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We present a strongly exponential lower bound that applies both to the subset syn-
chronization threshold for binary deterministic automata and to the careful synchro-
nization threshold for binary partial automata. In the later form, the result finishes the
research initiated by Martyugin (2013). Moreover, we show that both the thresholds
remain strongly exponential even if restricted to strongly connected binary automata.
In addition, we apply our methods to computational complexity. Existence of a subset
reset word is known to be PSPACE-complete; we show that this holds even under the
restriction to strongly connected binary automata. The results apply also to the corre-
sponding thresholds in two more general settings: D1- and D3-directable nondeterministic
automata and composition sequences over finite domains.

Keywords: Reset Word, Directing Word, Synchronizing Word, Composition Sequence,
Černý Conjecture

1. Introduction

Questions about synchronization of finite automata have been studied since the early
times of automata theory. The basic concept is very natural: For a given machine,
we want to find an input sequence that would get the machine to a unique state, no
matter in which state the machine was before. Such sequence is called a reset worda.
If an automaton has some reset word, we call it a synchronizing automaton. For
deterministic automata these definitions are clear, while for more general types of
automata (partial, nondeterministic, probabilistic, weighted,...) there are multiple
variants, each of its own importance. Several fields of mathematics and engineering
deal with such notions. Classical applications (see [28]) include model-based testing
of sequential circuits, robotic manipulation, symbolic dynamics, and design of noise-
resistant systems [7], but there are important connections also with information
theory [27] and with formal models of biomolecular processes [4].

Two particular problems concerning synchronization has gained some publicity:
the Road Coloring Problem and the Černý Conjecture. The first has been solved by

∗Research supported by the Czech Science Foundation grant GA14-10799S and the GAUK grant
No. 52215.
aSome authors use the terms synchronizing word or directing word.
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Trahtman [25] in 2007 by proving that the edges of any aperiodic directed multi-
graph with constant out-degree can be colored such that a synchronizing deter-
ministic automaton arises. Motivation for the Road Coloring Problem comes from
symbolic dynamics [1]. On the other hand, the Černý Conjecture remains open since
1971 [6]. It claims that any n-state synchronizing deterministic automaton has a re-
set word of length at most (n− 1)

2. It is known that there is always a reset word
of length at most n3−n

6 [22]b.
We focus on two specific synchronization problems that both generalize the

problem represented by the Černý Conjecture. It may be surprising that in both
the cases the corresponding bounds become exponential:

• In a partial automaton, each transition is either undefined or defined unambigu-
ously. A careful reset word of such automaton maps all the states to one unique
state (using only the defined transitions). The problem is, for given n, how long a
shortest careful reset word of an n-state partial automaton may be? It is known
that in general it may have strongly exponential length, i.e., 2Ω(n).

• Given a deterministic automaton and a subset S of its states, a reset word of S

maps all the states of S to one unique state. The problem is, for given n, how long
a shortest reset word of a subset of states in an n-state deterministic automaton
may be? Again, it is known that in general it may have length 2Ω(n). Note that
the deterministic automata under consideration do not need to be synchronizing.

Both these questions, concerning also some variants and restrictions, have been
studied since 1970’s but until recently none of the presented bad cases (i.e., lower
bounds) have consisted of automata with two-letter or any other fixed-size alpha-
bets. The definitions above allow the alphabet to grow with growing number of
states, which offers a very strong tool for constructing series that witness strongly
exponential lower bounds.

In 2013 Martyugin [19] gives a lower bound of the form 2Ω(
n

log n) that applies
to both the problems restricted to automata with two-letter alphabets (i.e., binary

automata). Moreover, for each fixed alphabet size m ≥ 2, the author of [19] provides
a specific multiplicative constant in the exponent. There is a simple construction
(Lemma 6) guaranteeing that existence of a lower bound of the form 2Ω(n) for any
particular alphabet size m implies a lower bound of the same form for any other
m ≥ 2 as well. However it remained as an open question if the lower bounds can be
raised to 2Ω(n) in such a way.

In the present paper we give the answer: We present a lower bound of the form
2Ω(n) that applies to both the problems restricted to binary automata. Moreover,
we introduce a technique for applying the lower bounds even under the restriction
to strongly connected binary automata. The main results are expressed by Theorem
1 in Section 5.

bAn improved bound published by Trahtman [26] in 2011 has turned out to be proved incorrectly,
see [10].
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2. Preliminaries

2.1. Partial finite automata

A partial finite automaton (PFA) is a triple A = (Q,X, δ), where Q and X are finite
sets and δ : Q×X → Q is a partial function. Elements of Q are called states, X is
the alphabet. The transition function δ can be naturally extended to Q ×X⋆ → Q

by defining

δ(s, vx) = δ(δ(s, v) , x)

inductively for x ∈ X, v ∈ X⋆ if the right-hand side is defined. We extend δ also
with

δ(S,w) = {δ(s, w) | s ∈ S, δ(s, w) defined}
for each S ⊆ Q and w ∈ X⋆. A PFA is deterministic (DFA) if δ is a total function.
A PFA (Q,X, δ) is said to be strongly connectedc if

(∀r, s ∈ Q) (∃w ∈ X⋆) δ(r, w) = s.

A state s ∈ Q is a sink state if δ(s, x) = s for each x ∈ X . Clearly, if a nontrivial
PFA has a sink state, it is impossible for the PFA to be strongly connected. The
class of all strongly connected PFA and the class of all PFA with k-letter alphabets
are denoted by SC and ALk respectively. Automata from AL2 are called binary.

2.2. Careful synchronization

For a given PFA, we call w ∈ X⋆ a careful reset word if

(∃r ∈ Q) (∀s ∈ Q) δ(s, w) = r.

