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1. Introduction

A finite word is bordered if it has a proper prefix that is also a suffix of the whole

word. Otherwise, the word is said to be unbordered. Such properties have been

investigated for a long time in combinatorics on words. For instance, the famous
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conjecture of Duval about the relationship between the length of a word and the

maximum length of its unbordered factors has been solved in [9]. A classic result by

Ehrenfeucht and Silberger [6] states that if an infinite word has only finitely many

unbordered factors, then it is ultimately periodic.

Let us denote the Parikh vector of the word u over A by Ψ(u): i.e., Ψ(u) is

the element of NA representing the number of occurrences of each letter in u. Two

words u and v are abelian equivalent, if Ψ(u) = Ψ(v). The notions of (un)bordered

words are naturally extended to their abelian analogues by replacing equality with

abelian equivalence. Such an extension is considered, for example, in [10].

This paper is organized as follows. Below, we make precise the basic definitions.

In Section 2, we show that abelian unbordered words over a two letter alphabet are

in one-to-one correspondence with particular Motzkin paths. In Section 3, abelian

unbordered words over a two letter alphabet are shown to be in one-to-one cor-

respondence with n-step walks in Z starting from the origin but not returning to

it. In particular, the number of these n-step walks is well-known and is given by

the sequence A063886 in Sloane’s Encyclopedia [14]. In Section 4, we extend the

size of the alphabet and are still able to relate abelian unbordered words with spe-

cific paths and then derive a recursion formula to get the number of such words of

length n. Finally, in Section 5, we consider the abelian unbordered factors occurring

in abelian periodic automatic sequences (such as the Thue–Morse word).

This paper is an updated version of the paper [11] presented during the DLT 2013

conference. Theorem 21 was only conjectured in [11]. We are now able to describe

a technique leading to the proof. We emphasize this part of the paper. It provides

a non-trivial example about how Büchi’s theorem and the logical characterization

of k-automatic sequences can be useful in combinatorics on words [3, 8].

Definition 1. A word u ∈ A∗ is abelian bordered if there exist v, v′, x, y ∈ A+

such that u = vx = yv′ and Ψ(v) = Ψ(v′). In that case v is an abelian border of u.

Otherwise, u is said to be abelian unbordered.

It is easy to see that if u is abelian bordered, it has an abelian border of length

at most |u|/2. Note that a word u over {a, b} is abelian unbordered if and only if

its complement u, where all a’s are replaced with b’s and all b’s with a’s, is also

abelian unbordered. If a word is bordered, then it is trivially abelian bordered. But,

in general, the converse does not hold. For instance, aabbabab is abelian bordered

but not bordered.

Example 2. We consider the first few abelian unbordered words over {a, b} that

start with a: a, ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabbb, abbbb, aabab,

ababb. The first few values for the number of abelian unbordered words of length

n ≥ 0 over {a, b} are: 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432,

6864,. . .These values match Sloane’s sequence A063886.

Remark 3. The language of abelian bordered words is not context-free [11].
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2. Connection with Motzkin Words

The following is an immediate consequence of the definition “abelian unbordered”.

Lemma 4. Let n ≥ 1. A word u1 · · ·uncvn · · · v1, where for all i ∈ {1, . . . , n},

ui ∈ A, vi ∈ A, and c ∈ {ε} ∪ A, is abelian unbordered if and only if, for all

i ∈ {1, . . . , n}, Ψ(u1 · · ·ui) 6= Ψ(vi · · · v1).

Let us fix the alphabet A = {a, b}. If x = x1 · · ·xn and y = y1 · · · yn are words

of length n over A, we define
(
x

y

)
:=

(
x1

y1

)
· · ·

(
xn

yn

)
∈ (A×A)∗ and π1 : (A×A)∗ → A,

(
x

y

)
7→ x.

