
ar
X

iv
:1

20
8.

39
42

v2
 [

cs
.F

L
]

 3
 M

ar
 2

01
6

The Chomsky-Schützenberger Theorem

for Quantitative Context-Free Languages

Manfred Droste Heiko Vogler

Institute of Computer Science Department of Computer Science

Leipzig University Technische Universität Dresden

D-04109 Leipzig, Germany D-01062 Dresden, Germany

droste@informatik.uni-leipzig.de Heiko.Vogler@tu-dresden.de

September 21, 2018

Abstract

Weighted automata model quantitative aspects of systems like the con-

sumption of resources during executions. Traditionally, the weights are

assumed to form the algebraic structure of a semiring, but recently also

other weight computations like average have been considered. Here, we

investigate quantitative context-free languages over very general weight

structures incorporating all semirings, average computations, lattices. In

our main result, we derive the Chomsky-Schützenberger Theorem for such

quantitative context-free languages, showing that each arises as the image

of the intersection of a Dyck language and a recognizable language under

a suitable morphism. Moreover, we show that quantitative context-free

languages are expressively equivalent to a model of weighted pushdown

automata. This generalizes results previously known only for semirings.

We also investigate under which conditions quantitative context-free lan-

guages assume only finitely many values.

keywords weighted context-free grammars, weighted pushdown automata, val-
uation monoids, context-free step functions.

1 Introduction

The Chomsky-Schützenberger Theorem forms a famous cornerstone in the the-
ory of context-free languages [8] relating arbitrary context-free languages to
Dyck languages and recognizable languages. A weighted version of this result
reflecting the degrees of ambiguity was also already given in [8]. For weights
taken in commutative semirings this result was presented in [27]. For surveys
on this we refer the reader to [1, 25].

Recently, in [5, 6] new models of quantitative automata for technical systems
have been investigated describing, e.g., the average consumption of resources. In
[7] pushdown automata with mean-payoff cost functions were considered which
comprize a quantitative modelling of sequential programs with recursion. These
cost functions cannot be computed in semirings. Automata over the general
algebraic structure of valuation monoids were investigated in [11, 12]. In valua-
tion monoids, each sequence of weights gets assigned a single weight; examples

1

http://arxiv.org/abs/1208.3942v2

include products in semirings as well as average computations on reals. Hence
automata over valuation monoids include both semiring-weighted automata and
quantitative automata.

It is the goal of this paper to investigate weighted context-free grammars over
valuation monoids. Hence we may associate to each derivation, for instance, the
average of the costs of the involved productions. We could also associate with
each production its degree of sharpness or truth, as in multi-valued logics, using
bounded lattices as valuation monoids. Thereby, we can associate to each word
over the underlying alphabet Σ such a value (real number, element of a lattice,
etc.) indicating its total cost or degree of truth, and any function from Σ∗ into
the value set is called a quantitative language or series. Note that by the usual
identification of sets with {0, 1} -valued functions, classical languages arise as
particular quantitative languages.

Now we give a summary of our results. We prove the equivalence of weighted
context-free grammars and weighted pushdown automata over arbitrary valua-
tion monoids (cf. Theorem 5.2). In our main result we derive a weighted ver-
sion of the Chomsky-Schützenberger Theorem over arbitrary valuation monoids
(cf. Theorem 6.1). In particular, we show that any quantitative context-free
language arises as the image of the intersection of a Dyck language and a rec-
ognizable language under a suitable weighted morphism, and also as the image
of a Dyck language and a recognizable series under a free monoid morphism.
Conversely, each quantitative language arising as such an image is a quantitative
context-free language. This shows that the weighted Chomsky-Schützenberger
Theorem holds for much more general weighted structures than commutative
semirings, in particular, neither associativity, nor commutativity, nor distribu-
tivity of the multiplication are needed. In our proofs, due to the lack of the
above properties, we cannot use the theory of semiring-weighted automata (cf.
[22, 27]); instead we employ explicit constructions of weighted automata taking
care of precise calculations of the weights to deduce our results from the classi-
cal, unweighted Chomsky-Schützenberger Theorem. The latter is contained in
the weighted result by considering the Boolean semiring {0, 1}.

Finally we consider series which assume only finitely many values. Such
series were important in the context of recognizable series and weighted MSO
logic (cf. [3, 10]). In contrast to the setting of recognizable series, even over
the semiring of natural numbers, characteristic series of inherently ambiguous
context-free languages are not context-free (cf. Lemma 7.1). Here we give suffi-
cient conditions for obtaining context-freeness. Conversely, we show that under
suitable local finiteness conditions on the valuation monoid, each quantitative
context-free language assumes just finitely many values, each on a context-free
language (cf. Theorem 7.7). These results seem to be new even for finite semi-
rings. As a consequence, weighted context-free languages over bounded lattices
are context-free step functions.

The robustness of automata over valuation monoids is witnessed by the
fact that two other fundamental results of formal language theory, the Kleene
and Büchi theorems for recognizable languages, were shown to hold not only
for semiring-weighted automata [28, 10], but also for quantitative automata

2

over valuation monoids [12, 23, 11]. This raises the question which further
results from the theory of semiring-weighted automata could be extended to
more general quantitative automata settings including calculations of averages.

This paper combines the papers [15] and [16] and supplements them by a
few additional examples and more detailed proofs.

2 Valuation Monoids and Series

We define a unital valuation monoid to be a tuple (K,+, val, 0, 1) such that
(i) (K,+, 0) is a commutative monoid, (ii) val : K∗ → K is a mapping such that
val(a) = a for each a ∈ K, (iii) val(a1, . . . , an) = 0 whenever ai = 0 for some 1 ≤
i ≤ n, and (iv) val(a1, . . . , ai−1, 1, ai+1, . . . , an) = val(a1, . . . , ai−1, ai+1, . . . , an)
for any 1 ≤ i ≤ n, and (v) val(ε) = 1.

Note that, similarly to products where the element 1 is neutral and can be
left out, val can be considered as a very general product operation in which
the unit 1 is neutral as reflected by requirements (iv) and (v). The concept of
valuation monoid was introduced in [11, 12] as a structure (K,+, val, 0) with
a mapping val : K+ → K satisfying requirements (i)-(iii) correspondingly. In
[11, 12, 23], also many examples of valuation monoids were given. For this
paper, it will be important that the valuation monoids contain a unit 1. We
show that this means no restriction of generality.

Example 2.1. 1. Let (K,+, val, 0) be a valuation monoid and let 1 6∈ K.
We put K ′ = K ∪ {1} and define (K ′,+′, val′, 0, 1) such that +′ extends +,
x +′ 1 = 1 +′ x = 1 for each x ∈ K ′, val(ε) = 1, and val′(a1, . . . , an) =
val(b1, . . . , bm) where b1 . . . bm is the subsequence of a1, . . . , an excluding 1’s.
Then (K ′,+′, val′, 0, 1) is a unital valuation monoid.

2. The structure (R ∪ {−∞}, sup, avg,−∞) with avg(a1, . . . , an) = 1
n
·∑n

i=1 ai is a valuation monoid (with the usual laws for −∞). Applying the
procedure of Example 1 to it, we could add ∞ as the unit 1, disregard-
ing ∞ when calculating averages. This leads to a unital valuation monoid
(R ∪ {−∞,∞}, sup, avg,−∞,∞).

3. Let (K,+, val, 0) be a valuation monoid. Note that in Example 1, the
unit 1 satisfies 1 +′ 1 = 1. Here we wish to give another extension of K

to a unital valuation monoid K ′ which does not satisfy this law for 1. Let
K ′ = N×K with componentwise addition +′. Given (m1, x1), . . . , (mn, xn) we
define val′((m1, x1), . . . , (mn, xn)) = val(x1, . . . , x1, . . . , xn . . . , xn) where this
sequence contains mi copies of xi, if mi 6= 0 and xi 6= 0 (for 1 ≤ i ≤ n), oth-
erwise the xi’s are excluded from the sequence to which val is applied. Then
(K ′,+′, val′, (0, 0), (1, 0)) is a unital valuation monoid.

