mechanism used for distinguishing between groups of tiles, i.e.
those “in” the pattern and those “outside” it. Experimentally, labels can be implemented as DNA loops
which protrude above the surfaces of tiles for imaging purposes [15], and thus the motivation exists to allow
for the modification of tile labels along with glues. Therefore, we define an active label is an ordered pair
(x, q) where x ∈ Σ and q ∈ Q.

Active Tiles and Transition Functions A generalized active tile type t is a unit square defined as a
4-tuple t = (G,L, δ,Π) where G : D → P(Γ × Q) is a function specifying the set of all active glues present
on a given side, L is the set of all active labels, δ : D × Γ → P(((D × Γ × {on, off}) ∪ (Σ × {on, off})) is
the transition function and Π is a multiset over (D× Γ× {on, off})∪ (Σ× {on, off}). A generalized active
tile type t = (G,L, δ,Π) is an active tile type if, for all d ∈ D and for all active glues (g, q), (g′, q′) ∈ G(d),
g 6= g′. In other words, while a tile side may have multiple glues, there cannot be multiple copies of the same
type of glue on a single side.

A transition function δ takes as input a direction d ∈ D and a glue type g ∈ Γ (i.e. we say that it is
“fired” by the binding of glue type g on side d of t), and outputs a (possibly empty) set of glue or label
actions, i.e., elements of (D × Γ× {on, off}) ∪ (Σ× {on, off}). Consider an active tile type t = (G,L, δ,Π)
and suppose that (g, q) ∈ G(d) for some d ∈ D and (d′, g′, q′) ∈ δ(d, g). Intuitively, if m = Π(d′, q′) (i.e., the
multiplicity of (d′, q′) ∈ Π) before δ “fires,” then Π(d′, q′) = m+ 1 after executing δ. We assume for the sake
of convenience that δ outputs the empty set for any pair of direction and glue on which δ is not explicitly
defined. In other words, the binding of a glue on t fires the transition function, which can result in a set of
“requests” for specific active glues and labels on t to transition into specified states.

As shorthand, let “−” represent “latent”, “1” represent “on”, and “0” represent “off”. Let t =
(G,L, δ,Π) be an active tile type. For notational convenience, we will denote as gp{q|∃(d,g,q)∈Π} the active

glue (g, p) of t satisfying, for some d ∈ D, (g, p) ∈ G(d). We purposely omit the direction d from our shorthand
notation because it will always be clear from the context. Note that, in our notation, the superscript specifies
its current state (e.g. if the active glue is on, we write g1), and the subscript represents its set of pending state
transitions (i.e., the set of all glue actions (d, g, q) ∈ Π). For example, if {(N, g, on), (N, g, off), (N, g, off)} ⊆
Π, then we write gp1,0,0. If there are no pending state transitions for g in Π, then we omit a subscript. Figure 2
shows the valid state transitions for active glues, which is restricted to latent being able to transition to
either on or off, and “on” being able to transition to “off”. Note that once a glue is in the off state, there
is no valid transition out of that state. Also, the only valid initial states for an active glue are latent or on
since a glue which started in the off state could never interact and therefore could simply be removed.

Figure 3 shows an example active tile type with G(N) = {a1, b1}, G(W ) = {bl−, br−}, G(E) = {bl−, br−},
G(S) = ∅ and L = {Bot}. Note that for the sake of convenience, in figures we tend to omit superscripts
unless the glue state is off, so a glue with no superscript and a rectangular tab next to it represents that
the glue is on, and with no such a tab is latent. Glues which are off will contain the “0” superscript, or
be removed completely, to remove ambiguity. Figure 3 also includes two depictions of the tile’s transition
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function. In this example, when the glue b on the North side of the tile binds, the tile’s transition function
specifies that glues bl on the West side and br on the East side are requested to turn on.

An active tile is an instance of an active tile type which has its own pending sets for each of its active
glues and labels–all of which sets must be initially empty.

(N,a)   {(W,br,on),(E,bl,on)}
(N,b)   {(W,bl,on),(E,br,on)}
(W,br) {(E,br,off)} 

Input   Output

(W,br,on)
 (E,bl,on)

(W,bl,on)
 (E,br,on)

(E,br,off)

bl

a b

bl

br br
Bot

bl

a b

bl

br br
Bot

(a)                                            (b)                                      (c)

Figure 3: An example active tile with (a) a tabular representation of its transition function, (b) a graphical depiction
of its transition function using lines and arrows, and (c) a semi-graphical depiction. In (b), an arrowed line pointing
from glue g1 to glue g2 denotes that the binding of g1 causes the glue action turning g2 on to be put into g2’s pending
set P . A red line indicates that the action is to turn the destination glue off. In (c), the text descriptions of output
actions for a given glue are placed next to its location on the tile edge. Note that for compactness we can also combine
multiple actions. For example, if glue a also had output (W, bl, on) we could write (W, (bl, br), on).

Active Supertiles Active supertiles in the STAM are defined similarly to supetiles in the 2HAM. Note
that only glues which are in the on state can bind, and only those which are bound contribute to the τ -
stability of a supertile. When two τ -stable supertiles can be translated so that they are non-overlapping and
the abutting on glues can bind to create a cut strength of at least τ , we say that they are τ -combinable. A
supertile A is said to be τ -breakable into supertiles B and C if there exists a strength τ ′ < τ strength cut of
the stability graph GA that separates the tiles of A into supertiles B and C.

Active Supertile Combination Two active supertiles A and B may combine into active supertile C if
the underlying supertiles for A and B are τ -combinable into the underlying supertile for C. When supertiles
combine, all matched glues in the on state on the boundary between A and B are said to bind, and thus fire
the transition functions of their respective tiles, causing the necessary states to be added to the pending sets
of the targeted tiles.

Active Supertile Breaking An active supertile A can break into active supertiles B and C if the under-
lying supertile for A has a cut of less than τ -strength dividing A into the underlying supertiles for B and
C.

An STAM system is a tuple (T, τ) where T is a set of initial active supertiles referred to as the initial
assembly set of the system, and τ is a positive integer referred to as the temperature of the system. We
further restrict that the initial assembly set only contains active super tiles t = (G,L, δ,Π) such that Π = ∅.
For some problems such as the unique assembly of shapes and lines (see section 4), T is further restricted to
contain only active supertiles that consist of singleton active tiles.

3.3.2 Producible Assemblies

The signal passing tile assembly model is defined in terms of the set of producible active supertiles PT,τ .
PT,τ is defined recursively as follows:

Base Set of Assemblies T ⊆ PT,τ
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Combination Transition For any 2 active supertiles A,B ∈ PT,τ , if A and B are τ -combinable into active
supertile C, then C ∈ PT,τ .

Break Transition For any supertile A ∈ PT,τ , if A is τ -breakable into active supertiles B and C, then
B,C ∈ PT,τ .

