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Abstract

We study two group theoretic problems, Group Intersection and Double

Coset Membership, in the setting of black-box groups, where Double Coset Mem-

bership generalizes a set of problems, including Group Membership, Group Fac-

torization, and Coset Intersection. No polynomial-time classical algorithms are
known for these problems. We show that for solvable groups, there exist efficient quan-
tum algorithms for Group Intersection if one of the underlying solvable groups has
a smoothly solvable commutator subgroup, and for Double Coset Membership if
one of the underlying solvable groups is smoothly solvable. We also study the decision
versions of Stabilizer and Orbit Coset, which generalizes Group Intersection

and Double Coset Membership, respectively. We show that they reduce to Or-

bit Superposition under certain conditions. Finally, we show that Double Coset

Membership and Double Coset Nonmembership have zero knowledge proof sys-
tems.

1 Introduction

This paper makes progress in finding connections between quantum computation and com-
putational group theory. We give results about quantum algorithms and reductions for
group theoretic problems, concentrating mostly on solvable groups. These results come in
three sections. First, we concentrate on two particular group theoretic problems, Group

Intersection and Double Coset Membership, showing that these problems reduce to
other group problems with known efficient quantum algorithms for many instances, yielding
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Figure 1: Known reducibilities between various group theoretic problems. Thick lines rep-
resent nontrivial reducibilities shown in the current work.

efficient quantum algorithms for Group Intersection and Double Coset Member-

ship on the same types of groups. Second, we generalize and refine our results in the first
section by introducing decision versions of the Stabilizer and Orbit Coset problems
(see [FIM+03]), and showing that these new problems lie in between Group Intersection

and Double Coset Membership on the one hand, and the problem Orbit Superposi-

tion, defined in [FIM+03], on the other. Third, we relate our results on Double Coset

Membership to recent work of Aharonov & Ta-Shma [ATS03] by showing that Double

Coset Membership and its complement have perfect zero knowledge proofs. Our results
and other known reducibility relationships between these and other various group theoretic
problems are summarized in Figure 1. A common theme running through all three sections
is the surprising usefulness of producing certain uniform quantum superpositions.

Many problems that have quantum algorithms exponentially faster than the best known
classical algorithms turn out to be special cases of theHidden Subgroup problem (HSP) for
abelian groups, which can be solved using the Quantum Fourier Transform [Mos99, Joz00].
Other interesting problems, such as Graph Isomorphism are special cases of general Hid-

den Subgroup, for which no efficient quantum algorithm is currently known. The idea
that underlying algebraic structures may be essential for problems having exponential quan-
tum speedup has prompted several researchers to study problems in computational group
theory. Watrous [Wat01] first constructed efficient quantum algorithms for several problems
on solvable groups, such as Order Verification and Group Membership. Based on
an algorithm of Beals and Babai [BB93], Ivanyos, Magniez, and Santha [IMS01] obtained
efficient quantum algorithms for Order Verification as well as several other group theo-
retic problems. Recently, Friedl et al.[FIM+03] introduced the problems Stabilizer, Orbit

Coset, and Orbit Superposition, and showed that these problems can be solved effi-
ciently on quantum computers if the underlying groups satisfy certain stronger solvability
criteria.

Watrous asked in [Wat01] whether there are efficient quantum algorithms for problems
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such as Group Intersection and Coset Intersection. We show that for solvable
groups, there are efficient quantum algorithms for Group Intersection and Double

Coset Membership (which generalizes Coset Intersection as well as Group Mem-

bership and Group Factorization) under certain conditions. We obtain these results
by showing that these two problems reduce to Stabilizer and Orbit Coset, respectively.

One key component in our proof is the construction of approximately uniform quantum
superpositions over elements of a given solvable group, which is a very useful byproduct of
[Wat01]. In classical computational group theory, the ability to sample group elements uni-
formly at random is very useful in designing many classical group algorithms. We believe that
its quantum analog—uniform quantum superpositions over group elements—will continue to
be useful in designing quantum group algorithms. Our results also imply that for abelian
groups, Group Intersection and Double Coset Membership are in the complexity
class BQP, which yields a new proof that they are low for the class PP [AV97, FR99].

