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We study the formal language theory of multistack pushdown automata (Mpa) restricted
to computations where a symbol can be popped from a stack S only if it was pushed
within a bounded number of contexts of S (scoped Mpa). We show that scoped Mpa are
indeed a robust model of computation, by focusing on the corresponding theory of visibly
Mpa (Mvpa). We prove the equivalence of the deterministic and nondeterministic ver-
sions and show that scope-bounded computations of an n-stack Mvpa can be simulated,
rearranging the input word, by using only one stack. These results have some interesting
consequences, such as, the closure under complement, the decidability of universality,
inclusion and equality, and the effective semilinearity of the Parikh image (Parikh’s the-
orem). As a further contribution, we give a logical characterization and compare the
expressiveness of the scope-bounded restriction with other Mvpa classes from the liter-
ature. To the best of our knowledge, scoped Mvpa languages form the largest class of
formal languages accepted by Mpa that enjoys all the above nice properties.

Keywords: Language theory and automata; models of concurrent systems; multistack
pushdown automata; visibly pushdown automata.

1. Introduction

Pushdown automata working with multiple stacks (multistack pushdown automata,

Mpa for short) are the automata-theoretic model of concurrent programs with

recursion and shared memory. Within the domain of formal verification of programs,

program executions are analyzed against correctness properties, that may refer to

the stack operations in the model such as for stack inspection properties and Hoare-

like pre/post conditions. Such visibility of stack operations is captured in the formal

languages by the notion of visibly pushdown language [1].
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The class of multistack visibly pushdown languages (Mvpl) is defined via the

model of multistack visibly pushdown automaton (Mvpa), that is a Mpa where the

push and pop operations on each stack are made visible in the input symbols, by a

partition of the input alphabet into calls, returns and internals. Though visibility

allows to synchronize the stack usage in the constructions, thus gaining interesting

properties such as the closure under intersection, in general, it does not limit the

expressiveness up to gaining decidability: the language of the executions (i.e., the

sequence of transitions) of a Mpa is a Mvpl, and Mpa are equivalent to Turing

machines already with two stacks.

In this paper, we study the formal language theory of Mvpa restricted to scoped

computations [2]: for a positive integer k, a computation is k-scoped if for each stack

i, each popped symbol was pushed within the last k contexts of i (where a context

is a continuous portion of the computation in which only one stack is used).

The notion of scoped computations was first introduced in [3] to extend the

bounded-context switching analysis of Mpa [4] to unboundedly many contexts. In

this original formulation, though the overall number of contexts allowed in a compu-

tation is unbounded, only a bounded number of them can occur between a matching

pair of push and pop actions of a stack i. The notion of scoped computations given

above, that we will use in this paper, instead allows for unboundedly many contexts

of stacks j 6= i and thus significantly increases expressiveness.

Our first main contribution is to prove that deterministic and nondeterministic

scoped Mvpa are language equivalent. The main notion used in our construction

is the switching mask. A switching mask summarizes the states of a Mvpa at

context-switches. We show that for scoped computations also the switching masks

are bounded. The resulting deterministic Mvpa has size doubly exponential in both

the number of stacks and the bound k. By this construction we gain the closure

under complement, and by the effectiveness of closure under intersection and the

decidability of emptiness, we also get the decidability of universality, inclusion, and

equality. In general, Mvpa and most of the already studied classes of Mvpa are

not determinizable [5].

As a second main contribution, we show a sequentialization construction for

scopedMvpa. Namely, we give a mapping π that rearranges the contexts in a scoped

word w s.t. it can be read by using only one stack (all the calls and returns of the

starting alphabet are interpreted as calls and returns of the only available stack).

We show a construction that starting from a Mvpa A builds a visibly pushdown

automaton Aseq that accepts all the scoped words in π(L(A)). Sequentialization

of concurrent programs is nowadays one of the emerging techniques for building

model-checkers for concurrent programs (see [6–9]). As a corollary of this result, we

can show a Parikh theorem for scoped Mvpl.

Closure under union and intersection can be shown via standard constructions,

and since the reachability problem is Pspace-complete [2], we also get that empti-

ness is Pspace-complete. Decidability of membership is straightforward: guess
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and check a run over the input word. We also give an MSO characterization of

scoped Mvpl. To the best of our knowledge this class is the largest subclass of

Mvpl with all the above properties.

As a further result we compare scoped Mvpl with the main Mvpl classes from

the literature and show that it is incomparable with the most expressive ones, and

strictly subsumes the others.

Related work: A preliminary version of this paper has appeared as [10]. A fixed-

point algorithm for the reachability problem and a sequentialization are given in [11]

for Mpa under the scoped restriction given [3]. The notion of scoped computations

naturally extends to infinite words, and the related model checking problem is

addressed in [2,12] for LTL-like temporal logics, and in [13] for MSO-definable tem-

poral logic using the notion of split-width [14]. Split-width is also used to show

the decidability of the MSO theory of the graphs corresponding to scoped com-

putations [14]. Global reachability for concurrent collapsible pushdown automata

restricted to scoped computations was solved in [15].

In the literature several other classes of Mvpl have been studied. The classes

of phase Mvpl [16, 17], ordered Mvpl [18, 19], and path-tree Mvpl [20] are not

determinizable and incomparable with scoped Mvpl. The class of round Mvpl

[5], which is based on the notion of bounded-context switching [4], has the same

properties as scoped Mvpl (though checking emptiness is NP-complete) but it

is strictly included in it. More work on decision problems on Mpa with restrictions

is done in [21–26].

The bounded context-switching restriction was proposed in [4] for under-

approximate analysis of multi-threaded programs and was motivated by the

fact that many concurrency errors manifest themselves already after only a few

context switches. This has given rise to a variety of context-bounded analysis

methods [6–9, 27–31].

Mpa with asynchronous shared memory [32] do not allow to execute atomically

a read followed by a write in the shared memory. For this model, reachability turns

out to be Pspace-complete for configurations of one leader pushdown thread and

unboundedly many instances of a contributor pushdown thread [32,33]. Decidability

is extended to any class of threads that are effectively closed under synchronized

product with finite automata, and for the leader, also have an effective downward

closure or an effective semilinear Parikh image [34]. Our results on scoped Mpa

makes this class a suitable candidate both for the leader and the contributor threads.

Visibility of stack operations was first introduced for input-driven pushdown

automata [35] (see also [36] and references therein). Parikh theorem was originally

given for context-free languages in [37].

2. Preliminaries

For i, j ∈ N, we denote with [i, j] = {d ∈ N | i ≤ d ≤ j}, and with [j] = [1, j].