Active Glue Transition Consider an active supertile A ∈ PT,τ . For each active tile t ∈ A with A(x, y) =
t = (G,L, δ,Π), for all d ∈ D, for all (g, p) ∈ G(d) and for all (d, g, q) ∈ Π, there is a supertile B ∈ PT,τ
such that A and B differ only at location (x, y) as follows: B(x, y) = t′ = (G′, L, δ,Π′) satisfying

1. Π′ = Π− {(d, g, q)} and

2. if p = on and q = off or p = latent and q = off or p = latent and q = on, then for all
d 6= d′ ∈ D, G′(d′) = G(d′), (g, q) ∈ G′(d) and for all q 6= q′ ∈ Q, (g, q′) 6∈ G′(d).

(This simply says that any supertile B which can be created from another producible supertile A by
simply executing one of A’s pending actions is also producible.)

Active Label Transition Active label transitions are defined similar to active glue transitions.

3.3.3 Terminal Assemblies

The set of producible assemblies of an STAM system defines the collection of active supertiles that can occur
throughout the assembly process. The terminal set of assemblies A�[T, τ ] of an STAM system (T, τ) defines
the subset of producible assemblies for which no combination, break, glue transition, or label transition is
possible. Conceptually, the terminal assembly set represents the sink state of the assembly system in which
the system has been given enough time for all assemblies to reach a terminal state. The terminal set of
assemblies is considered the output of an STAM system. In our constructions we are interested in designing
systems that will have either 1) a unique terminal assembly that has a desired shape or 2) has a collection
of terminal assemblies in which the desired target assembly is the largest or 3) the desired target assembly
is the only assembly which contains a specially designated marker tile.

Please see Section 3.4 for an example STAM system and several transitions and producible assemblies.

3.4 Example STAM System

Here we give a small example STAM system along with descriptions of several transitions and producible
assemblies.

3.4.1 Example tile types

Figure 4 shows a tile set that will be used for the following example. We will refer to active tiles by their
labels for convenience. The “Bot” tile has four glue actions defined for its transition function, all of which
turn on glues. The “MM” tile includes two glue actions which turn off glues: when glue e on the North
binds, both that glue and glue b on the South get off transitions placed into the Π multiset of the active
tile, which will eventually cause them to be turned off. The transition function for the “MR” tile contains
a label action, namely when the c glue on the South binds.

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

d

a

ML

f

c

MR-

e

b

MM

Figure 4: An example active tile set.
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3.4.2 Example STAM transitions

Define an STAM system (T, 2) where T is the tile set shown in Figure 4. Figure 5 shows a set of transitions
and producible assemblies within that system. Figure 5(a) shows a “Top” and “MM” tile in their initial
configurations (with empty Π sets for all active tiles as required, and all superscripts explicitly shown for
reference). Figure 5(b) shows the supertile resulting from a combination transition performed on one “Top”
and one “MM” tile. Note that the binding of the two e glues causes four glues to have state transitions added
to the Π multisets the belong to their respective active tile. Figure 5(c) shows the supertile resulting from
a glue flip transition performed on the supertile in Figure 5(b), namely the tl glue on the West side of the
“Top” tile transitioned to state on and that pending transition was removed from the Π multiset belonging
to its active tile. Figure 5(d) shows the supertile resulting after two glue flip transitions are performed on
the supertile in Figure 5(c), namely glue tr on the East of “Top” is turned on and e on the North of “MM”
is turned off.

tl-

d1e1

tl-

f1
tr- tr-Top

e1

b1

MM

d e

tl

f

tr
Top

tl

d e

tl

f

tr
Top

e0

b0

MM

tl

d e

tl

f

tr tr
Top

e0

b0

MM

(a)                       (b)                       (c)                       (d)

e0

b0

MM

tr1

tl1
tr1

Figure 5: Example transitions for the tile types in Figure 4 assuming a temperature τ = 1 system
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a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

d

a

ML

e0

b0

MM

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

f

c

MR-1

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

(a) Three producible supertiles

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

d

a

ML

e0

b

MM

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

f

c

MR

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

(b) A single producible supertile formed by the combina-
tion of those in Figure 6a

Figure 6: Producible supertiles in the temperature τ = 1 system defined with the tile types in Figure 4
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ML

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

f

c

MR

bl

a b

bl

c

br br
Bot

tl

d e

tl

f

tr tr
Top

Figure 7: Another producible supertile in the temperature τ = 1 system defined with tile types from Figure 4. Note
that it is not terminal as a new “MM” tile could attach in the center, repeatedly falling off and being replaced an
infinite number of times.

3.5 STAM Metrics

Within this paper we consider the problem of assembling precise shapes, simulating Turing machines, and
the strict self-assembly of infinite fractals. To measure how efficiently we can solve these assembly problems
within the STAM model, as opposed to alternate models, we consider a number of natural metrics designed
to measure experimental feasibility with respect to likely STAM implementations, the most important being
DNA origami based tiles which implement glue actions through DNA strand displacement.

3.5.1 Tile Complexity

The tile complexity of an STAM system (T, τ) is |T |, the number distinct active supertiles that serve as the
initial set of assemblies for the system. In the case that T is restricted to contain active supertiles consisting
of only singleton active tiles, this metric denotes the number of distinct tile types that must be engineered to
implement the STAM system. In general, the metric describes the number of distinct assemblies that must
be engineered to implement the system.

3.5.2 Signal Complexity

The signal complexity of an STAM system is the maximum number of glues that occur on the face of any
tile from T . Within the STAM system, each glue along a tile face is potentially set up to fire a transition
function that triggers a set of local glue actions upon binding. In practice, such transition triggers can be
set up through a sequence of DNA strand displacements. Setting up a small network of such displacement
chains on the face of a DNA origami tile is experimentally quite feasible. However, the cost and complexity
grow substantially as the number of distinct displacement reactions grows, making the signal complexity a
key metric for experimental feasibility.

3.5.3 Fuel Efficiency

Fuel efficiency is a metric that is considered in the context of simulating a Turing Machine and denotes the
number of tiles that are used up (and cannot be reused) per computation step of the Turing machine being
simulated. Our result constitutes the first Turing simulation self-assembly system that achieves O(1) fuel
efficiency.
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3.5.4 Space Complexity

Space complexity is a metric that is considered in the context of simulating a Turing Machine and denotes
the size of the assembly that represents the current tape and state of the Turing machine after a given
computation step.

3.5.5 Temperature

For an STAM system (T, τ), the temperature value τ denotes the number of glue bonds required for two
assemblies to combine. Higher temperature systems realize finer grained bonding strength differences than
lower temperature systems and may be comparably harder to implement in practice. One of the most
straightforward class of systems to implement may be temperature τ = 1 systems in which any single bond
is sufficient to cause two assemblies to attach. In particular, strength τ = 1 systems do not require the
implementation of error prone cooperative bonding in which attachment may be based on 2 or more glues
spread across 2 or more distinct tiles.