We observe that in the reduction from Group Intersection (respectively Double

Coset Membership) to Stabilizer (respectively Orbit Coset), we don’t actually need
the full power of Stabilizer or Orbit Coset. This inspires us to study simplified versions
of these two problems. Here we use StabilizerD andOrbit CosetD to denote the decision
versions of these two problems, where we are only interested in a trivial/non-trivial answer.
We show that the difficulty of StabilizerD andOrbit CosetD may reside in constructions
of certain uniform quantum superpositions, which can be achieved by the problem Orbit

Superposition. In particular, we show that for solvable groups, StabilizerD reduces
to Orbit Superposition, and for any finite groups, Orbit CosetD reduces to Orbit

Superposition in bounded-error quantum polynomial time. This again reinforces our
idea that certain uniform quantum superpositions are key components in quantum group
algorithms.

A recent paper by Aharonov and Ta-Shma [ATS03] shares a similar point of view. They
studied the problem Circuit Quantum Sampling (CQS), which basically concerns gen-
erating quantum states corresponding to classical probability distributions. Furthermore,
they showed interesting connections between CQS and many different areas such as Statis-
tical Zero Knowledge (SZK) and adiabatic evolution. In particular, they showed that any
language in SZK can be reduced to a family of instances of CQS. Inspired by this, we obtain
connections between our group theoretic problems and the complexity class SZK. We show
that Double Coset Membership has a zero knowledge proof system, therefore it is in
SZK. This is an improvement of Babai’s result [Bab92] that Double Coset Membership

is in AM ∩ coAM. We also give an explicit zero knowledge proof system for the comple-
ment ofDouble Coset Membership, namely, Double Coset Nonmembership. While
Watrous [Wat00] showed that Group Nonmembership is in the complexity class QMA,
another implication of our results is that Group Nonmembership has a zero knowledge
interactive proof system.
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2 Preliminaries

Background on general group theory and quantum computation can be found in the standard
textbooks [Bur55, NC00].

2.1 The Black-Box Group Model

All of the group theoretic problems discussed in this paper will be studied in the model of
black-box groups. This model was first introduced by Babai and Szemerédi [BS84] as a gen-
eral framework for studying algorithmic problems for finite groups. It has been extensively
studied (see [Wat01]). Here we will use descriptions similar to those in [AV97].

We fix the alphabet Σ = {0, 1}. A group family is a countable sequence B = {Bm}m≥1 of
finite groupsBm, such that there exist polynomials p and q satisfying the following conditions.
For each m ≥ 1, elements of Bm are encoded as strings (not necessarily unique) in Σp(m). The
group operations (inverse, product and identity testing) of Bm are performed at unit cost by
black-boxes (or group oracles). The order of Bm is computable in time bounded by q(m),
for each m. We refer to the groups Bm of a group family and their subgroups (presented
by generator sets) as black-box groups. Common examples of black-box groups are {Sn}n≥1

where Sn is the permutation group on n elements, and {GLn(q)}n≥1 where GLn(q) is the
group of n× n invertible matrices over the finite field Fq. Depending on whether the group
elements are uniquely encoded, we have the unique encoding model and non-unique encoding
model, the latter of which enables us to deal with factor groups [BS84]. In the non-unique
encoding model an additional group oracle has to be provided to test if two strings represent
the same group element. Our results will apply only to the unique encoding model. In one
of our proofs, however, we will use the non-unique encoding model to handle factor groups.
For how to implement group oracles in the form of quantum circuits, please see [Wat01].

Definition 2.1 ([AV97]) Let B = {Bm}m≥1 be a group family. Let e denote the identity
element of each Bm. Let 〈S〉 denote the group generated by a set S of elements of Bm.
Below, g and h denote elements, and S1 and S2 subsets, of Bm.

Group Intersection := {(0m, S1, S2) | 〈S1〉 ∩ 〈S2〉 6= 〈e〉},

Group Membership := {(0m, S1, g) | g ∈ 〈S1〉},

Group Factorization := {(0m, S1, S2, g) | g ∈ 〈S1〉〈S2〉},

Coset Intersection := {(0m, S1, S2, g) | 〈S1〉g ∩ 〈S2〉 6= ∅},

Double Coset Membership := {(0m, S1, S2, g, h) | g ∈ 〈S1〉h〈S2〉}.