Words over call-return alphabets. Given an integer n > 0, an n-stack

call-return alphabet Σ̃n is (Σint , 〈Σch,Σ
r
h〉h∈[n]), where Σint ,Σc1,Σ

r
1, . . . ,Σ

c
n,Σ

r
n are
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pairwise disjoint finite alphabets. Σint is the set of internals, and for h ∈ [n], Σrh is

the set of stack-h returns and Σch is the set of stack-h calls.

In the following, fix an n-stack call-return alphabet Σ̃n, and Σh = Σch∪Σ
r
h∪Σ

int ,

Σc =
⋃
h∈[n]Σ

c
h, Σ

r =
⋃
h∈[n]Σ

r
h and Σ = Σint ∪ Σr ∪ Σc.

For a word w = a1 . . . am ∈ Σ̃n, denoting Ch = {i ∈ [m] | ai ∈ Σch} and

Rh = {i ∈ [m] | ai ∈ Σrh}, the matching relation defined by w is ∼h⊆ Ch ×Rh s.t.:

(1) if i ∼h j then i < j,

(2) for each i ∈ Ch and j ∈ Rh s.t. i < j, there is an i′ ∈ [i, j] s.t. either i′ ∼h j or

i ∼h i′, and

(3) for each i ∈ Ch (resp. i ∈ Rh) there is at most one j ∈ [m] s.t. i ∼h j (resp.

j ∼h i).

It is easy to see that the above definition uniquely identify a binary relation.

Assume, by contradiction, that there are two different relations ∼h,∼′
h satisfying

the items above and there are i, j ∈ [m] such that: i ∼h j, i 6∼
′
h j and, for every

i′, j′ ∈ [m] such that j′ − i′ < j − i, i′ ∼h j
′ if and only if i′ ∼′

h j
′. Since i ∼h j,

we have that i ∈ Ch, j ∈ Rh, and from (1) above that i < j. Since ∼′
h satisfies (2),

there is an i′ ∈ [i, j] s.t. either i′ ∼′
h j or i ∼′

h i
′. Suppose that i′ ∼′

h j (the other

case is similar). Being j − i′ < j − i, by hypothesis we get i′ ∼h j, and then, from

(3) i′ = i must hold. Therefore, i ∼′
h j, as well, that contradicts our hypothesis.

When i ∼h j, we say that positions i and j match in w (they are matching call

and return in w). If i ∈ Ch and i 6∼h j for any j ∈ Rh, then i is an unmatched call.

Analogously, if i ∈ Rh and j 6∼h i for any j ∈ Ch, then i is an unmatched return.

Multi-stack visibly pushdown languages. A multi-stack visibly pushdown au-

tomaton pushes a symbol on stack h when it reads a stack-h call, and pops a symbol

from stack h when it reads a stack-h return. Moreover, it just changes its state,

without reading or modifying any stack, when reading an internal symbol. A special

bottom-of-stack symbol ⊥ is used: it is never pushed or popped, and is in the stack

when computation starts.

Definition 1. (Multi-stack visibly pushdown automaton) A multi-stack

visibly pushdown automaton (Mvpa) over Σ̃n, is a tuple A = (Q,QI ,Γ, δ, QF )

where Q is a finite set of states, QI ⊆ Q is the set of initial states, Γ is a finite

stack alphabet containing the symbol ⊥, δ ⊆(Q×Σc×Q×(Γ\{⊥}))∪ (Q×Σr×Γ×

Q)∪ (Q×Σint×Q) is the transition function, and QF ⊆ Q is the set of final states.

Moreover, A is deterministic if |QI | = 1, and |{(q, a, q′) ∈ δ | q′ ∈ Q} ∪

{(q, a, q′, γ′) ∈ δ | q′ ∈ Q, γ′ ∈ Γ} ∪ {(q, a, γ, q′) ∈ δ | q′ ∈ Q}| ≤ 1, for each

q ∈ Q, a ∈ Σ and γ ∈ Γ. �

A configuration of an Mvpa A over Σ̃n is a tuple α = 〈q, σ1, . . . , σn〉, where

q ∈ Q and each σh ∈ (Γ \ {⊥})∗.{⊥} is a stack content. Moreover, α is initial

if q ∈ QI and σh =⊥ for every h ∈ [n], and accepting if q ∈ QF . A transition

〈q, σ1, . . . , σn〉
a
−→A 〈q′, σ′

1, . . . , σ
′
n〉 is such that one of the following holds:
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astack 1: a a

bstack 2: d d

c c a

b b b

c c

Fig. 1. A sample 3-scoped word.

[Push] a ∈ Σch, ∃γ ∈ Γ \ {⊥} such that (q, a, q′, γ) ∈ δ, σ′
h = γ · σh, and σ′

i = σi
for every i ∈ ([n] \ {h}).

[Pop] a ∈ Σrh, ∃γ ∈ Γ such that (q, a, γ, q′) ∈ δ, σ′
i = σi for every i ∈ ([n] \ {h}),

and either γ 6=⊥ and σh = γ · σ′
h, or γ = σh = σ′

h =⊥.

[Internal] a ∈ Σint , (q, a, q′) ∈ δ, and σ′
h = σh for every h ∈ [n].

For a word w = a1 . . . am ∈ Σ∗, a run of A on w from α0 to αm, denoted

α0
w
−→A αm, is a sequence of transitions αi−1

ai−→A αi for i ∈ [m]. A word w is

accepted by A if there is an initial configuration α and an accepting configuration

α′ such that α
w
−→A α

′. The language accepted by A is denoted with L(A).

A language L is a multi-stack visibly pushdown language (Mvpl) if it is accepted

by an Mvpa over a call-return alphabet Σ̃n.

A visibly pushdown automaton (Vpa) [1] is an Mvpa with just one stack, and

a visibly pushdown language (Vpl) is an Mvpl accepted by a Vpa.

Scope-bounded matching relations [2, 3]. A stack-h context is a word in Σ+
h .

For a word w = a1 . . . am, we denote with w[i, j] the subword ai . . . aj .

A word w is k-scoped (according to Σ̃n) if for each h ∈ [n] and i, j ∈ [m] s.t.

i ∼h j, w[i, j] ∈ Σ∗
h (Σ

∗
6=h Σ

∗
h)
k−1 where Σ 6=h =

⋃
h′ 6=h Σh′ i.e., each matching call

and return of stack h occur within at most k stack-h maximal contexts.

In all the examples, we assume Σc1 = {a}, Σc2 = {b}, Σr1 = {c}, and Σr2 = {d}.

