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Abstract

Looking at the automata defined over a group alphabet as a near-
ring, we see that they are a highly complicated structure. As with ring
theory, one method to deal with complexity is to look at semisimplic-
ity modulo radical structures. We find some bounds on the Jacobson
2-radical and show that in certain groups, this radical can be explicitly
found and the semisimple image determined.
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1 Introduction

Automata defined over a group alphabet can be interpreted as mappings
from a group G into itself. A natural algebraic structure to study mappings
from a group into itself is a nearring. The link between automata we are
studying and nearrings will be further explained in the following. First we
fix and introduce some notation and elementary facts concerning nearrings.

A nearring (N,+, ∗) is an algebra with two binary operations such that
(N,+) is a group and (N, ∗) is a semigroup and the right distributive law
(a + b) ∗ c = a ∗ c + b ∗ c holds for all a, b, c ∈ N . Usually we will omit the
operation symbol ∗ in the following. The notation we use is that of [?].
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Let 0 be the neutral element of the group (N,+) of the nearring N .
A nearring N is called zero symmetric if for all n ∈ N , n ∗ 0 = 0. Near-
rings arise naturally when studying mappings from a group G into itself.
Let M(G) := {f : G → G|f is a function}. Then, M(G) is a nearring
with respect to pointwise addition of functions and function composition.
In fact, any nearring can be embedded as a subnearring into some M(G)
for a suitable group G. If the zero 0 of the group G is preserved by the
mappings, then we get the zero symmetric subnearring M0(G) := {f : G →
G|f is a function andf(0) = 0} of M(G). We will call a function f : G → G
zero preserving if f(0) = 0.

A left ideal L of a nearring N is a normal subgroup of the group (N,+)
such that ∀n,m ∈ N ∀l ∈ L : n(m+ l)−nm ∈ L. An ideal I of a nearring is
a left ideal which is closed under multiplication from the right hand side, so
IN ⊆ I. Ideals are kernels of nearring homomorphisms. An N -subgroup S
of the nearring N is a subgroup of (N,+) such that NS ⊆ S. In case N is
a zero symmetric nearring, a left ideal L of N is also an N -subgroup of N .
If N is a nearring with identity element 1, then an element n ∈ N is called
quasiregular if there exists an element m ∈ N such that m(1− n) = 1.

In many situations it is interesting to study the action of a nearring on a
group G. Let N be a nearring and G be a group. A group G is called an N -
group if there is an action N×G → G, written ng, such that n(mg) = (nm)g
and (n +m)g = ng +mg for all n,m ∈ N and g ∈ G. A subgroup S of an
N -group G will be called an N -subgroup of G if NS ⊆ S. For an N -group
G we define (0 : G) := {n ∈ N |ng = 0∀g ∈ G} to be the annihilator of this
N -group. Annihilators of N -groups are always ideals in the nearring N .

Let S be a set of symbols. As is usual, S∗ is the set of finite sequences
of symbols from the set S, with λ being the empty sequence. S∗ forms a
monoid under concatenation with λ being the identity. We will write this
operation by juxtaposition.

We write SN for the set of infinite sequences over S.

2 Prefix preserving maps

Let (G,+) be a group so (GN,+) is a group. Thus M0(G
N) is a nearring.

Definition 1 n ∈ M0(G
N) is prefix preserving if

∀k ∈ N, x, y ∈ GN : xi = yi∀i < k ⇒ (nx)i = (ny)i∀i < k.

Prefix preserving maps form a subnearring of M0(G
N), we will call it

PP (G). Prefix preserving maps in M(G), which are not necessarily zero
symmetric, will be called PPc(G)

As an example, take some f ∈ M0(G) and x ∈ GN. Define f̄ ∈ PP (G)
by (f̄x)i = f(xi). This is a simple prefix preserving map.
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A map in PP (G) can be seen as an element of M0(G
n) for any finite n.