It is easily seen that Double Coset Membership generalizes Group Membership,
Group Factorization, and Coset Intersection. Therefore in this paper we will focus
onDouble Coset Membership. All our results aboutDouble Coset Membership will
also apply to Group Membership, Group Factorization, and Coset Intersection.
(Actually, Coset Intersection and Group Factorization are easily seen to be the
same problem.)
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2.2 Solvable Groups

The commutator subgroup G′ of a group G is the subgroup generated by elements g−1h−1gh
for all g, h ∈ G. We define G(n) such that

G(0) = G,

G(n) = (G(n−1))′, for n ≥ 1.

G is solvable if G(n) is the trivial group {e} for some n. We call G = G(0) ⊲G(1) ⊲ · · ·⊲G(n) =
{e} the derived series of G, of length n. Note that all the factor groups G(i)/G(i+1) are
abelian. There is a randomized procedure that computes the derived series of a given group
G [BCF+95].

The term smoothly solvable is first introduced in [FIM+03]. We say that a family of
abelian groups is smoothly abelian if each group in the family can be expressed as the
direct product of a subgroup whose exponent is bounded by a constant and a subgroup
of polylogarithmic size in the order of the group. A family of solvable groups is smoothly
solvable if the length of each derived series is bounded by a constant and the family of all
factor groups G(i)/G(i+1) is smoothly abelian.

In designing efficient quantum algorithms for computing the order of a solvable group
(Order Verification), Watrous [Wat01] obtained as a byproduct a method to construct
approximately uniform quantum superpositions over elements of a given solvable group.

Theorem 2.2 ([Wat01]) In the model of black-box groups with unique encoding, there is
a quantum algorithm operating as follows (relative to an arbitrary group oracle). Given
generators g1, . . . , gm such that G = 〈g1, . . . , gm〉 is solvable, the algorithm outputs the order
of G with probability of error bounded by ǫ in time polynomial in mn + log(1/ǫ) (where n
is the length of the strings representing the generators). Moreover, the algorithm produces a
quantum state ρ that approximates the state |G〉 = |G|−1/2

∑

g∈G |g〉 with accuracy ǫ (in the
trace norm metric).

2.3 Stabilizer, Orbit Coset and Orbit Superposition

A recent paper by Friedl et al. [FIM+03] introduced several problems which are closely related
toHidden Subgroup. In particular, they introduced Stabilizer, Hidden Translation,
Orbit Coset, and Orbit Superposition. Stabilizer generalizes Hidden Subgroup.
In fact, the only difference between Stabilizer and Hidden Subgroup is that in the def-
inition of Stabilizer the function f can be a quantum function that maps group elements
to mutually orthogonal quantum states with unit norm. Orbit Coset generalizes Stabi-
lizer and Hidden Translation. Orbit Superposition is a relevant problem, which is
also of independent interest. The superpositions Watrous constructed in Theorem 2.2 can
be considered as an instance of Orbit Superposition.

In the following we will state the problems and results that will be used in this paper.
We refer interested readers to their paper [FIM+03] for detailed information.
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Let G be a finite group. Let Γ be a set of mutually orthogonal quantum states. Let
α : G× Γ → Γ be a group action of G on Γ, i.e., for every x ∈ G the function αx : |φ〉 →
|α(x, |φ〉)〉 is a permutation over Γ and the map h from G to the symmetric group over Γ
defined by h(x) = αx is a homomorphism. We use the notation |x · φ〉 instead of |α(x, |φ〉)〉,
when α is clear from the context. We let G(|φ〉) denote the set {|x · φ〉 : x ∈ G}, and we
let G|φ〉 denote the stabilizer subgroup of |φ〉 in G, i.e., {x ∈ G : |x · φ〉 = |φ〉}. Given any
positive integer t, let αt denote the group action of G on Γt = {|φ〉⊗t : |φ〉 ∈ Γ} defined by
αt(x, |φ〉⊗t) = |x · φ〉⊗t. We need αt because the input superpositions cannot be cloned in
general.

Definition 2.3 ([FIM+03]) Let G be a finite group and Γ be a set of mutually orthogonal
quantum states. Fix the group action α : G× Γ → Γ.

• Given generators for G and a quantum states |φ〉 ∈ Γ, the problem Stabilizer is to
find a generating set for the subgroup G|φ〉.