Consider a sample word ν1 = a3 bd2 c2a b3 c2. Figure 1 illustrates its splitting into

contexts and the matching relations, denotated with edges. Note that the only pair

of matching b’s and d’s is in the same stack-2 context. Moreover, the first a occurs

in the first stack-1 context and is matched by the last c which occurs in the third

stack-1 context. Any other matching pair of a’s and c’s occur within two stack-1

contexts. Therefore, ν1 is k-scoped for any k ≥ 3 but it is not 2-scoped.

With Scoped(Σ̃n, k), we denote the set of all the k-scoped words over Σ̃n. A

language L⊆Σ∗ is a scoped Mvpl (Smvpl) if L= Scoped(Σ̃n, k) ∩ L(A) for some

Mvpa A over the call-return alphabet Σ̃n.

3. Properties of MVPA Runs Over Scoped Words

Fix an integer k > 0 and an Mvpa A = (Q,Q0,Γ, δ, F ) over Σ̃n.

k-scoped splitting. For a word w ∈ Σ∗ and h ∈ [n], a cut of w is w1 : w2 s.t.

w = w1w2. Such a cut is consistent with the matching relation ∼h (∼h-consistent,
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a a

b d d

c c a a

b b b

c c a

d d b

c c

Fig. 2. A sample 2-scoped splitting.

for short) if in w no call of stack h occurring in the prefix w1 is matched with a

return occurring in the suffix w2.

A (∼h-consistent) splitting of w is defined by a set of (∼h-consistent) cuts of w,

that is, it is an ordered tuple 〈wi〉i∈[d] s.t. w = w1 . . . wd and w1 . . . wi:wi+1 . . . wd
is a (∼h-consistent) cut of w, for each i ∈ [d− 1].

A context-splitting of w is a splitting 〈wi〉i∈[d] of w, where wi is a stack-hi context

for hi ∈ [n], and i ∈ [d]. The canonical context-splitting of w is the only context-

splitting 〈wi〉i∈[d] s.t., for each i ∈ [2, d], stack-hi context wi starts with a call or a

return, and hi−1 6= hi. For example, Fig. 1 gives the canonical context-splitting η

of ν1 that splits ν1 into: aaa, bdd, cca, bbb, and cc.

For all h ∈ [n], the h-projection of a context-splitting χ= 〈wi〉i∈[d] is obtained

from χ by deleting all the wi that are not stack-h contexts. For example, the

2-projection of η is: bdd, bbb. Note that a h-projection is trivially a context-splitting.

An ordered tuple χ = 〈wi〉i∈[d] of stack-h contexts is k-bounded if there is a

∼h-consistent splitting ξ = 〈vi〉i∈[m] of w1 . . . wd s.t. each vi is the concatenation

of at most k consecutive contexts of χ. In the following, we refer to such a ξ as a

k-bounding splitting for χ and will denote with χvi the ordered tuple of the contexts

from χ that form vi, for i ∈ [m].

A k-scoped splitting χ of w is the canonical context-splitting of w refined with

additional cuts s.t. for all h ∈ [n], the h-projection of χ is k-bounded.

Consider a sample word ν2 = a2 bd2 c2a2 b3 c2a d2b c2. Figure 2 illustrates a

2-scoped splitting χ that refines the canonical context-splitting of ν2 by further

cutting it at the dashed vertical lines. Thus, χ splits ν2 into: aa, bdd, cc, aa, bbb,

cc, a, ddb, cc. We observe that the dashed lines define a ∼1-consistent splitting of

word a2 c2 a2 c2 a c2 where each portion is the concatenation of two contexts of the

1-projection of χ. Moreover, by cutting the word bd2 b3 d2b at the first dashed line,

we get a ∼2-consistent splitting where each portion has at most two contexts of the

2-projection of χ.

Given a k-scoped word w, for each stack h each matching call and return of

stack h in w occur within at most k stack-h maximal contexts. Thus, for each stack

h, it is possible to split w with cuts that are consistent with ∼h and such that

each portion contains at most k stack-h maximal contexts. Moreover, we can pick

these cuts such that they split w either between two consecutive maximal contexts

or within a maximal context of stack h. Thus, we can obtain a k-scoped splitting

of w by taking the canonical splitting of w and then refining it with the above
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cuts for each stack h. Vice-versa, a k-scoped splitting of w gives evidence that each

matching call and return of stack h in w occur within at most k stack-h maximal

contexts, and thus, that w is k-scoped. Therefore, we get the following lemma:

Lemma 2. A word w is k-scoped iff there is a k-scoped splitting of w.

Scope-bounded switching-vector VPA. Fix h ∈ [n]. We start by recalling the

definition of switching vector [5]. Intuitively, a switching vector summarizes the

computations of an Mvpa across several consecutive stack-h contexts.

Let Ah be the Vpa over Σh obtained by restricting A to use only stack h. For

d > 0, a tuple I = 〈ini, out i〉i∈[d] is a stack-h d-switching vector (d-sv, for short,

or simply sv when we do not need to refer to its size) if there is an ordered tuple

〈wi〉i∈[d] of stack-h contexts such that, for i ∈ [d], 〈in i, σi−1〉
wi−→Ah 〈out i, σi〉 where

σ0 =⊥ (i.e., there is a sequence of d runs of Ah where the first run starts from a

stack containing only the bottom-of-stack symbol and each other run starts with

the stack content that is left at the end of the previous run in the sequence). We

also define st(I) = in1 and cur(I) = outd, and say that 〈wi〉i∈[d] witnesses I.

A stack-h k-scoped switching vector is an sv I that can be witnessed by a

k-bounded ordered tuple of stack-h contexts.

Let χ be a k-bounded ordered tuple of stack-h contexts and ξ = 〈vi〉i∈[m] be a

k-bounding splitting for χ. Denote with I a stack-h k-scoped sv witnessed by χ.

From the definition, I is given by the concatenation I1 . . . Im where each Ii is a

stack-h di-sv witnessed by χvi and di ∈ [k] is the number of contexts of χvi . Note

that not all the concatenations of sv’s with at most k pairs form a k-scoped sv. In

fact, by concatenating two witnesses a call from one could match a return from the

other, thus the resulting tuple could not be k-bounded.

We encode a tuple of stack-h contexts by marking the first symbol of each

context. Namely, for each a ∈ Σ, we add a fresh symbol ā that is a call (resp.

return, internal) if a is a call (resp. return, internal). Let Σ̄h denote the set of all

such new symbols. For a word u = a1a2 . . . ar, we denote with ū the word ā1a2 . . . ar.