If such a word exists, the automaton is carefully synchronizing. There are also no-
tions that describe „less careful” variants of synchronization of PFA. E.g., both the
definition of D2-directing (see Section 6.2) and the definition of a reset word from [3]
give conditions that may hold for words that are not careful reset words. However,
all the notions are identical if we consider only DFA. In such cases we can just use
terms reset word and synchronizing, without the adjective careful. In DFA, each
word having a reset word as a factor is also a reset word. Note that in a carefully
synchronizing PFA, there is always at least one x ∈ X such that δ(s, x) is defined
on each s ∈ Q.

We use the following notation consistent with [19]. For a PFA A, let car(A)

denote the length of a shortest careful reset word of A. If there is no such word, we
put car(A) = 0. For each n ≥ 1, let car(n) denote the maximum value of car(A)
taken over all n-state PFA A. It is easy to see that car(n) ≤ 2n − n− 1 for each n,
but this upper bound has been pushed down to car(n) = O

(

n2 · 4n
3

)

by Gazdag,
Iván, and Nagy-György [9] in 2009.

cSome authors use the term transitive automaton.
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2.3. Subset synchronization

Even if a PFA is not synchronizing, there could be various subsets S ⊆ Q such that

(∃r ∈ Q) (∀s ∈ S) δ(s, w) = r

for some word w ∈ X⋆. We say that such S is carefully synchronizable in A and in
the opposite case we say it is blind in A. The word w is called a careful reset word

of S in A. If A is a DFA, we call w just a reset word of a synchronizable subset
S in A. Such words concerning DFA are of our main interest. They lack some of
the elegant properties of classical reset words of DFA (i.e., reset words of S = Q),
particularly a word w having a factor v which is a reset word of S need not to be
itself a reset word of S. In fact, if we choose a subset S and a word w, it is possible
for the set δ(S,w) to be blind even if the set S is synchronizable.

For a PFA A, and S ⊆ Q let csub(A) denote the minimum length of a careful
reset word of S in A. If S is blind, we set csub(A,S) = 0. If A is a DFA we
write sub(A) instead of csub(A). For each n ≥ 1, let csub(n) (and sub(n)) denote
the maximum value of csub(A) taken over all n-state PFA A (or n-state DFA A

respectively) and all their subsets of states. It is easy to see that

sub(n) ≤ csub(n) ≤ 2n − n− 1

for each n. Our strongly exponential lower bound applies to sub(n) and thus to
csub(n) as well. The values csub(n) play only an auxiliary role in the present paper.

If an automaton A = (Q,X, δ) and a subset S ⊆ Q are given (possibly with
S = Q), we say that s ∈ Q is active after (or during) the application of u ∈ X⋆ if
s ∈ δ(S, u) (or s ∈ δ(S, v) for a prefix v of u, respectively).

3. Previously Known Lower Bounds

Let M be a class of automata. For each n let M≤n be the class of all automata
lying in M and having at most n states. For each n ≥ 1 we extend our notation of
carM(n), subM(n), and csubM(n), denoting the maximum values of car(A), sub(A)
and csub(A) taken over A ∈ M≤n. In the cases of subM(n) and csubM(n), we use
the notion in the obvious way even if M is a class of pairs automaton-subset. All
such notions we informally call synchronization thresholds.

In 1976 Burkhard [5] showed that for any n ≥ 2 and k ≤ n − 2 it is not
hard to produce an n-state,

(

n−2
k−1

)

-letter DFA with a k-state subset S such that
sub(A,S) ≥

(

n−2
k−1

)

. If we set k = n
2 and use Stirling’s approximation to check that

(

n
n
2

)

≈
√

2

π
· 2n√

n
,

we get

sub(n) = Ω

(

2n√
n

)

.
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The threshold car(n) was initially studied in 1982 by Goralčík et al. [11], together
with several related problems. The authors show that for infinitely many n there is
a permutation of n states having order at least ( 3

√
n)! and they use it to prove that

car(n) ≥ ( 3
√
n)!. The construction can be easily (e.g., using our Lemma 1) modified

to establish sub(n) ≥ ( 3
√
n)! as well, as it was later re-discovered in the paper [16].

Though exceeded by Ω
(

2n√
n

)

, the later lower bound of sub(n) remains interesting
since the proof uses binary alphabets only.

In [14], Ito and Shikishima-Tsuji proved that car(n) ≥ 2
n
2 and the construction

was subsequently improved by Martyugin [18] in order to reach car(n) ≥ 3
n
3 . Again,

the construction can be applied to subsets, so we get sub(n) ≥ 3
n
3 . However, the

last proofs seem to use very artificial examples of automata:

• In the series, the alphabet size grows linearly with the growing number of states -
the proofs rely on the convention of measuring the size of an automaton only by
the number of states. The results say nothing about the thresholds subALk(n) or
carALk(n) for any k ≥ 2. In 2013, Martyugin [19] proves that

carAL2(n) > 3
n

6·log2 n

and

carALk(n) > 3
n

3·logm−1 n

for each k ≥ 3, which applies in a similar form also to subset synchronization.
However, it remained unclear whether carALk(n) = 2Ω(n) or subALk(n) = 2Ω(n)

for some k ≥ 2. Here we confirm this for k = 2, so for any greater k the claim
follows easily.

• In the case of subset synchronization, the DFA have sink states, typically two of
them in each automaton. Use of sink states is a very strong tool for designing au-
tomata having given properties, but in practice such automata seem very special.
They represent unstable systems balancing between different deadlocks. The very
opposite are strongly connected automata. Does the threshold remain so high if
we consider only strongly connected DFA? Unfortunately, we show below that
it does, even if we restrict the alphabet size to a constant. We introduce swap

congruences as an alternative to sink states.
Note that in the case of careful synchronization, any lower bound of car(n) ap-
plies easily to carSC(n) using a simple trick from Lemma 2. Moreover, for suitable
series the alphabet size is increased only by a constant.