• Given generators for G and two quantum states |φ0〉, |φ1〉 ∈ Γ, the problem Orbit

Coset is to either reject the input if G(|φ0〉)∩G(|φ1〉) = ∅ or output a generating set
for G|φ1〉 of size O(log |G|) and a u ∈ G such that |u · φ1〉 = |φ0〉.

• Given generators for G and a quantum state |φ〉 ∈ Γ, the problem Orbit Superpo-

sition is to construct the uniform superposition

|G · φ〉 =
1

√

|G(|φ〉)|

∑

|φ′〉∈G(|φ〉)

|φ′〉.

Orbit Coset and Stabilizer can be solved in quantum polynomial time under certain
stronger solvability criteria.

Theorem 2.4 ([FIM+03]) Let G be a smoothly solvable group and let α be a group action
of G. When t = (logΩ(1) |G|) log(1/ǫ), Orbit Coset can be solved in G for αt in quantum
time poly(log |G|) log(1/ǫ) with error ǫ.

Theorem 2.5 ([FIM+03]) Let G be a finite solvable group having a smoothly solvable com-
mutator subgroup and let α be a group action of G. When t = (logΩ(1) |G|) log(1/ǫ), Stabi-
lizer can solved in G for αt in quantum time poly(log |G|) log(1/ǫ) with error ǫ.

Another interesting result in [FIM+03] is that Orbit Superposition reduces to Orbit

Coset for solvable groups in quantum polynomial time. It is not clear if there is a reduction
in the reverse direction.
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2.4 Zero Knowledge Proof Systems

We use standard notions of interactive proof systems and zero knowledge interactive proof
systems. Information about zero knowledge systems can be found in a variety of places,
including Vadhan’s Ph.D. thesis [Vad99], and Goldreich, Micali, & Wigderson [GMW91].

SZK is the class of languages that have statistical zero knowledge proofs. It is known
that BPP ⊆ SZK ⊆ AM ∩ coAM and that SZK is closed under complement. SZK does
not contain any NP-complete language unless the polynomial hierarchy collapses [Vad99].

2.5 A Note on Quantum Reductions

In Sections 3 and 4 we describe quantum reductions to various problems. Quantum algo-
rithms for these problems often require several identical copies of a quantum state or unitary
gate to work to a desired accuracy. Therefore, we will implicitly assume that our reductions
may be repeated t times, where t is some appropriate parameter polynomial in the input
size and the logarithm of the desired error bound.

3 Quantum algorithms

In this section we report progress on finding quantum algorithms forGroup Intersection,
and Double Coset Membership.

Theorem 3.1 Group Intersection reduces to Stabilizer in bounded-error quantum
polynomial time if one of the underlying groups is solvable.

Proof. Given an input (0m, S1, S2) for Group Intersection, without loss of generality,
suppose that G = 〈S1〉 is an arbitrary finite group and H = 〈S2〉 is solvable. By Theo-
rem 2.2 we can construct an approximately uniform superposition |H〉 = |H|−1/2

∑

h∈H |h〉.
For any g ∈ G, let |gH〉 denote the uniform superposition over left coset gH , i.e., |gH〉 =
|H|−1/2

∑

h∈gH |h〉. Let Γ = {|gH〉|g ∈ G}. Note that the quantum states in Γ are (approx-
imately) pairwise orthogonal. Define the group action α : G× Γ → Γ to be that for every
g ∈ G and every |φ〉 ∈ Γ, α(g, |φ〉) = |gφ〉. Then the intersection of G and H is exactly the
subgroup of G that stabilizes the quantum state |H〉. ✷

Corollary 3.2 Group Intersection over solvable groups can be solved within error ǫ by
a quantum algorithm that runs in time polynomial in m + log(1/ǫ), where m is the size of
the input, provided one of the underlying solvable groups has a smoothly solvable commutator
subgroup.

Proof. Follows directly from Theorems 3.1 and 2.5. ✷

It is not clear if similar reduction to Stabilizer exists for Double Coset Member-

ship. However, with the help of certain uniform superpositions, Double Coset Member-

ship can be nicely put into the framework of Orbit Coset.
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Theorem 3.3 Double Coset Membership over solvable groups reduces to Orbit Coset

in bounded-error quantum polynomial time.