4. Next we introduce unital valuation monoids where the valuation arises
from ‘local’, binary operations as follows. First, we define a unital monoid-
magma to be a tuple (K,+, ·, 0, 1) such that (K,+, 0) is a commutative monoid,
· : K×K → K is a binary operation, and a ·0 = 0 ·a = 0 and a ·1 = 1 ·a = a for
every a ∈ K. Then we can consider each unital monoid-magna (K,+, ·, 0, 1) as

3

the particular unital valuation monoid (K,+, val, 0, 1) where val(a1, . . . , an) =
(. . . ((a1 · a2) · a3) · . . .) · an. These structures will be important for us in Section
7. Now we list some examples of (classes of) unital monoid-magmas which can
be viewed as unital valuation monoids in this way:

• A unital monoid-magma is a strong bimonoid, if the multiplication is as-
sociative, and a semiring, if the multiplication is associative and distribu-
tive (from both sides) over addition. For a range of examples of strong
bimonoids which are not semirings we refer the reader to [13].

• The Boolean semiring B = ({0, 1},∨,∧, 0, 1) allows us to give exact
translations between unweighted and B-weighted settings. The semiring
(N,+, ·, 0, 1) of natural numbers permits counting.

• Each bounded lattice (L,∨,∧, 0, 1) (i.e. 0 ≤ x ≤ 1 for each x ∈ L) is
a strong bimonoid. There is a wealth of lattices [4, 19] which are not
distributive, hence strong bimonoids but not semirings.

• Let (S,+, ·, 0, 1) be a strong bimonoid and let n ≥ 2. Then the set of all
(n×n)-matrices over S together with the usual pointwise addition and the
usual multiplication of matrices forms a unital monoid-magma. We note
that this matrix multiplication is not associative if the multiplication of
the strong bimonoid is not distributive. We just note that such matrices
arise naturally when considering the initial algebra semantics of weighted
automata over strong bimonoids, cf. [13, p. 159].

• The structure (R, sup, avg2,−∞,∞) with R = R ∪ {−∞,∞}, and
avg2(a, b) = a+b

2 if a, b < ∞, avg2(a,∞) = avg2(∞, a) = a (a, b ∈ R)
is a unital monoid-magma, but not a strong bimonoid.

The importance of infinitary sum operations was observed early on in
weighted automata theory, cf. [17]. In our context, they will arise for am-
biguous context-free grammars if a given word has infinitely many derivations.

A monoid (K,+, 0) is complete [17] if it has an infinitary sum operation∑
I : KI → K for any index set I such that

∑
i∈∅ ai = 0,

∑
i∈{k} ai = ak,

∑
i∈{j,k} ai = aj + ak for j 6= k, and

∑
j∈J

(∑
i∈Ij

ai

)
=

∑
i∈I ai if

⋃
j∈J Ij = I

and Ij ∩ Ik = ∅ for j 6= k.
A monoid (K,+, 0) is idempotent if a+a = a for each a ∈ K, and a complete

monoid is completely idempotent if
∑

I a = a for each a ∈ K and any index set
I.

We call a unital valuation monoid (K,+, val, 0, 1) complete, idempotent, or
completely idempotent if (K,+, 0) has the respective property.

Example 2.2. 1. The Boolean semiring B and the tropical semiring (N ∪
{∞},min,+,∞, 0) are complete and completely idempotent. For a wealth of
further examples of complete semirings see [18, Ch.22].

2. The unital valuation monoid (R ∪ {−∞,∞}, sup, avg,−∞,∞) (cf. Ex-
ample 2.1(2)) is complete and completely idempotent.

4

3. Consider the commutative monoid ({0, 1,∞},+, 0) with 1+1 = 1, 1+∞ =
∞ + ∞ = ∞, and

∑
I 1 = ∞ for any infinite index set I and corresponding

natural laws for infinite sums involving the other elements. This monoid is
complete and idempotent, but not completely idempotent.

Let Σ be an alphabet and K a unital valuation monoid. A series or quan-
titative language over Σ and K is a mapping s : Σ∗ → K. As usual, we denote
s(w) by (s, w). The support of s is the set supp(s) = {w ∈ Σ∗ | (s, w) 6= 0}.
The class of all series over Σ and K is denoted by K〈〈Σ∗〉〉.

Let s, s′ ∈ K〈〈Σ∗〉〉 be series. We define the sum s+s′ by letting (s+s′, w) =
(s, w) + (s′, w) for each w ∈ Σ∗. A family of series (si | i ∈ I) is locally finite if
for each w ∈ Σ∗ the set Iw = {i ∈ I | (si, w) 6= 0} is finite. In this case or if K
is complete, we define

∑
i∈I si ∈ K〈〈Σ∗〉〉 by letting (

∑
i∈I si, w) =

∑
i∈Iw

(si, w)
for every w ∈ Σ∗. For L ⊆ Σ∗, we define the characteristic series 1L ∈ K〈〈Σ∗〉〉
by (1L, w) = 1 if w ∈ L, and (1L, w) = 0 otherwise for w ∈ Σ∗.

In the rest of this paper, let (K,+, val, 0, 1) denote an arbitrary unital
valuation monoid, unless specified otherwise.

3 Weighted Context-Free Grammars

In this section, we introduce our notion of weighted context-free grammars and
we present basic properties. A context-free grammar (CFG) is a tuple G =
(N,Σ, Z, P) where N is a finite set (nonterminals), Σ is an alphabet with N ∩
Σ = ∅ (terminals), Z ∈ N (initial nonterminal), and P ⊆ N × (N ∪ Σ)∗ is a
finite set (productions).

For every production ρ = (A → ξ) ∈ P we define the binary relation
ρ
⇒ on

(N∪Σ)∗ such that for every w ∈ Σ∗ and ζ ∈ (N∪Σ)∗, we have wAζ
ρ
⇒ w ξ ζ. A

(leftmost) derivation of G is a sequence d = ρ1 . . . ρn of productions ρi ∈ P such

that there are sentential forms ξ0, . . . , ξn with ξi−1
ρi⇒ ξi for every 1 ≤ i ≤ n. We

abbreviate this derivation by ξ0
d
⇒ ξn. Let A ∈ N and w ∈ Σ∗. An A-derivation

of w is a derivation d such that A
d
⇒ w. We let D(A,w) denote the set of all

A-derivations of w. And we let D(w) denote the set D(Z,w) of all derivations
of w. The language generated by G is the set L(G) = {w ∈ Σ∗ | D(w) 6= ∅}.

We say that G is ambiguous if there is a w ∈ L(G) such that |D(w)| ≥ 2;
otherwise G is unambiguous. A context-free language L is inherently ambiguous
if every context-freeG G with L = L(G) is ambiguous.

Next let K be a unital valuation monoid. A context-free grammar with
weights in K is a tuple G = (N,Σ, Z, P,wt) where (N,Σ, Z, P) is a CFG and
wt: P → K is a mapping (weight assignment). We say that G is unambiguous
if the underlying CFG is unambiguous.

The weight of a derivation d = ρ1 . . . ρn is the element in K defined by

wt(d) = val(wt(ρ1), . . . ,wt(ρn)) .

5

We say that G is a weighted context-free grammar (WCFG) if (i) {d ∈ D(w) |
wt(d) 6= 0} is finite for every w ∈ Σ∗ or (ii) K is complete. In this case we define
the quantitative language of G to be the series ||G|| ∈ K〈〈Σ∗〉〉 given for every
w ∈ Σ∗ by

(||G||, w) =
∑

d∈D(w)

wt(d) .

Note that this sum exists by our assumptions on a WCFG. A series s ∈ K〈〈Σ∗〉〉
is a quantitative context-free language if there is a WCFG G such that s = ||G||.
The class of all quantitative context-free languages over Σ and K is denoted by
CF(Σ,K). Moreover, we let uCF(Σ,K) comprise all series ||G|| where G is an
unambiguous WCFG. We say that two WCFG are equivalent, if they have the
same quantitative language.

Clearly, any CFG G can be transformed into a WCFG over the Boolean
semiring B by adding the weight assignment wt: P → B such that wt(ρ) = 1 for
each ρ ∈ P . Then for each w ∈ Σ∗ we have w ∈ L(G) if and only if (||G||, w) = 1,
i.e., ||G|| = 1L(G). Consequently, a language L is context-free if and only if
1L ∈ CF(Σ,B). This shows that WCFG form a generalization of CFG.