We write xR to denote the reversal of x; that is, xR = xn · · ·x1. We now define the

map m and a context-free language P ⊆ (A×A)∗

m : A∗ → (A×A)∗, u 7→

(
u

uR

)
, P = m(A∗) =

{(
u

uR

)
| u ∈ A∗

}
.

Lemma 4 can be restated as follows.

Lemma 5. A word u ∈ A+ is abelian bordered if and only if there exists a non-

empty proper prefix p of m(u) such that the numbers of occurrences of

(
a

b

)
and

(
b

a

)
in p are the same.

Definition 6. A Grand Motzkin path of length n is a lattice path of N2 running

from (0, 0) to (n, 0), whose permitted steps are the up diagonal step (1, 1), the down

diagonal step (1,−1) and the horizontal step (1, 0), called rise, fall and level step,

respectively.

A Motzkin path is a Grand Motzkin path that never passes below the x-axis.

An irreducible (or elevated) Motzkin path is a Motzkin path that does not touch

the x-axis except for the origin and the final destination [1].

If the level steps are labeled by k colors (here colors will be letters from the

alphabet A) we obtain a k-colored Motzkin path [12]. A k-colored Motzkin path

is described by a word over the alphabet {R,F, L1, . . . , Lk} and the context-free

language of the k-colored Motzkin paths is denoted by Mk. In particular, a Motzkin

path described by a word over {R,F} is a Dyck path.

Let h : (A×A)∗ → {R,F, La, Lb}
∗ be the coding

h :

(
a

b

)
7→ R,

(
b

a

)
7→ F,

(
a

a

)
7→ La,

(
b

b

)
7→ Lb.

Note that if p belongs to P , then h(p) is a symmetric Grand Motzkin path having

a symmetry axis x = n/2. Let ι : {R,F, La, Lb}
∗ → {R,F, La, Lb}

∗ defined by

ι(R) = F , ι(F ) = R, ι(La) = La and ι(Lb) = Lb. If w is a word over {R,F, La, Lb},
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then w̃ = ι(wR). A symmetric Grand Motzkin path is described by a word of the

kind w c w̃ where c ∈ {ε, La, Lb}.

Example 7. Two Motzkin paths colored with the letters a and b are represented in

Figure 1. The left one is described by the word RLaRFRLbFFRF and the right

one is symmetric and irreducible. It corresponds to the word h(m(aaaababababb)) =

RRLaRFRFRFLaFF .

b
a

a a

Fig. 1. Two Motzkin paths.

Now we can restate Lemma 5.

Lemma 8. A word u starting with a is abelian unbordered if and only if h(m(u))

is a symmetric and irreducible Motzkin path.

Proposition 9. The set of abelian unbordered words over {a, b} starting with a and

of length at least 2 is aπ1(P ∩ h−1(M2))b.

Proof. Note that h(P ∩ h−1(M2)) is the set of all symmetric 2-colored Motzkin

paths. Now observe that if u belongs to aπ1(P ∩ h−1(M2))b, then h(m(u)) starts

with R and ends with F . So the corresponding 2-colored Motzkin path is ir-

reducible. Conversely, if u is abelian unbordered and starts with a, then by

Lemma 8, h(m(u)) = RMF , where M is a symmetric 2-colored Motzkin path.

Thus, u ∈ aπ1(P ∩ h−1(M2))b.

Remark 10. Any symmetric 2-colored Motzkin path can be built by reflecting a

prefix of a 2-colored Motzkin path. Let w ∈ {R,F, La, Lb}
∗ be a prefix of length

k − 1 of a word in M2. By the previous proposition, we get that aπ1[h
−1(w w̃)]b,

aπ1[h
−1(wLa w̃)]b and aπ1[h

−1(wLb w̃)]b are respectively an abelian unbordered

word of length 2k, of length 2k + 1 having a as central letter, of length 2k + 1

having b as central letter.