Proof. Given input for Double Coset Membership S1, S2, g and h, where G = 〈S1〉
and H = 〈S2〉 are solvable groups, first we check if g is an element of G or H . This can be
done using the quantum algorithm for Group Membership in [Wat01]. For example, to
check if g is an element of G, the algorithm will check if the group 〈S1, g〉 is still solvable,
and in the case that it is solvable compute the order of 〈S1, g〉 and check if it is equal to the
order of G. If g is an element of G or H , quit and output “yes.”

In the case that g is not an element of G or H , we construct the input for Orbit Coset

as follows. Let Γ = {|xH〉|x ∈ 〈S1, S2, g, h〉}. Define group action α : G× Γ → Γ to be
α(x, |φ〉) = |xφ〉 for any x ∈ G and |φ〉 ∈ Γ. Let two input quantum states |φ0〉 and |φ1〉 be
|gH〉 and |hH〉, which can be constructed using Theorem 2.2. It is not hard to check that
there exists an u ∈ G such that |u · φ1〉 = |φ0〉 if and only if g ∈ GhH . ✷

Corollary 3.4 Double Coset Membership over solvable groups can be solved within
error ǫ by a quantum algorithm that runs in time polynomial in m + log(1/ǫ), where m is
the size of the input, provided one of the underlying groups is smoothly solvable.

Proof. Given input for Double Coset Membership S1, S2, g and h, suppose that
G = 〈S1〉 is smoothly solvable and H = 〈S2〉 is solvable. Let S1, |gH〉, |hH〉 be the input
for Orbit Coset, the result follows from Theorem 2.4. If instead H is the one which is
smoothly solvable, then we modify the input by swapping S1 and S2 and using g−1, h−1 to
replace g, h. Note that this modification will not change the final answer. ✷

4 The decision versions of Stabilizer and Orbit Coset

An interesting observation is that to solve our group theoretic problems, we don’t actually
need the full power of Stabilizer and Orbit Coset. For example, for the problem Group

Intersection, we care about whether the intersection of the two input groups is trivial
or non-trivial. We don’t ask for a generating set in the case of a non-trivial intersection.
This inspires us to define and study the decision versions of Stabilizer and Orbit Coset.
denoted as StabilizerD and Orbit CosetD, respectively.

Definition 4.1 Let G be a finite group and Γ be a set of pairwise orthogonal quantum states.
Fix the group action α : G× Γ → Γ.

• Given generators for G and a quantum state |φ〉 ∈ Γ, the problem StabilizerD is to
check if the subgroup G|φ〉 is the trivial subgroup {e}.

• Given generators for G and two quantum states |φ0〉, |φ1〉 ∈ Γ, the problem Orbit

CosetD is to either reject the input if G(|φ0〉) ∩ G(|φ1〉) = ∅ or accept the input if
G(|φ0〉) = G(|φ1〉).

8



It is clear that the reductions in Theorem 3.1 and Theorem 3.3 still work if we replace
Stabilizer (respectively Orbit Coset) with StabilizerD (respectively Orbit CosetD).
We remark that although Orbit Coset generalizes Stabilizer, Orbit CosetD does not
seem to generalize StabilizerD. Next we show that the ability of constructing certain
quantum superpositions will help us to attack these two problems. The problem Orbit

Superposition provides a way to construct quantum superpositions. In fact, Watrous’
result in Theorem 2.2 solves a special case of Orbit Superposition, where the group G
acts on the quantum state of the identity element.

We will use the following result from [IMS01]:

Theorem 4.2 ([IMS01]) Assume that G is a black-box group given by generators with not
necessarily unique encoding. Suppose that N is a normal subgroup given as a hidden subgroup
of G via the function f . Then the order of the factor group G/N can be computed by quantum
algorithms in time polynomial in n + ν(G/N), where n is the input size and the parameter
ν(G) is defined in [BB93] and equals one for any solvable group G.

Please note that we can apply Theorem 4.2 to factor groups since it uses the non-unique
encoding black-box groups model.

Theorem 4.3 Over solvable groups, StabilizerD reduces to Orbit Superposition in
bounded-error quantum polynomial time.

