
ar
X

iv
:1

40
5.

28
92

v2
 [

cs
.F

L
]

 4
 A

ug
 2

01
5

New Results on the Minimum Amount of Useful Space

Zuzana Bednárová∗ and Viliam Geffert∗

Department of Computer Science, P. J. Šafárik University, Košice, Slovakia

{zuzana.bednarova, viliam.geffert}@upjs.sk

Klaus Reinhardt

Wilhelm-Schickard-Institut für Informatik, University of Tübingen, Germany

and Institut für Informatik, University of Halle, Germany

klaus.reinhardt@uni-tuebingen.de

Abuzer Yakaryılmaz†

National Laboratory for Scientific Computing, Petrópolis, RJ, Brazil

abuzer@lncc.br

August 04, 2015

Abstract. We present several new results on minimal space requirements to rec-
ognize a nonregular language: (i) realtime nondeterministic Turing machines can
recognize a nonregular unary language within weak log logn space, (ii) log logn is
a tight space lower bound for accepting general nonregular languages on weak real-
time pushdown automata, (iii) there exist unary nonregular languages accepted by
realtime alternating one-counter automata within weak logn space, (iv) there exist
nonregular languages accepted by two-way deterministic pushdown automata within
strong log logn space, and, (v) there exist unary nonregular languages accepted by
two-way one-counter automata using quantum and classical states with middle log n
space and bounded error.

Keywords: pushdown automata; counter automata; nondeterminism; alternation;
quantum computation; unary languages; nonregular languages.

1. Introduction

The minimum amount of useful “resources” which are necessary for a finite automaton
to recognize a nonregular language is one of the fundamental research directions. Many
different “resources” have been introduced, e.g., access to the input tape (realtime, one-way,
or two-way), computational mode of the model (deterministic, nondeterministic, alternating,
probabilistic, or quantum), type of the working memory (counter, pushdown store, or tape),

A preliminary version of this work was presented at the 18th International Conference on Developments
in Language Theory (DLT 2014), August 5–8, 2014, Ekaterinburg, Russia [Lect. Notes Comput. Sci., 8633,
pp. 315–26. Springer-Verlag, 2014].

∗Supported by the Slovak Grant Agency for Science under contract VEGA 1/0142/15.
†Supported by CAPES with grant 88881.030338/2013-01 and ERC Advanced Grant MQC.

http://arxiv.org/abs/1405.2892v2

etc. Moreover, unary languages need a special attention, since they may require resources
that are different from those for languages built over general (or binary) alphabets. We shall
focus on the minimum amount of useful space and present some new results.

First, we show that realtime nondeterministic Turing machines (NTMs) can recog-
nize unary nonregular languages in weak O(log log n) space.1 Second, if the worktape is
replaced by a pushdown store —which gives realtime nondeterministic pushdown autom-
ata (PDAs)—we obtain the same result on the binary alphabet. Third, we show that their
deterministic counterparts, two-way deterministic PDAs, recognize nonregular languages
with strong O(log log n) space. These bounds are tight, matching the lower bound for two-
way alternating Turing machines (ATMs) [17]. In the unary case, we know that one-way
nondeterministic PDAs recognize regular languages only, but their alternating counterparts
can simulate any ATM that uses Θ(n) space [7]. Such power does not seem to hold if we
replace the pushdown store with a counter. Fourth, we show that realtime alternating one-
counter automata recognize some nonregular unary languages with weak O(log n) space.
(By “space” we mean the value of the counter, rather than the length of its binary rep-
resentation.) Here we also present a trade-off to alternation depth. Fifth, we show that a
two-way deterministic one-counter automaton (2DCA) with two qubits (2QCCA) can recog-
nize a nonregular unary language by using O(log n) space on its counter for accepted inputs.
Without qubits and with o(n) space, 2DCAs recognize only regular unary languages [9].

Our results are presented in Section 2, with a discussion of the known results. We also
identify some new directions and formulate a few open questions. The reader is assumed to
be familiar with the classical computational models and so we provide only the definition
for 2DCAs using a fixed-size quantum memory (in Section 3). The proofs are put in the
remaining sections. We refer the reader to [29] for short and to [23] for complete references
on quantum computation.

2. Our Results and New Directions

2.1. Deterministic, Nondeterministic, and Alternating Machines

It is known that (i) no weak o(log log n) space bounded alternating two-way Turing machine
(TM) can recognize a nonregular language and (ii) there exists a unary nonregular language
recognized by a deterministic two-way TM in strong O(log log n) space [1, 17, 30]. For one-
way TMs, the bounds are given in Table 1, taken from a recent paper by Yakaryılmaz and
Say [36], in which it was shown that all these bounds are tight for almost all realtime TMs.
However, for realtime nondeterministic and alternating TMs accepting unary nonregular
languages, it was left open whether the double logarithmic lower bounds are tight. We solve
this problem positively (bold entries in Table 1), so now we have a complete picture for TMs:

Theorem 1. There exists a unary nonregular language accepted by a realtime nondeter-
ministic Turing machine having a single worktape in weak O(log log n) space.

In our construction, we use a working alphabet with more than 2 symbols (except for the
blank symbol) and so it is still open whether we can obtain the same result with a binary
working alphabet.

1Throughout the paper, log x denotes the binary logarithm of x, unless otherwise specified.

2

Table 1: Minimum space used by one-way TMs for recognizing nonregular languages.

General input alphabet Unary input alphabet
Strong Middle Weak Strong Middle Weak

Deterministic TM log n log n log n log n log n log n

Nondeterministic TM log n log n log log n log n log n log logn

Alternating TM log n log log n log log n log n log n log logn

By using a TM with a restricted access to working tape, we obtain a pushdown automa-
ton (PDA). It is known that no weak o(n) space bounded one-way deterministic PDA can
recognize a nonregular language [15] and that realtime deterministic PDAs can recognize
{anbn | n ≥ 0} in strong O(n) space. For one-way nondeterministic PDAs, a weak O(log n)
space algorithm was given for a nonregular language in [26]. We improve this to weak
O(log log n) space. For this purpose, we introduce, in Section 5, a new language called REI

(used also in Section 8).

Theorem 2. Realtime nondeterministic PDAs can recognize nonregular language REI with
weak O(log log n) space.

Since a pushdown automaton is a special case of the Turing machine, this bound is tight
also for any kind of alternating PDAs, by [17, 30]. On the other hand, we do not know the
tight strong/middle space bounds for one-way/realtime nondeterministic and alternating
PDAs recognizing nonregular languages.

In the unary case, one-way nondeterministic PDAs cannot recognize nonregular lan-
guages [16]. Realtime alternating one-counter automata (CAs), on the other hand, can
recognize some unary nonregular languages even in weak O(log n) space (counter value).
Here we shall use the following two unary languages:

UPOWER = {a2n | n ≥ 0} and UPOWER+ = {a2n+4n−4 | n ≥ 3} .

Theorem 3. Realtime alternating CAs can recognize nonregular UPOWER+ in weak O(log n)
space.

The tight space bounds for realtime/one-way alternating counter automata recognizing non-
regular unary/binary languages are still not known.

In Section 6, we present a one-way algorithm for UPOWER and then our realtime algorithm
for UPOWER+. Both algorithms have a linear alternation depth on accepted inputs. In
Section 7, we consider the existence of a shorter alternation depth and present a realtime
algorithm for UPOWER (a slightly modified version of the algorithm provided by Ďurǐs [8])
with alternation depth bounded by O(log n), but it needs a linear counter. Moreover, we
show that if the counter is replaced by a pushdown store, we have only a single alternation,
using linear space.

In the case of two-way PDAs, we have tight bounds:

Theorem 4. Two-way deterministic PDAs can recognize REI in strong O(log log n) space.

In [9], it was shown that any unary language recognized by a two-way deterministic PDA
using o(n) space is regular. Moreover, two-way deterministic CAs can recognize nonregular
unary UPOWER with O(n) space. Therefore, linear space is a tight bound for both two-way

3

deterministic PDAs and CAs, but we do not know whether nondeterministic or random
choices can help for unary languages.

Another interesting direction is to identify the tight bounds for one-way/realtime multi-
counter/pushdown automata. Yakaryılmaz and Say [36] showed that realtime deterministic
automata with k counters can recognize some nonregular languages in middle O(n1/k) space,
where k > 1. The same result can be obtained by bounded-error probabilistic one-counter
automata, but the error bound increases in k.