• The set of abelian unbordered words of length 2k starting with a is in one-

to-one correspondence with the set of prefixes of length k − 1 of words in

M2. Equivalently, the set of abelian unbordered words of length 2k starting

with a is in one-to-one correspondence with the set of prefixes of length k

of irreducible 2-colored Motzkin paths.

• The set of abelian unbordered words of length 2k + 1 starting with a and

having a central letter equal to a (resp. b) is in one-to-one correspondence
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with the set of prefixes of length k−1 of words in M2. Equivalently, the set

of abelian unbordered words of length 2k+1 starting with a is in one-to-one

correspondence with the set of prefixes of length k of irreducible 2-colored

Motzkin paths.

3. Connection with the Sequence A063886

The sequence A063886 gives the number s(n) of n-step walks in Z starting from

the origin but not returning to it. Such walks can be described by words over {r, ℓ}

for right and left steps. The aim of this section is to show that the set of abelian

unbordered words over a binary alphabet is in one-to-one correspondence with the

n-step walks in Z starting from the origin but not returning to it. Let us first collect

some well-known facts. The generating function for s(n) is
√

1+2x
1−2x .

Consider a word w = u1 · · ·unvn · · · v1 ∈ {a, b}∗ of length 2n. We consider the

map c by

c :

(
a

b

)
7→ rr,

(
b

a

)
7→ ℓℓ,

(
a

a

)
7→ ℓr,

(
b

b

)
7→ rℓ.

Applying c to the prefix of length n of m(w) provides a unique path of length 2n in

Z. This path is denoted by p(w). It is clear that p is a one-to-one correspondence

between the words of length 2n over {a, b} and the paths of length 2n in Z starting

from the origin. The following proposition follows immediately from Lemma 5.

Proposition 11. A word w over {a, b} of even length is abelian unbordered if and

only if the path p(w) does not return to the origin.

We extend the definition of p to words of odd length by

p(u1 · · ·unαvn · · · v1) =

{
p(u1 · · ·unvn · · · v1) ℓ , if α = a;

p(u1 · · ·unvn · · · v1) r , if α = b.

With this definition, p is a one-to-one correspondence between the abelian unbor-

dered words of length 2n+1 over {a, b} and the paths of length 2n+1 in Z starting

from the origin and not returning to it. It is therefore easy to get a result similar

to the above proposition for words of odd length.

Proposition 12. A word w over {a, b} of odd length is abelian unbordered if and

only if the path p(w) does not return to the origin.

4. Larger Alphabets

Let k ≥ 2. Consider the alphabet A = {a1, . . . , ak}, or simply {1, . . . , k}, and Z
k

equipped with the usual unit vectors e1, . . . , ek, whose coordinates are all equal to

zero except one which is equal to 1. To be able to define k-colored paths, we assume

that at each point in Z
k, there are exactly k loops colored with the k different

letters.
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We first consider a word u1 · · ·unvn · · · v1 of even length 2n. Take the prefix of

length n of m(u1 · · ·unvn · · · v1) and apply to it the morphism hk : (A × A)∗ →

{ei − ej | 1 ≤ i, j ≤ k}∗ ⊂ (Zk)∗ defined by

hk

(
ai
aj

)
= ei − ej , ∀i, j ∈ {1, . . . , k}.

Therefore, to the word w = u1 · · ·unvn · · · v1 there corresponds the sequence of n+1

points in Z
k

p0 = 0, p1 = hk

(
u1

v1

)
, p2 = hk

(
u1

v1

)
+ hk

(
u2

v2

)
, . . . , pn =

n∑

j=1

hk

(
uj

vj

)
,

where 0 denotes the origin (0, 0, . . . , 0). By the definition of hk, note that all these

points lie in the subspace Hk of Zk satisfying the equation

x1 + · · ·+ xk = 0.

Definition 13. A path of length n in Hk is a sequence p0, . . . , pn of points in Hk

such that, for all j ≥ 1, pj − pj−1 belongs to {ei − ej | 1 ≤ i, j ≤ k, i 6= j}.