We say that a CFG G = (N,Σ, Z, P,wt) with weights is proper if the right-
hand side of each rule is an element of (N ∪ Σ)+ \ N (cf. [22, p.302]), i.e., G
contains neither chain productions A → B nor ε-productions A → ε. Then
obviously the set D(w) is finite for every w ∈ Σ∗.

Observation 3.1. A proper CFG with weights is a WCFG.

A WCFG G is in head normal form if every production has the form A →
xB1 . . . Bk where x ∈ Σ ∪ {ε}, k ≥ 0, and A,B1, . . . , Bk ∈ N . By a standard
construction we now obtain the following.

Lemma 3.2. For every (unambiguous) WCFG there is an equivalent (unam-
biguous) WCFG in head normal form.

Proof. Let G = (N,Σ, Z, P,wt) be aWCFG.We construct the CFG with weights
G′ = (N ′,Σ, Z, P ′,wt′) such that

• N ′ = N ∪ {Aσ | σ ∈ Σ},

• P ′ and wt′ are determined as follows.

– If A → ε is in P , then A → ε is in P ′; moreover, wt′(A → ε) =
wt(A → ε).

– If A → Xξ in P with X ∈ N ∪ Σ and ξ ∈ (N ∪ Σ)∗, then A → Xξ′

is in P ′ where ξ′ is obtained from ξ by replacing every σ ∈ Σ by Aσ;
moreover, wt′(A → Xξ′) = wt(A → Xξ).

– For every σ ∈ Σ, the production Aσ → σ is in P ′; moreover,
wt′(Aσ → σ) = 1.

6

Then, for every w ∈ Σ∗, we have that every derivation d of w by G corresponds
naturally to a uniquely determined derivation of w by G′, and vice versa. Thus G′

is also a WCFG and corresponding successful derivations have the same weight.
Thus ||G|| = ||G′||. Clearly, G is unambiguous if and only if G′ is unambiguous.

Example 3.3. We consider the set of all arithmetic expressions over addition,
multiplication, and the variable x. Assuming that the calculation of the addition
(and multiplication) of two values needs n ∈ N (resp., m ∈ N) machine clock
cycles, we might wish to know the average number of clock cycles the machine
needs to calculate any of the operations occurring in an expression.

For this we consider the unital valuation monoid (R ∪ {−∞,∞}, sup, avg,
−∞,∞) as above and the WCFG G = (N,Σ, E, P,wt) with the productions

ρ1 : E → (E + E), ρ2 : E → (E ∗ E), ρ3 : E → x

and wt(ρ1) = n, wt(ρ2) = m, wt(ρ3) = 1. For the expression w = ((x ∗x)+ (x ∗
x)), we have that D(w) = {d} with d = ρ1d

′d′ and d′ = ρ2ρ3ρ3. In fact, G is
unambiguous. Then (||G||, w) = wt(d) = val(n,m, 1, 1,m, 1, 1) which is equal to
avg(n,m,m) = n+2·m

3 .

4 Weighted Pushdown Automata

In this section, we introduce our notion of weighted pushdown automata,
and we derive a few basic properties. First let us fix our notation for push-
down automata. A pushdown automaton (PDA) over Σ is a tuple M =
(Q,Σ,Γ, q0, γ0, F, T) whereQ is a finite set (states), Σ is an alphabet (input sym-
bols), Γ is an alphabet (pushdown symbols), q0 ∈ Q (initial state), γ0 ∈ Γ (initial
pushdown symbol), F ⊆ Q (final states), and T ⊆ Q ×

(
Σ ∪ {ε}

)
× Γ×Q × Γ∗

is a finite set (transitions). For a transition (q, x, γ, p, π), we call q, x, and p its
source state, label, and target state, respectively.

For every transition τ = (q, x, γ, p, π) ∈ T we define the binary relation ⊢τ

on Q× Σ∗ × Γ∗ such that for every w ∈ Σ∗ and µ ∈ Γ∗, we have (q, xw, γµ) ⊢τ

(p, w, πµ). A computation is a sequence θ = τ1 . . . τn of transitions τi such that
there are configurations c0, . . . , cn with ci−1 ⊢τi ci for every 1 ≤ i ≤ n. We
abbreviate this computation by c0 ⊢θ cn. The label of a computation τ1 . . . τn
is the sequence of labels of the involved transitions. Let w ∈ Σ∗ and q ∈ Q. A
q-computation on w is a computation θ such that (q, w, γ0) ⊢θ (p, ε, ε) for some
p ∈ F . We let Θ(q, w) denote the set of all q-computations on w, and we let
Θ(w) = Θ(q0, w). The language recognized by M is the set L(M) = {w ∈ Σ∗ |
Θ(w) 6= ∅}. That means, we consider acceptance of words by final state and
empty pushdown.

Observation 4.1. Let (q, v, γ1 . . . γk)
η

⊢ (p, ε, ε) be a computation. Put p0 = q.
Then for i = 1, . . . , k we obtain successively a uniquely determined shortest

computation ηi, state pi ∈ Q, and word vi ∈ Σ∗ such that (pi−1, vi, γi)
ηi

⊢ (pi, ε, ε)
and η = η1 . . . ηk, v = v1 . . . vk, and pk = p.

7

Let M be any PDA. We say that M is ambiguous if there is a w ∈ L(M)
such that |Θ(w)| ≥ 2; otherwise M is unambiguous.

Next let K be a unital valuation monoid. A pushdown automaton with
weights in K is a tupleM = (Q,Σ,Γ, q0, γ0, F, T,wt) where (Q,Σ,Γ, q0, γ0, F, T)
is a PDA and wt: T → K is a mapping (weight assignment). We say that M
is unambiguous if the underlying PDA is unambiguous.

The weight of a computation θ = τ1 . . . τn is the element in K defined by

wt(θ) = val(wt(τ1), . . . ,wt(τn)) .

We say that M is a weighted pushdown automaton (WPDA) if (i) {θ ∈
Θ(w) | wt(θ) 6= 0} is finite for every w ∈ Σ∗ or (ii) K is complete. In this case
we define the quantitative behavior of M to be the series ||M|| ∈ K〈〈Σ∗〉〉 given
for every w ∈ Σ∗ by

(||M||, w) =
∑

θ∈Θ(w)

wt(θ) .

The class of quantitative behaviors of all WPDA over Σ and K is denoted by
PDA(Σ,K). Moreover, we let uPDA(Σ,K) comprise all series ||M|| where M
is an unambiguous WPDA. We say that two WPDA are equivalent if they have
the same quantitative behavior.

Clearly, any PDA M can be transformed into a WPDA over the Boolean
semiring B by adding the weight assignment wt: T → B such that wt(τ) = 1
for each τ ∈ T . Then for each w ∈ Σ∗ we have w ∈ L(M) if and only if
(||M||, w) = 1, i.e., ||M|| = 1L(M). Consequently, a language L is recognized
by a PDA if and only if 1L ∈ PDA(Σ,B). This shows that WPDA form a
generalization of PDA.

We say that a PDA M = (Q,Γ, q0, γ0, F, T,wt) with weights is proper if
(q, ε, γ, p, π) ∈ T implies |π| ≥ 2 (cf. [22, p.172]), i.e., M extends its pushdown
in each ε-transition. Then obviously the set Θ(w) is finite for every w ∈ Σ∗.

Observation 4.2. Each proper PDA with weights is a WPDA.

A WPDA M = (Q,Σ,Γ, q0, γ0, F, T,wt) is state normalized if

• there is no transition in T with q0 as target state,

• F is a singleton, say, F = {qf}, and

• there is no transition in T with qf as source state.

By a standard construction we obtain the following.

Lemma 4.3. For every (unambiguous) WPDA there is an equivalent state nor-
malized (unambiguous) WPDA.