2.2. Probabilistic and Quantum Machines

Clearly, probabilistic models are special cases of their quantum counterparts. In the un-
bounded error case, realtime probabilistic finite automata (PFAs) can recognize unary non-
regular languages [24], so let us consider the bounded error case. One-way PFAs with
bounded-error recognize only regular languages [25]. Two-way PFAs can recognize some
nonregular languages but only with exponential expected time [12, 10]. With an arbitrarily
small (not constant) space, two-way probabilistic TMs can recognize nonregular languages in
polynomial time [14], but one-way probabilistic TMs do not recognize nonregular languages
in space o(log log n) [13, 19].

Two-way quantum finite automata (QFAs), on the other hand, can recognize some non-
regular languages in polynomial time [3]. If the input head is quantum, i.e., it can be
in a superposition of several places on the input tape, then one-way QFAs can recognize
some nonregular languages in linear time [21, 2, 34, 31]. But, it is not known whether two-
way QFAs can recognize any nonregular unary language with bounded-error (which is not
possible for 2PFAs [18]).

We shall show that two-way QFAs with a classical counter—or 2DCAs with a fixed-
size quantum memory (2QCCAs)—can recognize a nonregular unary language with space
smaller than required by the deterministic 2DCAs.

Theorem 5. The unary nonregular language UPOWER can be recognized by a 2QCCA with
bounded-error, using middle O(log n) space on its counter.

One-way probabilistic PDAs cannot recognize nonregular unary languages with bounded-
error [20] but the question is open for their quantum counterpart. On the other hand,
using middle O(log n) space, realtime bounded-error probabilistic PDAs can recognize the
language {b1abR2ab3abR4a · · · ab2k−1ab

R

2k | k > 0}, where αR denotes the reversal of a string α
and bi the binary representation of i. Currently, we do not know any better result and
whether quantumness helps.

3. Definitions

We use three different modes of space usage [30]: (i) Strong space s(n) refers to the space
used by the machine along all computation paths on all inputs of length n, (ii) middle space
to the space used along all computation paths on accepted inputs, and (iii) weak space to
an accepting path using minimum space.

A one-way machine model a restricted two-way variant never moving the input head
to the left. A realtime machine a restricted one-way variant in which the input head can

4

A superoperator E = {E1, . . . , Ek} is composed of some operation elements Ei satisfying

∑k

i=1
E†

iEi = I,

where k > 0 is a constant, and the indices are the measurement outcomes. When the superoperator
is applied to the quantum register in a state |ψ〉, i.e., E(|ψ〉), we obtain the measurement outcome

i ∈ {1, . . . , k} with probability pi = 〈ψ̃i|ψ̃i〉, where |ψ̃i〉, the unconditional state vector, is calculated as

|ψ̃i〉 = Ei|ψ〉. Note that using unconditional state vector simplifies calculations in many cases. If the

outcome i is observed with pi > 0, the new state of the system, which is obtained by normalizing |ψ̃i〉,
is given by |ψi〉 = |ψ̃i〉/√pi. Moreover, as a special operator, the quantum register can be initialized to
a predefined quantum state. This initialization operator has only one outcome.

Figure 1: The details of superoperators [33].

stay on the same symbol only a fixed number of steps. (Actually, the realtime machines
presented in this paper never wait on the same symbol.)

A two-way one-counter automaton with quantum and classical states (2QCCA) [32]
is a two-way one-counter automaton having a constant-size quantum register. Without
the counter, we obtain a two-way finite automaton with quantum and classical states
(2QCFA) [3]. In the original definition, the automaton can apply unitary and measure-
ment operators to its quantum part. Here we allow to apply a superoperator (see Figure 1),
a generalization of classical and unitary operators including measurement. In general, this
does not change the computational power of 2QCFAs and 2QCCAs [3]. We only do not
know whether the original models are less powerful than the ones with superoperators if we
use only rational amplitudes. (All quantum algorithms presented here use rational super-
operators.)

A 2QCCA is an 8-tuple P=(S,Q,Σ, δ, sI, sA, sR, qI), where S denotes the set of classical
states, sI,sA,sR∈S (with sA 6=sR) the initial, accepting, and rejecting states, Q the set of
quantum states, qI∈Q the initial quantum state, Σ the input alphabet (not containing ¢,$,
the left and right endmarkers), and δ the transition function composed of δq and δc governing
the quantum and classical parts, respectively.

Such machine P starts with the given input w ∈ Σ∗ enclosed in between ¢ and $, the input
head placed on ¢, in the state (|qI〉, sI), and zero in the counter. Now, if P is in a state (|ψ〉, s)
with the input head on a symbol a and with θ ∈ {“=0”,“ 6=0”}, the next step consists of the
following quantum and classical transitions. First, δq(s, a, θ) determines a superoperator
which is applied to the quantum register and some classical outcome τ is observed. The
quantum part of the state is updated to |ψτ 〉. After that, if δc(s, a, θ, τ) = (s′, d, c), the
classical part of the state changes to s′ and the input head and the counter value are
updated with respect to d ∈ {←, ↓,→} and c ∈ {−1, 0,+1}. P accepts or rejects when it
enters sA or sR, respectively.

4. Realtime Nondeterministic Turing Machine – Theorem 1

The following function will play an important role in our considerations:

f(n) = the smallest positive integer not dividing n .

We take f(0) = +∞ (i.e., undefined): there is no positive integer not dividing 0. We shall
use the fact that f(n) can be written down with O(log log n) bits [1, 11, 30]. However, we

5

shall need to be more precise about the constants hidden in the big-O notation:2

Lemma 6. f(n) < 2·log n, for each n ≥ 3.

Proof : (i) Consider first the case of n ≥ 363. For the given n, let f(n) = 1+m be the
smallest positive integer not dividing n. Consequently, each k ∈ {1, . . . ,m} divides n. Thus,
p⌊logp m⌋ must divide n for each prime p, since 1 ≤ p⌊logp m⌋ ≤ m. But then n is a common
multiple of all values p⌊logp m⌋. Second, for primes satisfying p ≤ m, we have logpm ≥ 1, and
hence also ⌊logpm⌋ ≥ 1. Combining this, we get:

n ≥ ∏
p≤m p

⌊logp m⌋ =
∏

p≤m(p⌊logp m⌋+⌊logp m⌋)1/2 ≥∏
p≤m(p1+⌊logp m⌋)1/2

>
∏

p≤m(plogp m)1/2 =
∏

p≤mm
1/2 = m1/2·π(m),

where all products are taken over primes p ≤ m and π(m) denotes the total number of
primes smaller than of equal to m. From [28], we know that π(x) > x

lnx , for each real
x ≥ 17. Using this, we have the following two subcases:

If m ≥ 17, we can bound n from below as follows:

n > m1/2·π(m) > m1/2·m/ lnm = elnm·1/2·m/ lnm = e1/2·m,

and hence m
2 < lnn. Now, using 1 < 0.6·log 4, 4 < n, and 2·ln 2 < 1.4, we get

f(n) = 1 +m < 0.6·log 4 + 2·ln n < 0.6·log n+ 2·ln 2· lnn
ln 2

< 0.6·log n+ 1.4·log n = 2·log n .

Conversely, if m < 17, that is, if m ≤ 16, we can use the fact that 17
2 < log 363 ≤ log n.

This gives:
f(n) = 1 +m ≤ 17 < 2·log n .

(ii) It only remains to prove the statement of the lemma for n < 363. However, it is a

routine task to compute the table of values f(n)
logn , for n = 362, . . . , 3, and verify that each of

these values is smaller than 2.

Consider now the following unary language:

AM = {1n | f(n) is not equal to a power of 2} .

Historically, the complement of AM was the first known unary nonregular language accepted
with only O(log log n) space, by a strongly bounded two-way deterministic Turing ma-
chine [1]. Later, in [6] (see also [22]), it was shown that AM can be accepted by a weakly
bounded one-way nondeterministic machine, with O(log log n) space again. The machine
in [6] is based on the observation that, for each n > 0,

• 1n∈AM if and only if there exist two positive integers k and i satisfying 2i < k < 2i+1,
such that n mod k 6= 0 and n mod 2i = 0.

• Moreover, for 1n ∈ AM, the membership can be certified by taking k = f(n) and
2i = 2⌊log k⌋. This gives 2i < k < 2 · log n, by Lemma 6.

2The upper bound on f(n) will be required not only to derive an upper bound for space, but also for
tuning up some parameters, so that our algorithm will work correctly.