A k-colored path of length n in Hk is a sequence p0, c0, p1, c1, . . . , pn−1, cn−1,

pn alternating points in Hk and elements belonging to A ∪ {ε} in such a way that,

if pj 6= pj+1, then pj+1 − pj belongs to {ei − ej | 1 ≤ i, j ≤ k, i 6= j} and cj = ε,

otherwise cj belongs to A and can be interpreted as the color assigned to a loop on

pj. Note that paths are special cases of k-colored paths.

For the rest of this paper we will only consider paths that start at the origin.

Remark 14. For k = 3, H3 corresponds to the so-called triangular lattice (some-

times called hexagonal lattice) because a point x has exactly six neighbors. The set

of neighbors of x is denoted by

N(x) := x+ {e1 − e2, e1 − e3, e2 − e1, e2 − e3, e3 − e1, e3 − e2}.

Consider the word w = 23321211 over the alphabet {1, 2, 3}. The prefix of length 4

of m(w) is
(
2 3 3 2

1 1 2 1

)

and corresponds to the sequence of moves p1 − 0 = e2 − e1, p2 − p1 = e3 − e1,

p3 − p2 = e3 − e2 and p4 − p3 = e2 − e1 and the path represented in Fig. 2.

The second path in Fig. 2 is colored and has four loops with labels 2, 1, 3 and 1

respectively. It corresponds to w′ = 2321323113121211. The prefix of length 8 of

m(w′) is
(
2 3 2 1 3 2 3 1

1 1 2 1 2 1 3 1

)
.

Observe that in this prefix we have an occurrence of a repeated symbol in positions

3, 4 and 7, 8 corresponding to the four loops in the path.
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1

4
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1

Fig. 2. In the triangular lattice, a path and a 3-colored path.

The word w = u1 · · ·unvn · · · v1 is said to be simple if, for all i ∈ {1, . . . , n},

ui 6= vi. In this case, in the sequence of points p0 = 0, p1, . . . , pn corresponding

to w, for all j < n, we have pj 6= pj+1. Therefore simple words w of length 2n

correspond to paths of length n in Hk. Such paths are denoted by p(w). For a non-

simple word w of length 2n there is a corresponding k-colored path p(w) of length

n in Hk (where at least one loop pj = pj+1 occurs along the path). Conversely, for

each k-colored path of length n in Hk, there is a corresponding word of length 2n.

Proposition 15. A word w over {a1, . . . , ak} of even length 2n is abelian unbor-

dered if and only if the k-colored path p(w) in Hk of length n does not return to the

origin. Moreover, a simple word w over {a1, . . . , ak} of even length 2n is abelian

unbordered if and only if p(w) is a path in Hk of length n without loops that does

not return to the origin.

Proof. Let w = u1 · · ·unvn · · · v1. Observe that starting from the origin, the path

p0 = 0, c0, p1, . . . , pn−1, cn−1, pn returns to the origin if and only it there exists

j ≤ n such that

j∑

i=1

hk

(
ui

vi

)
= 0.

If w = u1 · · ·unαvn · · · v1 is a word of odd length, we can first consider the

prefix of length n of m(w) and then add an extra loop of color α to the end of the

corresponding path p(w). As for Proposition 12, we get the following.

Proposition 16. A word w over {a1, . . . , ak} of odd length 2n + 1 is abelian un-

bordered if and only if the k-colored path p(w) of length n+1 in Hk does not return

to the origin. In particular, such a path ends with a loop whose color is the one

corresponding to the central letter of w.