Proof. Let M = (Q,Γ, q0, γ0, F, T,wt). We construct the PDA with weights
M′ = (Q′,Γ′, q′0, γ

′
0, {qf}, T

′,wt′) with

• Q′ = Q ∪ {q′0, qf} with Q ∩ {q′0, qf} = ∅,

8

• Γ′ = Γ ∪ {γ′
0},

• T ′ = T ∪ {τin} ∪ {τp | p ∈ F}, τin = (q′0, ε, γ
′
0, q0, γ0γ

′
0) and τp =

(p, ε, γ′
0, qf , ε) and

• wt′|T = wt and wt′(τin) = wt(τp) = 1, for each p ∈ F .

Let θ = τ1τ2 . . . τn be a computation of M on w and let p be the target state of
τn. Then θ′ = τinτ1τ2 . . . τnτp is a computation of M′ on w and wt′(θ′) = wt(θ).
Vice versa, every computation of M′ on w has the form τinτ1τ2 . . . τnτp for some
p ∈ F . Then τ1τ2 . . . τn is a computation of M on w.

Moreover, M′ is a WPDA. Thus we have ||M|| = ||M′||. Clearly, M is
unambiguous if and only if M′ is unambiguous.

Next we show that WPDA with just one state are as powerful as arbitrary
WPA using the classical triple construction (cf. e.g. [21, Lecture 25]).

Lemma 4.4. For every (unambiguous) WPDA there is an equivalent (unam-
biguous) WPDA with just one state.

Proof. Let M be a WPDA. By Lemma 4.3 we can assume that M is state
normalized and has the form (Q,Γ, q0, γ0, {qf}, T,wt). Then we construct the
PDA with weights M′ = ({∗},Γ′, ∗, (q0, γ0, qf), {∗}, T

′,wt′) and Γ′ = Q×Γ×Q

as follows. For each transition

(q, x, γ, p0, γ1 . . . γk) ∈ T

and every p1, . . . , pk ∈ Q, the transition

(∗, x, (q, γ, pk), ∗, (p0, γ1, p1)(p1, γ2, p2) . . . (pk−1, γk, pk))

is in T ′. For k = 0 this reads: if (q, x, γ, p0, ε) ∈ T , then (∗, x, (q, γ, p0), ∗, ε) ∈
T ′.

Moreover,

wt′((∗, x, (q, γ, pk), ∗, (p0, γ1, p1)(p1, γ2, p2) . . . (pk−1, γk, pk)))

= wt((q, x, γ, p0, γ1 . . . γk))) .

For every computation θ of M we construct a computation ϕ(θ) of M′ as
follows. Let θ ∈ ΘM(w) and τ = (q, x, γ, p, γ1 . . . γk) be a transition which
occurs in θ. Then θ can be decomposed into

(q0, w, γ0)
θ1

⊢ (q, xu, γµ)
τ

⊢ (p, u, γ1 . . . γkµ)
θ2

⊢ (qf , ε, ε) .

Let η, v, and p′ be the, resp., shortest prefix of θ2, shortest prefix of u, and
uniquely determined state such that

(p, v, γ1 . . . γk)
η

⊢ (p′, ε, ε) .

9

Put p0 = p. Then, by Oberservation 4.1, for i = 1, . . . , k we can successively
find a shortest word vi ∈ Σ∗, a uniquely determined state pi ∈ Q, and a shortest

computation ηi such that (pi−1, vi, γi)
ηi

⊢ (pi, ε, ε) and v = v1 . . . vk, pk = p′, and
η = η1 . . . ηk. Then we replace the occurrence τ in θ = θ1τθ2 by

ϕ(τ) = (∗, x, (q, γ, pk), ∗, (p, γ1, p1)(p1, γ2, p2) . . . (pk−1, γk, p
′)) .

We extend ϕ to computations by letting

ϕ(τ1 . . . τn) = ϕ(τ1) . . . ϕ(τn) .

In particular, ϕ : ΘM(w) → ΘM′(w) is bijective. Thus, since M is a WPDA,
alsoM′ is a WPDA. Since wt(τ) = wt(ϕ(τ)), we have wt(θ) = wt(ϕ(θ)). Hence,
||M|| = ||M′||.

It is clear that M is unambiguous if and only if M′ is unambiguous.

A classical construction of the union of two state normalized WPDA shows
that PDA(Σ,K) is closed under sums.

Lemma 4.5. Let s1, s2 ∈ PDA(Σ,K). Then s1 + s2 ∈ PDA(Σ,K).

Proof. Let M1 = (Q1,Γ1, q0,1, γ0,1, F1, T1,wt1) and M2 =
(Q2,Γ2, q0,2, γ0,2, F2, T2,wt2) be state normalized WPDA (compare Lemma
4.3) such that s1 = ||M1|| and s2 = ||M2||. By renaming, we may assume that

• q0,1 = q0,2 and Q1 ∩ Q2 = {q0,1}; henceforth we will denote this initial
state by q0, and

• γ0,1 = γ0,2; henceforth we will denote this initial pushdown symbol by γ0.

Now we construct the WPDA M = (Q,Γ, q0, γ0, F, T,wt) with Q = Q1∪Q2,
Γ = Γ1 ∪ Γ2, F = F1 ∪ F2, and T = T1 ∪ T2. Moreover, we let wt|T1

= wt1 and
wt|T2

= wt2. Then ||M|| = ||M1||+ ||M2||.

We mention that in [7] pushdown games with quantitative objectives were
investigated. Such games are formalized on the basis of paths through push-
down systems where the latter are particular pushdown automata with weights:
the input alphabet Σ is a singleton and no ε-transition occurs. Moreover,
as weight structure, pushdown systems employ the set of integers with mean-
payoff. Roughly, the mean-payoff of a computation is the average of its transition
weights (taking the limit superior of the averages of finite prefixes on infinite
computations). Then in [7] game-theoretic problems on the set of all paths for
which the mean-payoff is above a given threshold are investigated. Finally, we
note that weighted pushdown systems over bounded idempotent semirings were
used in interprocedural dataflow analysis [26].

10

5 Equivalence of WCFG and WPDA

A classical result says that a language L is context-free iff L is accepted by
a pushdown automaton. This was extended to algebraic series and weighted
pushdown automata with weights taken in semirings in [22]. The goal of this
small section is to prove the generalization to arbitrary unital valuation monoids.

For this we use the following concept. LetM = ({∗},Σ,Γ, ∗, γ0, {∗}, T,wtM)
be a WPDA over K with one state and G = (N,Σ, Z, P,wtG) be a WCFG
over K in head normal form. We say that M and G are related if Γ = N ,
γ0 = Z, τ = (∗, x, A, ∗, B1B2 . . . Bn) ∈ T iff ρ = (A → xB1B2 . . . Bn) is in
P ; wtM(τ) = wtG(ρ) if τ and ρ correspond to each other as above. Then the
following lemma is easy to see (cf. e.g. [21]).

Lemma 5.1. Let M be a WPDA with one state and G be a WCFG in head
normal form. If M and G are related, then ||M|| = ||G||. Moreover, M is
unambiguous iff G is unambiguous.

Proof. For every w ∈ Σ∗, the set Θ(w) of computations on w corresponds
bijectively to the setD(w) of derivations of w, and this correspondence preserves
their weights. This implies (||M||, w) = (||G||, w).

The previous lemma and the normal forms of WPDA and WCFG imply the
following theorem.

Theorem 5.2. For every alphabet Σ and unital valuation monoid K we have
PDA(Σ,K) = CF(Σ,K) and uPDA(Σ,K) = uCF(Σ,K).

Proof. If s ∈ PDA(Σ,K), then by Lemma 4.4 there is a WPDA M with one
state such that ||M|| = s. Next we construct the WCFG G which is related to
M. By Lemma 5.1 we obtain that s ∈ CF(Σ,K). Correspondingly, the converse
follows from Lemmas 3.2 and 5.1.

6 Theorem of Chomsky-Schützenberger

In this section let K again be a unital valuation monoid. The goal of this
section will be to prove a quantitative version of the Chomsky-Schützenberger
Theorem. Recently, in [20] the Chomsky-Schützenberger Theorem has been used
as a pattern for a parsing algorithm of probabilistic context-free languages.

Let Y be an alphabet. Then we let Y = {y | y ∈ Y }. The Dyck language
over Y , denoted by DY , is the language which is generated by the CFG GY =
(N, Y ∪Y , Z, P) with N = {Z} and the rules Z → yZy for any y ∈ Y , Z → ZZ,
and Z → ε.