4 Efficient Construction of Linear Assemblies

In the aTAM, n×1 lines are inherently inefficient to self-assemble, requiring the worst possible tile complexity
of n. However, using signal-passing tiles it is possible to create n× 1 lines using no more than 6 tile types,
regardless of the value of n. Of course, the value of n must some how be encoded in the system, but rather
than requiring n tile types as in the aTAM, in the STAM the value of n can be efficiently encoded using
log n bits to require O(1) tile types with O(log n) signal complexity. The construction we use makes use of
a recursive doubling strategy where random tile binding events randomly assign the fate of each supertile at
each stage, and is of independent interest in terms of using signal-passing tiles to perform recursive assembly
of structures.

We first state our result for the special case where n is a power of 2 and provide a detailed construction.
The exact tile set is given in Figure 9. A high-level description of the recursive doubling technique is given
in Figure 8, and a small example of the assembly process for a length 16 line is given in Figures 10-11.
This result can be generalized to work for any positive integer n by increasing the glues on the tile types of
the powers of 2 construction and adding 3 more tile types, while keeping the signal complexity at O(log n),
yielding the final result stated in Theorem 4.2.

Theorem 4.1. For every k ∈ N, there exists an STAM system (T, 1) which uniquely assembles a 2k×1 line.
Moreover, T contains 4 tiles, has signal complexity O(k), and does not use glue deactivation.

4.1 Proof of Theorem 4.1

Proof. Define f(A) as a naming function that takes as input a supertile A and returns a string s ∈
{ak, bk, xk, yk|k ∈ N} ∪ λ. For an arbitrary input A, if the height is 1 and the width is 2n for some n ∈ N,
f(A) returns ak if A has active glues labeled axk and ayk on its eastern edge, bk if A has active glues labeled
bxk and byk on its eastern edge, xk if A has active glues labeled axk and bxk on its western edge, and yk if
A has active glues labeled ayk and byk on its western edge. Otherwise, f(A) returns λ.

Initially, the system consists only of copies of tiles from T , namely the four singleton tiles whose names
correspond to their identities as defined by f : a0, b0, x0, and y0. Assembly proceeds by recursive combination
of these tiles into larger supertiles. Figure 8 shows how producible assemblies can join; for example, a0 can
attach to the western edge of either x0 or y0, producing a1 and y1, respectively. For a detailed view of the
internal signal structure of the tiles that allows for this behavior, see Figure 9. Note that each assembly
possesses two exposed external glues which allow non-deterministic binding to occur, a critical aspect of the
construction.

The binding event that joins two assemblies together will propagate a signal either left or right (via Lk
or Rk glues), depending on what identity the newly formed assembly is supposed to take on. For example: if
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ak
axk

ayk

bk
bxk

byk
y k

ayk

byk

x k
axk

bxk
a k x k

bk y k

a k+1
axk+1

ayk+1

bk+1
bxk+1

byk+1

bk x k

a k y k

x k+1
axk+1

bxk+1

y k+1
ayk+1

byk+1

Figure 8: Four recursively defined types of assemblies: ak, bk, xk, yk. For example: ak is composed of ak−1 and xk−1 and has glues
axk and ayk activated on its eastern edge.
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ay0
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{(E,Lj,+) j>0}

(W, (Li,ayi,byi) +)

(E,Ri,+)

(W,Li+1,+))

{(W,Rj,+) j>i}

{(W,Rj,+) j>i}

a

axi=1..n-1

bxi=1..n-1

axn

bxn

Li=1..n

Ri=1..n

bx0

by0

Li=1..n

Ri=1..n

{(E,Lj,+) j>0}

(W, (Li,axi,bxi) +)

(E,Ri,+)

(W,Li+1,+)) {(W,Rj,+) j>i}

{(W,Rj,+) j>i}

b

{(E,Lj,+) j>0} (E,R1,+) 

axi=1..n-1

ayi=1..n-1

axn

ayn

Li=1..n

Ri=1..n

ax0

bx0

Li=1..n

Ri=1..n

{(E,Lj,+) j>i} (E,Ri+1,+)

(W, Li +)

(E,(Ri,axi,ayi)+)

(W,L1,+) {(W,Rj,+) j>0}

{(W,Rj,+) j>0}

x

{(E,Lj,+) j>i} 

bxi=1..n-1

byi=1..n-1

bxn

byn

Li=1..n

Ri=1..n

ay0

by0

Li=1..n

Ri=1..n

{(E,Lj,+) j>i} (E,Ri+1,+)

(W, Li,+)

(E,(Ri,bxi,byi)+)

(W,L1,+) {(W,Rj,+) j>0}

{(W,Rj,+) j>0}

y

{(E,Lj,+) j>i} 

Figure 9: The tileset for producing a 1× n line, where n is a power of 2.

tile a0 attaches to tile x0, it can only do so by virtue of glue ax0. At this point, the assembly “knows” that
it is now supposed to be a1, and activates a glue on its right face: R1. Each tile in the assembly can receive
R1 on its left edge (because it is already activated), and activate it on its right edge, effectively propagating
a signal across multiple tiles. When the rightmost tile (in this case, x0) receives the signal, it activates glues
corresponding to the appropriate identity, i.e., ax1 and ay1. At this point, the assembly can properly be
called a1. The tileset is designed in such a way that the external edge tiles in any particular assembly are
known. For example, it can be observed that the leftmost and rightmost tiles in any ak will be a0 and x0,
respectively. This fact allows a simple signal transduction: when an edge tile receives a particular signal,
there is exactly one identity that particular assembly can adopt via glue activation.

The assembly process can be thought of as being isomorphic to a staged assembly process, where at every
stage k such that 0 < k ≤ log2 n, four new assemblies are formed from assemblies produced at stage k − 1.
These can combine with one another in four ways, and so on. This process terminates at the final mixing,
when k = log2 n, because the final binding event does not trigger signal propagation, resulting in terminal
n× 1 lines. Note that there are 4 unique terminal assemblies, all of which are n× 1 lines.
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Figure 10: Example assembly of a line of length 24 = 16, or n = 4 (part 1 of 2). Circles indicate the identity of a block of tiles at
a particular stage given by the number of circles. For example, in the upper right, a is circled twice to indicate that this block of four
tiles has identity a2.
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Figure 11: Example assembly of a line of length 24 = 16, or n = 4 (part 2 of 2). The final step of combinations, where each length
8 segment combines with another to form a terminal assembly of length 16 and which cause no glue activations, is not shown.

14



2i 2i-1

2i-1 2i
2i 2i-1 2i-1

2i-1
2i-1

Figure 12: Line segments of lengths corresponding to the powers of 2 that sum to n must be joined to produce
line of length n. Once line segments of unequal length have joined, signals ensure that growth continues only
by addition of the correct unequal line segments.

4.2 Proof of Theorem 4.2

Theorem 4.2. For every n ∈ N, there exists an STAM system T = (T, 1), with |T | = O(1), which uniquely
assembles an n×1 line. Moreover, the signal complexity of T is O(log n) and T does not use glue deactivation.