Remark 17. The numbers of abelian unbordered words of length n over a 3-letter

alphabet, for 1 ≤ n ≤ 10, are: 3, 6, 18, 48, 144, 402, 1206, 3438, 10314, 29754 and

for simple abelian unbordered words, we get 3, 6, 18, 30, 90, 168, 504, 954, 2862,

5508. As we can observe, over a 3-letter alphabet, the number of abelian unbor-

dered words (resp. simple abelian unbordered words) of length 2n+ 1 is three times



July 20, 2014 10:36 WSPC/INSTRUCTION FILE numberAbelianBorder
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n 1 2 3 4 5 6 7 8 9 10

a.u.w of length n 3 6 18 48 144 402 1206 3438 10314 29754

simple a.u.w of length n 3 6 18 30 90 168 504 954 2862 5508

Table 1. Number of (simple) abelian unbordered words over a 3-letter alphabet.

the number of abelian unbordered words (resp. simple abelian unbordered words)

of length 2n because there are three available choices for the central letter. This

observation extends trivially to an arbitrary alphabet.

From the discussion above and taking only entries of even index in the previous

table, we also get the number of paths (resp. paths without loops) of length n in the

triangular lattice H3 that do not return to the origin. We denote this quantity by

p3(n) (resp. s3(n)). The first few values of p3(n), n ≥ 1, are 6, 48, 402, 3438, 29754,

259464, 2274462 and the first few values of s3(n) are 6, 30, 168, 954, 5508, 32016,

187200. The next statement means that one only needs to compute the sequence

(sk(n))n≥1 to get (pk(n))n≥1 and thus the number of abelian unbordered words of

length n.

Lemma 18. We have

pk(n) =

n∑

i=1

sk(i) k
n−i

(
n− 1

n− i

)
.

Proof. By a (k-colored) path, we mean a path in Hk that does not return to the

origin. Each such k-colored path of length n has a unique underlying path of length

i, for some i ∈ {1, . . . , n}. To get a k-colored path of length n, n− i loops are added

to this underlying path. Each loop can be placed independently at any point of the

path, except the origin, and can be colored independently in one of k colors. So,

the total number of ways to extend such a path of length i to a k-colored path of

length n is kn−i
(
n−1
n−i

)
.

4.1. Computation of (s3(n))n≥0 and then (sk(n))n≥0

We show how to get a recurrence relation to compute the number s3(n), i.e., the

number of paths in the triangular lattice H3 = (V,E) that do not return to the

origin; here V (resp. E) is the set of vertices (resp. edges) of H3. Consider the map

e : V → N, x 7→

{
1 if x = 0,

0 otherwise.

If f : V → N is a map, we denote by Sf : V → N the map defined by

(Sf)(x) =
∑

y∈N(x)

f(y)
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Fig. 3. values of e, Se and S2e around 0.

where N(x) is the set of neighbors of x. In particular, if f, g : V → N are maps,

then S(f + g) = Sf + Sg. A simple induction argument gives the following result.

Lemma 19. With the above notation, (Sne)(x) is equal to the number of paths of

length n that end at x.

The values of the maps e, Se and S2e around 0 are given in Figure 3. Let r3,n :

V → N be defined as follows: r3,n(x) is the number of paths of length n that end

at x and never return to the origin. Then

s3(n) =
∑

x∈V

r3,n(x)

where the sum is finite, since r3,n(x) 6= 0 implies that x is at distance at most n

from the origin. If a map f : V → N is constant on N(0) (as is the case for Sne),

then γ(f) is a shorthand for f(y) for any y ∈ N(0). By the symmetry of H3, we

see that r3,n is constant on N(0). Note that

s3(n+ 1) = 6s3(n)−
∑

x∈N(0)

r3,n(x) = 6s3(n)− 6γ(r3,n)

because all paths except the ones that end in vertices adjacent to 0 have 6 prolon-

gations, and the excluded ones have 5 possible prolongations. The same argument

can be applied to maps: r3,n+1 = Sr3,n − 6γ(r3,n) e and, applied inductively, this

leads to the following relation for r3,n+1:

r3,n+1 = Sn+1e−

n∑

i=0

6γ(r3,i)S
n−ie . (1)