Next we introduce monomes and alphabetic morphisms. A series s ∈ K〈〈Σ∗〉〉
is called a monome if supp(s) is empty or a singleton. If supp(s) = {w}, then
we also write s = (s, w).w . We let K[Σ ∪ {ε}] denote the set of all monomes
with support in Σ ∪ {ε}.

11

Let ∆ be an alphabet and h : ∆ → K[Σ ∪ {ε}] be a mapping. The al-
phabetic morphism induced by h is the mapping h′ : ∆∗ → K〈〈Σ∗〉〉 such that
for every n ≥ 0, δ1, . . . , δn ∈ ∆ with h(δi) = ai.yi we have h′(δ1 . . . δn) =
val(a1, . . . , an).y1 . . . yn . Note that h′(v) is a monome for every v ∈ ∆∗, and
h′(ε) = 1.ε. If L ⊆ ∆∗ such that the family (h′(v) | v ∈ L) is locally finite or if
K is complete, we let h′(L) =

∑
v∈L h′(v). In the sequel we identify h′ and h.

We also call a mapping h : ∆ → Σ ∪ {ε} and its unique extension to a
morphism from ∆∗ to Σ∗ an alphabetic morphism. In this case, if r ∈ K〈〈∆∗〉〉 is
such that {v ∈ h−1(w) | (r, v) 6= 0} is finite for each w ∈ Σ∗, or if K is complete,
we define h(r) ∈ K〈〈Σ∗〉〉 by letting (h(r), w) =

∑
v∈∆∗,h(v)=w(r, v).

Next we introduce the intersection of a series with a language as follows.
Let s ∈ K〈〈Σ∗〉〉 and L ⊆ Σ∗. We define the series s ∩ L ∈ K〈〈Σ∗〉〉 by letting
(s ∩ L,w) = (s, w) if w ∈ L, and (s ∩ L,w) = 0 otherwise.

Finally, a weighted finite automaton over K and Σ (for short: WFA) is a
tuple A = (Q, q0, F, T,wt) where Q is a finite set (states), q0 ∈ Q (initial state),
F ⊆ Q (final states), T ⊆ Q× Σ×Q (transitions), and wt: T → K (transition
weight function). We call A deterministic if for every q ∈ Q and σ ∈ Σ, there is
at most one p ∈ Q with (q, σ, p) ∈ T .

If w = σ1 . . . σn ∈ Σ∗ where n ≥ 0 and σi ∈ Σ, a path P over w is a sequence
P = (q0, σ1, q1) . . . (qn−1, σn, qn) ∈ T ∗. The path P is successful if qn ∈ F . The
weight of P is the value wt(P) = val(wt((q0, σ1, q1)), . . . ,wt((qn−1, σn, qn))) .

The behavior of A is the series ||A|| ∈ K〈〈Σ∗〉〉 such that for every w ∈ Σ∗,
(||A||, w) =

∑
P succ. path

over w
wt(P). A series s ∈ K〈〈Σ∗〉〉 is called deterministically

recognizable if s = ||A|| for some deterministic WFA A.
Our main result will be:

Theorem 6.1. Let K be a unital valuation monoid and s ∈ K〈〈Σ∗〉〉 be a series.
Then the following four statements are equivalent.

1. s ∈ CF(Σ,K).

2. There are an alphabet Y , a recognizable language R over Y ∪ Y , and an
alphabetic morphism h : Y ∪ Y → K[Σ ∪ {ε}] such that s = h(DY ∩R).

3. There are an alphabet ∆, an unambiguous CFG G over ∆, and an alpha-
betic morphism h : ∆ → K[Σ ∪ {ε}] such that s = h(L(G)).

4. There are an alphabet Y , a deterministically recognizable series r ∈
K〈〈(Y ∪ Ȳ)∗〉〉, and an alphabetic morphism h : Y ∪Y → Σ∪{ε} such that
s = h(r ∩DY).

Moreover, if K is complete and completely idempotent, then 1-4 are also equiv-
alent to:

5. There are an alphabet ∆, a context-free language L over ∆, and an alpha-
betic morphism h : ∆ → K[Σ ∪ {ε}] such that s = h(L).

The following lemma proves the implication 1 ⇒ 3 of Theorem 6.1.

12

Lemma 6.2. Let s ∈ CF(Σ,K). Then there are an alphabet ∆, an unambiguous
CFG G over ∆, and an alphabetic morphism h : ∆ → K[Σ ∪ {ε}] such that
s = h(L(G)).

Proof. By Lemma 3.2 we can assume that s = ||H|| for some WCFG H =
(N,Σ, Z, P,wt) in head normal form.

We let ∆ = P , and we construct the CFG G = (N,P, Z, P ′) and the mapping
h : P → K〈Σ ∪ {ε}〉 such that, if ρ = (A → xB1 . . . Bk) is in P , then A →
ρB1 . . . Bk is in P ′ and we define h(ρ) = wt(ρ).x. Obviously, G is unambiguous.

By definition of h, we have that h(d) = val(wt(ρ1), . . . ,wt(ρn)).w for every
w ∈ Σ∗ and d = ρ1 . . . ρn ∈ DH(w). Hence wt(d) = (h(d), w).

It is clear that L(G) =
⋃

w∈Σ∗ DH(w) and DH(w) ∩ DH(w′) = ∅ for every
w 6= w′. Hence, {d ∈ L(G) | (h(d), w) 6= 0} ⊆ DH(w), which is finite by
definition of WCFG in case K is not complete. Thus, (h(d) | d ∈ L(G)) is
locally finite if K is not complete.

Then for every w ∈ Σ∗ we have

(||H||, w) =
∑

d∈DH(w)wt(d) =
∑

d∈DH(w)(h(d), w)

=∗
∑

d∈L(G)(h(d), w) =
(∑

d∈L(G) h(d), w
)
= (h(L(G)), w)

where the equation ∗ holds, because for every d ∈ L(G) \ DH(w) we have
(h(d), w) = 0. Thus s = h(L(G)).

The following lemma proves the implication 3 ⇒ 1 of Theorem 6.1.

Lemma 6.3. Let L be a context-free language over ∆ and h : ∆ → K[Σ∪ {ε}]
an alphabetic morphism such that (h(v) | v ∈ L) is locally finite in case K is not
complete. If L can be generated by some unambiguous CFG or if K is complete
and completely idempotent, then h(L) ∈ CF(Σ,K).

Proof. Let M = (Q,Γ, q0, γ0, F, T) be a PDA over ∆ with L(M) = L. More-
over, by Theorem 5.2, if L = L(G) for some unambiguous CFG G, then we can
assume that M is unambiguous. Let δ ∈ ∆ be an arbitrary, but fixed element.

The following construction employs the same technique as in [14, Lemma
5.7] of coding the preimage of h into the state set; thereby non-injectivity of
h is handled appropriately. We construct the PDA over Σ with weights M′ =
(Q′,Γ, q′0, γ0, F

′, T ′,wt) where Q′ = {q′0} ∪ Q × (∆ ∪ {ε}) for some q′0 6∈ Q,
F ′ = F × {δ}, and T ′ and wt are defined as follows.

• For every x ∈ ∆ ∪ {ε}, the rule τ = (q′0, ε, γ0, (q0, x), γ0) is in T ′ and
wt(τ) = 1.

• Let τ = (q, x, γ, p, π) ∈ T and x′ ∈ ∆ ∪ {ε}.

– If x ∈ ∆ and h(x) = a.y, then τ ′ = ((q, x), y, γ, (p, x′), π) ∈ T ′ and
wt(τ ′) = a.

– If x = ε, then τ ′ = ((q, ε), ε, γ, (p, x′), π) ∈ T ′ and wt(τ ′) = 1.

13

Let w ∈ Σ∗. First, let v ∈ ∆∗ with h(v) = z.w for some z ∈ K. We write
v = δ1 . . . δn ∈ ∆∗ with n ≥ 0 and δi ∈ ∆. Let h(δi) = ai.yi for every 1 ≤ i ≤ n.
Thus h(v) = val(a1, . . . , an).y1 . . . yn and w = y1 . . . yn.