Proof. Let n ∈ N be an arbitrary positive integer. Note that n can be written as a sum of powers of 2, i.e.
n =

∑i=0
blognc 2ibi where bi is the ith bit of the binary representation of n. Just as n can be written this

way, the line of length n can be composed of segments with power of 2 lengths, each composed during the
construction of the line of length 2k where k = blog nc, as described in the previous section. The joining of
line segments corresponding to the powers of 2 that sum to n is shown in Figure 12.

The tiles from the previous section are modified to include O(log n) more glues each that direct the
assembly of the powers of 2 shown in Figure 12. The resulting tile set still has signal complexity O(log n)
and is shown in Figures 13-14. Depending on the specific bit sequence of n, the tile types a′, x′, and x′′ may
or may not be included in the tile set for that n. For each power of 2 which is a component of the binary
representation of n, there is an assembly which stops doubling at that length and exposes a ji glue on its
eastern edge that allows it to bind to the bar of length corresponding to the next lower power of 2. If n is
odd, then the x0 tile is the only tile with an initially exposed j glue (namely, j0) on its west side. If n is even
and b1 = 1 (the second bit in its binary representation is 1), then tile a′ is used in the construction and will
present the first west facing j glue, namely j1. If neither b0 or b1 are 1, then tile type x′′ is used to ensure
that there will be lines of length equal to the smallest included power of two which will expose a j glue on
the west and will stop any continued doubling. For all other included powers of 2 (assuming that n is not a
power of 2), the x′ tile will be included in the tile set and will ensure that bars of lengths corresponding to
each such power of 2 will stop doubling at those lengths and present j glues on their east side.

Once a bar binds via a j glue on its east, it sends a signal to the west side to open the next j glue and
allow subsequent attachment. Finally, the bar of the largest power of 2 will also stop doubling and send a
signal (starting from either an a or b tile) to the east allowing for the attachment of the line consisting of all
smaller powers of 2.

5 Fuel Efficient Turing Machines

Showing that the original abstract Tile Assembly Model is computationally universal is a simple matter of
designing a tile assembly system which can simulate a universal Turing machine, as originally shown in [32],
and later expanded upon in [6, 8, 11, 22]. While displaying the computational power of the aTAM (and
variants prior to the STAM), a common drawback of the constructions has been the number of tiles utilized
during the formation of the assembly which simulates the computation, which, in this paper, is referred to
as the fuel efficiency of the simulation.

For prior constructions, it has been necessary to make a new copy of the entire tape of the Turing machine
between each computational step, with the new copy identical to the original except for the slight difference
of a mere two tape cells indicating: 1. the output value in the tape cell left by the tape head, and 2. the tape
cell marking the current location of the tape head. This full-scale copying of the tape, including the vast
majority of cells which are unchanged, is wasteful in terms of the number of tiles required, experimentally
very error prone due to the huge number of tile attachments required, and results in enormous assemblies.
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Figure 13: The tile set (part 1 of 2) for self-assembling an n× 1 line for arbitrary n. Notation: b = bin(k),
i.e. k represented in binary, e.g. for k = 19, bin(k) = 10011. bi = ith bit of b (where b0 is the least significant
bit), e.g. for k = 19, b0 = 1, b1 = 1, b2 = 0, b3 = 0, and b4 = 1. n = blog kc, e.g. for k = 19, n = 4.
I = {i|bi = 1} as an ordered set, e.g. for k = 19, bin(k) = 10011, I = {0, 1, 4}. J = I −max(I), namely I
without the largest element, e.g. if I = {0, 1, 4} then J = {0, 1}. prev(i) = the element of J immediately
less than i, e.g. prev(4) = 1. next(i) = the element of J immediately greater than i, e.g. next(0) = 1.
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Figure 14: The tile set (part 2 of 2) for self-assembling an n × 1 line for arbitrary n. See Figure 13 for
notation.
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Figure 15: Example assembly of a line of length 11 (part 1 of 2).

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

x
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1 a

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

x
L1
R1

b
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1

bx1
by1
bx2
by2

ay0
by0

y
j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1 b

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

x
L1
R1

b
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1

bx1
by1
bx2
by2

ay0
by0

y
j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1 b

bx1
by1
bx2
by2

ay0
by0

j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

y
L1
R1

a
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

x
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1 a

bx1
by1
bx2
by2

ay0
by0

j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

y
L1
R1

a
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1

bx1
by1
bx2
by2

ay0
by0

y
j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1 b

bx1
by1
bx2
by2

ay0
by0

j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

y
L1
R1

a
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1

bx1
by1
bx2
by2

ay0
by0

y
j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1 b

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

x
L1
R1

b
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

x
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1 a

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

x
L1
R1

b
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

bx0
by0

ax1
bx1
ax2
bx2

j1

ax1
ay1
ax2
ay2

L1
R1

ax0
bx0

x
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1

j0

r0

r1

r0

r1

L1
R1

j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1 a

bx1
by1
bx2
by2

ay0
by0

j0
j1

j0

L1
R1

l0

L2
R2

l1
r0

r1

L1
R1

l0

L2
R2

l1
r0

r1

y
L1
R1

a
j0

l0

L2
R2

j1

l1

L1
R1

l0

L2
R2

l1
r0

r1

r0

r1

ax0
ay0

ay1
by1
ay2
by2

j1

Figure 16: Example assembly of a line of length 11 (part 2 of 2). The final step of combinations, where each length 8 segment
combines with the single assembly of length 3 from Figure 15 is not shown since there are no additional glue activations which occur,
merely the binding of each assembly of length 8 with one of length 3 to form final line assemblies of the target length, 11.
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In this section, we exhibit a construction which is capable of simulating a universal Turing machine in the
STAM, but while doing so only requires a small constant number of tiles (never more than 7) as fuel for each
computational step and maintains an assembly which consists of a number of tiles which is only twice the
total number of tape cells used by the Turing machine up to that step. It is possible that with significantly
fewer binding events in the STAM construction than in those of previous models (even taking into account
those used for signaling), it may be the case that the number of errors which occur could decrease, assuming,
of course, that the mechanism which carries out the transition function is sufficiently error-free.

Throughout this paper, and without loss of generality, we define Turing machines as follows. Let M
be an arbitrary single-tape Turing machine, such that M = (Q,Σ,Γ, δ, q0, qaccept, qreject) with state set Q,
input alphabet Σ = {0, 1}, tape alphabet Γ = {0, 1, }, transition function δ, start state q0 ∈ Q, accept state
qaccept ∈ Q, and reject state qreject ∈ Q. Furthermore, M begins in state q0 on the leftmost cell of the tape,
expects a one-way infinite-to-the-right tape, and is guaranteed to never attempt to move left while on the
leftmost tape cell.