Let x ∈ Gn, m ∈ PP (G). Then mx = (m(x1, . . . , xn, 0, 0, . . .))|{1,...,n}. We
will call this action the restricted action of PP (G) on M0(G

n).
Given a group (G,+), it is possible to define the nearring of state au-

tomata or state machines over the alphabet G [?]. If we fix the input-output
alphabet G, a state automaton is defined as (Q, t, f, s), where

• Q is a set of states,

• t : Q×G → Q is a state transition map,

• f : Q×G → G is the output map and

• s ∈ Q is the start state.

A state automaton or state machine can be seen as a mapping of G-
sequences to G-sequences, which is how we will see them. In order to cal-
culate the mapping, we proceed as follows. Let a = (Q, t, f, s) be a state
machine, x ∈ GN be the input sequence. Let q1 = s and qi+1 = t(qi, xi) for
i ≥ 1, the state sequence. Then yi = f(qi, xi) and y = ax ∈ GN is the output
sequence, the image of x under the state machine mapping. Note that this
is defined on finite as well as infinite sequences.

The concatenation of state machines and the addition of state machines
are then precisely defined as composition and addition of the maps on GN.
These operations can be defined as operation on the state machines, see [?,
paragraphs before Prop 2] for details. If two state machines agree as maps
on GN, we regard them as equal. Call the collection of state machines on a
group SM(G).

We will have occasion to look at the state output maps of a state machine
(Q, t, f, s). These are the mappings fq : G → G g 7→ f(q, g).

Note that we use the formulation of state machines as Mealy Machines.
If the state output map does not depend upon the input, but only upon the
state, i.e. the mappings fq : g 7→ f(q, g) are constant maps, then we have a
Moore Machine (see e.g. [?, p. 58]).

As an example, let f ∈ M0(G), Q = {s} a single element set, f̄(s, g) =
f(g) and t(s, g) = s. Then (Q, t, f̄ , s) is a state machine with a single state,
with state output map f̄s = f .

Proposition 2 Let G be a group. PPc(G) is isomorphic to SM(G).

Proof: We have defined state machines SM(G) and prefix preserving maps
PPc(G) as subnearrings of M(GN), so we need only show that they are the
same as subsets.

From the definition of the sequence mapping, state machines are prefix
preserving, so SM(G) ⊆ PPc(G).
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Let n ∈ PPc(G). Define Q = G∗. Define t(q, g) = qg ∈ G∗ by concate-
nation and f(q, g) = n(qg)i+1 where i is the length of the string q, n acting
by the restricted action on Gi+1. Then the state machine (Q, t, f, λ) will
induce the same mapping as n, so PPc(G) ⊆ SM(G) and we are done. �

We will use this equivalence often, in order to define, manipulate and
analyse maps in the clearest way possible. We will concentrate upon PP (G)
and are thus interested in the zero symmetric state machines in SM(G).

A state r ∈ Q is called reachable if there is an input sequence x ∈ GN such
that r = qi for some qi in the state sequence q. It is clear that unreachable
states do not affect the properties of state machines. A state r ∈ Q is 0-
reachable if for some i, r = qi in the state sequence induced by the zero
sequence (0, 0, . . .).

Lemma 3 A state machine is zero symmetric if the state output maps fq
are 0-preserving for every state that is 0-reachable.

Proof: Let a = (Q, t, f, s) be a zero symmetric state machine. We know that
a state machine is prefix preserving. Let r ∈ Q be 0-reachable, r = qi with q
being the state sequence from the zero input sequence. Thus f(q, 0) = 0 and
we see that every 0-reachable state has a 0-preserving state output map.

Let a = (Q, t, f, s) be a state machine with all 0-reachable states having
0-preserving state output maps. Then a(0, 0, . . .) = (0, 0, . . .) so a is 0-
preserving and hence a is a zero symmetric state machine. �

The following result indicates that the nearring of prefix preserving maps
is complex and complicated. Let V(G) be the variety generated by the group
G.