6

This machine accepts AM as follows: (i) Guess some k, 2i satisfying 2i < k < 2i+1.
(ii) Traversing across the input, count r1 = n mod k and r2 = n mod 2i. That is, at each
input tape position, execute r1 := (r1+1) mod k and r2 := (r2+1) mod 2i. (iii) If the end
of the input is reached with r1 6= 0 and r2 = 0, accept.

The values k, 2i, r1, r2 are stored in binary in four worktape tracks, “one above another”,
using some ℓ worktape cells.3 Since 2i, r1, r2 are all smaller than k and we can choose
k = f(n), bounded by 2 · log n, an accepting computation path using optimal amount of
space works with ℓ ≤ O(log log n) worktape cells.4

4.1. A Realtime Version – Main Idea

In what follows, suppose that n > 0 and f(n) ≥ 17. (We shall later see how to avoid this
assumption.) But then n must be a common multiple of {1, . . . , 16} different from zero, and
hence this assumption can be formulated as follows:

f(n) ≥ 17 and n ≥ 720720 . (1)

Now, we would like to accept AM without stationary moves on the input. First, take the
machine with the sweeping worktape head, discussed above. In this machine, we modify
every single operation so that we make the input head move one position forward. But then
the progress in the input head movement becomes 2·(ℓ+1) times faster than the progress in
modular incrementing of r1, r2 on the worktape. Recall that our machine A requires exactly
2 ·(ℓ+1) steps to execute r1 := (r1+1) mod k, r2 := (r2+1) mod 2i, and to test whether
r1 6= 0, r2 = 0, all this by one double-sweep, per each input tape position.

However, we can increment faster, by executing r1 := (r1+∆) mod k and, simultaneously,
r2 := (r2+∆) mod 2i, where ∆ > 1 is a value stored in binary in a separate worktape track.
The modified machine A still uses a single double-sweep across the worktape, with exactly
2·(ℓ+1) steps, during which the input head travels forward exactly 2·(ℓ+1) positions. Thus,
using ∆ = 2·(ℓ+1), the progress in the input head movement agrees with the progress in
modular incrementing. But then, for each input tape position r that is an integer multiple
of 2 · (ℓ+1), the machine gets to the position r with the corresponding worktape tracks
containing r1 = r mod k and r2 = r mod 2i. Moreover, at each such input position, the
machine “knows” whether r1 6= 0 and r2 = 0, keeping this information in the finite state
control. Thus, if n is an integer multiple of 2 · (ℓ+1), we can correctly decide between
acceptance and rejection. (This also requires to initialize the worktape with exactly 2·(ℓ+1)
steps, assigning initially r1 := (2·(ℓ+1)) mod k and r2 := (2·(ℓ+1)) mod 2i.)

But a problem arises if n is not an integer multiple of 2 ·(ℓ+1). In this case, A gets
to the end of the input at the moment when it is busy with computing in the middle of
the worktape. Thus, the respective worktape tracks for r1, r2 contain some intermediate

3To present binary written numbers as usual, with the least significant bits on the right end, we use
a worktape growing to the left, initially empty, with the right endmarker “⊣” and infinitely many blank
symbols “#” to the left of it. (See also Figure 2.) On the other hand, there is no endmarker at the end of
the input: after reading the last input symbol, the machine stops immediately.

4Carefully implemented, we can increase and test r1, r2 in their respective tracks simultaneously, by a
single double-sweep across the worktape (moving from the right worktape endmarker “⊣” to the first blank
symbol “#”, followed by going back). Since there are exactly ℓ nonblank symbols in between “#” and “⊣”,
we perform this with exactly 2·(ℓ+1) steps, per each input tape position. More implementation details will
be presented for a more advanced realtime version.

7

ℓ−1· · ·i+1 i i−1· · ·j+1 j j−1 · · · 0 Track: Granted:

0 · · · 0 1 0/1· · ·0/1 0/1 0/1· · ·0/1 k 2i < k < 2i+1

0 · · · 0 1 0 · · · 0 0 0 · · · 0 2i 2i+1 ≤ 2ℓ

· · ·# 0 · · · 0 0 0 · · · 0 1 0 · · · 0 ⊣ 2j 2j ≤ 2i

0 · · · 0 0 0 · · · 0 1 0 · · · 0 r1 r1 = 2j mod k
0 · · · 0 0 0 · · · 0 1 0 · · · 0 r2 r2 = 2j mod 2i

0 · · · 0 0 0 · · · 0 0 0 · · · 0 a a = 0

Figure 2: Initial content on the worktape, created in the course of one sweep to the
left, followed by one sweep to the right, during which the input head travels
exactly 2·(ℓ+1) positions. The lengths j, i, ℓ are guessed nondeterministically,
and so are the bits in the track for k, for the bit positions 0, . . . , i−1, displayed
here as “0/1”. The condition 2j = 2·(ℓ+1) is not granted, to be verified later.

data, from which A cannot quickly deduce whether n mod k or n mod 2i is equal to zero.
This problem is resolved by tuning up the size of the worktape more carefully. Namely, if
2·(ℓ+1) = 2j, for some power of two satisfying 2j ≤ 2i, the machine can get to the end of the
input while working in the middle of the worktape only if n is not an integer multiple of 2j.
But then n is not an integer multiple of 2i, and hence n mod 2i 6= 0. In this case, A rejects.

Now we are ready to summarize all values, kept in six separate worktape tracks, as well
as requirements on these values. (This can also be seen in Figure 2.)

k, 2i: guessed, so that 2i < k < 2i+1 and k < 2ℓ. Also ℓ, the length of the allocated
worktape space, is guessed.

2j : guessed, so that 2j ≤ 2i and 2j = 2·(ℓ+1).

r1,r2: initialized to r1 = 2j mod k and r2 = 2j mod 2i. (Clearly, this is equivalent to
r1 = (2·(ℓ+1)) mod k and r2 = (2·(ℓ+1)) mod 2i.)

a: auxiliary track, initialized to a = 0. (Used for verification, in Section 4.4.)

Before passing to implementation details, let us show that the above requirements are
realistic. More precisely, for each 1n∈AM, there exist k, i, j, ℓ satisfying not only n mod k 6= 0
and n mod 2i = 0, but also additional requirements imposed by the realtime processing.
This can be achieved by using the following values:

k = f(n) , i = ⌊log k⌋ , j = 2+⌊log(2+i)⌋ , ℓ = 2j−1−1 . (2)

We have to show that 2i<k<2i+1, k<2ℓ, 2j≤ 2i, and 2j=2·(ℓ+1), for each 1n∈AM.
First, since k = f(n) is not a power of 2 for 1n ∈ AM, the value log k is not an integer.

This gives ⌊log k⌋ < log k < ⌊log k⌋+1, and hence

2i = 2⌊log k⌋ < 2log k = k = 2log k < 2⌊log k⌋+1 = 2i+1.

Second, using the above inequality and (2), we get

k < 2i+1 = 2(2+i)−1 = 22
log(2+i)−1 < 22

1+⌊log(2+i)⌋−1 = 22
j−1−1 = 2ℓ.

Third, k = f(n) ≥ 17, by the additional assumption (1). But then i = ⌊log k⌋ ≥ 4. Now,
using 2 + ⌊log(2+i)⌋ ≤ i for each i ≥ 4, we have

2j = 22+⌊log(2+i)⌋ ≤ 2i.

8

Finally, in (2), we took ℓ = 2j−1−1. Consequently,

2j = 2·(ℓ+1) .

In addition, by the use of (2), Lemma 6, and the fact that 5 < 2· log log n for n ≥ 51
(by (1), we actually have n ≥ 720720), we obtain that

ℓ = 2j−1−1 = 21+⌊log(2+i)⌋−1 ≤ 21+log(2+i)−1 = 2·(2+i)−1 = 3 + 2·i
= 3 + 2·⌊log k⌋ ≤ 3 + 2·log k = 3 + 2·log f(n) < 3 + 2·log(2·log n)
= 5 + 2·log log n < 4·log log n .

(3)

This clearly gives O(log log n) weak space bound for A.
We are now ready to provide implementation details, showing that the above values can

be guessed, incremented, and tested for zero by single double-sweeps.

4.2. Initialization – Details

Here we show how the worktape is initialized in a single double-sweep, with exactly 2·(ℓ+1)
steps. We point out that even though we guess the values k, i, j, ℓ that satisfy (2), they are
not guessed in the order in which they appeared in (2).