In short, in the present paper we prove that

subAL2∩SC(n) = 2Ω(n),

carAL2∩SC(n) = 2Ω(n).

The new bounds are tight in the sense of car(n) = 2θ(n) and sub(n) = 2θ(n).
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4. Reductions between Thresholds

This section prepares the ground for the results presented in Section 5 by introducing
basic principles and relationships concerning the studied thresholds. The principles
are not innovative, except for the method using swap congruences described in the
paragraph 4.2, dealing with strong connectivity in subset synchronization.

As noted above, many of the lower bounds of car(n) and sub(n) found in the
literature were formulated for only one of the notions but used ideas applicable to
the other as well. The key method used in the present paper is of this kind again.
However, we are not able to calculate any of the thresholds from the other exactly, so
we at least show several related inequalities and then use some of them in Section 5
to prove the main results. We use the term reduction since we prove the inequalities
by transforming an instance of a problem to an instance of another problem.

4.1. Determinization by adding sink states

The following inequality is not a key tool of the present paper; we prove it in order
to illustrate that even careful subset synchronization is not much harder than subset
synchronization itself. Recall that trivially car(n) ≤ csub(n) and sub(n) ≤ csub(n)

for each n.

Lemma 1. For each n ≥ 1 it holds that

csub(n) ≤ sub(n+ 2)− 1.

Proof. Take any PFA A = (QA, XA, δA) with a carefully synchronizable subset
SA ⊆ QA and choose a shortest careful reset word w ∈ X⋆ of SA with δA(s, w) = r0
for each s ∈ SA. We construct a DFA B = (QB, XB, δB) and a synchronizable
subset SB ⊆ QB such that sub(B,SB) ≥ |w|+ 1. Let us set

QB = QA ∪
{

D,D
}

,

XB = XA ∪ {ω} ,
δB(D, x) = D,

δB
(

D, x
)

= D

for each x ∈ XB, and

δB(s, x) =

{

δA(s, x) if defined,

D otherwise,
δB(s, ω) =

{

D if s = r0,

D otherwise

for each s ∈ QA, x ∈ XA. Denote SB = SA ∪ {D} . The word wω witnesses that
the subset SB is synchronizable. On the other hand, let v be any reset word of SB.
Since D is a sink state and D ∈ SB , we have δB(v, s) = D for each s ∈ SB. Thus:

• The state D is not active during the application of v.
• There need to be an occurrence of ω in v.

Denote v = v0ωv1, where v0 ∈ X⋆
A and v1 ∈ X⋆

B. If |δB(SB, v0) ∩QA| = 1, we are
done since v0 maps all the states of SA to a unique state using only the transitions
defined in A, so |v| ≥ |w| + 1. Otherwise, there is some s ∈ δB(QB, v0) ∩ QA such
that s 6= r0, but then δB(ω, s) = D, which is a contradiction.
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4.2. Strong connectivity

First, we show an easy reduction concerning careful synchronization of strongly
connected PFA. We use a simple trick: A letter that is defined only on a single state
cannot appear in a shortest careful reset word, so one can make a PFA strongly
connected by adding such letters. The number of new letters needed may be reduced
by adding special states, but the simple variant described by Lemma 2 is illustrative
and strong enough for our purpose.

For each j ≥ 0 we define the class Cj of PFA as follows. A PFA A = (Q,X, δ)

belongs to Cj if there are j pairs (r1, q1) , . . . , (rj , qj) ∈ Q × Q such that adding
transitions of the form ri −→ qi for each i = 1, . . . , j makes the automaton strongly
connected. Note that C0 = SC.

Lemma 2. For each n, k, j ≥ 1 it holds that

carALk∩Cj (n) ≤ carALk+j∩SC(n) .

Proof. Take any PFA A = (Q,XA, δA) ∈ ALk ∩ Cj together with the pairs
(r1, q1) , . . . , (rj , qj) ∈ Q × Q from the definition of Cj. We construct a PFA
B = (Q,XB, δB) where XB = XA ∪ {ψ1, . . . , ψj}, δB(s, x) = δA(s, x) for x ∈ XA

and s ∈ Q, and

δB(s, ψi) =

{

qi if s = ri,

undefined otherwise

for i = 1 . . . , , j′ and s ∈ Q. Now it is easy to check that B is strongly connected
and that car(B) = car(A).

Second, we present an original method concerning subset synchronization of strongly
connected DFA. All the lower bounds applicable to sub(n) that we have found in
the literature used two sink states (deadlocks) to force application of particular
letters during a synchronization process. A common step in such proof looks like
„The letter x cannot be applied since that would make the sink state D active, while

another sink state D is active all the time”. In order to prove a lower bound of
subSC(n), we have to develop an alternative mechanism. Our mechanism relies on
swap congruences :

Recall that, given a DFA A = (Q,X, δ), an equivalence relation ρ ⊆ Q×Q is a
congruence if

rρs ⇒ δ(r, x) ρ δ(s, x)

for each x ∈ X . We say that a congruence ρ is a swap congruence of a DFA if,
for each equivalence class C of ρ and each letter x ∈ X , the restricted function
δ : C×{x} → Q is injective. The key property of swap congruences is the following.

Lemma 3. Let A = (Q,X, δ) be a DFA, let ρ ⊆ Q ×Q be a swap congruence and

take any S ⊆ Q. If there are any r, s ∈ S with r 6= s and rρs, the set S is blind.
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Proof. Because r and s lie in a common equivalence class of ρ, by the definition
of a swap congruence we have δ(r, w) 6= δ(s, w) for any w ∈ X⋆.