Theorem 4 Let K be a finite group. Then for all finite groups G ∈ V(K),
M0(G) < PP (K).

Proof: We will show that we can encode G into KN and mappings in
M0(G) as state automata mappings on K.

From [?, Thm 10.16], G is a homomorphic image of a subgroup S of a
finite power of K, so there exists some natural number n and some β : S ⊆
Kn → G which is a homomorphism. Let α : G → S be some mapping such
that β ◦ α is the identity on S.

Let f ∈ M0(G) be arbitrary. Define F : S → S by F = αfβ.
Define Q = ∪j=0,...,n−1K

j×S×{1, . . . , n}∪{z}. Q is thus made up of the
cartesian product of K-sequences up to length n − 1, a recognized element
of S and an index. The state z indicates an error state, which will not be
reached by correctly encoded inputs. Let the initial state be s = (λ, 0, 1).
Define the state transition function t : Q×K → Q as

• t((q1, 0, 1), k) = (q1k, q1k, 1) if q1k ∈ S.

• t((q1, 0, 1), k) = (q1k, 0, 1) if q1k is a prefix of some element of S.
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• t((q1, 0, 1), k) = z otherwise.

• t((q1, s, n), k) = (q1k, s, 1) if q1k = s.

• t((q1, s, i), k) = (q1k, s, 1 + 1) if q1k is a prefix of s.

• t((q1, s, i), k) = z otherwise.

• t(z, k) = z

The state transition function recognises an input sequence as consisting of
a sequence of 0s of length a multiple of n, followed by repeats of an element
of S.

Define the output function o : Q×K → K as

• o((q1, 0, 1), k) = 0

• o((q1, s, i), k) = F (s)i for s ∈ S

• o(z, k) = 0

The output map implements componentwise the mapping F on the recog-
nized element of S.

For the following, let î = ((i− 1) mod n) + 1.
The encoding map e : G → KN has e(g)i = α(g)̂

i
. The decoding map

d : KN → G is more complex. If there exists some m ∈ N such that ∀i ≥ mn,
xi = xi−n, i.e. x cycles, then d(x) = β(xmn+1, xmn+2, . . . , xmn+n), otherwise
d(x) = 0.

Then the automaton defined as a = (Q, t, o, λ) on K acts on G by ag :=
d ◦ a ◦ e(g). We claim that ag = f(g).

Let x ∈ KN be of the form x = (0, . . . , 0, s1, . . . , sn, s1, . . .) with mn 0s
in the prefix, (s1, . . . , sn) = α(g) ∈ G. Note that e(g) is of this form with
m = 0. Then a(x) will have the state sequence q with qi = (oi, 0, 1) with
oi being a sequence of (i mod n) 0s, for i ≤ mn, qi = ((s1, . . . , sî), 0, 1)
for mn < i < (m + 1)n, q(m+1)n = ((s1, . . . , sn), (s1, . . . , sn), 1) and qi =

((s1, . . . , sî), (s1, . . . , sn), î) for i > (m+ 1)n.
This will give the output sequence y = ax ∈ KN with yi = 0 for i ≤

(m+ 1)n and yi = (F ((s1, . . . , sn)))̂i for i > (m+ 1)n. Let g ∈ G, x = e(g).
Then d(y) = β(F (s1, . . . , sn)) = β ◦ α ◦ f ◦ β ◦ α(g) = f(g).

We have shown that the above construction maps M0(G) injectively into
PP (K).

Let f1, f2 ∈ M0(G), a1, a2 ∈ PP (K) their encodings by the above con-
struction. Then d(a1a2)e = (da1e)(da2e) by the way d ignores initial 0
sequences, so we see that the mapping of M0(G) into PP (K) is a multi-
plicative homomorphism. Similarly it is an additive homomorphism. Thus
the construction is an isomorphic embedding and we are done. �
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Note that the complex definition of d was necessary because the au-
tomaton delays its output by n places. Thus the composition of two such
automata will delay by 2n places.