The sequence ((Sne)(0))n≥0 counting the paths of length n starting and ending at

0 is well-known (A002898 gives the number of n-step closed paths on the hexagonal

lattice). For instance, we have

(Sne)(0) =

n∑

ℓ=0

(−2)n−ℓ

(
n

ℓ

) ℓ∑

j=0

(
ℓ

j

)3

(2)

and its first values are 1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640,. . . Due to

the 6-fold symmetry of the maps around the origin, note that

γ(Sne) =
(Sn+1e)(0)

6
. (3)
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Taking into account both (1) and (3), for all n ≥ 0, we have

γ(r3,n+1) =
(Sn+2e)(0)

6
−

n∑

i=0

γ(r3,i)(S
n−i+1e)(0)

and γ(r3,0) = 0. As a conclusion, using the sequence ((Sne)(0))n≥0, we can com-

pute inductively (γ(r3,n))n≥0 and therefore (s3(n))n≥0. Using the above formula,

the first values of (γ(r3,n))n≥0 are 0, 1, 2, 9, 36, 172, 816, 4101, 20840, 108558,

572028,. . . Knowing that s3(0) = 1 is enough to compute

s3(1) = 6(s3(0)− γ(r3,0)) = 6, s3(2) = 6(s3(1)− γ(r3,1)) = 6(6− 1) = 30, . . .

Let k ≥ 3. We now turn to the general case to compute (sk(n))n≥0. Consider the

homomorphism of groups χ between (Hk,+) and (Z((z1, . . . , zk−1)), ·) defined by

the images of a basis of Hk, χ : e1− ek 7→ z1, e2− ek 7→ z2, . . . , ek−1 − ek 7→ zk−1.

s3(n) s4(n) s5(n) s6(n)

1 1 1 1
6 12 20 30

30 132 380 870
168 1536 7480 25860
954 18036 148140 771930

5508 213264 2944320 23090220
32016 2530464 58625000 691372500

187200 30097152 1168618000 20713217400
1098594 358552116 23312236300 620781579450

Table 2. The first values of s3(n), s4(n), s5(n) and s6(n).

In particular, χ(−v) = 1/χ(v) and χ(v + v′) = χ(v).χ(v′). Any element of

Hk can be decomposed as a linear combination with integer coefficients of e1 −

ek, e2 − ek, . . . , ek−1 − ek and corresponds by χ to a unique Laurent polynomial in

z1, . . . , zk−1. Each vertex x in Hk has exactly k(k − 1) neighbors:

x+ {ei − ej | 1 ≤ i, j ≤ k, i 6= j}

and these k(k − 1) translations of x are coded through χ by the terms
{
zi +

1

zi
| 1 ≤ i ≤ k − 1

}
∪

{
zi
zj

| 1 ≤ i, j ≤ k − 1, i 6= j

}
.

Now consider the Laurent polynomial corresponding to these elementary transla-

tions:

T =

k−1∑

i=1

(
zi +

1

zi

)
+
∑

i6=j

zi
zj

=

(
1 +

k−1∑

i=1

zi

)(
1 +

k−1∑

i=1

1

zi

)
− k.

Let x ∈ Hk and (j1, . . . , jk−1) ∈ Z
k−1 be such that χ(x) = zj11 · · · z

jk−1

k−1 . The number

of paths of length n from the origin to x in the lattice Hk is given by the coefficient
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of zj11 · · · z
jk−1

k−1 in T n. In particular, the constant term gives exactly the number of

paths of length n returning to the origin. Furthermore, for k = 3 one can derive (2).

Example 20. For k = 4, the number of paths of length n in H4 starting and ending

at the origin is Sloane’s sequence A002899 and is given by

n∑

ℓ=0

(−4)n−ℓ

(
n

ℓ

) ℓ∑

j=0

(
ℓ

j

)2(
2ℓ− 2j

ℓ− j

)(
2j

j

)
.