Thus, the alternative mechanism relies on arguments of the form „The letter x

cannot be applied since that would make both the states r, s active, while it holds that

rρs”. It turns out that our results based on the method can be derived from more
transparent but not strongly connected constructions by the following reduction
principle:

Lemma 4. For each n ≥ 1 it holds that

sub(n) ≤ subSC(2n+ 2)− 1.

Moreover, for each n, k ≥ 1 and j ≥ 2 it holds that

subALk∩Cj (n) ≤ subALk+j∩SC(2n+ 2)− 1.

Proof. The first claim follows easily from the second one. So, take any DFA A =

(QA, XA, δA) ∈ ALk ∩ Cj together with the pairs (r1, q1) , . . . , (rj , qj) ∈ QA × QA
from the definition of Cj and let S ⊆ QA be synchronizable. We construct a strongly
connected DFA B = (QB, XB, δB) and a subset SB ⊆ QB such that sub (B,SB) ≥
sub (A,SA) + 1. Let us set

QB = {s, s | s ∈ QA} ∪
{

E,E
}

,

XB = XA ∪ {ψ1, . . . , ψj} .
We want the relation

ρ = 〈(s, s) | s ∈ QA ∪ {E}〉 ,
where 〈. . . 〉 denotes an equivalence closure, to be a swap congruence. Regarding
this requirement, it is enough to define δB on QA ∪ {E}. The remaining transitions
are forced by the injectivity on the equivalence classes. We set

δB(s, x) = δA(s, x) , δB(E, x) = E

for any s ∈ QA, x ∈ XA, while the letters ψ1, . . . , ψj act as follows:

δB(s, ψI) =

{

qI if s = rI ,

qI otherwise,
δB(E, ψI) = qI ,

δB(s, ψi) =

{

qi if s = ri,

E otherwise,
δB(E, ψi) = E

for s ∈ QA and i 6= I, where I is chosen such that for a reset word w of SA in A

with δA(s, w) = r0, the state rI is reachable from r0. It is easy to see that such I

exists for any r0 ∈ SA. We set SB = SA ∪ {E}.

• First, note that the set SB is synchronizable in B by the word wuψI where u ∈ X⋆
A

such that δA(r0, u) = rI .
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• On the other hand, let v be a reset word of SB in B. The word v necessarily
contains some ψi for i ∈ {1, . . . , j}, so we can write v = v0ψiv1, where v0 ∈
X⋆
A, v1 ∈ X⋆

B. If v0 is a reset word of SA in A, |v| ≥ sub(A,SA) + 1 and we are
done. Otherwise there is a state s 6= ri in δB(S, v0) and we see that both qi and
qi (if i = I) or both E and E (if i 6= I) lie in δB(S, v0ψ1), which is a contradiction
with properties of the swap congruence ρ.

The automaton B is strongly connected since the transitions ri
ψi−→ qi and ri

ψi−→ qi
for each i = 1, . . . , j make both the copies of A strongly connected and there are

transitions E
ψI−→ qI , s

ψi−→ E , E
ψI−→ q2, and s

ψi−→ E for some i 6= I and s 6= ri.

4.3. A special case of subset synchronization

We are not aware of any general bad-case reduction from subset synchronization
to careful synchronization. Here we suggest a special class (denoted by MP) of
pairs automaton-subset such that the instances from the class are in certain sense
reducible to careful synchronization. The main construction of the present paper
(i.e., the proof of Lemma 7) yields instances of subset synchronization that fit to
this class. We use the following definitions:

• Given a PFA A = (Q,X, δ) and a carefully synchronizable subset S ⊆ Q, the
S-relevant part of A is

QA,S =
⋃

w∈WS

δ(S,w) ,

where WS is the set of prefixes of careful reset words of S in A. The S-relevant

automaton of A is RA,S = (QA,S, X, δA,S), where

δA,S(s, x) =

{

δ(s, x) if δ(s, x) ∈ QA,S,

undefined otherwise

for each s ∈ QA,S and x ∈ X .
• The class MP is defined as follows. For any PFA A = (Q,X, δ) and any care-

fully synchronizable S ⊆ Q, the pair 〈A,S〉 lies in MP if there are subsets
P1, . . . , P|S| ⊆ Q such that:

(a) The sets P1, . . . , P|S| are disjoint and
⋃|S|
i=1 Pi = QA,S .

(b) For each v ∈ X⋆ such that δ(s, u) ∈ QA,S for any prefix u of v and any s ∈ S,
it holds that v is a careful reset word of S, or

|δ(S, v) ∩ Pi| = 1

for each i = 1, . . . , |S|. In particular, the choice of empty v implies that

|S ∩ Pi| = 1

must hold for each i = 1, . . . , |S|.
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• The class CR
j for j ≥ 0 is defined as follows. For any PFA A = (Q,X, δ) and any

carefully synchronizable S ⊆ Q, the pair 〈A,S〉 lies in CR
j if RA,S ∈ Cj .

Lemma 5. For each n ≥ 1 it holds that

csubMP(n) ≤ car(n) .

Moreover, for each n, k, j ≥ 1 it holds that

csubALk∩CR
j ∩MP(n) ≤ carALk+1∩Cj (n) .

Proof. The first claim follows easily from the second. So, take any 〈A,S〉 ∈ MP

with A = (Q,XA, δA) and S ⊆ Q, together with the sets P1, . . . , P|S| from the
definition of MP. By adding a letter α to the automaton RA,S , we construct a
carefully synchronizing PFA B = (QA,S, XB, δB) with car(B) ≥ csub(A,S). Let
XB = XA ∪ {α} . For each s ∈ QA,S we find the i such that s ∈ Pi and define

δB(s, α) = qi,

where qi is the only state lying in S ∩Pi, as guaranteed by the membership in MP.
The letters of XA act in B as they do in RA,S .