One approach to deal with complex structures in ring and nearring the-
ory in to consider semisimple rings and nearrings. Our goal in this paper
is to investigate the Jacobson 2-radical structure of PP (G) in order to see
what the semisimple image is. An N -group Γ is of type 2 if there is γ ∈ Γ
such that Nγ = Γ and there do not exist non-trivial N -subgroups in Γ.

Definition 5 [?] Let N be a nearring. Then the Jacobson 2-radical of N ,
written J2(N), is the intersection of the annihilators of all N -groups of type
2.

3 Amnesia and Procrastination

In this section we introduce two classes of automata and use them to bound
J2(PP (G)).

Definition 6 The map α : PP (G) → PP (G) defined by: ∀n ∈ PP (G),
∀x ∈ GN

((αn)x)i = (n(0, 0, . . . , 0, xi, 0, . . .))i

is called the amnesiac map.

Lemma 7 The amnesiac map is a nearring homomorphism.

Proof: Let n,m ∈ PP (G), x ∈ GN. Then

(α(n +m)x)i = ((n+m)(0, . . . , 0, xi, 0, . . .))i (1)

= (n(0, . . . , 0, xi, 0, . . .) +m(0, . . . , 0, xi, 0, . . .))i (2)

= (n(0, . . . , 0, xi, 0, . . .))i + (m(0, . . . , 0, xi, 0, . . .))i (3)

= ((αn)x+ (αm)x)i (4)

so α(n+m) = αn + αm.

((α(nm))x)i = (nm(0, . . . , 0, xi, 0, . . .))i (5)

= (n(m(0, . . . , 0, xi, 0, . . .)))i (6)

= (n(0, . . . , 0, ((αm)x)i, 0, . . .))i (7)

= ((αn)((αm)x))i (8)

= ((αn)(αm)x)i (9)

so α(nm) = (αn)(αm) and we see that α is a nearring homomorphism,. �

Lemma 8 Let n ∈ PP (G). The following are equivalent:
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1. n ∈ kerα

2. ∀x ∈ GN, ((αn)x)i = (n(0, 0, . . . , 0, xi, 0, . . .))i = 0

3. ∀i, n(0, 0, . . . , 0
︸ ︷︷ ︸

i−1

, x, . . .) = (0, 0, . . . , 0, 0
︸ ︷︷ ︸

i

, . . .)

4. ∀i, (n(0, 0, . . . , 0
︸ ︷︷ ︸

i−1

, x))|{1,...,i} = (0, 0, . . . , 0) ∈ Gi

This can be seen because 2 is a rewording of the definition in 1, while 3 is
simply rewriting 2. The fourth statement uses the restricted action to say
the same as 3.

Definition 9 Let f ∈ M0(G) and i, j ∈ N. Define f i ∈ PP (G) as (f i(x))i =
f(xi) and (f i(x))j = 0 ∀j 6= i. Define f i,j ∈ PP (G) as (f i,j(x))i+kj =
f(xi+kj) for all k ∈ N0 and (f i(x))l = 0 otherwise. Let Mi,j(G) = {f i,j :
f ∈ M0(G)}. Then Mi,0(G) = {f i : f ∈ M0(G)}.

The Mi,0(G) automata react only at one time step and are elsewhere
zero, ignoring any inputs before or after that time step. In some sense these
are the most amnesiac of automata. Note that αf i = f i and αf i,j = f i,j.

Lemma 10 Let G be a group. Then

J2(PP (G)) ⊆ kerα

Proof: Suppose n 6∈ kerα. n 6∈ kerα iff ∃ḡ ∈ G such that (n(0, . . . , 0, ḡ, . . .))i 6=
0 with ḡ in the ith place.