For k = 5: the first few values are 1, 0, 20, 120, 1860, 23280, 342200, 5115600, . . . and

for k = 6: 1, 0, 30, 240, 4770, 82080, 1650900, 34524000, 758894850, . . . .

Being able to compute (Sne)(0) for the lattice Hk, we can proceed exactly as for

the computation of s3(n) and get, for all n ≥ 0,

γ(rk,n+1) =
(Sn+2e)(0)

k(k − 1)
−

n∑

i=0

γ(rk,i)(S
n−i+1e)(0)

with γ(rk,0) = 0 and finally, sk(n+ 1) = k(k − 1)(sk(n)− γ(rk,n)).

5. About the Thue–Morse Word

Currie and Saari [5] proved that if n 6≡ 1 (mod 6), then the Thue–Morse word t

has an unbordered factor of length n, but they left it open to decide for which

lengths congruent to 1 modulo 6 does this property hold. Then Goč, Henshall and

Shallit [8] showed that t has an unbordered factor of length n if and only if (n)2 6∈

1(01∗0)∗10∗1, where (n)2 denotes the base 2 expansion of n. Here we characterize

the lengths of the abelian unbordered factors occurring in t as follows.

Theorem 21. Let

L = {0∗(n)2 : t has an abelian unbordered factor of length n}.

Then L is accepted by the automaton in Figure 4, where all states are accepting

except the four grey ones.

Generally, abelian properties of k-automatic sequences are not suited to be ex-

pressed in the extended Presburger arithmetic 〈N,+, Vk〉 (see [13]). Nevertheless,

we can take advantage of the fact that the Thue–Morse word is abelian periodic

of period 2 and apply Büchi’s theorem [2] with a technique similar to [3, 8]. We

take verbatim the statement of Büchi’s theorem as formulated by Charlier, Ram-

persad and Shallit in [3], which states that the k-automatic sequences are exactly

the sequences definable in the first order structure 〈N,+, Vk〉.

Theorem 22. [3] If we can express a property of a k-automatic sequence x using

quantifiers, logical operations, integer variables, the operations of addition, subtrac-

tion, indexing into x, and comparison of integers or elements of x, then this property

is decidable.
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0

0
0

0

0

0
0

0

0

1

1

1

1

1

1 1 1

1

0

1

0
0

Fig. 4. A finite automaton for abelian unbordered factors in the Thue–Morse word.

The technique we are now describing can obviously be adapted to any k-

automatic abelian periodic word. We will give in (4) below a first order formula

ϕ(n) in 〈N,+, V2〉 that is satisfied if and only if an abelian unbordered factor of

length n occurs in the Thue–Morse word t. General procedures to obtain a fi-

nite automaton recognizing the base 2 expansions of the integers belonging to

the set {n ∈ N | 〈N,+, V2〉 |= ϕ(n)} do exist (see for instance [2]). Hence a cer-

tified regular expression for the base 2 expansion of the elements in the above

set will follow. Note that, since t is 2-automatic, we can define in 〈N,+, V2〉 a

unary function that maps i to t(i). Such a formula is again described in [2]. Pred-

icates e(n) and o(n) are simply shorthands to characterize even and odd integers,

e(n) ≡ (∃x)(n = x + x), o(n) = ¬e(n). We define a predicate B(i, n, k) which is

true if and only if the Thue–Morse word has an abelian bordered factor of length

n occurring at i with a border of length k. Since the Thue–Morse word t is a con-

catenation of ab and ba, discussing only the parity of the position i, the length

n of the factor and the length k of the border, the predicate B(i, n, k) is defined

by the disjunction of the following terms (e(i) ∧ e(n) ∧ e(k)), (e(i) ∧ e(n) ∧ o(k) ∧

t(i + k − 1) = t(i + n − k)), (e(i) ∧ o(n) ∧ e(k) ∧ t(i + n − k) 6= t(i + n − 1)),