We encode a tuple of stack-h contexts u1, . . . , um as ū1ū2 . . . ūm.

We now define a Vpa Ahk that ensures the following: if the input word is an

encoding of a tuple χ of stack-h contexts that can be refined with additional cuts

into a k-bounded tuple χ′, then Ahk computes all the stack-h k-scoped sv’s of A

witnessed by χ′. Essentially, Ahk nondeterministically guesses any refinement χ′ of

χ and any k-bounding splitting for χ′, and moreover, for each resulting portion,

say formed by d ≤ k contexts, it computes a corresponding d-sv while mimicking

the behavior of Ah (the new symbols ā are interpreted as a by Ahk when mimicking

the moves of Ah).

By assuming the input ū1ū2 . . . ūm, in a typical run, Ahk starts from any (p, p) ∈

Q2 and on reading the first symbol of ū1, it updates the second component in this

pair according to an Ah move. Now, assume a stored pair (p, p′). On any other

symbol of ū1, for any move of Ah from p′ to p′′ there are two nondeterministic

moves of Ahk : one updating p
′ to p′′ in the stored pair (as before), the other starting
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a new sv by storing (p′, p′′) and thus guessing a cut. On the first symbol of ū2, for

any q ∈ Q and for any move of Ah from q to q′, again there are two nondeterministic

moves as before: one updating the stored pair to (p, p′)(q, q′), the other starting a

new sv by replacing the stored pair with (q, q′). Then, the run continues similarly

on the rest of the input.

There are two more aspects that Ahk needs to take care of.

First, we only store d-sv’s for d ≤ k: when context-switching (i.e., reading a

symbol ā ∈ Σ̄h), the nondeterministic move of appending a new pair to the stored

sv I must not be allowed if I already contains k pairs. By Lemma 2, this is sufficient

for our purposes.

Second, we need to ensure that Ahk uses only the portion of the stack that

has been pushed since the computation of the current sv started; moreover, if it

attempts to pop a symbol that was pushed when computing the previous sv, then

the guessed splitting is clearly wrong (one of the guessed cuts is not consistent with

∼h) and the computation should halt. To ensure this, we store a bit es in the states

of Ahk and maintain the invariant: es = 1 iff the stack does not contain symbols

pushed after the last guessed cut. Also, since pop transitions on an empty stack

are allowed in Vpas, even if the portion of the stack currently in use is empty, we

should allow them only if the whole stack is also empty. Thus, we store another bit

eg and maintain the invariant: eg = 1 iff the stack is empty.

To maintain these two invariants, for each stack symbol γ of Ah we use two

additional stack symbols γg and γs respectively to mark the bottom of the whole

stack and the bottom of the currently used stack portion.

A state of Ahk is thus (eg, es, I) where eg, es ∈ {0, 1} and I ∈ (Q×Q)m, m ∈ [k].

All the states are final and all the states of the form (1, 1, (q, q)) for q ∈ Q are initial.

We leave to the reader the formal definition of the transitions.

Let w be a word over the alphabet Σh ∪ Σ̄h. With Ihk (w), we denote the set

of the sv’s I ∈
⋃
d>0(Q × Q)d s.t. there exists a run ρ of Ahk on w and I is the

concatenation of I1, . . . , Ij , Ij+1 where: Ij+1 is the sv stored in the state of the

last configuration of ρ and I1, . . . , Ij is the sequence of the sv’s of all the states

occurring at the configurations of ρ from which a transition that starts a new sv is

taken (in the order they appear in ρ).

From the above construction, we get:

Lemma 3. I is a stack-h k-scoped switching vector of A iff I ∈ Ihk (w) for some

w ∈ (Σh ∪ Σ̄h)
∗.

Consider the following example. Let ρ be a run of an Mvpa A over a 3-stack

call-return alphabet given as 〈qi−1, σ̄i−1〉
ui−→ 〈qi, σ̄i〉 with i∈ [11] and contexts ui.

Let v1 = ū1ū7ū9 be accepted by A1
3, v2 = ū2ū4ū10 by A2

3 and v3 = ū3ū5ū6ū8ū11 by

A3
3. The 3-sv’s computed on v1 and v2 according to ρ are respectively S1 and S2

A3
3 computes on v3 the concatenation of the 2-sv S3 over ū3ū5 and the 3-sv S4 over

ū6ū8ū11. Figure 3 shows these switching vectors.
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S1

S2

S3

(q0,q1)

(q1,q2)

(q2,q3)

(q3,q4)

(q4,q5) ( q5,q6)

(q6,q7)

(q7,q8)

(q8,q9)

(q9,q10)

(q10,q11)

S4

Fig. 3. Sample switching vectors and 3-scoped switching mask.

Switching masks. We use the sv’s to summarize the runs of an Mvpa over scoped

words. For a k-scoped splitting χ of a word w over Σ̃n and h ∈ [n], denote with

dh the number of contexts in the h-projection χh of χ. Moreover, for h, h′ ∈ [n],

j ∈ [dh] and j
′ ∈ [dh′ ], we define nextχ(h, j) = (h′, j′) s.t. the j′-th context of χh

′

is the context following in w the j-th context of χh.

For a word w over Σ̃n, a tuple M = (I1, . . . , In) is a k-scoped switching mask

for w if there is a k-scoped splitting χ of w s.t. for h ∈ [n]: (1) Ih=〈inhy , out
h
y〉y∈[xh]

is a stack-h k-scoped sv of A and (2) outhy = inh
′

y′ for each h, y, h′, y′ for which

nextχ(h, y) = (h′, y′). Moreover, we let st(M) = st(Ih1
) and cur(M) = cur(Ihd

),

where each wi in χ is a stack-hi context.

In Fig. 3, we give the 3-scoped switching mask according to the sample run ρ

given above. The edges denote the mapping nextχ.

Thus, by the given definitions and Lemmas 2 and 3, the following holds:

Lemma 4. Let A = (Q,Q0,Γ, δ, F ) be an Mvpa over Σ̃n and w ∈ Scoped(Σ̃n, k).

It holds that: w ∈ L(A) if and only if there exists a k-scoped switching mask M for

w such that st(M) ∈ Q0 and cur(M) ∈ F .

4. Determinization, Closure Properties and Decision Problems

Determinization. We show that, when restricting to k-scoped words, determin-

istic and nondeterministic Mvpa are equivalent.