Let θ = τ1 . . . τm be a q0-computation in ΘM(v); note that m ≥ max{n, 1}
because at least γ0 has to be popped. Let xi be the second component of τi, so,
xi ∈ ∆ ∪ {ε}, and v = x1 . . . xm.

Then we construct the q′0-computation θ′ = τ ′0τ
′
1 . . . τ

′
m in ΘM′(y1 . . . yn) as

follows:

• τ ′0 = (q′0, ε, γ0, (q0, x1), γ0).

• If 1 ≤ i ≤ m and τi = (q, xi, γ, p, π), then τ ′i = ((q, xi), y
′, γ, (p, xi+1), π)

where y′ = y if xi ∈ ∆ and h(xi) = a.y, and y′ = ε if xi = ε, and
xm+1 = δ.

Note that if xi ∈ ∆ and h(xi) = a.y, then wt(τ ′i) = a, and if xi = ε, then
wt(τ ′i) = 1 for each 1 ≤ i ≤ m, by definition of wt. Consequently

(h(v), w) = val(a1, . . . , an) = val(wt(τ ′0),wt(τ
′
1), . . . ,wt(τ

′
m)) = wt(θ′).

In particular, wt(θ′1) = (h(v), w) = wt(θ′2) for every θ1, θ2 ∈ ΘM(v).
Conversely, for every q′0-computation θ′ = τ ′0τ

′
1 . . . τ

′
m in ΘM′(w) by defini-

tion of T ′ there are a uniquely determined v ∈ ∆∗ and a uniquely determined
q0-computation θ = τ1 . . . τm in ΘM(v) such that θ′ is the computation con-
structed above. It follows that M′ is a WPDA.

So, for every w ∈ Σ∗ we obtain

(h(L(M)), w) =

(∑
v∈L(M)

h(v), w

)

=
∑

v∈L(M):
(h(v),w) 6=0

(h(v), w)

=∗
∑

v∈L(M),θ∈ΘM(v):
(h(v),w) 6=0

wt(θ′)

=
∑

θ′∈ΘM′ (w)
wt(θ′)

= (||M′||, w)

where the ∗-marked equality holds because (1) K is complete and completely
idempotent or (2) M is unambiguous. Thus ||M′|| = h(L(M)) and the result
follows from Theorem 5.2.

The following simple observation can be easily proved by considering [8] and
using [2], respectively.

14

Lemma 6.4. 1. There is an unambiguous CFG G such that L(G) = DY .

2. Let G be an unambiguous CFG over Σ and R ⊆ Σ∗ is a recognizable
language. Then there is an unambiguous CFG G′ with L(G′) = L(G) ∩R.

Proof. 1. We consider the CFG G′
Y = (N, Y ∪ Y , Z, P) with N = {Z,A} and

the rules Z → AZ, Z → ε, and A → yZy. Clearly, L(G′
Y) = DY , and G′

Y is
unambiguous (cf. [8, Prop.1, p.145]).

2. Using [2, Lm.4.1] we can construct the CFG H1 such that L(H1) =
L(G) \ {ε} and H1 does not contain a production of the form A → ε. By
inspection of the construction we obtain that also H1 is unambiguous.

Now let A be a deterministic finite-state string automaton such that L(A) =
R. Then we can apply the construction of [2, Thm.8.1] to H1 and A and obtain
an unambiguous CFG H2 with L(H2) = L(H1) ∩ R. Let Z be the initial
nonterminal of H2. Finally, from H2 we can construct the unambiguous CFG
G′ as follows: if ε ∈ L(G) ∩R, then we add the new initial nonterminal Z ′ and
the productions Z ′ → Z and Z ′ → ε to H2, otherwise let G′ = H2. It is clear
that G′ is unambiguous and L(G′) = L(G) ∩R.

As consequence of Lemmas 6.2 and 6.3 and of the result of Chomsky-
Schützenberger for context-free languages we can now derive the result of
Chomsky-Schützenberger for quantitative context-free languages.

Proof of Theorem 6.1: 1 ⇔ 3: Immediate by Lemmas 6.2 and 6.3.
2 ⇒ 3: by Observation 6.4.
3 ⇒ 2: By the classical result of Chomsky-Schützenberger (cf. e.g. [21,

Thm.G1]) there are an alphabet Y , a recognizable language R over Y ∪ Y , and
an alphabetic morphism g : Y ∪ Y → ∆∪ {ε} such that L(G) = g(DY ∩R). By
analysis of the construction, we have that the set g−1(v)∩DY ∩R is in a one-to-
one correspondence with DG(v), for every v ∈ L(G). Since G is unambiguous,
we have that |g−1(v) ∩DY ∩R| = 1.

Next we prove that (h ◦ g(v′) | v′ ∈ DY ∩R) is locally finite in case K is not
complete. Since h(L(G)) is defined, the set Iw = {v ∈ L(G) | (h(v), w) 6= 0} is
finite for every w ∈ Σ∗. Since g−1(v)∩DY ∩R is a singleton for every v ∈ L(G),
the set {v′ ∈ DY ∩ R | (h(g(v′)), w) 6= 0} is finite for every w ∈ Σ∗. Hence
(h ◦ g(v′) | v′ ∈ DY ∩R) is locally finite.

Thus h◦g : Y ∪Y → K〈Σ∪{ε}〉 is an alphabetic morphism, (h◦g)(DY ∩R)
is well defined, and s = (h ◦ g)(DY ∩R).

2 ⇒ 4: Let Ỹ = Y ∪ Y . Recall that h(v) ∈ K〈Σ∗〉 is a monome for every

v ∈ Ỹ ∗. We define h′ : Ỹ ∗ → Σ∗ by letting h′(v) = w if h(v) = a.w. Clearly, h′

is a morphism.
Choose a deterministic finite automaton A′ = (Q, q0, F, T) over Ỹ recogniz-

ing R. We define a deterministic WFA A = (Q, q0, F, T,wt) over Ỹ by putting

wt(t) = a if t = (q, z, p) and h(z) = a.x. Let r = ||A|| ∈ K〈〈Ỹ ∗〉〉. Note that
(r, v) = (h(v), w) if v ∈ R and h′(v) = w, and (r, v) = 0 otherwise.

15

By assumption s = h(DY ∩R) =
∑

v∈DY ∩R h(v). Hence, for w ∈ Σ∗:

(s, w) =
∑

v∈DY ∩R

(h(v), w) =
∑

v∈DY ,h′(v)=w

(r, v) = (h′(r ∩DY), w)

where the sums exist because they have only finitely many nonzero entries if K
is not complete. Thus s = h′(r ∩DY).

4 ⇒ 3: We put Ỹ = Y ∪Y . Also, let Ỹ0 = Ỹ ∪{γ0} with an element γ0 6∈ Ỹ .

By assumption, there is a deterministic WFA A = (Q, q0, F, T,wt) over Ỹ with

||A|| = r. We let A′ = (Q, q0, F, T), a deterministic finite automaton over Ỹ .

Next, we wish to define a PDA M over Ỹ recognizing L(A′) ∩ DY . Let

M = (Q, Ỹ0, q0, γ0, F, T
′) such that

• (q, ε, γ0, q, ε) ∈ T ′ for each q ∈ F , and

• for every x ∈ Ỹ and γ ∈ Ỹ0, (q, x, γ, p, π) ∈ T ′ iff (q, x, p) ∈ T and

π =

{
xγ if x ∈ Y

ε if γ ∈ Y and x = γ.

Since A′ is deterministic, M is an unambiguous PDA. Moreover, we have
L(M) = L(A′) ∩DY .

Next, we extend M to a PDA MT = (Q, Ỹ0, q0, γ0, F, T) over T by letting

(q, t, γ, p, π) ∈ T iff (q, x, γ, p, π) ∈ T ′ and
either t = (q, x, p) ∈ T or t = x = ε.

Clearly, MT is unambiguous. Moreover, since A′ is deterministic, for each
v ∈ L(M) ⊆ L(A′) there is a unique successful path pv ∈ T ∗ on v in A′. Then
pv ∈ L(MT). Conversely, each v′ ∈ L(MT) arises as v′ = pv for a uniquely
determined word v ∈ L(M) in this way.