Theorem 5.1 (Fuel efficient Turing machines). For any Turing machine M with input w ∈ {0, 1}∗, there
exists an STAM system TM(w) = (TM(w), 1) with tile complexity O(|Q|), signal complexity O(1), and fuel
efficiency O(1), which simulates M on w in the following way:

1. TM(w) contains an active supertile consisting of 2|w|+2 active tiles representing w and M ’s start state.

2. If M halts on w, then A�[TM , 1] contains exactly one supertile with > 3 tiles and that supertile
contains exactly one ACCEPT (REJECT ) tile if M accepts (rejects) w.

3. If M does not halt on w, then A�[TM , 1] contains exactly 0 (terminal) supertiles with > 3 tiles.

Our proof of Theorem 5.1 is by construction. Here, we provide a brief overview.
Our construction works by utilizing a set of tile type templates that, along with the definition of a Turing

machine M , are used to generate the set of active tiles which are specific to M . The construction uses a
pair of tiles to represent each tape cell, with one tile representing the value (0, 1, or ) of that cell and one
tile providing a “backbone” which the other attaches to and which also attaches to the backbone tiles of
the cells to its left and right. Additionally, there is a special tile for the tape cell representing the rightmost
end of the tape, and also, at any given time, exactly one tape cell which also represents one state of M
along with the tape cell value. The location of the tape cell with that information denotes the location of
M ’s tape head at that point, and the value of the state tells what state M is in. Transitions of M occur
in a series of 4 main steps in which tiles bind to the north of the tape cell denoting the head location, then
to the north of the tape cell to the immediate left or right (depending on whether or not M ’s transition
function specifies a left or right moving transition from the current state while reading the current tape
cell value), and along the way cause the dissociation of the tiles representing the tape cell values in both
locations and their replacement with tiles which represent the correct output tape cell value of the transition
and correctly record the new state and head location at the tape cell immediately to the left or right. Due to
the asynchronous nature of glue deactivations, and also the necessity that any “junk” assemblies produced
(i.e. those assemblies which break off from the assembly representing the Turing machine tape and which
don’t contribute to the final “answer”) must not be able to attach to any portion of any supertile which
represents any stage of the computation, junk assemblies are produced as size 2 or 3 so that any activated
glues which would otherwise be able to bind to another supertile are hidden between the tiles composing the
junk assembly. In such a way, M(w) is correctly simulated while requiring only a constant number of new
tiles per simulated transition step, and all junk assemblies remain inert and at size either 2 or 3. If M(w)
halts, there will be one unique, terminal supertile which represents the result of that computation and is of
size > 3. If M(w) does not halt, only the junk assemblies will be terminal.

Our proof is by construction. Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be a Turing machine and w ∈ {0, 1}∗
be the input. We define the finite set of tile types TM(w) in relation to M as shown in Figure 17. Note that
the tile types presented are generic templates applicable for generating the tile types specific to a given M
(with the exception of the “tape extension tile type”, “backbone tile type”, and the left “tape cell tile type”

19



Proof sketch.
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Figure 17: The templates used to generate tile types for the simulation of a given Turing machine M with
state set Q, tape alphabet {0, 1, }, and the specified transitions which move the head right. The necessary
tile types to simulate transitions which move the head to the left and simply mirror images of the “Turing
machine head tile types”.
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which are used for all M). Also note that the tile type templates provided for the “Turing machine head tile
types” are specific to transitions which move the tape head to the right, and those for left-moving transitions
are simply mirror images with a unique set of glues (e.g. every glue is prefixed with “L-”) defined specifically
for those transitions. The actual tile types that would be generated for a specific M can be determined
by substituting each valid variable value (as specified below each tile type template) into glue labels, and
potentially consist of a large number of actual tile types generated by each template definition.

The tiles in the “Tape cell tile types” and “Backbone tile type” sections of Figure 17 are used to compose
the tape. The tape itself, as shown in Figure 18, consists of a row of east-west connected “backbone” tiles,
each of which is connected on its north to a tile representing a tape cell. The backbone is used to keep the
entire assembly connected during the process of tape cell replacement. The possible values for tape cells
are: (1) “0”, (2) “1”, (3) “ ” (a blank), (4) “*” (which represents the currently rightmost tape cell), or (5)
q×{0, 1, } where q ∈ Q (at any point there is exactly one such tape cell which represents the location of the
head and M ’s current state along with the contents of the tape cell that the head is currently reading. The
tiles in the “Turing machine head tile types” group are used to simulate the actions of the head, which can
be understood as four high-level steps (H1,H2,H3, and H4 - to be explained shortly). The “Tape extension
tile type” is used to extend the tape by one additional blank symbol (“ ”) if and when the head reaches the
rightmost end of the tape, thus allowing the assembly to simulate a one-way infinite-to-the-right tape.

BB B

B1 B2

BB B

B1 B2

BB B

B1 B2

BB B

B1 B2

1

B1 B2

1' 1 Z

q0

B1 B2

q0'q0 W

0

B1 B2

0' 0 Z

*

B1 B2

*' * Z

Figure 18: Start state of the Turing machine M simulation example assuming a tape of “100∗” with M in
state q and currently reading the leftmost 0.

The easiest method of explanation of this construction is to step through an example transition, which
we now do. The specific example is depicted in the series of Figures 18, 19 and 20. Assume that M is
currently in state “q” and reading symbol “0”, the output symbol is “1”, the next state should be “r”, and
the head should move right (i.e. the simulated transition is (q, 0) → (r, 1, R)). Glues which are currently
on are shown as black, glues which have just been turned on or connected in the current step are shown
as bright blue, glues which are queued to turn off are shown as red, and glues which are currently off or
latent have been hidden. Triggered actions have been depicted by arrows.

The transition begins from the q0′ glue on the q0 tile. As depicted in Figure 19(a), the q0-H1 tile encodes
the information to read a 0 while in state q, change it to a 1, move the head to the right, and change to state
r. The values r, 1 and “move to the right” are implicitly stored by r1-H2 as shown in Figure 19(b). r1-H2
then connects to the tape cell tile below to read the symbol on that cell (a 0 here), and sends a message back
to q0-H1 which causes q0-H1 and the now obsolete tape cell beneath it to dissociate as a pair, as shown
in Figure 19(c)-Figure 19(f). When r1-H2 connected with q0-H1, r1-H2 didn’t know what the tape cell
value beneath it was, so it had to activate all four possible glues, which are 0′, 1′, ′, and ∗′. Since only the
0′ binds, r1-H2 can pass along the value of 0 in its next glue r10 to a tile of type r10-H3. Here the r10
means the next state will be r, the tape cell of the current head position will change to 1, and the symbol of
next head position is 0. Then, in Figure 19(h)-Figure 19(l), the r10-H3 tile causes a new tile representing
a tape cell value of 1 to fully bind to the backbone and activate its 1′ glue, which completes the transition
of that tape cell. After that 1 tile is connected to the backbone, it sends a message to r1-H2 that allows
it to dissociate, as shown in Figure 19(l)-Figure 19(o). Finally, the r0-H4 tile binds to r10-H3’s r0 glue,
allowing it to facilitate the binding of the r0 where the 0 previously was, and eventually dissociate along
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Figure 19: High-level sketch of the simulation of a transition, part 1 of 2
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Figure 20: High-level sketch of the simulation of a transition, part 2 of 2
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with the r10-H3 once the r0 is fully connected, as shown in Figure 19(p)-Figure20(w). At this point, the
tape is ready for next state transition, in a configuration similar to that at the beginning of the transition
but with the correct output from the transition which is now complete, and the head in the correct position
while representing the new state.