Let A be an Mvpa over a call return alphabet Σ̃n. We define a deterministic

MVPA AD that, for a k-scoped input word w, constructs the set of all switching

masks according to any k-scoped splitting of w. Thus, AD accepts w iff it constructs

a switching mask as in Lemma 4, and by supposing w∈Scoped(Σ̃n, k), iff w∈L(A).

For h ∈ [n], letDh
k = (SD, SD,0,Γ

h
D, δ

h
D, FD) be the deterministicVpa equivalent

to Ahk = (S, S0,Γ, δ
h, S) and obtained through the construction given in [1]. We

recall that, according to that construction, the set of states SD is 2S×S × 2S, and

the second component of a state is updated in a run as in the standard subset

construction for finite automata. For q̂ ∈ SD, denote with R(q̂) the set of sv’s

contained in the Ahk states stored as the second component of q̂.

We construct AD = (QD, QD0 ,Γ
D, δD, FD) building on the cross product of

D1
k, . . . , D

n
k ; a state of AD is (i, q̂1, . . . , q̂n,M), where i > 0 denotes the stack that

is active in the current context, i = 0 denotes the initial state, q̂h is a state of Dh
k ,

and M is a set of tuples (I1, . . . In) where for h ∈ [n], Ih is from R(q̂h). The idea
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is to accumulate in the M component the tuples corresponding to the current sv’s

that are tracked in the states of A1
k, . . . , A

n
k while mimicking a run of A on the

input word. Therefore, in each tuple (I1, . . . In) in the M component, on reading

input a, we update Ih according to any transition of Ahk on a if this is not the first

symbol of the context, and on ā, otherwise (when context-switching into a stack-

h context). The components q̂1, . . . , q̂n are updated essentially by mimicking each

deterministic automaton Dh
k on the stack-h contexts of the input word by dealing

with the first symbol of each context as before. The accepting states are of the form

(i, q̂1, . . . , q̂n,M) s.t. there is (I1, . . . In) ∈ M with cur(Ii) ∈ F .

Formally, AD = (QD, QD0 ,Γ
D, δD, FD) is defined as follows. QD = [0, n] ×

(SD)
n × 2S

n

, QD0 = {0} × (SD,0)
n × 2(S0)

n

. The set of final states is FD =

{(i, q̂1, . . . , q̂n,M) | i ∈ [n] and there is (I1, . . . In) ∈ M with cur(Ii) ∈ F}.

For each push transition t = (q̂, a, γ, q̂′) of Dh and I ∈ R(q̂), we denote with

Yt(I) the set of all I
′ ∈ R(q̂′) such that there is a push transition of Ahk from I to I ′

on input a. Analogously, we can define Yt(I), when t is either a pop or an internal

transition. We use Yt to update the switching masks in our construction.

For h > 0 and j ≥ 0, let X=(j, q̂1, . . . , q̂n,M) and X ′=(h, q̂1
′, . . . , q̂n

′,M′) be

two states from QD s.t. q̂i = q̂i
′, for every i /∈ {j, h}. Let a ∈ Σh.

For t = (q̂h, a, q̂h
′, γ) (resp. t = (q̂h, a, γ, q̂h

′), t = (q̂h, a, q̂h
′)), we add

(X, a,X ′, γ) (resp. (X, a, γ,X ′), (X, a,X ′)) to δD provided that t ∈ δhD, h = j > 0,

and M′ is the set of all (I ′1, . . . , I
′
n) s.t. there exists (I1, . . . , In) ∈ M, Ii = I ′i for

i 6= h, and I ′h ∈ Yt(Ih) (move within a context).

For t = (q̂h, ā, q̂h
′, γ) (resp. t = (q̂h, ā, γ, q̂h

′), t = (q̂h, ā, q̂h
′)), if t ∈ δhD then

(X, a,X ′, γ) ∈ δD (resp. (X, a, γ,X ′) ∈ δD, (X, a,X ′) ∈ δD) provided that:

(1) j = 0 and M′ is the set of all (I ′1, . . . , I
′
n) s.t. there exists (I1, . . . , In) ∈ M,

in(Ih) ∈ Q0, Ii = I ′i for i 6= h, and I ′h ∈ Yt(Ih) (initial move), or

(2) h 6= j > 0, a ∈ Σch ∪ Σrh and M′ is the set of all (I ′1, . . . , I
′
n) s.t. there exists

(I1, . . . , In) ∈ M, cur(Ij) = cur(Ih), Ii = I ′i for i 6= h, and I ′h ∈ Yt(Ih)

(context-switch).

The transition relation δD is the smallest one such that the above holds.

The tuples in the component M of AD states of a run can be composed by

concatenating the component switching vectors Ih as done for the single Ahk to

define Ihk (z). Thus, for each run ρ of AD, we define a set Lρ of tuples obtained

in this way. We can show that Lρ is exactly the set of all the k-scoped switching

masks for the input word. Also, from the above description, we get that for each

switching mask M ∈ Lρ, st(M) ∈ Q0 holds, and if ρ is accepting, then there is at

least a switching mask M ∈ Lρ such that cur(M) ∈ F . Therefore, by Lemma 4:

Theorem 5. For any n-stack call-return alphabet Σ̃n and any Mvpa A over Σ̃n,

there exists a deterministic Mvpa AD over Σ̃n such that Scoped(Σ̃n, k)∩L(AD) =

Scoped(Σ̃n, k)∩L(A). Moreover, the size of AD is exponential in the number of the

states of A and doubly exponential in k and n.
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Closure properties and decision problems. Language union and intersection

are defined for languages over a same call-return alphabet. The closure under these

set operations can be shown with standard constructions and by exploiting that the

stacks are synchronized over the input symbols. Complementation is defined w.r.t.

the set Scoped(Σ̃n, k) for a call-return alphabet Σ̃n, that is the complement of L

is Scoped(Σ̃n, k) \ L. The closure under complementation follows from determiniz-

ability (Theorem 5).

The membership problem can be solved in nondeterministic polynomial time

by simply guessing the transitions on each symbol and then checking that they

form an accepting run. A matching lower bound can be given by a reduction from

the satisfiability of 3-CNF Boolean formulas: for a formula with k variables, we

construct a k-stack Mvpa that nondeterministically guesses a valuation by storing

the value of each variable in a separate stack, then starts evaluating the clauses

(when evaluating a literal the guessed value is popped and then pushed into the

stack to be used for next evaluations); partial evaluations are kept in the finite

control (each clause has just three literals and we evaluate one clause at each time;

for the whole formula we only need to store if we have already witnessed that it is

false or that all the clauses evaluated so far are all true); thus each stack is only used

to store the variable evaluation, and since for each stack h, each pushed symbol is

either popped in the next stack-h context or is not popped at all, the input word

is 2-scoped.