Sweep to the Left: Running the input head forward, A moves the worktape head from
the right endmarker and rewrites the blank symbols so that the worktape becomes organized
into six parallel tracks,5 containing binary written k, 2i, 2j , r1, r2, a. (See Figure 2.) This is
done as follows.6

• In a loop, running through the bit positions t = 0, . . . , j−1, the machine assigns the
tth bit in the track for k (that is, the value [k]t) by guessing, while all bits in the
remaining tracks are filled with zeros.

• At the position t = j (this moment is chosen nondeterministically), the bit [k]t is
guessed while the bits in other tracks are set as follows: [2i]t = 0, [2j]t = [r1]t =
[r2]t = 1, and [a]t = 0.

• In a loop, running through the bit positions t = j+1, . . . , i−1, the bit [k]t is guessed
and all other bits are set to 0.

• At the position t = i (nondeterministically chosen), we set [k]t = [2i]t = 1, all other
bits are set to 0.

• In a loop, running through the bit positions t = i+1, . . . , ℓ−1 (for nondeterministically
chosen ℓ), all bits are set to 0.

As a special case, A may guess i = j. In this case, the positions i and j overlap, the phase
running through j+1, . . . , i−1 is skipped, and the bits at the position t = i = j are set as
follows: [k]t = [2i]t = [2j]t = [r1]t = 1 and [r2]t = [a]t = 0.

5Formally, the worktape alphabet is Γ = {#,⊣} ∪ { [b1, . . . , b6] | b1, . . . , b6 ∈ {0, 1}}.
6Throughout this section, the tth bit of a number a is denoted by [a]t. To avoid confusion with other

notation, we enclose binary strings in quotation marks, e.g., “ bi ” represents i replicated copies of the same
bit b ∈ {0, 1} (a string), while bi denotes b raised to the power of i (a number).

9

From Figure 2, we see that the worktape now contains the following values:

k = “0ℓ−i−11bi−1· · · b0” < 2i+1 ≤ 2ℓ,
2i = “0ℓ−i−110i ” ≤ k ,
2j = “0ℓ−j−110j ” ≤ 2i,
r1 = 2j = 2j mod k , provided that 2i < k ,
r2 = 2j = 2j mod 2i, if i > j ,
r2 = “0ℓ ” = 0 = 2i mod 2i = 2j mod 2i, if i = j ,
a = 0 ,

for some nondeterministically chosen values j ≤ i < ℓ and b0, . . . , bi−1 ∈ {0, 1}.
Note that this initialization ensures automatically all requirements imposed on k, i, j, ℓ,

r1, r2, a, as listed in Section 4.1 (hence, no verification needed), except for: (i) Instead of
2i < k < 2i+1, we guarantee only 2i ≤ k < 2i+1. The inequality 2i < k will be verified on the
way back to the right worktape endmarker. (ii) The condition 2j = 2·(ℓ+1) is not granted,
to be verified later (described in Section 4.4).

Sweep to the Right: Running the input head forward, A moves the worktape head back
to the right endmarker and verifies whether 2i < k. Since k and 2i have the most significant
bit at the same position i and, in the track for 2i, this is the only bit set to 1, it is sufficient
to check whether the track for k contains at least two 1’s. If 2i < k, the machine proceeds
to testing membership of 1n in AM, assuming that the condition 2j = 2·(ℓ+1) is valid. If
2i = k, the machine rejects.

4.3. Modular Incrementing and Testing for Zero – Details

After initialization presented in the previous section, we increment r1, r2, by executing the
statements r1 := (r1+2j) mod k, r2 := (r2+2j) mod 2i, and check whether r1 6= 0, r2 = 0,
all this in a single double-sweep, with 2·(ℓ+1) steps. This is repeated until we get to the
end of the input.

Sweep to the Left: At the beginning, A nondeterministically chooses

• between r1 := r1+2j or r1 := r1+2j−k, and
• between r2 := r2+2j or r2 := r2+2j−2i.

These two choices are independent, hence, A updates r1, r2 in one of four modes. For the
correct combination, we preserve r1 ∈ {0, . . . , k−1} and r2 ∈ {0, . . . , 2i−1}. The respective
tracks are updated simultaneously, traversing from the right endmarker to the first blank,
while running the input head forward.

To see details, consider, as an example, implementation of r1 := r1+2j−k by a single
sweep. With access to [r1]t, [2

j]t, [k]t at each bit position t = 0, . . . , ℓ−1, we can combine
the classical binary addition and subtraction into a single procedure, keeping a carry value
ct ∈ {−1, 0,+1} in the finite state control (instead of a carry bit, sufficient for one operation
alone). Starting with ct = 0 for t = 0, the new values of [r1]t and ct+1 are determined as
follows:

ct+1 := ⌊([r1]t+[2j]t−[k]t+ct)/2⌋ ; [r1]t := ([r1]t+[2j]t−[k]t+ct) mod 2 .

10

Finally, if A reaches the first blank symbol “#” on the worktape with cℓ = −1 in the finite
state control, it rejects (wrong guess, resulting in negative r1).

The other operations for updating r1, r2 are implemented analogically.

Sweep to the Right: Next, while running the input head forward, A moves the worktape
head back to the right endmarker. During this process the following four conditions are
tested simultaneously:

• r1 < k and r2 < 2i. If any of these conditions is not valid, reject.

• r1
?
= 0 and r2

?
= 0. The outcome of these comparisons is kept in the finite state

control when we get back to the right worktape endmarker.

As an example, to check whether r1 < k, scan the respective tracks for the first different
bit. If [r1]t < [k]t at some position t, the remaining bits are ignored. Conversely, if [r1]t > [k]t
or there is no difference at all, reject. The other comparisons, running simultaneously, are
implemented in a similar way.

When the sweep has been completed, i.e., the worktape head is back at the right end-
marker, A starts another double-sweep, to process the next 2·(ℓ+1) input symbols. If, at
this moment, we have reached the end of the input, A halts. This is done in an accepting
or rejecting state, depending on whether r1 6= 0 and r1 = 0. Recall that this information is
remembered in the finite state control.

If A hits the end of the input in the course of execution of this double-sweep, it rejects;
this can happen only if the length of the input is not an integer multiple of 2·(ℓ+1). Therefore,
n mod 2i 6= 0, by the reasoning from Section 4.1, based on the assumption that 2·(ℓ+1) = 2j

(not verified here).

4.4. Verifying the Size of the Allocated Space – Details

Now we shall verify the condition ℓ = 2j−1−1, equivalent to 2j = 2·(ℓ+1). The verification
is activated after the initialization, presented in Section 4.2, and it runs in parallel with the
“main” procedure counting in r1, r2, presented in Section 4.3. This causes no problems, since
both routines move both the input and worktape heads in the same way. We shall keep data
on the auxiliary track reserved for a, while the “main” procedure runs simultaneously on
the first five tracks. (The track for 2j is shared, however, both routines use it in a read-only
way.) When the condition ℓ = 2j−1−1 has been confirmed, the verification routine stops.
From that moment on, the “main” procedure runs alone. If we find that ℓ 6= 2j−1−1, the
computation of the “main” procedure is aborted and A rejects.

In the first double-sweep, write the bits 0, 1, 1 in the auxiliary track, in that order,
starting from the right endmarker and moving to the left. Then traverse across the worktape
and return back. This initializes the track to a = “110” = 6 = 2h+h, for h = 2. If there
is no room for storing “110”, reject. (If 1n ∈ AM and k, i, j, ℓ were guessed in accordance
with (2), then, by (1), we have ℓ > log k = log f(n) ≥ log 17 > 4.)

Now, in a loop, the machine modifies the auxiliary track as follows.

Sweep to the Left: Moving across the worktape, A increases a, that is, a := a+1. Now
the auxiliary track contains a′ = 2h+(h+1). The bit positions for 2h and h+1 do not overlap,
since ⌊log(h+1)⌋ < h, for each h ≥ 2.

11

Sweep to the Right: On the way back, moving across the initial segment of zeros,
A guesses the position h+1 standing in front of the leftmost 1, and sets this bit to [a]h+1 = 1.
Next, A verifies whether [a]h = 1 and clears this bit to [a]h = 0. (In case of a wrong guess,
A rejects.) Thus, the leftmost 1 is shifted one position to the left; now the track contains
a′′ = 2h+1+(h+1). After that, A returns to the right endmarker and starts another sweep
to the left, for the new value h := h+1.

