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Abstract. Regular expressions are often ambiguous. We present a novel
method based on Brzozowski’s derivatives to aid the user in diagnosing
ambiguous regular expressions. We introduce a derivative-based finite
state transducer to generate parse trees and minimal counter-examples.
The transducer can be easily customized to either follow the POSIX or
Greedy disambiguation policy and based on a finite set of examples it
is possible to examine if there are any differences among POSIX and
Greedy.
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1 Introduction

A regular expression is ambiguous if a string can be matched in more than one
way. For example, consider the expression x∗+x where input string x can either
be matched against x∗ or x. Hence, this expression is ambiguous.

Earlier works There exist well-established algorithms to check for regular expres-
sion ambiguity. However, most works report ambiguity in terms of an automata
which results from an ambiguity-preserving translation of the original expression,
e.g. see the work by Book, Even, Greibach and Ott [3]. From a user perspective,
it is much more useful to report ambiguity in terms of the original expression.
We are only aware of two works which like us perform the ambiguity analysis on
the original expression.

Brabrand and Thomsen [5] establish a structural relation to detect ambiguity
based on which they can provide minimal counter examples. They consider some
disambiguation strategies but do not cover the POSIX interpretation.

Borsotti, Breveglieri, Crespi-Reghizzi and Morzenti [4] show how to derive
parse trees based on marked regular expressions [9] as employed in the Berry-
Sethi algorithm [2]. They establish criteria to identify ambiguous regular ex-
pressions. Like ours, their approach can be customized to support either the
POSIX [8] or Greedy [11] disambiguation policy. However, for POSIX/Greedy
disambiguation, their approach requires tracking of dynamic data based on the
Okui-Suzuki method [10]. Our approach solely relies on derivatives, no dynamic
tracking of data is necessary.
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Our work Brzozowski’s derivatives [6] support the symbolic construction of au-
tomata where expressions represent automata states. This leads to elegant al-
gorithms and based on (often simple) symbolic reasoning. In earlier work [13],
we have studied POSIX matching based on derivatives. In this work, we show
how to adapt and extend the methods developed in [13] to diagnose ambiguous
expressions.

Contributions and outline In summary, our contributions are:

– We employ derivatives to compute all parse trees for a large class of (non-
problematic) regular expressions (Section 3).

– We can build a finite state transducer to compute these parse trees (Sec-
tion 4).

– We can easily customize the transducer to either compute the POSIX or
greedy parse tree (Section 5).

– We can identify simple criteria to detect ambiguous expressions and to derive
a finite set of minimal counter-examples. Thus, we can statically verify if
there are any differences among POSIX and Greedy (Section 6).

– We have implemented the approach in Haskell. The implementation is avail-
able via http://www.home.hs-karlsruhe.de/~suma0002/dad.html.

In the upcoming section, we introduce our notion of regular expression, parse
trees and ambiguity.

Proof sketches for results stated can be found in the appendix.

2 Regular Expressions, Parse Trees and Ambiguity

The development largely follows [7] and [5]. We assume that symbols are taken
from a fixed, finite alphabet Σ. We generally write x, y, z for symbols.

Definition 1 (Words and Regular Expressions). Words are either empty
or concatenation of words and defined as follows: w ::= ǫ | x ∈ Σ | w · w.

We denote regular expressions by r, s, t. Their definition is as follows: r ::=
x ∈ Σ | r∗ | r · r | r + r | ǫ | φ The mapping to words is standard. L(x) = {x}.
L(r∗) = {w1 · ... · wn | n ≥ 0 ∧ wi ∈ L(r) ∧ i ∈ {1, .., n}}. L(r · s) = {w1 · w2 |
w1 ∈ L(r) ∧ w2 ∈ L(s)}. L(r + s) = L(r) ∪ L(s). L(ǫ) = {ǫ}. L(φ) = {}.

We say an expression r is nullable iff ǫ ∈ L(r).

As it is common, we assume that + and · are right-associative. That is, x+ y+
x · y · z stands for x+ (y + (x · (y · z))).

A parse tree explains which subexpressions match which subwords. We fol-
low [7] and view expressions as types and parse trees as values.