Proof. Let the solvable group G and quantum state |φ〉 be the input of StabilizerD. We
can find in classical polynomial time generators for each element in the derived series of G
[BCF+95], namely, {e} = G1 ⊳ · · · ⊳ Gn = G. For 1 ≤ i ≤ n let Si = (Gi)|φ〉, the stabilizer of
|φ〉 in Gi. By Theorem 2.2 we can compute the orders of G1, . . . , Gn and thus the order of
Gi+1/Gi for any 1 ≤ i < n. We will proceed in steps. Suppose that before step i+1, we know
that Si = {e}. We want to find out if Si+1 = {e} in the (i + 1)st step. Since Gi ⊳ Gi+1, by
the Second Isomorphism Theorem, GiSi+1/Gi

∼= Si+1. Consider the factor group Gi+1/Gi,
we will define a function f such that f is constant on GiSi+1/Gi and distinct on left cosets of
GiSi+1/Gi in Gi+1/Gi. Then by Theorem 4.2 we can compute the order of the factor group
Gi+1/Gi over GiSi+1/Gi. The group oracle needed in the non-unique encoding model to test
if two strings s1 and s2 represent the same group elements can be implemented using the
quantum algorithm for Group Membership, namely, testing if s−1

1 s2 is a member of Gi.
The order of this group is equal to the order of Gi+1/Gi if and only if Si+1 is trivial.

Here is how we define the function f . Using Gi and |φ〉 as the input for Orbit Superpo-

sition, we can construct the uniform superposition |Gi · φ〉. Let Γ be the set {|gGi · φ〉|g ∈
Gi+1}. We define f : Gi+1/Gi → Γ be such that f(gGi) = |gGi · φ〉. What is left is to
verify that f hides the subgroup GiSi+1/Gi in the group Gi+1/Gi. For any g ∈ GiSi+1, it
is straightforward to see that |gGi · φ〉 = |Gi · φ〉. If g1 and g2 are in the same left coset of
GiSi+1, then g1 = g2g for some g ∈ GiSi+1 and thus |g1Gi · φ〉 = |g2Gi · φ〉. If g1 and g2 are
not in the same left coset of GiSi+1, we will show that |g1Giφ〉 and |g2Giφ〉 are orthogonal
quantum states. Suppose there exists x1, x2 ∈ Gi such that |g1x1 · φ〉 = |g2x2 · φ〉, then

9



x−1
1 g−1

1 g2x2 ∈ Si+1. But x−1
1 g−1

1 g2x2 = x−1
1 x′

2g
−1
1 g2 for some x′

2 ∈ Gi. Thus g−1
1 g2 ∈ GiSi+1.

This contradicts the assumption that g1 and g2 are not in the same coset of GiSi+1.
We need to repeat the above procedure at most Θ(log |G|) times. For each step the

running time is polynomial in log |G|+log(1/ǫ), for error bound ǫ. So the total running time
is still polynomial in the input size. ✷

Corollary 4.4 Over solvable groups, Group Intersection reduces to Orbit Superpo-

sition in bounded-error quantum polynomial time.

We can also reduce Orbit CosetD to Orbit Superposition in quantum polynomial
time. In this reduction, we don’t require the underlying groups to be solvable. The proof
uses similar techniques that Watrous [Wat00] and Buhrman et al. [BCWdW01] used to
differentiate two quantum states.

Theorem 4.5 Orbit CosetD reduces to Orbit Superposition in bounded-error quan-
tum polynomial time.

Proof. Let the finite group G and two quantum states |φ1〉, |φ2〉 be the inputs of Or-

bit CosetD. Notice that the orbit coset of |φ1〉 and |φ2〉 are either identical or disjoint,
which implies the two quantum states |G · φ1〉 and |G · φ2〉 are either identical or orthogo-
nal. We may then tell which is the case using a version of the swap test of Buhrman et al.
[BCWdW01].

✷

Corollary 4.6 Double Coset Membership reduces to Orbit Superposition in bounded-
error quantum polynomial time.