However, if there is no initial segment of zeros, i.e., if the leftmost 1 is at the position
ℓ−1, the machine proceeds in a different way. At this moment, we clearly have h = ℓ−1,
which gives a′ = 2h+(h+1) = 2ℓ−1+ℓ. Thus, by ignoring the leftmost bit [a]ℓ−1 = 1, the
content of the auxiliary track becomes equal to ℓ, the length of the worktape written in
binary. A proceeds across the worktape to the right and compares ℓ with 2j−1−1. The
comparison is based on the following two facts: First, 2j−1−1 = “1j−1”, binary written
as a string not containing zeros. Second, the length of this string can be determined by
looking into the track for 2j, containing “0ℓ−j−110j ”. Thus, in a loop, running through the
bit positions t = ℓ−1, ℓ−2, . . . , the machine searches for the first [2j]t = 1, checking also
if [a]t = 0 in the meantime (not taking [a]ℓ−1 6= 0 into account). At the position j, the
machine checks if [a]j = 0, and then if [a]j−1 = 0. After that, in a loop, for t = j−2, . . . , 0,
the machine checks if [a]t = 1. If the value stored in the auxiliary track passes the test, we
can confirm that ℓ = 2j−1−1, the verification is over. Otherwise, we reject.

If A hits the end of the input before the verification is over, it rejects, overriding any
potential acceptance made by the “main” procedure. To see that this is enough to fix the
problem, consider how many steps are performed in the course of verification, i.e., how far
we can get along the input tape.

First, the verification is activated after the initialization in Section 4.2, done in a single
double-sweep. The verification routine uses also its own initial double-sweep, to write down
“110” = 22+2 in the auxiliary track. Finally, for h = 2, . . . , ℓ−1, the track is updated, from
2h+h to 2h+1+(h+1). (This includes the last double-sweep making the final comparisons.)
Since each double-sweep across the worktape takes exactly 2·(ℓ+1) steps, the total number
of steps is bounded by

V (n) = [1 + 1 + (ℓ−2)]× 2·(ℓ+1) = 2·ℓ2 + 2·ℓ ≤ 4·ℓ2 ≤ 4·(4·log log n)2
= 64·(log log n)2 < n ,

using (3) and the fact that 64·(log log n)2 < n, for each n ≥ 668. But, under the assump-
tion (1), we actually have n ≥ 720720.

Summing up, if 1n ∈ AM, then either (i) k, i, j, ℓ are guessed correctly, in accordance
with (2), but then, by (1), there is enough time to finish verification, or (ii) k, i, j, ℓ are not
guessed correctly, possibly violating (2), but then a premature rejection will do no harm.
Clearly, for 1n /∈AM, no kind of premature rejection can do harm, whatever happens.

4.5. The Finishing Touch

The above nondeterministic machine never accepts an input 1n /∈ AM, since there are no
positive integers k and i satisfying 2i < k < 2i+1, such that n mod k 6= 0 and n mod 2i = 0.
Conversely, for each 1n ∈ AM, the machine has at least one accepting computation path,
provided that f(n) ≥ 17, the assumption introduced by (1).

12

❈
❈❈
❵❵❵

❈
❈❈
❵❵❵

✄
✄✄
✥✥✥

❈
❈❈
❵❵❵

❆❆
❆
❆
❆❆

✁
✁
✁✁

❏❏
❆
❆
❆❆

log log

{

log

b
c1
a
cR2b
c2
a
cR3
bb

..
.
e
bi
d
bk,i
d
bRi
e
bi+1
d
bk,i+1

..
.
a

..
.
e
bRi
d

bk+1,i
d
bi
e
bRi+1

d
bk+1,i+1

..
.

b
..
.
e
bi
d

bk+1,i
d
bRi
e
bi+1
d

bk+1,i+1

..
.
a

︸ ︷︷ ︸
ck

︸ ︷︷ ︸
cR
k+1

︸ ︷︷ ︸
ck+1

Figure 3: The structure of ω, where each counter representation ck consists of O(log k)
bits, and each of these bits is associated with a subcounter of size O(log log k)
bits.

If 1n ∈ AM but f(n) < 17, we can still guess k = f(n) with 2i = 2⌊log k⌋ and prove
the membership by verifying that n mod k 6= 0 and n mod 2i = 0. However, the above
algorithm requires also j, ℓ satisfying additional conditions, not granted for k < 17. But, for
each fixed constant k, the task of verifying can be implemented as a finite state automaton
counting the length of the input modulo k ·2⌊log k⌋.

Thus, the updated machine A nondeterministically chooses from among (i) running the
procedure presented above, (ii) counting the length of the input modulo k ·2⌊log k⌋ in the
finite state control, for some7 k ∈ {13, 11, 9, 7, 5}. The machine starts in an accepting state,
which ensures that 10 ∈ AM is accepted.

5. Realtime Nondeterministic PDA – Theorem 2

The language REI consists of inputs which are not prefixes of the infinite word

• ω = bc1ac
R
2 bc2ac

R
3 · · · bckacRk+1 bck+1ac

R

k+2 · · · , where
• ck = eb0dbk,0db

R
0 eb1dbk,1db

R
1 · · · eb⌊log k⌋dbk,⌊log k⌋dbR⌊log k⌋ e

is a counter representation for k, augmented with subcounters,

• bk,i ∈ {0, 1} is the ith bit in the binary representation of k, and bi ∈ {0, 1}∗ denotes
the number i written in binary, for i ∈ {0, 1, . . . , ⌊log k⌋}.

A realtime nondeterministic PDA accepts a word w which is not a prefix of ω by guessing
and verifying an error, which can be of the following kind (see also Figure 3):

(i) There is some error in the format, that is, the input w is not a prefix of any word
ω′ ∈ (b(e{0, 1}∗d{0, 1}d{0, 1}∗)∗e a(e{0, 1}∗d{0, 1}d{0, 1}∗)∗e)∗.

(ii) The input w does not begin with the counter representation for 1, that is, with
bc1a = b e0d1d0e a, or |w| ≤ |bc1a| but w is not a prefix of bc1a.

(iii) For some k, the counter representation ck does not begin with the first subcounter,
i.e., with beb0d = be0d. Symmetrically, we check whether cRk does not end by dbR0 eb = d0eb.

(iv) For some k and i, the subcounter bi in ck is not correct, i.e., ck contains a defective
part dbRi−1e bi′ d or ebidξd b

R

i′ e with i′ 6= i and ξ ∈ {0, 1}. This can be recognized by using
the pushdown store. Assuming that, within ck, the i

th subcounter is the smallest one with

7From {16, . . . , 1}, the set of candidates for k, we exclude 16, 8, 4, 2 (if f(n) = 2m, for some integer m ≥ 1,
then 1n /∈ AM) and 15, 14, 12, 10, 6, 1 (from [4, 5], we know that f(n) = pm, for some prime p and integer
m ≥ 1). Finally, we exclude 3, since we do not need an extra cycle counting modulo 3 ·2, once we have a
cycle counting modulo 9·8.

13

this error, i.e., the subcounters b0, . . . , bi−1 are correct, the pushdown space can be bounded
by O(|bi−1|) ≤ O(|b⌊log k⌋|), even though b⌊log k⌋ is actually not present. Symmetrically, we
check whether cRk contains a defective bRi .

(v) All subcounters in w are correct but, for some k, the part between two consecutive a’s
is of the form acRkb ck′ a, with k

′ 6= k. This leaves us two subcases. First, cRk and ck′ do not
agree in the highest subcounter. This is detected by loading the highest subcounter in cRk
(the first one) into the pushdown store and check it against the highest subcounter in ck′

(the last one). Second, k and k′ differ in the ith bit, for some i. This is detected by guessing
the position of bk,i in c

R

k , pushing the following subcounter bi on the pushdown store, then
guessing the corresponding position in ck′ , verifying the subcounter value there, and checking
that bk′,i 6= bk,i.

(vi) All subcounters in w are correct but, for some k, the part between two consecutive b’s
is of the form bcka c

R

k′ b, with k′ 6= k+1. Here we have three subcases. First, the binary
written k is not of the form “1ℓ ” for some ℓ ≥ 1, but ck and cRk′ do not agree in the highest
subcounter. Second, the binary written k is of the form “1ℓ ” (hence, the highest subcounter
in ck is bℓ−1), but the highest subcounter in cRk′ is not equal to b

R

ℓ . Both these subcases can
be recognized similarly as in the previous case. Third, k+1 and k′ differ in some bit. This
is again recognized similarly as in the previous case: this time we verify that, for some i, by
going from ck to cRk′ , either the ith bit changed but the (i−1)st bit did not change from 1
to 0, or the ith bit did not change but the (i−1)st bit changed from 1 to 0 (or i = 0).