• It is easy to check that the automaton B is carefully synchronizing by αw for any
w ∈ X⋆

A that is a careful reset word of S in A.
• On the other hand, take a shortest careful reset word v of B. If α does not occur

in v, then v is a careful reset word of S in A, so |v| ≥ csub (A,S). Otherwise,
denote v = v0αv1 where v0 ∈ X⋆

B and v1 ∈ X⋆
A. By the membership in MP we

have |δ(S, v0) ∩ Pi| = 1 for each i = 1, . . . , |S| and thus δB(S, v0α) = S. It follows
that v1 is a careful reset word of S in A, so |v| ≥ csub (A,S).

4.4. Decreasing the alphabet size

The following method is quite simple and has been already used in the literature
[2]. It modifies an automaton in order to decrease the alphabet size while preserving
high synchronization thresholds.

Lemma 6. For each n, k ≥ 1 it holds that

(i) subALk(n) ≤ subAL2(k · n) and subALk∩SC(n) ≤ subAL2∩SC(k · n) ,
(ii) carALk(n) ≤ carAL2(k · n) and carALk∩SC(n) ≤ carAL2∩SC(k · n) .

Proof. Take a PFA A = (QA, XA, δA) with XA = {a0, . . . , am}. We define a PFA
B = (QB, XB, δB) as follows: QB = QA ×XA, XB = {α, β}, and

δB((s, ai) , α) =

{

(δA(s, ai) , a0) if δA(s, ai) is defined,

undefined otherwise,

δB((s, ai) , β) =

{

(s, ai+1) if i < m,

(s, am) if i = m
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for each i = 0, . . . ,m. The construction of B applies to both the claims:

(i) Let A be a DFA. We choose a synchronizable SA ⊆ QA and denote SB =

SA × {a0}. It is not hard to see that reset words of SB in B are in a one-
to-one correspondence with reset words of SA in A. A word ai1 . . . aid ∈ X⋆

A

corresponds to
(

βi1α
)

. . .
(

βidα
)

∈ X⋆
B.

(ii) Let A be carefully synchronizing. We can suppose that δA(s, am) is defined on
each s ∈ QA since for a carefully synchronizing PFA there always exists such
letter. For any careful reset word ai1 . . . aid of A, the word βmα

(

βi1α
)

. . .
(

βidα
)

is a careful reset word of B. On the other hand, any careful reset word of B
is also a careful reset word of the subset QA × {a0} ⊆ QB, whose careful reset
words are in a one-to-one correspondence with careful reset words of A, like in
the previous case.

Since δB((s, am) , α) is defined for each s ∈ SA, it is not hard to check that if A is
strongly connected, so is B.

5. The New Lower Bounds

5.1. The key construction

Let us present the central construction of the present paper. We build a series of
DFA with a constant-size alphabet and a constant structure of strongly connected
components, together with subsets that require strongly exponential reset words.
Moreover, the pairs automaton-subset are of the special kind represented by MP,
so a reduction to careful synchronization of PFA, as introduced in Lemma 5, is
possible.

Lemma 7. For infinitely many m ≥ 1 it holds that

subAL4∩C2∩CR
2 ∩MP(5m+ logm+ 3) ≥ 2m · (logm+ 1) + 1.

Proof. Suppose m = 2k. For each t ∈ 0, . . . ,m − 1 we denote by τ = bin(t) the
standard k-digit binary representation of t, i.e., a word from {0,1}k. By a classical
result proved in [8] there is a De Bruijn sequence ξ = ξ0 . . . ξm−1 consisting of letters
ξi ∈ {0,1} such that each word τ ∈ {0,1}k appears exactly once as a cyclic factor
of ξ (i.e., it is a factor or begins by a suffix of ξ and continues by a prefix of ξ). Let
us fix such ξ. By π(i) we denote the number t, whose binary representation bin(t)

starts by ξi in ξ. Note that π is a permutation of {0, . . . ,m− 1}. Set

Q =
(

{0, . . . ,m− 1} ×
{

0,0↓,1,1↓,1↑}) ∪
{

C0, . . . ,Ck,D,D
}

,

X = {0,1, κ, ω} ,
S = ({0, . . . ,m− 1} × {0}) ∪ {C0,D} .

Figure 1 visually distinguishes main parts of A. The states D and D are sink states.
Together with D ∈ S it implies that any reset word of S takes the states of S to
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{0, . . . ,m− 1} ×
{

0,0
↓
}

{0, . . . ,m− 1} ×
{

1,1
↓
,1

↑
} D

D

C0, . . . ,Ck

Fig. 1. A connectivity pattern of the automaton A.

C0

Ck−1

κ

0,1
0,1

0,10,1

ωX

X

0,1

0,1

D

D

C1 C2

Ck−2

Ck

Fig. 2. A part of A. All the outgoing transitions that are not depicted lead to D.

D and that the state D must not become active during its application. The states
C0, . . . ,Ck guarantee that any reset word of S lies in

(

{0,1}k κ
)⋆

ωX⋆. (1)

Indeed, as defined by Figure 2, no other word takes C0 to D. Let the letter ω act
as follows:

{0, . . . ,m− 1} × {1} ,C0,D
ω−→ D,

{0, . . . ,m− 1} ×
{

0,0↓,1↓,1↑} ,C1, . . . ,Clogm,D
ω−→ D.