5 Statistical Zero Knowledge

A recent paper by Aharonov and Ta-Shma [ATS03] proposed a new way to generate cer-
tain quantum states using Adiabatic quantum methods. In particular, they introduced the
problem Circuit Quantum Sampling (CQS) and its connection to the complexity class
Statistical Zero Knowledge (SZK). Informally speaking, CQS is to generate quantum states
corresponding to classical probability distributions obtained from some classical circuits. Al-
though CQS and Orbit Superposition are different problems, they bear a certain level of
resemblance. Both problems are concerned about generation of non-trivial quantum states.
In their paper they showed that any language in SZK can be reduced to a family of in-
stances of CQS. Based on Theorem 4.3 and Theorem 4.5, We would like to ask if there are
connections between SZK and our group theoretic problems. As a first step, we show that
Double Coset Membership has a perfect zero knowledge proof system, and thus is in
SZK. This is an improvement of Babai’s result [Bab92] that Double Coset Membership
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is in AM∩coAM. Our proof shares the same flavor with Goldreich, Micali and Wigderson’s
proof that Graph Isomorphism is in SZK [GMW91]. The intuitive idea is to break the
process into two parts, where the verification of each individual part does not reveal any
information about the claim.

The following theorem due to Babai [Bab91] will be used in our proof. Let G be a finite
group. Let g1, . . . , gk ∈ G be a sequence of group elements. A subproduct of this sequence
is an element of the form ge11 . . . gekk , where ei ∈ {0, 1}. We call a sequence h1, . . . , hk ∈ G
a sequence of ǫ-uniform Erdős-Rényi generators if every element of G is represented in
(2k/|G|)(1 + ǫ) ways as a subproduct of the hi.

Theorem 5.1 ([Bab91]) Let c, C > 0 be given constants, and let ǫ = N−c where N is a
given upper bound on the order of the group G. There is a Monte Carlo algorithm which,
given any set of generators of G, constructs a sequence of O(logN) ǫ-uniform Erdős-Rényi
generators at a cost of O((logN)5) group operations. The probability that the algorithm fails
is ≤ N−C . If the algorithm succeeds, it permits the construction of ǫ-uniform distributed
random elements of G at a cost of O(logN) group operations per random element.

Basically what Theorem 5.1 says is that we can randomly sample elements from G and
verify the membership of the random sample efficiently. Given a group G and a sequence
of O(logN) ǫ-uniform Erdős-Rényi generators h1, . . . , hk for G, we say that e1 . . . ek where
ei ∈ {0, 1} is a witness of g ∈ G if g = he1

1 . . . hek
k .

Theorem 5.2 Double Coset Membership has a perfect zero knowledge proof system.

Proof.[sketch] Given groups G, H and elements g, h, the prover wants to convince the
verifier that g = xhy for some x ∈ G and y ∈ H . Fix a sufficiently small ǫ > 0. The protocol
is as follows.

(V0) The verifier computes ǫ-uniform Erdős-Rényi generators g1, . . . , gm and h1, . . . , hn for
G and H . The verifier sends the generators to the prover.

(P1) The provers select x and y, which are random elements from G and H . The prover
sends z = xgy to the verifier.

(V1) The verifier chooses at random α ∈R {0, 1}, and sends α to the prover.

(P2) If α = 0, then the prover sends x and y to the verifier, together with witnesses that
x ∈ G and y ∈ H . If α = 1, then the prover sends over x′ and y′, together with
witnesses that x′ ∈ G and y′ ∈ H .

(V2) If α = 0, then the verifier verifies that x and y are indeed elements of G and H and
z = xgy. If α = 1, then the verifier verifies that x′ and y′ are indeed elements of G
and H and z = x′hy′. The verifier stops and rejects if any of the verifications fails.
Otherwise, he repeats steps from (P1) to (V2).
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If the verifier has completed m iterations of the above steps, then he accepts.
It is not hard to verify that this is a perfect zero knowledge proof system. We omit the

formal proof due to lack of space. ✷

Since SZK is closed under complement, the complement of Double Coset Member-

ship, Double Coset Nonmembership, is also in SZK. In fact, by adapting proofs in
[GMW91], we can give explicitly a perfect zero knowledge proof system for Double Coset

Nonmembership.

Theorem 5.3 Double Coset Nonmembership has a perfect zero knowledge proof sys-
tem.

Proof.[sketch] A simple interactive proof system for Double Coset Nonmembership is
as follows. Given G, H and g, h as inputs, the prover wants to convince the verifier that g is
not in the double coset GhH . The verifier will generate random elements x ∈ G and y ∈ H ,
and then flip a random coin and send either xgy or xhy to the prover. The prover has to
tell correctly which one the verifier sends. After several rounds, the verifier is convinced.
This protocol is not zero knowledge since a cheating verifier can use the protocol to gain
knowledge such as whether an element z is in the double coset GgH . The way to fix this
flaw is to let the verifier first “prove” to the prover that he knows the answer of his own
question.