The errors described in the cases (i)–(iii) are detected by using the finite state control.
In the cases (iv)–(vi), we only need to store one subcounter. Thus, the size of the pushdown
store can be bounded by O(|b⌊log k⌋|) ≤ O(log log k). If ck is the smallest counter representa-
tion with an error, i.e., c1, . . . , ck−1 are correct, we have indeed k−1 counters present along
the input, and hence k−1 ≤ n. Thus, the pushdown size O(log log n) is sufficient to guess
and verify the smallest occurring incorrectness.

6. Realtime Alternating Counter Automaton – Theorem 3

First, we give a one-way A for a finite variation of UPOWER which, in one step, either moves
the input head or changes the value in the counter, but not both. Each such step is followed
by exactly one “ε-step” neither moving the input head nor changing the counter. (But even
ε-steps depend on whether the counter contains zero.)

The idea is to represent k, the current distance from the end of the input, by parallel
processes of an alternating machine A. Each process uses its counter to address only a single
bit of k. Here we use two existential states s0, s1: A has an accepting alternating subtree in
the configuration (sv, k, j) —corresponding to sv ∈ {s0, s1} with the head k ≥ 0 positions
away from the end of the input and a number j ≥ 0 stored in the counter— if and only
if bk,j, the j

th bit in the binary written k, is equal to v. (In qv, only ε-steps are executed.)
The computation is based on the fact that bk,j depends only on bk−1,j, bk,j−1, and bk−1,j−1.

Namely, for each j > 0 and k > 0, using Boolean notation,

bk,j ≡ (¬bk−1,j∧¬bk,j−1∧bk−1,j−1)∨(bk−1,j∧¬bk−1,j−1)∨(bk−1,j∧bk,j−1∧bk−1,j−1),
¬bk,j ≡ (¬bk−1,j∧¬bk−1,j−1)∨(¬bk−1,j∧bk,j−1∧bk−1,j−1)∨(bk−1,j∧¬bk,j−1∧bk−1,j−1).

For j = 0 with k > 0, we have bk,j≡¬bk−1,j and, for k = 0, bk,j≡0. Thus, in sv ∈ {s0, s1} and
with the counter not containing zero, A guesses existentially which of the three clauses leads

14

to bk,j = v. (For sv = s0, we have a fourth branch, guessing k = 0. This branch switches
to a state ŝ, described later.) Next, A branches universally to verify that all literals in the
chosen clause are valid. This moves the input head and/or decreases the counter, ending in
the state s0 or s1, depending on whether the given literal is negated. As an example, in s1,
A might guess, by one ε-step, that bk,j = 1 because of the clause (¬bk−1,j∧¬bk,j−1∧bk−1,j−1).
After that, A branches to verify literals: the respective parallel path (a) moves the input
head by going to q0, (b) decreases the counter by going to q0, (c) moves the input head,
executes one ε-step, and then decreases the counter by going to q1.

The case of sv ∈ {s0, s1} with the counter containing zero is similar, utilizing bk,0≡¬bk−1,0.
(Also here we have a path to ŝ, guessing k = 0.)

Finally, at the end of the input, A enters the state ŝ by guessing the case of k = 0. This
can happen in the state s0 only, since b0,j≡0. Now, in a loop, A decreases the counter and
executes one ε-step. When the counter is cleared, A halts and accepts. (If, due to a wrong
guess, A enters ŝ with k > 0, the computation is blocked in the middle of the input, and
hence such path rejects.)

Given an input am, A verifies that m = 2n for some n ≥ 2, that is, whether (i) bm,n = 1,
(ii) bm,j = 0 for each j < n, and (iii) bk,n = 0 for each k < m. Thus, A starts with a loop,
in which it first increases the counter and then, by the next ε-step, it guesses existentially
whether to exit. This chooses some n−1 ≥ 1. After that, by increasing the counter once
more, A branches universally to verify the conditions (i)–(iii). That is, A branches to
(i) the state s1, (ii) a universal loop consisting of one ε-step followed by one decreasing
of the counter with branching to s0, (iii) a universal loop consisting of one ε-step followed
by one move of the input head with branching to s0. (Both these loops halt in accepting
states.)

This completes the construction of A. For each am with m = 2n and n ≥ 2, the
accepting alternating subtree is unique, with all paths moving the input head 2n times and
changing the counter value exactly 2n times. Each such step is followed by exactly one
ε-step. Thus, by making the input head move in every step, we get a realtime A′ accepting
am

′
with m′ = 2·2n+4n = 2n+1+4·(n+1)−4, which changes the accepted language from

UPOWER\{a1, a2} to UPOWER+.

7. A Trade-Off to Alternation Depth

The machine in the proof of Theorem 3 uses a linear number of alternations. However,
we can recognize UPOWER with only a logarithmic alternation depth, but using a counter of
linear size. To make this algorithm easier to follow, we construct a realtime alternating A
with a counter capable of containing also negative integers and, moreover, in one step, the
counter can be updated by any ∆ ∈ {−3, . . . ,+3}, instead of ∆ ∈ {−1, 0,+1}. (A can be
easily modified to meet the standard definition without changing the language, and hence
this extension is not essential.)

First, along the input am, A existentially picks a position j1, increasing the counter by 1
per each input symbol. Thus, the counter contains j1 > 0 and the remaining part of the
input is of length m1 = m−j1. Then A branches universally:

(i) In the first branch, A verifies that j1 = m1, i.e., that j1 = m−j1, decreasing the
counter by 1 per each symbol until it gets to the end of the input. Thus, this branch is

15

successful only if 2j1 = m, i.e., only if j1 is the exact half of m.
(ii) In the second branch, assume that j1 = m1 and 2j1 = m since, for any other values,

the outcome is overridden due to the first branch. Along am1, A existentially picks a new
position j2, decreasing the counter by 3 per each input symbol. Now the counter contains
j1−3j2 < 0, the rest of the input is of length m2 = m1−j2 = j1−j2. Then A makes a
universal branching similar to the previous one:

(ii.i) In the first branch, A verifies that −(j1−3j2) = m2, i.e., that −(j1−3j2) = j1−j2,
increasing the counter by 1 per each symbol until it gets to the end of the input. Thus, this
branch is successful only if 2j2 = j1.

(ii.ii) In the second branch, assume that −(j1−3j2) = m2 and 2j2 = j1, so we start with
the counter containing j1−3j2 = −j2 and the rest of the input of lengthm2 = −(j1−3j2) = j2.
Now, along am2, A existentially picks j3, increasing the counter by 3 per each input symbol,
so the counter contains −j2+3j3 > 0, with the rest of the input of lengthm3 = m2−j3 = j2−j3.
Then A branches universally:

First, in (ii.ii.i), A verifies that (−j2+3j3) = m3, i.e., that (−j2+3j3) = j2−j3, decreasing
the counter by 1 per each symbol until the end of the input. This branch is successful only
if 2j3 = j2. Second, in parallel (ii.ii.ii), we assume (−j2+3j3) = m3 and 2j3 = j2, so
A starts with the counter containing −j2+3j3 = j3 and the rest of the input of length
m3 = −j2+3j3 = j3. Now A proceeds in the same situation as in (ii), with j3 = m3 instead
of j1 = m1

This is repeated until, for some i, there remains ji = 1 and a single input symbol, when
A accepts. If m is a power of 2, we have an accepting computation subtree in which j1=

m
2 ,

j2=
m
4 , . . . , ji=

m
2i
, . . . , jlogm= m

2logm =1, with the counter containing +j1,−j2,+j3,−j4, . . .
at the moment of universal choice. This values are unique, leading to a unique accepting
alternating subtree for each accepted input, with a logarithmic number of alternations. If
m is not a power of 2, there is no accepting subtree, since, for some ji, A fails to find the
exact half of the remaining input.