Decidability of checking universality, inclusion and equivalence follows from

the effectiveness of the closure under complementation and intersection, and the

decidability of emptiness, which is known to be Pspace-complete [2, 3]. This

yields a double exponential upper bound. The best known lower bound is single

exponential and comes from Vpls.

The following theorem summarizes the above results.

Theorem 6. The class of k-scoped Mvpl over Σ̃n is closed under language union,

intersection and complementation with respect to Scoped(Σ̃n, k). The Membership

Problem for k-scoped Mvpl is NP-complete. The Universality, Inclusion and

Equivalence problems can be decided in 2Exptime.

5. Sequentialization and Parikh’s Theorem

Sequentialization. We show that when restricting to k-scoped words, we can

mimic the computations of an n-stack Mvpa A using only one stack (sequential-

ization). We start by describing how the input word is rearranged.

Fix a k-scoped word w over Σ̃n, and let χ = 〈wi〉i∈[d] be a k-scoped splitting

of w. For h ∈ [n], denote with χh = 〈whi 〉i∈[xh] the h-projection of χ. Since χ is

k-scoped, χh is k-bounded and let ξh = 〈vhi 〉yh be a k-bounding splitting for χh.

We define a total order �w over all the vhj according to the position of their first

symbol in w, that is, vhj �w vh
′

j′ iff r ≤ s where r is the position in w of the first

symbol of vhj and s is that of the first symbol of vh
′

j′ .
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S1

in

(q0, q1)

(q6, q7)

(q8, q9)

S2

(q0, q2)

(q6, q7)

(q8, q10)

(q3, q4)

S3

(q0, q5)

(q6, q7)

(q8, q10)

S4

(q0, q11)

Fig. 4. Aseq run for the running example.

We denote with πχ(w) the concatenation of all the vhj in the ordering given by

�w. For example, consider the word u and the k-scoped splitting ξ resulting from

the example of Fig. 3. The word πξ(u) is u1u7u9.u2u4u10.u3u5.u6u8u11.

We define π(w) as the set of all words πχ(w) for any possible k-scoped splitting

χ of w. We extend π to languages in the usual way.

We show that L is a k-scoped Mvpl iff π(L) is Vpl (all calls and returns are

interpreted as calls and returns of a same unique stack). In fact, since ξh is k-

bounding for χh, we get to process consecutively each set of (at most k) contexts

that share the same stack content. Thus, when entering the next portion, we can

start as the stack were empty (all that is left in the stack is not needed any more).

Moreover, all the stack-h contexts, for a given h, occur in the same order as in w.

Thus, we can process them by using Ahk , and construct the Vpa Aseq starting from

the cross product of Ahk for h ∈ [n].

A second main feature of π is that when reading an input word v ∈ π(w),

we can reconstruct w by using only bounded memory: at any time, we keep a

summary of each already processed portion of w (i.e., starting and ending states of

corresponding portions of an A run) and a partial order of all such portions.

Observe that while parsing v, we know neither w nor a run on it. We re-

construct them on-the-fly by making nondeterministic guesses and ruling out the

wrong guesses as soon as we realize it. For simplicity, we illustrate our idea on

our running example by assuming that we know instead the run and the word u.

We refer to in Fig. 4 and for i ∈ [4], Si is as in Fig. 3. The input word to Aseq is

u1u7u9.u2u4u10.u3u5.u6u8u11 ∈ π(u). After parsing u1u7u9, we compute S1 accord-

ing to the considered run, and store the partial order shown on the edge from S1

to S2. Now after parsing v2 = u2u4u10, we compute S2. Since u2 follows u1 and u10
follows u9, by the ordering in v2 and the fact that u7 and u4 are not consecutive,

we get the partial order labeling the edge from S2 to S3, and so on.

We succeed in reconstructing w iff in the end the maintained partial order

collapses to just one summary (i.e., all the portions get connected). To keep the

size of the stored partial order small, when the computation of a stack-h d-sv I

starts, we ensure that all the previously computed stack-h sv’s are entirely hidden

in the summaries (i.e., each pair of such sv’s has been glued on both sides to other

pairs) except for at most the second component of the last pair. In this case, we

impose that the first pair of I starts with such a second component (as for S3 and

S4 in the running example).
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This is indeed sufficient to accept all the words in π(w) for a k-scoped word w.

In fact, assume as input πχ(w) for a k-scoped splitting χ, and also the notation

given in the beginning of this subsection. By definition of πχ, the v
h
i ’s forming the

k-bounding splittings ξh, for h ∈ [n] and i ∈ [yh], are ordered according to their

first contexts. Thus, when processing a vhi all the vh
′

i′ �w vhi have been already read

by Aseq and hence, the first contexts of all such vh
′

i′ belong to a prefix of w that has

been already processed. Therefore, the computed partial orders can be restricted

to those that have a unique pair that precedes all the others. Moreover, for each

vhi′ �w vhi , since ξ
h is a splitting of the concatenation of the stack-h contexts of w

(in the order they appear in w), also all the contexts of vhi′ must be in the already

processed prefix of w. Hence, the number of pairs in the considered class of partial

orders is bounded by (n− 1)(k − 1) + 1.

Intuitively, Aseq mimics the cross product of A1
k, . . . , A

n
k and maintains the par-

tial orders of the summaries (pairs of control states) of the starting Mvpa A as

observed above. The partial orders are updated at any context switch by using

nondeterminism to guess how the next context is related to the summaries in the

partial order. The nondeterminism of each Ahk is reduced by ruling out all the moves

that are not consistent with the stored partial order. The accepting states of Aseq

are those with a partial order that is a single pair.

We omit the formal definition of Aseq . We only observe further that since the

input of each Ahk is over Σh∪Σ̄h, we first need to transform them into corresponding

Vpas Bhk over Σh. This is done by modifying Ahk such that the starting symbol of

each context is now guessed nondeterministically (which is quite standard). Thus,

denoting as Bhk the resulting Vpas, we get that w̄1 . . . w̄d ∈ L(Ahk) iff w1 . . . wd ∈

L(Bhk ). Also, the call-return alphabet of Aseq is Σ̃seq where Σcseq =
⋃
h∈[n]Σ

c
h,

Σrseq =
⋃
h∈[n] Σ

r
h and Σint

seq = Σint (recall that the alphabets from Σ̃n are pairwise

disjoint). The following lemma holds:

Lemma 7. For an Mvpa A and a k-scope word w over Σ̃n, π(L(A)) = L(Aseq).