5.1 Growing the tape

In order to simulate a one-way infinite-to-the-right tape with a finite assembly, we simply design the tape
so that the rightmost cell always represents a special value, namely ∗. Whenever a transition begins which
needs to move the tape head to the right, and the destination location of the head currently contains the
∗ symbol, that situation is “read” by the rb-H2 tile which forces a ∗R tile to bind to its right, which itself
ensures that a new tape cell location with the ∗ symbol as well as a new backbone tile to hold it in place
at the end of the tape both firmly bind. Additionally, the rb-H2 tile “fakes” the situation of having read a
blank ( ) symbol so that the location previously occupied by the ∗ is treated as though it was occupied by a
, which - coupled with the new ∗ symbol one location to the right - is logically identical to adding a blank

tape cell on the right end of the tape. Since this occurs whenever the head tries to move to the end of the
tape, it simulates an infinite tape.

5.2 Junk assemblies
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Figure 21: “Junk” assemblies produced during the example state transition shown in Figures 19 and 20

During each transition of M , several junk assemblies are created when they dissociate from the main
assembly representing the tape. These can be seen in Figure 19(f), Figure 19(o), and Figure 20(w), and
are also shown in Figure 21. In order to guarantee correctness of the construction and thus the underlying
simulation of M(w), it is necessary that these junk assemblies cannot interfere with any version of the
computation (keeping in mind that many such simulations would be occurring in parallel). To ensure this,
we have carefully designed the junk assemblies so that every glue on their perimeter must be either latent
or off, with the notable exception of the glues r1C and D on the west side of the r1-H2 tile of the middle
junk assembly shown in Figure 21. The method of ensuring that specific glues are actually deactivated in a
temperature τ = 1 system is to (1) only send deactivation signals to glues which must be bound at the time
the signal is sent and (2) to only send deactivation signals to glues on one side of a bond (i.e. if two tiles
are bound together by glue x, only one of those tiles sends a signal to deactivate its copy of x). In this way,
despite the fact that signals are processed asynchronously, it must be the case that if a supertile γ is going
to detach, all glues on the boundary of γ (whether on γ or the supertile that γ is bound to) which have been
sent a deactivation signal have actually already turned that glue off. Furthermore, since it is often the case
that sets of glues must be turned on with the expectation that only one of them will ever bind (e.g. as in
the case when the rb-H2 tile activates one glue for each potential tape cell value to its south), in order to
follow (1) above, it is necessary to conceal the unused on glues from any potential interactions. This need
to segregate such glues is the reason for creating junk assemblies of size 2 (and 3) rather than of size 1, and
is a technique utilized in all of the constructions which make use of glue deactivation within this paper.
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Following the above design techniques makes it necessary that for the leftmost and rightmost junk
assemblies to detach, they must be completely inert and unable to bind to any other supertiles in the
system. The middle supertile, with the r1C and D glues still active, on the other hand, ensures that it
cannot bind to any other supertile by utilizing a form of geometric hindrance. Essentially, the r1-H2 tile
can only ever dissociate if it does so with a tape cell tile attached to its south. While the r1C glue on its
west would otherwise be able to attach to a qa-H1 tile that is currently bound to the tape using the eastern
rbC (in this case r1C) glue, an H1 tile can only ever attach to a tape cell tile after an H3 tile dissociates
from its north. The dissociation of the H3 can only happen if it does so while connected to an H4 tile, and
the H4 tile could only dissociate along with the H3 tile after “filling in” the new tape cell tile. Thus, for
the western facing rbC glue on an H1 tile to be available for binding, it can never be the case that a junk
supertile like that pictured in the middle of Figure 21 would be able to bind: it is too tall (the necessary
space for the southern tile would already be occupied by a tape cell tile).

Finally, in the case where the tape is grown one cell to the right there is a fourth type of junk assembly.
This junk assembly is simply the middle junk assembly of Figure 21 with a ∗R tile bound to the east of the
rb-H2 tile by both ∗∗ and ∗R glues (for a total size of 3 tiles). However, the southern glues of the ∗R tile
must be deactivated before dissociation of the junk assembly, and therefore no new glues in the on state are
added. As this is the only other producible type of junk assembly, this means that all junk assemblies are
fully inert and unable to bind to any other supertiles, and thus maintain the correctness of the simulation
while also never growing larger than size 3.

5.3 Correctness of Theorem 5.1

It has been shown that the STAM system TM(w) which simulates M(w) correctly simulates the behavior of
TM M on input w. If M(w) halts, special qa-H1 tiles for q ∈ {qaccept, qreject} (previously undiscussed) will
attach in the head location which halt further assembly (by containing no other on or activatable glues),
thus creating a terminal assembly of size > 3 (since there must be at least one tape cell tile representing a
0, 1, or and the tape cell tile representing ∗, along with their backbone tiles). If M(w) does not halt, the
supertile representing the tape will never be terminal - only the junk assemblies will be terminal - and thus
there will be no terminal supertiles of size > 3. Furthermore, it is a temperature τ = 1 system, all junk
assemblies remain at size either 2 or 3, the signal complexity is O(1) (specifically, 6 due to the maximum
number of glues on a tile side being the 6 on the west side of rb-H2), the fuel efficiency is O(1) as every
transition produces exactly 3 junk assemblies, each with size ≤ 3, and adds at most 4 new tiles to the tape
assembly (the two new tiles for the tape cells which have swapped the head position, plus possibly two more
tiles if the tape was grown by one symbol to the right), and tile complexity O(|Q|) since the tape alphabet
and all other glue values are a constant size set and each tile template can be used to generate at most a
constant number of tiles for each transition in δ and there can be at most O(|Q|) transitions in δ.

6 Self-Assembly of the Sierpinski Triangle

Discrete self-similar fractals are defined as sets of points in Z2, and consist of infinite, aperiodic patterns. It
is difficult, if not impossible, for them to strictly self-assemble in the aTAM, as is shown in [14, 21] where
the impossibility of a class of discrete self-similar fractals, including the Sierpinski triangle, strictly self-
assembling in the aTAM is proven. The impossibility of strictly self-assembling the Sierpinski triangle in
the 2HAM was shown in [3]. Additionally, Doty [10] has shown a generalization of the impossibility proof
from [21] which applies to, among other things, scaled versions of the Sierpinski triangle for any scaling
factor. Thus, any method of strictly self-assembling the Sierpinski triangle, scaled or not, is of interest.