(e(i)∧o(n)∧o(k)∧t(i+k−1) = t(i+n−1)), (o(i)∧e(n)∧o(k)∧t(i) = t(i+n−1)),

(o(i) ∧ o(n) ∧ e(k) ∧ t(i) 6= t(i + k − 1)), (o(i) ∧ o(n) ∧ o(k) ∧ t(i) = t(i + n − k))

and (o(i) ∧ e(n) ∧ e(k) ∧ [(t(i) = t(i + n − k) ∧ t(i + k − 1) = t(i + n − 1))

∨(t(i) = t(i + n − 1) ∧ t(i + k − 1) = t(i + n − k))]). As an example, if i is even,

n and k are odd, we have the situation depicted in Figure 5. In that case, since

all blocks ab and ba are abelian equivalent, one has just to check equality of two

symbols in adequate positions corresponding to the parameters.

Now the Thue–Morse word has an abelian unbordered factor of length n if and

only if the following formula holds true

ϕ(n) ≡ (∃i)(∀k)(k ≥ 1 ∧ 2k ≤ n) → ¬B(i, n, k). (4)
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k k

ni i+n

Fig. 5. A factor occurring in the Thue–Morse word.

A detailed description of how an automaton is created out of a predicate is given

in [7]. We give a sketch of the method here. First, the predicate is re-written as a

logical expression on primitives that are encodable as automata. For example, the

automaton in Figure 6 evaluates the predicate e(n). Likewise, the automaton in

Figure 7 (left) encodes all ordered pairs (i, j) such that t(i) = t(j). (In this au-

tomaton the pairs are encoded by first padding (i)2 and (j)2 with zeroes to be the

same length and then listing the corresponding pairs of digits starting with the most

significant pair.) In a similar manner, we can obtain an automaton for expressions

like ‘t(i) 6= t(i+k−1))’. Applying the logical connectives ∧, ∨ and ¬ corresponds to

language intersection, union and complement operations on automata respectively.

Finally, the existential quantifier, (∃i), is implemented by dropping the correspond-

ing digit from the transition labels of the automaton. In Figure 7 (right) we can see

the result of applying such an operation to the automaton previously given in Fig-

ure 7 (left). (The universal quantifier is simply rewritten as ¬(∃i)¬ and evaluated

as usual.)

0 1

0

1

Fig. 6. An automaton accepting (n)2, the binary expansion of n, such that n is even. (The digits
of n are read starting with the most significant digit first.)

[0,0] [1,1] [0,0] [1,1]
[0,1] [1,0]

[0,1] [1,0]

0 1 0 1
0 1

0 1

Fig. 7. (left) An automaton accepting pairs (i, j)2 such that t(i) = t(j). (right) An automaton
accepting (i)2 such that (∃j)t(i) = t(j). (This automaton is not minimized.)

To compute the automaton in Figure 4 we split up our task into three parts.

First, we computed the automata for e(n) and o(n). Both of these operations took
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about 0.025 seconds to compute and both can be expressed by automata with 2

states.

Second, we computed the automaton for B(i, n, k). The resulting automaton

had 108 states and took a bit over a second to compute. Due to its size, it cannot

be displayed here.

Finally, using the automaton from the previous step we computed the automaton

encoding φ(n) evaluating the expression in (4). We give the program output of this

computation:

[> 1 k] (6 => 1 states) in 0.012s

[> 2*k n] (6 => 3 states) in 0.010s

[\or ] (4 => 4 states) in 0.018s

[\machine ] (108 => 108 states) in 0.043s

[\not ] (109 => 107 states) in 0.062s

[\or ] (215 => 215 states) in 0.113s

[\not ] (216 => 215 states) in 0.113s

[\exists k] (215 => 23 states) in 0.115s

[\not ] (24 => 22 states) in 0.021s

[\exists i] (22 => 11 states) in 0.009s

[total] (11 states) in 0.589s

This output shows that the computation took a total of 0.589 seconds and the

largest intermediate step was an automaton with 215 states.
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