The size of Aseq is exponential in k and n, and polynomial in the size of A.

Note that the above lemma reduces the emptiness problem for Smvpl to check-

ing the emptiness for Vpas, and thus provides an alternative decision algorithm for

this problem.

Parikh’s theorem. The Parikh mapping associates a word with the vector of the

numbers of the occurrences of each symbol in the word. Formally, the Parikh image

of a word w, over the alphabet {a1, . . . , aℓ}, is Φ(w) = (#a1, . . . ,#aℓ) where #ai
is the number of occurrences of ai in w. This mapping extends to languages in the

natural way: Φ(L) = {Φ(w)|w ∈ L}.

Parikh’s theorem [37] states that for each context-free language L a regular

language L′ can be effectively found such that Φ(L) = Φ(L′). Lemma 7 gives an

effective way to translate a k-scoped Mvpl to a Vpl, and thus we get:
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Theorem 8. For every k-scoped Mvpl L over Σ̃n, there is a regular language L′

over Σ such that Φ(L′) = Φ(L). Moreover, L′ can be effectively computed.

6. Expressiveness

Comparisons among classes of MVPLs. We start recalling the main classes

of Mvpls from the literature, and then compare them with the class of Smvpl.

In the following definitions, let Σ̃n be a call return alphabet.

Bounded number of contexts/rounds [4, 5]. A round over Σ̃n is a word of the form

w1w2 . . . wn where, for each h ∈ [n], wh is either a stack-h context or the empty

word (empty context). A k-round word over Σ̃n is a word that can be obtained

as the concatenation of k rounds. We denote with Round(Σ̃n, k) the set of all the

k-round words over Σ̃n. The notion of bounded number of rounds is strictly related

to that of bunded number of contexts: each k-round word is indeed the concatena-

tion of at most nk contexts, and a word which is the concatenation of k contexts is

a k′-round word for some k′ ≤ k (empty contexts can be used to complete rounds).

Bounded number of phases [16]. A phase over Σ̃n is a word in (Σc ∪ Σint ∪ Σrh)
∗,

for a given h ∈ [n]. For an integer k, a k-phase word over Σ̃n is a word that can be

obtained as the concatenation of k phases.

Ordered matching relations [18]. A word w = a1 . . . am ∈ Σ∗ is ordered over Σ̃n if

for each h ∈ [n] and for each i, j ∈ [m] such that i ∼h j, it holds that for each x < j

such that ax ∈ Σch′ , with h′ < h, there exists y < j such that x ∼h′ y holds (all

calls of lower-index stacks preceding j are already matched at j).

Bounded path-trees [20]. Ptree(Σ̃n, k) be the set of words w over Σ̃n that can be

encoded into a stack tree (a binary tree obtained by labeling the root with the first

symbol of w, and then the successor in w labels the left child, unless it is a matched

return, and in this case it labels the right child of the matching call) and starting

from the root all the nodes can be visited s.t. the first occurrences of each node

matches the linear order of w and each node is not visited more than k times.

Classes of languages. A language L is a round Mvpl (Rmvpl) if there exist k, n >

0, an n-stack call-return alphabet Σ̃n, and an Mvpa A over Σ̃n such that L =

Round(Σ̃n, k)∩L(A). Analogously, we define phase Mvpl (Pmvpl), ordered Mvpl

(Omvpl), and path-tree Mvpl (Tmvpl).

Comparisons. All the classes of Mvpl languages we consider in this paper are con-

tained into the class of context-sensitive languages (CSL). The following languages

allow us to distinguish among them:

L1={aibjcidj(ab)h | i, j, h > 0}, L2={(aibjcidj)h | i, j, h>0},

L3={aibjchdjci−h | i>h>0, j>0}, L4={(ab)icidi | i>0},

L5={aibjcidjab (ca db)h | i>h>0, j>0}.

For all the above languages, first assume the call-return alphabet Σ̃2, where

Σc1 = {a}, Σc2 = {b}, Σr1 = {c}, Σr2 = {d}, and Σint = ∅.



April 20, 2016 9:53 IJFCS S0129054116400074 page 229

Scope-Bounded Pushdown Languages 229

For each i ∈ [5], we can easily construct an Mvpa over Σ̃2 that accepts Li (the

Mvpa must just use the stacks to match calls and returns).

We observe the following: words in L1 are 2-scoped, 2-phase and ordered, thus

L1 ∈ Pmvpl ∩ Smvpl ∩ Omvpl; those in L2 are 2-scoped and ordered, thus L2∈

Smvpl ∩ Omvpl; those in L3 are the concatenation of three rounds, thus L3 ∈

Rmvpl; those in L4 are 2-phase and ordered, thus L4 ∈Pmvpl ∩ Omvpl; finally,

those in L5 are 2-scoped, thus L5∈Smvpl.

Now, observe that, for each i ∈ [5], an Mvpa accepting Li must have at least

two stacks and a call-return alphabet in which symbols a and c are respectively

call and return of the same stack, while b and d are respectively call and return

of another stack. It is easy to see that if this is not the case, an Mvpa could not

recognize Li, for any i ∈ [5].

For any call-return alphabet Σ̃n that is consistent with the above observation,

we get that L1 is not contained into Round(Σ̃n, k), for any fixed k (because of the

suffix (ab)h). Thus, L1 /∈Rmvpl. Analogously, we get that L2 /∈Pmvpl since there

is no bound on the number of phases of L2 words. Words in L3 are not ordered

since after reading the prefixes aibj and aibjch both stacks are not empty, therefore

for any stack ordering in one of the two cases we cannot pop on the next return.

Thus L3 /∈Omvpl, and we get also that the union of L2 and L3, which is a language

in Ptree(Σ̃n, k) (by the closure under union of Tmvpl [20]), is neither ordered nor

k-phase for any k. Words in L4 are not in Scoped(Σ̃n, k), for any k, in fact the prefix

(ab)i determines that the input has at least i context switches (recall that a and b

must be symbols of different stacks) and hence L4 /∈Smvpl. Finally, we can argue

that L5 /∈Tmvpl. For this, we observe that from the definition of stack tree, in the

stack tree of a word w = aibjcidjab (ca db)h ∈ L5, there is a subtree corresponding

to the suffix ab (ca db)h that has exactly two paths: one labeled with ab(db)h (a is

the label of the root of this subtree) and the other with a(ca)h. Thus in the visit

of all the nodes according to the ordering in w, we need to visit the root of such

subtree exactly 2h + 1 times, and therefore there is no bound on the number of

visits on the stack trees for L5.