We see that ω maps each state to D or D. This implies that once ω occurs in a
reset word of S, it must complete the synchronization. In order to map C0 to D,
the letter ω must occur, so any shortest reset word of S is exactly of the form

w = (τ1κ) . . . (τdκ)ω, (2)

where τj ∈ {0,1}k for each j.
The two biggest parts depicted by Figure 1 are very similar to each other. The

letters 0 and 1 act on them as follows:

(i,0)
0−→

{

(i + 1,0) if ξi = 0,
(

i+ 1,0↓) if ξi = 1,

(i,0)
1−→

{

D if ξi = 0,

(i + 1,0) if ξi = 1,

(i,1)
0−→

{

(i+ 1,1) if ξi = 0,
(

i+ 1,1↓) if ξi = 1,

(i,1)
1−→

{

(

i+ 1,1↑) if ξi = 0,

(i+ 1,1) if ξi = 1,

and (i,b)
0,1−→ (i+ 1,b) for each b = 0

↓,1↓,1↑, using the addition modulo m

everywhere. For example, Figure 3 depicts a part of A for m = 8 and for a
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0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 0,1

0,1
↓

0 0 1 0 1 1 1 0

1 1 1 1

0 0 0 0

0,1
↑

1,1
↑

2,1
↑

3,1
↑

4,1
↑

5,1
↑

6,1
↑

7,1
↑

0,1
↑

1,1
↓

3,1
↓

4,1
↓

5,1
↓

6,1
↓

7,1
↓

0,1
↓

2,1
↓

Fig. 3. A part of A assuming m = 8 and ξ = 00101110. Bold arrows represent both 0,1.

i,1↑

i,1i− k,1

i,1↓

i,0
i− k,0

i,0↓

Fig. 4. The action of the letter κ, with sub-
traction modulo m.

i,1

i,0

vπ(i)

{vt|t < π(i)}

{vt|t > π(i)}

{vt|t ≤ π(i)}

{vt|t > π(i)}

D

Fig. 5. The action of v0, . . . , vm−1 on the
i-th switch.

particular De Bruijn sequence ξ. Figure 4 defines the action of κ on the states
{i} ×

{

0,0↓,1,1↓,1↑} for any i, so the automaton A is completely defined.
Let w be a shortest reset word of S in A. It is necessarily of the form (2), so it

makes sense to denote vt = bin(t)κ and treat w as

w = vt1 . . . vtdω ∈ {v0, . . . , vm−1, ω}⋆ . (3)

The action of each vt is depicted by Figure 5. It is a key step of the proof to confirm
that Figure 5 is correct. Indeed:

• Starting from a state (i,1), a word bin(t) takes us through a kind of decision
tree to one of the states

(

i+ k,1↓) , (i+ k,1) ,
(

i+ k,1↑), depending on whether
t is less than, equal to, or greater than π(i), respectively. This is guaranteed by
wiring the sequence ξ into the transition function, see Figure 3. The letter κ then
takes us back to {i} × {. . . }, namely to (i,0) or (i,1).

• Starting from a state (i,0), we proceed similarly, but in the case of t > π(i) we
fall into D during the application of bin(t).

It follows that after applying any prefix vt1 . . . vtj of w, exactly one of the states
(i,0) , (i,1) is active for each i. We say that the i-th switch is set to 0 or 1 at
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time j. Note that QA\
{

D
}

is the S-relevant part of A and that the sets {i} ×
{

0,0↓,1,1↓,1↑} for i = 0, . . . ,m− 1, together with the sets {D} and {C0, . . . ,Ck},
can play the role of P1, . . . , Pm+2 in the definition of MP.

Observe that at time d all the switches are necessarily set to 1 because otherwise
the state D would become active by the application of ω. On the other hand, at
time 0 all the switches are set to 0. We are going to show that in fact during the
synchronization of S the switches together perform a binary counting from 0 (all
the switches set to 0) to 2m−1 (all the switches set to 1). For each i the significance

of the i-th switch is given by the value π(i). So the π−1(m− 1)-th switch carries the
most significant digit, the π−1(0)-th switch carries the least significant digit and so
on. The number represented in this manner by the switches at time j is denoted by
bj ∈ {0, . . . , 2m − 1}. We claim that bj = j for each j. Indeed:

• At time 0, all the switches are set to 0, we have b0 = 0.
• Suppose that bj′ = j′ for each j′ ≤ j − 1. We denote

tj = min {π(i) | i-th switch is set to 0 at time j − 1} (4)

and claim that tj = tj . Note that tj is defined to be the least significance level
at which there occurs a 0 in the binary representation of bj−1. Suppose for a
contradiction that tj > tj . By the definition of tj the state

(

π−1
(

tj
)

,0
)

lies in
δ
(

S, vt1 . . . vtj−1

)

. But vtj takes this state to D, which is a contradiction. Now
suppose that tj < tj . In such case the application of vtj does not turn any switch
from 0 to 1, so bj ≤ bj−1 and thus at time j the configuration of switches is the
same at it was at time bj . This contradicts the assumption that w is a shortest
reset word. We have proved that tj = tj and it remains only to show that the
application of vtj performs the addition of 1 and so makes the switches represent
the value bj−1 + 1.

(a) Consider an i-th switch with π(i) < tj . By the definition of tj, it is set to 1

at time j − 1 and the word vtj sets it to 0 at time j. This is what we need
because such switches represent a continuous leading segment of 1s in the
binary representation of bj−1.

(b) The π−1(tj)-th switch is set from 0 to 1 by the word vtj .
(c) Consider an i-th switch with π(i) > tj . The switch represents a digit of bj−1

which is more significant than the tj-th digit. As we expect, the word vtj
leaves such switch unchanged.

Because bd = 2m, we deduce that d = 2m and thus |w| = 2m · (k + 1)+ 1, assuming
that a shortest reset word w exists. But in fact we have also shown that there is
only one possibility for such w and that it is a true reset word for S. The unique
w is of the form (3), where tj is the position of the least significant 0 in the binary
representation of j − 1.