We let lab : T ∗ → Ỹ ∗ be the alphabetic morphism mapping each transition
to its label, i.e., lab(q, x, p) = x. Finally we define an alphabetic morphism
hK : T → K〈Σ ∪ {ε}〉 by letting hK(t) = wt(t).h(lab(t)).

We claim that hK(L(MT)) = h(r∩DY). Let w ∈ Σ∗. Note that if v ∈ L(M)
and v′ = pv as above, then lab(v′) = v and hK(v′) = wt(v′).h(v). Since v′ = pv
is the unique successful path in A on v, we obtain wt(v′) = (||A||, v). Moreover,
(hK(v′), w) 6= 0 implies w = h(v). Also, (||A||, v) = 0 if v 6∈ L(A′). Hence we
obtain

(hK(L(MT)), w) =
∑

v′∈L(MT)(hK(v′), w) =
∑

v∈L(M)
h(v)=w

wt(v′)

=
∑

v∈L(A′)∩DY

h(v)=w

(||A||, v) =
∑

v∈DY

h(v)=w

(||A||, v) =
∑

v∈Ỹ ∗

h(v)=w

(r ∩DY , v)

= (h(r ∩DY), w).

3 ⇒ 5: trivial.
5 ⇒ 1: by Lemma 6.3. �

16

7 Context-Free Step Functions

An important result in the theory of rational power series states sufficient condi-
tions when for a recognizable series, the language of all words assuming a given
value is recognizable. Of particular interest are semirings in which both opera-
tions are restricted to be locally finite [3], cf. also [13]. Here, as a supplement
of the previous results, we investigate this question for quantitative context-free
languages over unital valuation monoids K. This can also be seen as another
way (in comparison to Theorem 6.1) of connecting series with languages and
weights.

If L ⊆ Σ∗ and a ∈ K, we let a · 1L ∈ K〈〈Σ∗〉〉 be the series satisfying
(a · 1L, w) = a if w ∈ L, and (a · 1L, w) = 0 otherwise. Let s ∈ K〈〈Σ∗〉〉. We
say that s is a context-free step function if s =

∑n

i=1 ai · 1Li
for some n ∈ N,

a1, . . . , an ∈ K, and context-free languages L1, . . . , Ln ⊆ Σ∗. The languages Li

are called step languages. Moreover, a context-free step function is a recognizable
step function if each Li is recognizable.

As is well known, a recognizable step function over any semiring is a recogniz-
able series [17]. This even holds for strong bimonoids with the same proof [13],
and could be extended to unital valuation monoids. In contrast, this implication
fails for context-free languages and quantitative context-free languages.

Lemma 7.1. Let L be an inherently ambiguous context-free language. Then
1L 6∈ CF(Σ,N).

Proof. Assume that 1L ∈ CF(Σ,N). Then let G be aWCFG such that 1L = ||G||.
Then, for every word w ∈ L, we have that |DG(w)| = 1, because otherwise the
weights of different derivations of w would sum up to a value greater than 1.
But then the CFG which is underlying G is an unambiguous CFG for L, which
contradicts our assumption on L.

However under suitable restrictions we obtain the following positive result.

Lemma 7.2. Let L be a context-free language over Σ and a ∈ K. If L can
be generated by some unambiguous CFG or if K is complete and completely
idempotent, then a · 1L ∈ CF(Σ,K).

Proof. We choose a new symbol # 6∈ Σ and define the context-free language
L′ = {#w | w ∈ L} over Σ′ = Σ ∪ {#}. Moreover, we define the alphabetic
morphism h : Σ′ → K〈Σ ∪ {ε}〉 by h(#) = a.ε and h(σ) = 1.σ for every σ ∈ Σ.

Clearly, if L can be generated by some unambiguous CFG, then this also
holds for L′. Moreover, (h(v) | v ∈ L′) is locally finite in case K is not complete.
It follows that a ·1L = h(L′). By Lemma 6.3 we obtain that h(L′) ∈ CF(Σ,K).

We call a context-free step function a context-free step function with un-
ambiguous step languages if each of its step languages can be generated by an
unambiguous CFG. Then we obtain the following result by Lemmas 7.2 and 4.5
and Theorem 5.2.

17

Corollary 7.3. Let s ∈ K〈〈Σ∗〉〉 be a context-free step function. Let s have
unambiguous step languages or let K be complete and completely idempotent.
Then s ∈ CF(Σ,K).

A context-free step function s is called strong if it can be expressed as∑n

i=1 ai · 1Li
where the family (Li | 1 ≤ i ≤ n) forms a partition of Σ∗, i.e.,

Li∩Lj = ∅ for every i 6= j, and Σ∗ =
⋃n

i=1 Li. Clearly, s is a strong context-free
step function iff im(s) is finite and s−1(a) is a context-free language for every
a ∈ im(s), where im(s) = {(s, w) | w ∈ Σ∗} is the image of s.

Due to the closure properties of the class of recognizable languages, we can
transform every recognizable step function over Σ∗ into an equivalent one for
which the collection of its step languages partitions Σ∗. This is different for
context-free step functions.

Lemma 7.4. There are quantitative context-free languages which are context-
free step functions but not strong context-free step functions.

Proof. For this consider, e.g., the context-free step function s = 1 ·1L1
+2 ·1L2

over the semiring of natural numbers with L1 = {anbnck | n, k ∈ N} and L2 =
{akbncn | n, k ∈ N}. (Recall from Example 2.1 that we can view any semiring
as a particular unital valuation monoid.). Since L1 and L2 can be generated
by unambiguous CFG, we obtain from Corollary 7.3 that s is a quantitative
context-free languages. But 3 ∈ im(s) and s−1(3) = {anbncn | n ∈ N} which is
not context-free.

In the rest of this section we wish to derive a converse of Corollary 7.3.
However, even if the unital valuation monoid K is finite, complete, and com-
pletely idempotent, then the converse in general does not hold, as shown by the
following example.

Example 7.5. Let Σ = {σ}, and choose a non recursively enumerable set
L ⊆ Σ∗ with σ 6∈ L. We define K with |K| = 3, say, K = {0, 1, a}, as
additively idempotent unital valuation monoid such that val(an) = 1 if σn ∈ L,
and val(an) = a if σn 6∈ L, for each n ≥ 2. There are no other restrictions on
+ or val.

Let A = (Q, q0, F, T,wt) over Σ with Q = F = {q0}, T = {(q0, σ, q0)},
and wt((q0, σ, q0)) = a. Clearly A is a deterministic WFA and (||A||, w) =
val(a|w|) = 1 if w ∈ L or w = ε, and (||A||, w) = a otherwise. So ||A|| takes on
two values but ||A||−1(1) = L ∪ {ε} which is not recursively enumerable.

The example shows that we have to impose additional assumptions on the
valuation function val. We call a unital valuation monoid K sequential if

val(a1, . . . , an+1) = val(val(a1, . . . , an), an+1)

for every n ≥ 1 and a1, . . . , an+1 ∈ K. Given a sequential unital valuation
monoid K, we can define a multiplication · on K by letting a · b = val(a, b) for

18

a, b ∈ K. Clearly, then (K,+, ·, 0, 1) is a unital monoid-magma (compare Exam-
ple 2.1). Hence sequential unital valuation monoids are precisely the valuation
monoids arising from unital monoid-magmas.

We say that K is locally finite, if whenever F ⊆ K is a finite subset, then
the set val(F ∗) comprising the valuations of all finite sequences of elements of
F is finite.

Example 7.6. We let Rt (truncated reals) denote the set of all real numbers
of a given bounded precision. We consider the unital valuation monoid K =
(Rt ∪ {−∞,∞}, sup, val,−∞,∞) where val arises, as described above, from the
operation · defined as binary average followed by truncation to a number in R

t.
Then K is infinite, completely idempotent, and locally finite. Also, · is not
associative, since if R

t = Z we have (1 · 5) · 9 = 6 but 1 · (5 · 9) = 4. This
describes a situation where we may have successive average computations only
of sufficient bounded precision.

For examples of locally finite strong bimonoids we refer the reader to [14].