Define an action of PP (G) on G as: for m ∈ PP (G), g ∈ G, mg =
(m(0, 0, . . . , 0, g, . . .))i with g in the ith place. We need to show that mg is
indeed an action of PP (G) on G. The additive property is clear, while the
multiplicative property is shown by

(nm)g = ((nm)(0, . . . , 0, g, . . .))i (10)

= (n(m(, . . . , 0, g, . . .))i (11)

= (n(0, . . . , 0,mg, . . .))i (12)

= n(mg) (13)

For all f ∈ M0(G), f i ∈ PP (G) acts as f under this action, i.e. f ig =
f(g).

So the action is the same as the action of M0(G) on G. Consequently,
G is a PP (G) group of type 2 which means that J2(PP (G)) ⊆ (0 : G). But
under this action, n 6∈ (0 : G) because nḡ 6= 0 , so n 6∈ J2(PP (G)). �

A procrastinating or delaying automaton never reacts immediately to an
input. Maybe it should be called a burocrat?
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Definition 11 n ∈ PP (G) is delaying if

∀k ∈ N : xi = yi∀i < k ⇒ (nx)i = (ny)i∀i ≤ k

We write D(G) for this set of state machines.

Lemma 12 D(G) is an N -subgroup.

Proof: By rudimentary calculations it is clear that D(G) is closed under
addition and composition, forming a subnearring.

Now we need to show PP (G)D(G) ⊆ D(G). Let n ∈ PP (G), d ∈ D(G),
x, y ∈ GN with xi = yi for i < k. Then (dx)i = (dy)i for i ≤ k by the
delaying property, so ((nd)x)i = (n(dx))i = (n(dy))i = ((nd)y)i for i ≤ k by
the prefix preserving property, so nd ∈ D(G).

Thus we see that D(G) is an N -subgroup. �

The following result gives us an idea of what the automata in D(G) are
like.

Proposition 13 n ∈ D(G) iff n is a Moore machine iff every state output
map is constant.

Proof: Being a Moore machine is defined as having every output map be-
ing constant. So we need only concern ourselves with the first and last
statements.

(⇒): Let n = (Q, t, f, s) ∈ D(G), so for all reachable r ∈ Q, there
is some input sequence x ∈ GN such that r = qi+1 in the state sequence
for some i. Then by the delaying property, for all g1, g2 ∈ G, f(r, g1) =
n(x1, . . . , xi, g1, . . .)i+1 = n(x1, . . . , xi, g2, . . .)i+1 = f(r, g2) so fr : g 7→
f(r, g) is constant. Thus every state output map is constant.

(⇐): Let n = (Q, t, f, s) ∈ PP (G) with fq : g 7→ f(q, g) constant
for all q ∈ Q. Then for all x, y ∈ GN with xi = yi ∀i < k, the state
sequences induced by x and y will match up to qk = t(qk−1, xk−1). Then
(nx)k = f(qk, xk) = f(qk, yk) = (ny)k so n ∈ D(G) and we are done. �

Theorem 14 Let G be a group. Then D(G) ≤ J2(PP (G)) ≤ kerα.

Proof: We know the second inclusion from above. So we need only show
the first inclusion.

Let n ∈ D(G), as a state machine (Q, t, f, s). The automaton 1− n can
be written as (Q, t, h, s) with h(q, g) = g−f(q, g). As every state output map
fq : g 7→ f(q, g) is a constant map by the claim above, the automaton 1− n
has output map h(q, g) = g − f(q, g), state output maps hq : g 7→ g − fq(g)
that are permutations. Let h̄q : G → G be the inverse of this permutation,
h̄(q, g) = h̄q(g). Define t̄ : Q × G → Q by t̄(q, g) = t(q, h̄(q, g)). Then the
state machine m = (Q, t̄, h̄, s) is the inverse of 1− n.
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The composition state machine m ◦ (1 − n) = (Q × Q,T, F, (s, s)) for
some maps T and F . Note that the start state is on the diagonal. Let
q ∈ Q, g ∈ G. Then

T ((q, q), g) = (t̄(q, hq(g)), t(q, g)) = (t(q, h̄q(hq(g))), t(q, g)) = (t(q, g), t(q, g))

so we see that the state remains on the diagonal {(q, q) : q ∈ Q} ⊂ Q× Q.
Thus we need only consider the output maps on the diagonal, as no other
states are reachable. The output function of the composition can be seen
by

F ((q, q), g) = h̄(q, h(q, g)) = h̄q(hq(g)) = g

to be the identity, m ◦ (1−n) = 1, so by Beidleman [?, 3.37c], n is quasireg-
ular.