The automaton A lies in C2∩CR
2 since the addition of D −→ C0 and D −→ (0,0)

makesA strongly connected, while the addition of D −→ C0 and C0 −→ (0,0) makes
RA,S strongly connected.
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5.2. The results

The following theorem presents the main results of the present paper:

Theorem 1. For infinitely many n ≥ 1 it holds that

(i) subAL2∩SC(n) ≥ 2
n
61 ,

(ii) carAL2∩SC(n) ≥ 2
n
36 .

Proof. Lemma 7 says that

2m · (logm+ 1) + 1 ≤ subAL4∩C2∩CR
2 ∩MP(5m+ logm+ 3) (5)

for infinitely many m ≥ 1. Now we apply some of the lemmas from Section 4:

(i) Lemma 4 extends (5) with

subAL4∩C2(5m+ logm+ 3) ≤ subAL6∩SC(10m+ 2 · logm+ 8)− 1

and Lemma 6 adds

subAL6∩SC(10m+ 2 · logm+ 8)− 1 ≤ subAL2∩SC(60m+ 12 · logm+ 48)− 1.

We chain the three inequalities and deduce

subAL2∩SC(60m+ 12 · logm+ 48) ≥ 2m · (logm+ 1) + 2,

subAL2∩SC(61m) ≥ 2m,

subAL2∩SC(n) ≥ 2
n
61 .

(ii) Lemma 5 extends (5) with

csubAL4∩CR
2 ∩MP(5m+ logm+ 3) ≤ carAL5∩C2(5m+ logm+ 3) ,

while Lemma 2 adds

carAL5∩C2(5m+ logm+ 3) ≤ carAL7∩SC(5m+ logm+ 3)

and Lemma 6 adds

carAL7∩SC(5m+ logm+ 3) ≤ carAL2∩SC(35m+ 7 · logm+ 21) .

We chain the four inequalities and deduce:

carAL2∩SC(35m+ 7 · logm+ 21) ≥ 2m · (logm+ 1) + 1,

carAL2∩SC(36m) ≥ 2m,

carAL2∩SC(n) ≥ 2
n
36 .

Note that there are more subtle results for less restricted classes of automata:

Proposition 1. It holds that subAL2(n) ≥ 2
n
21 , carAL2(n) ≥ 2

n
26 , subSC(n) ≥ 3

n
6 ,

and carSC(n) ≥ 3
n
3 for infinitely many n ≥ 1.

Proof. The first claim follows easily from Lemmas 7 and 6, the second one requires
also using Lemma 5 first. The third and the last claim follow from applying Lemmas
1 and 4 (or Lemma 2 respectively) to the construction from [18].
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6. Consequences and Reformulations

6.1. Computational problems

It is well known that the decision about synchronizability of a given DFA is a
polynomial time task, even if we also require an explicit reset word on the output.
A lot of work has been done on such algorithms in effort to make them produce
short reset words in short running time. However, it has been proven that it is both
NP-hard and coNP-hard (it is actually DP-complete) to recognize the length of
shortest reset words for a given DFA, while it is still NP-hard to recognize its upper
bounds or to approximate it with a constant factor, see references in [21] and [2].

On the other hand, there has not been done much research in computational
complexity of problems concerning subset synchronization and careful synchroniza-
tion, although they does not seem to have less chance to emerge in practice. Namely,
the first natural problems in these directions are

Subset synchronizability

Input: n-state DFA A = (Q,X, δ), S ⊆ Q

Output: is there some w ∈ X⋆ such that |δ(S,w)| = 1?

Careful synchronizability

Input: n-state PFA A = (Q,X, δ),
Output: is there some w ∈ X⋆ such that (∃r ∈ Q) (∀s ∈ Q) δ(s, w) = r?

Both these problems, in contrast to the synchronizability of DFA, are known to
be PSPACE-complete:

Theorem 2. [20, 24] Subset synchronizability is a PSPACE-complete prob-

lem.

Theorem 3. [17] Careful synchronizability is a PSPACE-complete problem.

Note that such hardness is not a consequence of any lower bound of synchronization
thresholds, because an algorithm does not need to produce an explicit reset word.
The proofs of both the theorems above make use of a result of Kozen [15], which
establishes that it is PSPACE-complete to decide if given finite acceptors with a
common alphabet accept a common word. This problem is polynomially reduced
to our problems using the idea of two sink states. Is it possible to avoid the non-
connectivity here?

In the case of Careful synchronizability, the simple trick from Lemma 2
easily reduces the general problem to the variant restricted to strongly connected
automata, and it turns out that the method of swap congruences is general enough
to perform such reduction also in the case of Subset synchronizability:

Theorem 4. The following problems are PSPACE-complete:

(i) Subset synchronizability restricted to binary strongly connected DFA
(ii) Careful synchronizability restricted to binary strongly connected PFA
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Proof. There are polynomial reductions from the general problems Subset syn-

chronizability and Careful synchronizability: Perform the construction
from Lemma 4 (or Lemma 2 respectively) and then the one from Lemma 6.

6.2. Synchronization thresholds of NFA

In 1999, Imreh and Steinby [13] introduced three different synchronization thresh-
olds concerning general non-deterministic finite automata (NFA). We define an NFA
as a pair A = (Q,X, δ) where Q is a finite set of states, X is a finite alphabet and
δ : Q×X → 2Q is a total function, extended in the canonical way to δ : Q×X⋆ → 2Q.
For any S ⊆ Q we denote δ(S,w) =

⋃

s∈S δ(s, w).
The key definitions are the following. For an NFA A, a word w ∈ X⋆ is:

• D1-directing if there is r ∈ Q such that δA(s, w) = {r} for each s ∈ Q,
• D2-directing if δA(s1, w) = δA(s2, w) for each s1, s2 ∈ Q,
• D3-directing if there is r ∈ Q such that r ∈ δA(s, w) for each s ∈ Q.