For the sake of simplicity, let n denote the input size. Given groups G, H and elements
g, h, the prover wants to convince the verifier that g is not in the double coset GhH . Before
the protocol starts, the verifier will compute ǫ-uniform Erdős-Rényi generators g1, . . . , gm
and h1, . . . , hn for G and H for a sufficiently small ǫ, and send them to the prover.

The following protocol will be executed m times, each time using independent random
coin tosses.

(V1) The verifier computes random elements x ∈ G and y ∈ H using the Erdős-Rényi
generators, and chooses at random α ∈R {0, 1}. If α = 0, he computes z = xgy.
If α = 1, he computes z = xhy. The element z will be called the question. In
addition to z, the verifier constructs n2 pairs of group elements such that each pair
consists of one random element of GgH and one random element of GhH . The two
elements in each pair are placed at random order. These pairs will be used by the
prover to test whether the verifier is cheating. In specific, for each 1 ≤ i ≤ n2, the
verifier constructs the i’th pair (Ti,0, Ti,1) as follows. He computes random elements
xi,0, xi,1 ∈ G and yi,0, yi,1 ∈ H , and chooses at random a bit γi ∈R {0, 1}. Then he
computes Ti,γi = xi,γigyi,γi and Ti,1−γi = xi,1−γigyi,1−γi. The verifier sends z and the
sequence of pairs (T1,0, T1,1), . . . , (Tn2,0, Tn2,1) to the prover.

(P1) The prover chooses at random a subset I ⊆ {1, . . . , n2} (uniformly among all 2n
2

subsets) and sends I to the verifier.
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(V2) If I is not a subset of {1, . . . , n2}, then the verifier halts and rejects. Otherwise, the
verifier replies with {(γi, xi,0, xi,1, yi,0, yi,1) : i ∈ I} and {(αi ∈ {0, 1}, ai ∈ G, bi ∈
H) such that z = aiTi,αi

bi : i /∈ I}. Intuitively, for i ∈ I the verifier shows that the
i’th pair is properly constructed by giving explicitly (γi, xi,0, xi,1, yi,0, yi,1); for i /∈ I}
the verifier shows that z is also properly constructed by showing that z is in the same
double coset with one of the elements in the i’th pair. (αi, ai, bi) can be easily computed
by the verifier, i.e., αi = (α + γi) mod 2, ai = xx−1

i,αi
, and bi = y−1

i,αi
y.

(P2) For every i ∈ I, the prover checks whether xi,0, xi,1 (respectively yi,0, yi,1)) are indeed el-
ements of G (respectively H), and whether Ti,γi = xi,γigyi,γi and Ti,1−γi = xi,1−γigyi,1−γi

hold. For every i /∈ I, the prover checks whether ai (respectively bi) is indeed an ele-
ment of G (respectively H), and whether z = aiTi,αi

bi holds. If any of these conditions
does not hold, the prover stops. Otherwise, the prover answers with β ∈ {0, 1}.

(V3) The verifier checks whether α = β. If the condition is violated, the verifier stops and
rejects; otherwise, he continues.

After m rounds of successful iterations, the verifier accepts.
This is still an interactive proof system for Double Coset Nonmembership. If g is

not in the double coset GhH , then GgH and GhH are disjoint sets and the prover will always
succeed in convincing the verifier. If, on the other hand, g is in the double coset GhH , then
GgH and GhH are the same set and with probability at least a half the prover will fail to
fool the verifier.

To prove that this protocol is zero knowledge, the simulator has to produce the same
probability distribution without interacting with the prover. What the simulator does is
to extract from the verifier the knowledge he has about his question. We omit the formal
proof here. We note that the formal proof is similar in principle to the proof that Graph

Nonisomorphism has a zero knowledge proof system [GMW91], based on which and the
above protocol interested readers are able to construct the formal proof. ✷

Although Group Intersection is also known to be in AM∩ coAM [Bab92], it is not
clear whether Group Intersection has a zero knowledge proof system. This seems to be
consistent with the fact that we have not found a reduction from Group Intersection to
Orbit Superposition over arbitrary finite groups (Corollary 4.4).
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