Now we show:

Theorem 7.7. Let K be an additively idempotent, locally finite, sequential
unital valuation monoid. Assume that K is completely idempotent in case that
K is complete. Then each series s ∈ CF(Σ,K) is a context-free step function.

Proof. Due to Theorem 5.2, there is a WPDA M = (Q,Γ, q0, γ0, F, T,wt) over
Σ and K such that ||M|| = s. Clearly, wt(T) is a finite subset of K. Let Y =
val(wt(T)∗). Then Y is finite. Also note that wt(θ) ∈ Y for every computation
θ of M.

Let w ∈ Σ∗. Then

(||M||, w) =
∑

θ∈Θ(w)

wt(θ) =
∑

a∈Y

∑

θ∈Θ(w)
wt(θ)=a

wt(θ) =∗
∑

a∈Y

a · 1La
(w)

where La = {v ∈ Σ∗ | there is a θ ∈ Θ(v) with wt(θ) = a}. The equation
marked by ∗ holds because K is additively idempotent or completely idem-
potent in case K is complete. It remains to prove that La is context-free for
every a ∈ Y .

We construct the PDA Ma = (Q′,Γ, q′0, γ0, F
′, T ′) where Q′ = Q × Y ,

q′0 = (q0, 1), and F ′ = F×{a}. Moreover, we let T ′ contain ((q, y), x, γ, (p, y′), π)
iff τ = (q, x, γ, p, π) ∈ T and y′ = val(y,wt(τ)). Then q′0-computations of Ma

correspond to q0-computations θ ofM with wt(θ) = a, and conversely. It follows
that L(Ma) = La, hence La is a context-free language.

Note that in the previous theorem, in general s is not a strong context-free
step function, because La and La′ need not be disjoint.

A lattice is called complete if any subset has a supremum and infimum.
Clearly, every complete lattice is a completely idempotent and locally finite
sequential unital valuation monoid. So, as a consequence of Corollary 7.3 and
Theorem 7.7, we obtain immediately the following.

19

Corollary 7.8. Let K be a complete lattice and s ∈ K〈〈Σ∗〉〉. Then s ∈
CF(Σ,K) if and only if s is a context-free step function.

8 Conclusion and Open Problems

We could show that a fundamental result of formal language theory, the
Chomsky-Schützenberger theorem, holds not only in semiring-weighted set-
tings, but even for much more general computation models, the unital valuation
monoids, which include, e.g., computations of averages of real numbers. We can
represent the quantitative languages by weighted context-free grammars and by
weighted pushdown automata; both formalisms were shown to be expressively
equivalent. Finally, we considered context-free step functions.

In [13] it was proved that every recognizable series over any additively locally
finite and multiplicatively locally finite strong bimonoid is a recognizable step
function. In the light of this result, we wonder whether it is possible to extend
our Theorem 7.7 to additively locally finite strong bimonoids (while keeping the
restriction on the multiplication operation).

Recently, a (unweighted) Chomsky-Schützenberger Theorem has been
proved in which the involved morphism is non-erasing [24]. Can this be gener-
alized to our weighted setting?

References

[1] J. Autebert, J. Berstel, L. Boasson. Context-free languages and pushdown
automata. In G. Rozenberg, A. Salomaa, eds., Handbook of Formal Lan-
guages, Vol. 1: Word, Language, Grammar, Vol. 1, pp. 111–174. Springer
(1997).

[2] Y. Bar–Hillel, M. Perles, E. Shamir. On formal properties of simple phrase
structure grammars. Z. Phonetik. Sprach. Komm. 14, 143–172, (1961).

[3] J. Berstel, C. Reutenauer. Rational Series and Their Languages, Vol. 12
of EATCS Monographs on Theoretical Computer Science. Springer (1988).

[4] G. Birkhoff. Lattice Theory. American Mathematical Society (1967).

[5] K. Chatterjee, L. Doyen, Th. Henzinger. Quantitative languages. ACM
Transactions on Computational Logic 11(4), 23:1–23:38 (2010).

[6] K. Chatterjee, L. Doyen, Th. Henzinger. Expressiveness and closure prop-
erties for quantitative languages. In: Proc. of 24th Annual IEEE Sympo-
sium on Logic In Computer Science (LICS), pp. 199–208. IEEE Computer
Society (2009).

[7] K. Chatterjee, Y. Velner. Mean-payoff pushdown games. In: Proc. of 27th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
195–204. IEEE Computer Society (2012).

20

[8] N. Chomsky, M.P. Schützenberger. The algebraic theory of context-free
languages. In: Computer Programming and Formal Systems, pp. 118–161.
North-Holland (1963).

[9] M. Cı́rić, M. Droste, J. Ignjatović, H. Vogler. Determinization of weighted
finite automata over strong bimonoids. Information Sciences 180(18), 3497-
3520 (2010).

[10] M. Droste, P. Gastin. Weighted automata and weighted logics. Theor.
Comput. Sci. 380(1-2), 69–86 (2007).

[11] M. Droste, I. Meinecke. Describing average- and longtime-behavior by
weighted MSO logics. In: Proc. of Mathematical Foundation of Computer
Science (MFCS), volume 6281 of LNCS, pp. 537–548. Springer (2010).

[12] M. Droste, I. Meinecke. Weighted automata and regular expressions over
valuation monoids. Intern. J. of Foundations of Comp. Science 22, 1829-
1844 (2011).

[13] M. Droste, T. Stüber, and H. Vogler. Weighted finite automata over strong
bimonoids. Information Sciences 180, 156–166 (2010).

[14] M. Droste, H. Vogler. Weighted automata and multi-valued logics over ar-
bitrary bounded lattices. Theoretical Computer Science 418, 14-36 (2012).

[15] M. Droste, H. Vogler. The Chomsky-Schützenberger theorem for quanti-
tative context-free languages. In: Proc. 17th Int. Conf. on Developments
in Language Theory (DLT), volume 7907 of LNCS, pp. 203-214. Springer
(2013).

[16] M. Droste, H. Vogler. The Chomsky-Schützenberger theorem for quan-
titative context-free languages. International Journal of Foundations of
Computer Science 25, 955–969 (2014).

[17] S. Eilenberg. Automata, Languages, and Machines – Volume A, Vol. 59 of
Pure and Applied Mathematics. Academic Press (1974).

[18] J.S. Golan. Semirings and their Applications. Kluwer Acad. Publ. (1999).

[19] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel (2003).

[20] M. Hulden. Parsing CFGs and PCFGs with a Chomsky-Schützenberger
representation. In: Human Language Technology: Challenges for Computer
Science and Linguistics (LTC), volume 6562 of LNAI, pp. 151–160. Springer
(2009).

[21] D. Kozen. Automata and Computability. Springer (1997).

[22] W. Kuich, A. Salomaa. Semirings, Automata, Languages, Vol. 5 ofMonogr.
Theoret. Comput. Sci. EATCS Ser. Springer (1986).

21

[23] I. Meinecke. Valuations of weighted automata: Doing it in a rational way.
In: Algebraic Foundations in Computer Science, volume 7020 of LNCS, pp.
309-346. Springer (2011).

[24] A. Okhotin. Non-erasing variants of the Chomsky-Schützenberger theorem.
In: Int. Conf. on Developments in Language Theory (DLT), volume 7410
of LNCS, pp. 121–129. Springer (2012).

[25] I. Petre, A. Salomaa. Algebraic systems and pushdown automata. In
M. Droste, W. Kuich, and H. Vogler, eds., Handbook of Weighted Automata,
Ch. 7, pp. 257–311. Springer (2009).

[26] T. Reps, S. Schwoon, S. Jha, D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Science of Program-
ming 58, 206–263 (2005).

[27] A. Salomaa, M. Soittola. Automata-Theoretic Aspects of Formal Power
Series. Texts and Monographs in Computer Science. Springer (1978).

[28] M.P. Schützenberger. On the definition of a family of automata. Informa-
tion and Control 4, 245–270 (1961).

22

	1 Introduction
	2 Valuation Monoids and Series
	3 Weighted Context-Free Grammars
	4 Weighted Pushdown Automata
	5 Equivalence of WCFG and WPDA
	6 Theorem of Chomsky-Schützenberger
	7 Context-Free Step Functions
	8 Conclusion and Open Problems