By d1(A) , d2(A) , d3(A) we denote the length of shortest D1-, D2-, and D3-directing
words for A, or 0 if there is no such word. By d1(n) , d2(n) , d3(n) we denote the
maximum values of d1(A) , d2(A) , d3(A) taken over all NFA A with at most n states.
Possible restrictions are marked by superscripts as usual.

It is clear that PFA are a special kind of NFA. Any careful reset word of a PFA
A is D1-, D2-, and D3-directing. On the other hand, any D1- or D3-directing word
of a PFA is a careful reset word. Thus, we get

dPFA
2 (n) ≤ dPFA

1 (n) = dPFA
3 (n) = car(n)

and

d1(n) ≥ car(n) , d3(n) ≥ car(n) . (6)

Note that a D2-directing word w of a PFA A is either a careful reset word of A or
satisfies that δ({s} , w) = ∅ for each s ∈ Q. PFA are of a special importance for the
threshold d3(n) since due to a key lemma from [14], for any n-state NFA A there is
a n-state PFA B such that d3(B) ≥ d3(A), so we have d3(n) = dPFA

3 (n) for each n.
It is known that d1(n) = Ω(2n) [14] and d3(n) = Ω

(

3
n
3

)

[18] (for upper bounds
and further details see [9]). Due to the easy relationship similar to (6), our strongly
exponential lower bounds apply directly to the thresholds d1(n) and d3(n) with the
restriction to binary strongly connected NFA:

dAL2∩SC
1 (n) = 2Ω(n), dAL2∩SC

3 (n) = 2Ω(n).

6.3. Compositional depths

It has been pointed out by Arto Salomaa [23] in 2001 that very little is known about
the minimum length of a composition needed to generate a function by a given set
of generators. To be more precise, let us adopt and slightly extend the notation used
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in [23]. We denote by Tn the semigroup of all functions from {1, . . . , n} to itself.
Given G ⊆ Tn, we denote by 〈G〉 the subsemigroup generated by G. Given F ⊆ Tn,
we denote by D(G,F) the length k of a shortest sequence g1, . . . , gk of functions
from G such that g1 ◦ · · · ◦ gk ∈ F. Finally, denote

Dn = max
n≤n

max
F,G⊆Tn

F∩〈G〉6=∅

D(G,F) . (7)

Note that in Group Theory, thresholds like Dn are studied in the scope of permu-
tations, see [12].

From basic connections between automata and transformation semigroups it fol-
lows that various synchronization thresholds can be defined alternatively by putting
additional restrictions to the space of considered sets G and F in the definition (7)
of the threshold Dn:

(i) For the basic synchronization threshold of DFA (may be denoted by
carDFA(n)), we restrict F to be exactly the set of n-ary constant functions.
Recall that a set G ⊆ Tn corresponds to a DFA A = ({1, . . . n} , X, δ): Each
g ∈ G just encodes the action of certain x ∈ X . Finding a reset word of A then
equals composing transitions from G in order to get a constant.

(ii) For the threshold sub(n), we restrict F to be some of the sets

FS = {f ∈ Tn | (∀r, s ∈ S) f (r) = f (s)}

for S ⊆ {1, . . . , n}. Therefore it holds that Dn ≥ sub(n) .

(iii) For car(n), we should consider an alternative formalism for PFA, where the
„undefined” transitions lead to a special error sink state. Let the largest number
stand for the error state. A careful reset word should map all the states except
for the error state to one particular non-error state. So, here we restrict

F = {f ∈ Tn | (∀r, s ∈ {1, . . . , n− 1}) f (r) = f (s) 6= n} ,
G ⊆ {g ∈ Tn | g(n) = n} .

However, in the canonical formalism such G ⊆ Tn corresponds to a (n− 1)-
state PFA, so we get Dn ≥ car(n− 1) . Allowing suitable sets FS for S ⊆
{1, . . . , n− 1}, we get Dn ≥ csub(n− 1) as well.

Arto Salomaa refers to a single nontrivial bound of Dn, namely Dn ≥ ( 3
√
n)!. In fact,

he omits a construction of Kozen [15, Theorem 3.2.7] from 1977, which deals with
lengths of proofs rather than compositions but witnesses easily that Dn = 2Ω(

n
log n ).

However, the lower bound of car(n) from [14] revealed soon that Dn = 2Ω(n).
Like in the case of car(n) and sub(n), the notion of Dn does not concern the

size of G, thus providing a ground for artificial series of bad cases based on growing
alphabets. Our results show that actually the growing size of G is not necessary: a
strongly exponential lower bound of Dn holds even if we restrict G to any nontrivial
fixed size.
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7. Conclusions and Future Work

We have proved that both the considered thresholds (subset synchronization of
DFA and careful synchronization of PFA) are strongly exponential even under two
heavy restrictions (binary alphabets and strong connectivity). We have improved
the lower bounds of Martyugin, 2013 [19]. However, the multiplicative constants in
the exponents do not seem to be the largest possible.

For now there is no method giving upper bounds concerning the alphabet size,
so it may happen that binary cases are the hardest possible. Such situation appears
in the classical synchronization of DFA if the Černý Conjecture holds.

From a more general viewpoint, our results give a partial answer to the informal
question: „Which features of automata are needed for obtaining strongly exponen-

tial thresholds? ” However, for many interesting restrictions we do not even know
whether the corresponding thresholds are superpolynomial. Namely, such restricted
classes include monotonic and aperiodic automata, cyclic and one-cluster automata,
Eulerian automata, commutative automata and others. For each such class it is also
an open question whether Subset synchronizability or Careful synchroniz-

ability is solvable in polynomial time with the corresponding restriction.
As it was noted before, for the general threshold car(n) there is a gap between

O
(

n2 · 4n
3

)

and Ω
(

3
n
3

)

, which is subject to an active research.
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