Thus the wholeN -subgroupD(G) is quasiregular, so by Ramakotaiah [?]
(also [?, Theorem 5.44]) D(G) lies within the Jacobson 2-radical J2(PP (G))
and we are done. �

We know that the radical is an ideal, so we are interested in the ideal
generated by D(G). Our job is to work out when these nearrings coincide
as ideals.

4 J2 for certain groups

In this section we show that there are a class of groups where we can identify
the Jacobson 2-radical of the prefix preserving maps on that group.

Definition 15 A group (G,+) has property X if there is an element k ∈ G
and a function f : G → G such that f(x+ k)− f(x) = x for all x ∈ G.

Theorem 16 Finite abelian groups have property X iff they are of odd or-
der.

Proof: First we show that all cyclic groups of odd order have property
X. Then we show that odd order abelian groups have property X. Then we
will show that a group with an element of even order will not have property
X.

Let n > 1 be an odd integer. Let k = 1 ∈ Zn be a generator. Let
xi = f(i). Property X can be written as a collection of linear equations over
Zn with −xi + xi+1 = i for 0 ≤ i < n with suffix addition modulo n. The
nth equation is −xn−1 + x0 = n− 1. The sum of the first n− 1 equations is

−x0 + x1 − x1 + x2 + . . .+ xn−1 = 0 + 1 + 2 + . . .+ n− 2

which reduces to −x0 + xn−1 = 1, the additive inverse of the nth equation.
Thus the nth equation is redundant and we are left with n − 1 equations
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having a set of solutions with one parameter. We select x0 then for each
0 < i < n, xi = xi−1 + i− 1.

Let G be an abelian group of odd order. Let H be a maximal cyclic
subgroup of G, generated by k of order 2n + 1. H has property X by the
above argument. Let c 6∈ H. Then in c+H the same argument holds (that
the last equation is redundant) because the order of c divides 2n + 1 and
thus (2n)c = −c. Thus in each coset of H we can find values for f and we
are done.

Suppose G is an abelian group of even order satisfying property X. If
the element k has even order, say n = 2m, then the set of the first n − 1
equations, when added, gives x0 − xn−1 = 1 + m. The nth equation is
xn−1 − x0 = n − 1 so we add them to get 0 = n − 1 + 1 +m = n +m, i.e.
n = m = 0, a contradiction. Thus the element k for property X should be
of odd order, let the order be n. Let c ∈ G be of order 2. Then there will
be a set of n equations of the form

f(c+ ik)− f(c+ (i+ 1)k) = c+ ik

Adding all these equations together we get

0 = nc+
n(n+ 1)

2
k = nc

but c is of even order and n is odd, a contradiction.
Thus no abelian group of even order can have property X. �

Lemma 17 Infinite cyclic groups have property X.

Proof: Suppose G is an infinite order cyclic group, we will assume it is Z.
Defining f(0) = f(1) = . . . = f(k−1) = 0 and f(x+k) = f(x)+x otherwise
gives a function for property X. �

Note that without loss of generality, we can insist that f(0) = 0.

Theorem 18 Let (G,+) be a group with property X. Then J2(PP (G)) =
kerα.

Proof: Let d ∈ kerα.
Let g ∈ G be some arbitrary but fixed nonzero element. Let c ∈ D(G) be

the delaying automaton defined as ({a, b}, t, o, a) with t(a, 0) = a, t(a, x) =
t(b, y) = b and o(a, y) = 0, o(b, y) = g for all x, y ∈ G,x 6= 0.