In a similar way, UPOWER can be recognized with only one alternation but using a linear
pushdown store instead of a counter, as follows: For the given am, guessing existentially, the
automaton loads some wRcw′ ∈ b{a, b}∗cb{a, b}∗ into the pushdown store and, branching
universally, it verifies that |w′| = |am|, w′ = w, w2i = b for each i ≥ 0 (provided that
2i ≤ m), and that wj = a at all other positions. (Combining these conditions, we get that
m = 2n, for some n.) The verification of |w′| = |am| just compares the lengths, by popping
one symbol from the pushdown store and by moving one input position forward, until the
symbol c is popped. But the machine universally branches at each position in w′, to do the
following two checks:

First, the same letter from {a, b} that appears j positions away from c in w′ must also
appear j positions away from c in wR. (This ensures w′ = w.) To guarantee equal distance
in w′ and wR, the parallel branch stops the input head movement until c is popped out, after
which the input head movement is synchronized with popping out again, until the end of
the input is reached.

Second, the same letter from {a, b} that appears j positions away from c in w′ must
also appear 2j positions away from c in wR. Moreover, in wR, the symbol a must appear
2j+1 positions away. (This ensures all remaining conditions.) Checking this is similar to
the previous test but, after popping c out, the input head moves only one position forward
per two pushdown symbols popped out.

16

if m = 0 then reject else if m = 1 then accept

loop

for i := 1 to m do

run P on the input w′ = aibm

if P accepts w′ then exit for

if P rejects w′ and i = m then reject

end for

accept with a probability p satisfying 0 < p ≤
(
1
9

)m
end loop

Figure 4: A pseudo-code for UP , testing whether w = am ∈ UPOWER.

8. Two-Way Deterministic PDA – Theorem 4

Here we can follow the same construction as in the proof of Theorem 2. (We might even
use an easier version abandoning the reverse written parts.) Instead of guessing the kind of
incorrectness, we have to check them one by one in an appropriate order, to make sure that
we find the smallest occurring incorrectness first:

First, check the counter representation c1. After checking c1, . . . , ck−1, the machine
checks ck. Namely, we check that the smallest subcounter is b0 and that the subcounters are
correctly increasing, until we get a subcounter bi equal to the highest subcounter in ck−1.
Then check the highest subcounter in ck against ck−1 and that the main counter is increas-
ing correctly, by going back and forth between ck−1 and ck for each bit with the related
subcounter in the pushdown store.

To check that subcounters are correctly increasing, just load the current subcounter to
the pushdown store and compare it with the next one. Even if such comparison fails, we
can restore the current pushdown contents, by going back to the beginning of the tested
counter and using the prefix which, so far, has been identical. To find a position related to
the current subcounter within ck−1, just load the current subcounter to the pushdown store
and compare it with the subcounters in ck−1, one after another, until the “proper” one is
found. Since we compare without destroying the pushdown store, we can return back to the
original position in ck in the same way.

9. Two-Way Quantum Counter Automata – Theorem 5

Recently, Yakaryılmaz [32] introduced a new programming technique for 2QCCAs and it
was shown that USQUARE = {an2 | n ≥ 1} can be recognized by 2QCCAs for any error bound
by using O(

√
n) space on its counter for all accepted inputs. Based on this technique, we

show that O(log n) space can also be useful.

2QCFAs can recognize POWER = {anb2n | n ≥ 1} such that each w ∈ POWER is accepted
with probability 1 and each w /∈ POWER rejected with a probability arbitrarily close to 1 [35].
Let P be such a 2QCFA, rejecting w /∈ POWER with a probability at least 8

9 (Appendix).
An important property of P is that it reads the input from left to right in an infinite loop
and uses 3 quantum states.

We present a 2QCCA UP for UPOWER calling P as a subroutine such that each am in
UPOWER is accepted with probability 1 and with the counter value not exceeding logm.
Each am /∈ UPOWER is rejected with a probability above 1− 1

8m+1 . The pseudo-code for UP is
given in Figure 4.

17

Let w = am be the input. Using the counter, we implement a for-loop iterated for
i = 1, . . . ,m, in which we simulate P on the input w′ = aibm. Clearly, if am is in UPOWER,
P always accepts w′ = alogmbm and so we exit the for-loop with the counter containing
i ≤ logm < m. After the exit from the for-loop, am is accepted with a probability p ≤ (19)

m

but, since this process is nested in an outer infinite loop, UP accepts am with probability∑∞
j=0 p·(1−p)j = 1. Moreover, the counter value (hence, the space complexity) never exceeds

logm. Conversely, if am is not in UPOWER, it is rejected with a probability p′ ≥ (89)
m by the

for-loop (when i = m). Thus, it is accepted with probability (1−p′) ·p after the for-loop.
Again, since this is nested in the outer infinite loop, UP rejects am with probability

∑∞
j=0 p

′ ·(1−p′−(1−p′)·p)j ≥
∑∞

j=0 p
′ ·(1−p′−(19)m)j = p′

p′+(1/9)m

≥ (8/9)m

(8/9)m+(1/9)m = 1− 1
8m+1 .

This probability can raised closer to 1, using (1c)
m with c > 9 instead of (19)

m.

Acknowledgments

We thank Pavol Ďurǐs for kindly providing a one-way alternating automaton for UPOWER

using a linear counter, Alexander Okhotin and Holger Petersen for their answers to our
questions, and the anonymous reviewers for the helpful comments.

References

[1] H. Alt and K. Mehlhorn. A language over a one symbol alphabet requiring only O(log log n)
space. SIGACT News, 7, 31–33, 1975.

[2] M. Amano and K. Iwama. Undecidability on quantum finite automata. In Proc. ACM Symp.
Theory of Comput., pp. 368–75, 1999.

[3] A. Ambainis and J. Watrous. Two–way finite automata with quantum and classical states.
Theoret. Comput. Sci., 287, 299–311, 2002.

[4] A. Bertoni, C. Mereghetti, and G. Pighizzini. On languages accepted with simultaneous com-
plexity bounds and their ranking problem. In Proc. Math. Found. Comput. Sci., Lect. Notes
Comput. Sci., 841, pp. 245–55. Springer-Verlag, 1994.

[5] A. Bertoni, C. Mereghetti, and G. Pighizzini. An optimal lower bound for nonregular languages.
Inform. Process. Lett., 50, 289–92, 1994. (Corr. ibid., 52, p. 339, 1994.)

[6] A. Bertoni, C. Mereghetti, and G. Pighizzini. Strong optimal lower bounds for Turing machines
that accept nonregular languages. In Proc. Math. Found. Comput. Sci., Lect. Notes Comput.
Sci., 969, pp. 309–18. Springer-Verlag, 1995.

[7] A.K. Chandra, D.C. Kozen, and L. J. Stockmeyer. Alternation. J. Assoc. Comput. Mach.,
28, 114–33, 1981.

[8] P. Ďurǐs. Private communication, October 2013.

[9] P. Ďurǐs and Z. Galil. On reversal-bounded counter machines and on pushdown automata with
a bound on the size of their pushdown store. Inform. & Control, 54, 217–27, 1982.

[10] C. Dwork and L. Stockmeyer. A time complexity gap for two-way probabilistic finite-state
automata. SIAM J. Comput., 19, 1011–23, 1990.

[11] A.R. Freedman and R.E. Ladner. Space bounds for processing contentless inputs. J. Comput.
System Sci., 11, 118–28, 1975.

18

[12] R. Freivalds. Probabilistic two-way machines. In Proc. Math. Found. Comput. Sci., Lect. Notes
Comput. Sci., 118, pp. 33–45. Springer-Verlag, 1981.

[13] R. Freivalds. Space and reversal complexity of probabilistic one-way Turing machines. In Proc.
Fund. Comput. Theory, Lect. Notes Comput. Sci., 158, pp. 159–70. Springer-Verlag, 1983.

[14] R. Freivalds and M. Karpinski. Lower space bounds for randomized computation. In Proc.
Internat. Colloq. Automata, Languages, & Programming, Lect. Notes Comput. Sci., 820, pp.
580–92. Springer-Verlag, 1994.

[15] J. Gabarró. Pushdown space complexity and related full-A.F.L.s. In Proc. Symp. Theoret.
Aspects Comput. Sci., Lect. Notes Comput. Sci., 166, pp. 250–59. Springer-Verlag, 1984.

[16] S. Ginsburg and H.G. Rice. Two families of languages related to ALGOL. J. Assoc. Comput.
Mach., 9, 350–71, 1962.

[17] K. Iwama. ASPACE(o(log logn)) is regular. SIAM J. Comput., 22, 136–46, 1993.