Therefore, since Pmvpl ∪Omvpl ⊆Tmvpl holds [20], we get:

Theorem 9.

(1) Rmvpl ⊂ Smvpl ∩ Pmvpl.

(2) Tmvpl ⊃ Pmvpl ∪Omvpl.

(3) Rmvpl and Omvpl are incomparable.

(4) Smvpl and Tmvpl are incomparable.

(5) Smvpl, Omvpl, Pmvpl are pairwise incomparable.

A logical characterization of SMVPL. We show that Monadic Second Order

Logic (MSOµ) on scoped words has the same expressiveness as scoped Mvpa. Here

a word w ∈ Σ∗ is a structure over the universe {1, . . . , |w|}. The logic has in its

signature a predicate Pa for each a ∈ Σ where Pa(i) is true if the i-th symbol of w

is a, and n predicates µh with h ∈ [n], such that µh(i, j) holds true iff i ∼h j.
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We convert MSO sentences to automata using standard techniques that rely on

the closure under Boolean operations and projection (see [38]).

More formally, let us fix a countable infinite set of first-order variables x, y, . . .

and a countable infinite set of monadic second-order (set) variables X,Y, . . . . The

monadic second-order logic (MSOµ) over Σ̃n is defined by the following grammar:

ϕ := Pa(x) | x ∈ X | x ≤ y | µh(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where h ∈ [n], a ∈ Σ, x, y are a first-order variables and X is a set variable.

The models are words over Σ with the natural semantics on the structure for

words. Each first order variable is associated with a position of w, and the second-

order variables range over sets of positions. A sentence is a formula with no free

variables. We define Lk(ϕ) to be the set of all words of Scoped(Σ̃n, k) that satisfy

a sentence ϕ.

We exploit the standard technique to convert MSO sentences to automata

(see [38]) to prove the following theorem. We want to remark that this construction

heavily relays on the fact that the automata are closed under Boolean operations

and projection.

We get the following:

Theorem 10. Let k, n be two positive integers, Σ̃n be a call-return alphabet, and

L ⊆ Scoped(Σ̃n, k). L is k-scoped Mvpl iff there is an MSOµ sentence ϕ over Σ̃n
with Lk(ϕ) = L.

Proof. The proof from MSOµ to scoped Mvpa is done by structural induction

on ϕ. Although ϕ is a sentence, its sub formulas may contain free variables.

For a sub formula ψ of ϕ, we denote it with ψ(x1, . . . , xt, X1, . . . , Xs) where

V = {x1, . . . , xt, X1, . . . , Xs} is the set of all free variables of ψ. We consider the

extended alphabet ΣV that consists of all pairs (a, Z) such that a ∈ Σ and Z is a

map from V to {0, 1} used to associate free variables with positions. We assume

that words in (ΣV )∗ have the property that first order variable are associated with

exactly one position in the word. Given ψ, we define a Mvpa Aψ that accepts all

words in (ΣV )∗ such that (1) the underlying word w is in Scoped(Σ̃n, k), and (2)

the free variables associated with the corresponding positions make ψ true.

The property that first order variables appear exactly once along the word can

be imposed using a finite state Mvpa. Similarly, we can easily design Mvpa for

Pa(x), x ∈ X and x ≤ y. For sub formula µh(x, y) we design a Mvpa that stores

the input symbol (a, Z) on the stack h whenever a is a call of stack h. Thus, when

reading a symbol (a′, Z ′) with Z ′(y) = 1 we check that the symbol on stack h, say

(a′′, Z ′′), is such that Z ′′(x) = 1.

Disjunction and negation are easily treated as scoped Mvpa are closed under

union and negation. Similarly, existential quantifiers can be treated by projecting

out that variables from the valuation function.

For the opposite direction of the proof, we again apply a standard technique.

Let {q1, . . . , qℓ} be the set of all states of the Mvpa. We design a formula of the
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Table 1. Summary of the main results on Mvpls (new results are in bold). In the table, NP-c
stands for NP-complete, and so on.

Closure properties Decision Problems
∪ ∩ Compl. Determin. Membership Emptiness Un./ Eq./Incl.

Vpl [1] Yes Yes Yes Yes Ptime-c Ptime-c Exptime-c
CFL Yes No No No Ptime-c Ptime-c Undecidable

Rmvpl [5] Yes Yes Yes Yes NP NP-c 2Exptime
Smvpl Yes Yes Yes Yes NP-c Pspace-c 2Exptime

Tmvpl [20] Yes Yes Yes No NP-c Etime-c 2Exptime
Pmvpl [16, 20] Yes Yes Yes No NP-c 2Etime-c 3Exptime
Omvpl [20, 39] Yes Yes Yes No NP-c 2Etime-c 3Exptime

CSL Yes Yes Yes Unknown NLinspace Undecidable Undecidable

form ∃X1, . . . , Xℓ.η, where Xi is the set of all positions where the run is in state qi,

and η ensures that this labelling indeed forms a run, by imposing the initial and

final condition and making sure that states associated with consecutive positions

are related by a transition of the automaton.

7. Conclusions

We have shown that the class of Smvpl is closed under all the Boolean opera-

tions, it has a logical characterization, the Parikh theorem holds and the main

decision problems are decidable. Table 1 summarizes the results on the closure prop-

erties and decision problems. Moreover, the class of scoped Mvpa is determinizable

and sequentializable (sequentialization has shown to be an effective technique for

model-checking concurrent programs and is implemented in tools as CSeq, Microsoft

Corral).

Our sequentialization construction allows us to extend to a larger class of lan-

guages the results from [11,22] on sequentialization and tree decompositions. In [11]

the definition of scoped words from [3] is used: only computations under a bounded

number of round-robin scheduling are allowed and thus only scoped words with

a bounded number of contexts between any two consecutive contexts of a same

stack can be captured. For example, consider the language L = x(yz)∗t for the

call-return alphabet Σ̃3 where Σc1 = {x}, Σc2 = {y}, Σc3 = {z}, Σr1 = {t}, and the

remaining alphabets are empty. Then, L is Smvpl (precisely 2-scoped) but it is

not captured by the definition given in [3] (unboundedly many rounds would be

needed). The sequentialization construction also suggests a tree-decomposition of

the multiply nested words corresponding to scoped words with bags of O(nk) size.

Thus showing that also for the larger class of languages considered here, the class

of graphs defined by scoped words (and thus computations of scoped Mpa) has

bounded tree-width. Therefore, along with our MSO characterization, we get that

the MSO theory of scoped words is decidable.
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