In this section, we show that weak self-assembly of the Sierpinski triangle is possible in the STAM with
fewer tile types (4 versus 7) and lower temperature (1 versus 2) than existing TAM constructions, and we
also show that strict self-assembly at scale factor 2 is possible in the STAM at temperature 1, a first for any
model at any temperature.
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6.1 The discrete Sierpinski triangle

Here we use the definition of [14]. Let V = {(1, 0), (0, 1)}. Define the sets S0, S1, S2, · · · ⊂ Z2 by the recursion
S0 = {(0, 0)}, Si+1 = Si ∪ (Si + 2iV ), where A+ cB = {~m+ c~n | ~m ∈ A and ~n ∈ B}. Then the (standard)
discrete Sierpinski triangle is the set S4 = ∪∞i=0Si. See Figure 22a for a depiction of the first five stages (i.e.
S0 through S4).

Our Sierpinski triangle constructions are as stated in the following two theorems. Additionally, in the
next section we provide a high-level sketch of the more technically challenging construction for Theorem 6.2.

Theorem 6.1. There exists an STAM system that weakly self-assembles the Sierpinski triangle. The
system has 5 unique tiles, signal complexity = 4, assembles at temperature τ = 1, and does not utilize glue
deactivation.

Theorem 6.2. There exists an STAM system that strictly self-assembles the discrete Sierpinski triangle at
temperature τ = 1, with tile complexity = 19, scale factor = 2, signal complexity = 5, and which makes use
of glue deactivation, producing terminal junk assemblies of size ≤ 6.

(a) The first five stages of the discrete Sierpinski
triangle.

(x,y)

f(x,y)01 f(x,y)11

f(x,y)00 f(x,y)10

f(x,y)

(b) Transformation of a point (x, y) into
a set of points f(x, y) for scale factor 2,
and associated notation.

Figure 22: The Sierpinski triangle and a description of the mapping for the scaled version.

6.2 Weak Self-Assembly of the Sierpinski Triangle

Here we describe an STAM system that weakly self-assembles S4 to prove Theorem 6.1 by construction.
Of note is that this construction works at temperature 1, thus using no cooperative binding, and does not
utilize glue deactivation. Further, the tile complexity and signal complexity are small constants of 5 tiles and
4 signals per tile face. This construction is an example of a more general technique for simulating any τ = 2
rectilinear aTAM system (rectilinear systems grow from south to north, west to east) with a temperature
τ = 1 STAM system. The general simulation of any τ = 2 aTAM system with a temperature τ = 1 system
STAM system is direction for future work.

The weak Sierpinski STAM tile set is given in Figure 23. The construction is very similar to standard
aTAM constructions for weakly self-assembling the Sierpinski triangle (e.g. [25]), with the main difference
being that the aTAM construction works at temperature τ = 2, by having each tile (which is not on an
axis) attach with two input sides. Each input side receives as input either a 0 or a 1, and the value for both
output sides is the xor of the input bits. Those tiles which output a 0 are colored white and considered
outside of the Sierpinski triangle, and those which output a 1 are colored black and considered within it.
Since our construction works at τ = 1, one input direction - in this case the west - is chosen to be the first
to bind. Then, signals cause glues for either possible value of the second input to be turned on, allowing
the tile to query the tile to its south for its value of 0 or 1. Whichever of the glues answers that query then
binds and activates the correct output glues as well as turning on the correct label value which identifies the
tile as being either white or black. This general signaling mechanism of recruiting a new tile to the complex,
activating query glues on edges that are adjacent to tiles already bound to the complex, and then responding
to the results of the query is used throughout the temperature 1 STAM constructions given in this paper,
and suggests the basis for simulating rectilinear systems.
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Figure 23: This set of tiles weakly self-assembles the Sierpinski Triangle.

6.3 Strict Self-Assembly of the Sierpinski Triangle

Our proof of Theorem 6.2 is by construction. Here, we provide a brief overview.
Define f(x, y) as the function which takes as input a point (x, y) and which returns the set of 4 points which

correspond to (x, y) at a scale factor of 2, that is, the 2× 2 square of points {(2x+ a, 2y+ b) | a, b ∈ {0, 1}}.
(For instance, f(1, 1) = {(2, 2), (2, 3), (3, 2), (3, 3)}). For notation, we will refer to the 4 points in the set
f(x, y) as f(x, y)00, f(x, y)01, f(x, y)10, and f(x, y)11 with subscripts corresponding to the values for a and
b, given as 00, 01, 10, and 11, respectively. See Figure 22b for a clarification of this notation.

Let S24 = {f(x, y) | (x, y) ∈ S4} be the Sierpinski triangle at scale factor 2, i.e. where each point in
the original Sierpinski triangle is replaced by a 2× 2 square of points, which we will refer to as a block. To
prove Theorem 6.2, we now present an STAM system, T24 = (T24, 1) which strictly self-assembles S24. At
a high-level, it does so by weakly self-assembling S24 by treating each block f(x, y) as a single tile which
receives one input each from the block to its south and the block to its west. Each input is either a 0 or 1, and
the block performs the equivalent of an xor operation on those inputs and outputs the result to its north and
east. A block f(x, y) which outputs a 1 corresponds to a point (x, y) ∈ S4 and thus a location which must
remain tiled in the final assembly (shown as grey locations in Figure 22a). A block f(x, y) which outputs a 0
instead corresponds to a point (x, y) 6∈ S4 and must eventually be removed from the final assembly (shown
as white locations in Figure 22a). Whenever a white region is completely tiled and completely surrounded by
blocks corresponding to grey positions (note that all white regions in S4 are surrounded by grey positions),
glue deactivation is used to “eject” the blocks of that white region as a set of “junk” supertiles. Those junk
supertiles are then broken down into constant sized terminal supertiles (of sizes 3, 4, and 6) which are unable
to attach to any portion of the infinitely growing assembly, and thus remain inert junk assemblies.

The 19 active tile types which compose T24 are depicted in Figures 24, 25, and 26. The tiles of Figures 24
and 25 form 2 × 2 blocks (Figure 27) that function like individual tiles in the aTAM construction and the
above construction. Each block responds to the inputs from the south and west, yielding an output that
is the xor of the binary inputs. The tiles of Figure 26 form the 2 × 2 seed block, and the horizontal and
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Figure 24: First group of tile types which strictly self-assembly the Sierpinski triangle

vertical blocks along the axes, with the exception of tile Ev-2 which only binds to junk assemblies after they
are ejected from the construction, initiating the signals that further break down these junk assemblies into
smaller pieces. The seed, horizontal and vertical blocks are shown as part of the assemblies in Figures 28-30.
Initially, based on the glues that begin in the on state, only tiles of type S can bind to tiles of type V 1 and
H1, to begin building the seed block. These initial bindings initiate a series of glue activations which can,
using tiles of the types shown in Figure 26, tile each of the blocks corresponding to the points of the positive
x and y axes in S4, namely the points {f(x, 0) | x ∈ N} ∪ {f(0, y) | y ∈ N}. Arbitrarily large portions of
the axes can form without the need for any tiles filling in the “interior” 0- and 1-blocks (in positions f(x, y)
where x > 0 and y > 0). However, no interior block f(x, y) can be fully tiled until blocks f(x, 0) and f(0, y)
have received tiles. In fact, the first tile placed in f(x, y) is always f(x, y)00, and for interior blocks this tile
always attaches first to f(x, y− 1)01 (that is, the north-west tile of the block immediately to its south). For
the rest of the discussion, we will only be referring to interior blocks unless explicitly stated.