[18] J. Kaņeps. Regularity of one-letter languages acceptable by 2-way finite probabilistic automata.
In Proc. Fund. Comput. Theory, Lect. Notes Comput. Sci., 529, pp. 287–96. Springer-Verlag,
1991.

[19] J. Kaņeps and R. Freivalds. Minimal nontrivial space complexity of probabilistic one-way
Turing machines. In Proc. Math. Found. Comput. Sci., Lect. Notes Comput. Sci., 452, pp.
355–61. Springer-Verlag, 1990.

[20] J. Kaņeps, D. Geidmanis, and R. Freivalds. Tally languages accepted by Monte Carlo pushdown
automata. In Proc. RANDOM: Randomization & Approx. Tech. Comput. Sci., Lect. Notes
Comput. Sci., 1269, pp. 187–95. Springer-Verlag, 1997.

[21] A. Kondacs and J. Watrous. On the power of quantum finite state automata. In Proc. IEEE
Symp. Found. of Comput. Sci., pp. 66–75, 1997.

[22] C. Mereghetti. Testing the descriptional power of small Turing machines on nonregular lan-
guage acceptance. Internat. J. Found. Comput. Sci., 19, 827–43, 2008.

[23] M.A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
Univ. Press, 10th edit., 2010.

[24] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.

[25] M.O. Rabin. Probabilistic automata. Inform. & Control, 6, 230–45, 1963.

[26] K. Reinhardt. A tree-height hierarchy of context-free languages. Internat. J. Found. Comput.
Sci., 18, 1383–94, 2007.

[27] K. Reinhardt and A. Yakaryılmaz. The minimum amount of useful space: New results and
new directions. In Proc. Develop. Lang. Theory, Lect. Notes Comput. Sci., 8633, pp. 315–26.
Springer-Verlag, 2014.

[28] J.B. Rosser and L. Schoenfeld. Approximate formulae for some functions of prime numbers.
Illinois J. Math., 6, 64–94, 1962.

[29] A. C. C. Say and A. Yakaryılmaz. Quantum finite automata: A modern introduction. In
Gruska Festschrift, Lect. Notes Comput. Sci., 8808, pp. 208–22. Springer-Verlag, 2015.

[30] A. Szepietowski. Turing Machines with Sublogarithmic Space. Springer-Verlag, 1994.

[31] A. Yakaryılmaz. Superiority of one-way and realtime quantum machines. RAIRO Inform.
Théor. Appl., 46, 615–41, 2012.

[32] A. Yakaryılmaz. One-counter verifiers for decidable languages. In Proc. Comput. Sci. Russia,
Lect. Notes Comput. Sci., 7913, pp. 366–77. Springer-Verlag, 2013.

[33] A. Yakaryılmaz. Public qubits versus private coins. In Proc. Workshop on Quantum and
Classical Complexity, pp. 45–60. Univ. Latvia Press, 2013. ECCC:TR12-130.

19

[34] A. Yakaryılmaz and A. C. C. Say. Efficient probability amplification in two-way quantum finite
automata. Theoret. Comput. Sci., 410, 1932–41, 2009.

[35] A. Yakaryılmaz and A. C. C. Say. Succinctness of two-way probabilistic and quantum finite
automata. Discrete Math. & Theoret. Comput. Sci., 12, 19–40, 2010.

[36] A. Yakaryılmaz and A. C. C. Say. Tight bounds for the space complexity of nonregular language
recognition by real-time machines. Internat. J. Found. Comput. Sci., 24, 1243–53, 2013.

Appendix. The 2QCFA P for POWER

The description of P is as follows. Let w ∈ {a, b}∗ be an input. We can assume the input
of the form ambn, where m > 0 and n > 0. Otherwise, P rejects.

The quantum register has three states: |q1〉, |q2〉, |q3〉. P encodes 2m and n into ampli-
tudes of |q2〉 and |q3〉 and compares them by subtracting. The resulting amplitude is zero if
and only if the amplitudes are equal. Based on this, the input is rejected. Since we use only
rational numbers, we can bound a nonzero rejecting probability from below, with zero prob-
ability only for the members. With a carefully tuned accepting probability, the members
are only accepted while the nonmembers are rejected with a probability that is sufficiently
high. Since this gap is achieved only with a small probability, we run the procedure in an
infinite loop.

In each iteration (round), the input is read from left to right in a realtime mood. At
the beginning of each round, the quantum state is set to |ψ0〉 = (1 0 0)T. We keep the
unconditional quantum state until we read the left endmarker. Then E¢ = {E¢,1, E¢,2} is
applied to the quantum register, i.e.,

E¢,1 =
1
2

(

1 0 0
1 0 0
0 0 2

)

and E¢,2 =
1
2

(

1 0 0
1 0 0
0 2 0

)

,

where (i) the current round continues if the outcome “¢,1” is observed, and (ii) the cur-
rent round is terminated without any decision if the outcome “¢,2” is observed. Before
reading a’s, the quantum state is

|ψ̃0〉 = 1
2 ·
(

1
1
0

)

.

For each a, Ea = {Ea,1, Ea,2} is applied to the quantum register, i.e.,

Ea,1 =
1
2

(

1 0 0
0 2 0
0 0 2

)

and Ea,2 =
1
2

(

1 0 0
1 0 0
1 0 0

)

,

where (i) the current round continues if the outcome “a,1” is observed, and (ii) the cur-
rent round is terminated without any decision if the outcome “a,2” is observed. Before
reading b’s, the quantum state is

|ψ̃m〉 =
(
1
2

)m+1 ·
(

1
2m

0

)

.

For each b, Eb = {Eb,1, Eb,2, Eb,3} is applied to the quantum register, i.e.,

Eb,1 =
1
2

(

1 0 0
0 1 0
1 0 1

)

, Eb,2 =
1
2

(

1 0 −1
1 0 0
0 1 1

)

, and Eb,3 =
1
2

(

0 1 −1
0 1 0
0 0 0

)

,

20

where (i) the current round continues if the outcome “b,1” is observed, and (ii) the current
round is terminated without any decision if the outcome “b,2” or “b,3” is observed. Before
reading the right endmarker, the quantum state is

|ψ̃|w|〉 =
(
1
2

)m+n+1 ·
(

1
2m

n

)

.

When reading the right endmarker, E$ = {E$,1, E$,2, E$,3, E$,4} is applied to the quantum
register, i.e.

E$,1 =
1
4

(

1 0 0
0 0 0
0 0 0

)

, E$,2 =
1
4

(

0 0 0
0 2 −2
0 2 −2

)

, E$,3 =
1
4

(

0 2 2
0 2 2
3 0 0

)

, and E$,4 =
1
4

(

2 0 0
1 0 0
0 0 0

)

,

where the actions based on the measurement outcomes are as follows:

• the input is accepted if the outcome “$,1” is observed,

• the input is rejected if the outcome “$,2” is observed, and

• the current round is terminated without any decision, otherwise.

Thus, if the outcome “$,1” is observed, the quantum state is

| ˜ψ|w|+1〉 =
(
1
2

)m+n+3 ·
(

1
0
0

)

.

That is, in a single round, the input is always accepted with probability (14)
m+n+3. If the

outcome “$,2” is observed, then the quantum state is

| ˜ψ|w|+1〉 =
(
1
2

)m+n+3 ·
(

0
2(2m−n)
2(2m−n)

)

.

That is, in a single round, the input will always be rejected with a probability (14)
m+n+3 ·8·

(2m−n)2, which is

• zero for any member and

• at least 8 times greater than the accepting probability for any nonmember.

Thus, we can conclude that P accepts any member with probability 1 and rejects any
nonmember with a probability at least 8

9 .

21

	1 Introduction
	2 Our Results and New Directions
	2.1 Deterministic, Nondeterministic, and Alternating Machines
	2.2 Probabilistic and Quantum Machines

	3 Definitions
	4 Realtime Nondeterministic Turing Machine – Theorem ??
	4.1 A Realtime Version – Main Idea
	4.2 Initialization – Details
	4.3 Modular Incrementing and Testing for Zero – Details
	4.4 Verifying the Size of the Allocated Space – Details
	4.5 The Finishing Touch

	5 Realtime Nondeterministic PDA – Theorem ??
	6 Realtime Alternating Counter Automaton – Theorem ??
	7 A Trade-Off to Alternation Depth
	8 Two-Way Deterministic PDA – Theorem ??
	9 Two-Way Quantum Counter Automata – Theorem ??
	Acknowledgments
	References
	Appendix – the 2QCFA P for POWER