The initial 0 inputs are mapped to 0, the first nonzero input as well,
then all outputs are g 6= 0.

Let f be a one state automaton with the output function being the
function defined by property X. Then f(d + c) − fd = d so the left ideal
generated byD(G) is all of kerα which is an ideal. Thus J2(PP (G)) = kerα.
�
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5 Semisimplicity

The radical is, in some sense, the “bad” part of a nearring. So we factor
that out to get the “good” part. What is the image of PP (G) under the
map α?

The following result shows what the amnesiac map does to an automaton.

Lemma 19 Let n = (Q, t, o, s) be an automaton. Define t̄(q, g) = t(q, 0)
n̄ = (Q, t̄, o, s). Then n̄ = αn and α is idempotent.

Proof: For any i, (αnx)i = (n(0, . . . , 0, xi, 0, . . .))i, the state sequence q
induced by (0, . . . , 0, xi, 0, . . .) in αn agrees, up to the ith entry, with the
state sequence induced by x in n̄. So (αnx)i = o(qi, xi) = (n̄x)i. Thus αn
and n̄ agree for all i, so they are equal.

¯̄t(q, g)t̄(q, 0) = t(q, 0) = t̄(q, g), so¯̄n = n̄ so the mapping α is idempotent.
�

Theorem 20 Let (G,+) be a group such that J2(PP (G)) = kerα. Then,
PP (G)/J2(PP (G)) =

∑
Mi,0(G).

Proof: First we show that the sum is direct. Let i 6= j, f i ∈ Mi,0(G), gj ∈
Mj,0(G). Then (f igj(x))i = f(gj(x)i) = f(0) = 0, and for k 6= i, (f igj(x))k =
0. So f igj = 0 and we are done.

Let n = (Q, t, f, s) be an automaton, αn = n. Then t(q, g) = t(q, 0) for
all q ∈ Q. Define τ : Q → Q by τ : q 7→ t(q, 0). Then the state sequence will
be qi = τ i−1s.

Define fi(g) = f(τ i−1s, g) ∈ M0(G). Then we claim that

n =
∑

i∈N

f i,0
i

Thus αn = n ⇒ n ∈
∑

Mi,0(G). We know the converse, so αPP (G) =
∑

Mi,0(G).
Now PP (G)/J2(PP (G)) = PP (G)/ ker α = α(PP (G)), so we are done.

�

We note that a finite state automata will give, in general, an infinite sum
in

∑
Mi,0(G). It will, however, give a finite sum in

∑
Mi,j(G), by summing

over the 0-reachable states.

6 Summary

We examined the properties of nearrings of state automata and found that
the nearrings are highly complex. In order to get a handle on them, we
looked at the radicals and the semisimple images modulo these radicals.
The Jacobson 2-radical could be constrained and, in the case of noneven
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order abelian groups, fully determined. It equals the kernel of the amnesiac
endomorphism. Thus we can say that the representatives of the 2-semisimple
nearring of automata are the amnesiac automata. These are sequences of
mappings from M0(G). These sequences are infinite, but in the case of finite
state automata they will cycle after an initial sequence.

In difference to ring theory, several different types of simplicity of N -
groups exist (see [?]). One obvious next stage would be to determine other
radicals in PP (G) and to see in which way their semisimple images behave
as automata.

In difference to ring theory the radical theory for nearrings is much
more complex. Several types of simplicity for N -groups of a nearring N
exist. Apart from N -groups of type 2 the most common ones are N groups
of type 0 and type 1. The intersection of the annihilators of the N -groups of
type 1, type 0 respectively, defines the Jacobson 1-radical J1(N), Jacobson
0-radical respectively. Note that PP (G) contains the identity mapping, so
J2(N) = J1(N) by [?, Proposition 5.3]. There are also a range of further
radicals, all of which would offer further insights.

On the other hand, it would be of interest to determine the 2-radical for
further classes of groups.
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