The first tile to attach in a 0- or 1-block is either SW0 or SW1 depending on whether or not the output
from the block to the south is a 0 or 1, respectively (Figure 27). (An example of the assembly process
can be seen in Figures 28-30.) Once it also binds to the block to its west to receive its second input, it is
able to determine the correct output for that block and activate binding glues on its north which specify
the identity of that entire block as either 0 (in a white position) or 1 (in a grey position). If it is a 0-block
(1-block), the rest of the block fills in with the NW0, NE0, and SE0 (NW1, NE1, and SE1) tiles, in order.
Note that either type of block can have either a SW0 or SW1 tile in its southwest position (the 0 and 1
merely corresponding to the identity of the first input), since the first input is not sufficient to determine
the identity of the block. The 0- and 1- blocks produce the weak Sierpinski pattern at scale factor 2 until
glue deactivations begin to occur.

Next, we describe the dissociation process that removes the 0-blocks from a region of the produced
assembly once that region is fully enclosed by 1-blocks. After blocks determine their identity as 0- or 1-
blocks, they presenting that output to their north and east, allowing further block assembly. 1-blocks display
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Figure 25: Second group of tile types which strictly self-assembly the Sierpinski triangle

glues to their south or east, while 0-blocks also activate glues on their output (north and east) sides which
are used to detect that they are bordered by a 1-block and begin the dissociation process. When a 1-block
forms in the block f(x, y), it must be the case that one of the inputs to the tile in position f(x, y)00 is a 0.
If f(x, y)00 is of type SW0, that input was to the south, and if it is SW1 then that input came from the
west. Once both inputs have been determined, such a SW0 (SW1) tile will activate a glue which initiates
a Ev1 (Eh) signal to the south (west). This signal will be received by the bordering 0-block and cause it
to dissociate from the 1-block and pass the signal further into the block and the entire white region. The
combination of Ev and Eh signals which pass through 0-blocks in a white region bounded by 1-blocks (note
that they must be completely surrounded by 1-blocks since the order of block growth is strictly up and to the
right and those signals are only initiated from the south and east sides of 1-blocks) cause them to separate
into vertical chunks which can each dissociate as single supertiles. The design of the signal propagation and
glue deactivation is such that the junk supertiles can only dissociate as supertiles which are bounded on
both the north and south by 1-blocks (although they may only be 1 block wide and thus bounded on the
east and west by 0-blocks). This fact is extremely important to the process which further breaks apart those
junk supertiles into constant sized pieces but also ensures that they will always be broken apart and never
interfere with further growth of the assembly representing the Sierpinski triangle.

The first phase of dissociation breaks the white regions into vertical columns which were previously
bounded above and below by grey portions. (The process by which some example junk assemblies are
broken down - including some partial re-growth with the addition of singleton NW0 and SE0 tiles - into
latent, constant sized junk, is shown in Figure 31.) This means that the bonds between the white and grey
regions are broken on the north and south, and also the bonds on the left and right of each column of blocks
(both with white and grey blocks) are broken. The careful design of the signals which cause the dissociation
of the white regions, always beginning from grey regions to the north and east and initially only causing
dissociation with bordering grey blocks to the north and south (and not other white blocks to the north and
south of blocks in potentially large white regions), ensures that when junk assemblies are able to dissociate
that the glues on their borders which remain active do not allow them to re-attach to any other portion of
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Figure 26: Third group of tile types which strictly self-assembly the Sierpinski triangle. With the exception
of the tile type labeled ‘Ev-2’, these tile types tile the locations along the positive x and y axes, which are
all included in S4.

the growing assembly except for those which have no blocks formed to the north of them. Additionally, if
they are larger than 6 tiles they are guaranteed to have an NW0 tile in the northwest corner of each block
in their northernmost row, and that NW0 tile will have an active Ev2 glue on its north. Since any position
in which these junk assemblies can re-attach cannot have blocks to their north, the Ev2 glue will allow an
Ev − 2 tile to attach, and this attachment will initiate the second phase of dissociation in which a chain
of signals cause the junk assembly to break up into fixed height portions. Any re-attachment of the junk
assemblies to the growing structure will therefore be temporary and also not able to cause incorrect growth
by initiating invalid signals. Thus the junk assemblies are broken into fixed width and height portions in
two phases.

It is notable that junk assemblies can allow singleton NW0 and SE0 tiles to attach at some point
during their break up into constant sized pieces, but that only these single attachments are possible and no
additional signal activation is possible which would allow the junk assemblies to make further attachments.
Another interesting aspect of the dissociation process is that white blocks which have grey blocks bordering
them on their west side will cause a single tile of those grey blocks to dissociate with them. The newly formed
hole in the grey block will be re-filled by either an SE1 or a V -1 tile. The reason for this is to “hide” the
active 0 glue between the original SE1 tile and the SW1 tile to its east, which could allow incorrect binding
of the junk assembly. In fact, the need to hide active bonds which cannot be guaranteed to be deactivated
in this asynchronous model is the reason for the complexity of the dissociation process and the size of the
final, terminal junk assemblies.

Through this process in which weak self-assembly of the Sierpinski triangle proceeds until white regions
are surrounded by grey blocks, and then those white regions are forced to dissociate as arbitrarily large
junk assemblies which are then further broken down into constant sized junk assemblies, all the while being
guaranteed not to cause incorrect assembly by binding to the still growing structure, provides the correct
strict self-assembly of the Sierpinski triangle at scale 2.
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Figure 29: After weak self-assembly of the first three stages of the Sierpinski triangle plus an extra row and
column to provide the necessary signals which initiate the dissociation of the interior white portions. Those
signals have only partially propagated into the white portions in this figure.
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Figure 30: After weak self-assembly of the first three stages of the Sierpinski triangle and necessary disso-
ciation. The yellow squares indicate locations where tiles previously dissociated and new tiles have filled
in.
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Figure 31: The “junk” ejected from the first three stages and the pathways along which it is broken down
following the attachment of Ev2 tiles. Note that at some edges, singleton tiles can attach to the junk
assemblies. However, all junk assemblies are guaranteed to break down into sizes of 3, 4, or 6 and become
terminal.
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