Definition 2 (Parse Trees). Parse tree values are built using data construc-
tors such as lists, pairs, left/right injection into a disjoint sum etc. In case of
repetitive matches such as in case of Kleene star, we make use of lists. We use
Haskell style notation and write [v1, ..., vn] as a short-hand for v1 : ... : vn : [].

v ::= () | x | (v, v) | L v | R v | vs vs ::= [] | v : vs
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The valid relations among parse trees and regular expressions are defined via a
natural deduction style proof system.

⊢ [] : r∗
⊢ v : r ⊢ vs : r∗

⊢ (v : vs) : r∗
⊢ v1 : r1 ⊢ v2 : r2

⊢ (v1, v2) : r1 · r2
⊢ v1 : r1

⊢ L v1 : r1 + r2

⊢ v2 : r2

⊢ R v2 : r1 + r2
⊢ () : ǫ

x ∈ Σ

⊢ x : x

Definition 3 (Flattening). We can flatten a parse tree to a word as follows:

|()| = ǫ |x| = x |L v| = |v| |v : vs| = |v| · |vs|
|[]| = ǫ |(v1, v2)| = |v1| · |v2| |R v| = |v|

Proposition 1 (Frisch/Cardelli [7]). Let r be a regular expression. If w ∈
L(r) for some word w, then there exists a parse tree v such that ⊢ v : r and
|v| = w. If ⊢ v : r for some parse tree v, then |v| ∈ L(r).

Example 1. We find that x · y ∈ L((x · y+ x+ y)∗) where [L (x, y)] is a possible
parse tree. Recall that + is right-associative and therefore we interpret (x · y +
x+ y)∗ as (x · y + (x+ y))∗.

An expression is ambiguous if there exists a word which can be matched in
more than one way. That is, there must be two distinct parse trees which share
the same underlying word.

Definition 4 (Ambiguous Regular Expressions). We say a regular expres-
sion r is ambiguous iff there exist two distinct parse trees v1 and v2 such that
⊢ v1 : r and ⊢ v2 : r where |v1| = |v2|.

Example 2. [L (x, y)] and [R (L x),R (R y)] are two distinct parse trees for
expression (x · y + x+ y)∗ and word x · y.

Our ambiguity diagnosis methods will operate on arbitrary expressions. How-
ever, formal results are restricted to a certain class of ’non-problematic’ expres-
sions.

Definition 5 (Problematic Expressions). We say an expression r is prob-
lematic iff it contains some sub-expression of the form s∗ where ǫ ∈ L(s).

For problematic expressions, the set of parse trees is infinite, otherwise finite.

Example 3. Consider the problematic expression ǫ∗ where for the empty input
word we find the following (infinite) sequence of parse trees [], [()], [(), ()], ...

Proposition 2 (Frisch/Cardelli [7]). For non-problematic expressions, the
set of distinct parse trees which share the same underlying word is always finite.

Next, we consider computational methods based on Brzozowski’s derivatives
to compute parse trees.
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3 Computing Parse Trees via Derivatives

Derivatives denote left quotients and they can be computed via a simple syntactic
transformation.

Definition 6 (Regular Expression Derivatives). The derivative of expres-
sion r w.r.t. symbol x, written dx(r), is computed by induction on r:

dx(φ) = φ dx(ǫ) = φ dx(r1 + r2) = dx(r1) + dx(r2) dx(r
∗) = dx(r) · r

∗

dx(y) =

{

ǫ if x = y
φ otherwise

dx(r1 · r2) =

{

dx(r1) · r2 + dx(r2) if ǫ ∈ L(r1)
dx(r1) · r2 otherwise

The extension to words is as follows: dǫ(r) = r. dx·w(r) = dw(dx(r)).
A descendant of r is either r itself or the derivative of a descendant. We

write r � s to denote that s is a descendant of r. We write d(r) to denote the
set of descendants of r.

Proposition 3 (Brzozowski [6]). For any expression r and symbol x we find
that L(dx(r)) = {w | x · w ∈ L(r)}.

Thus, we obtain a simple word matching algorithm by repeatedly building the
derivative and then checking if the final derivative is nullable. That is, w ∈ L(r)
iff ǫ ∈ L(dw(r)). Nullability can easily be decided by induction on r. We omit
the straightforward details.

Example 4. Consider expression (x+ y)∗ and input x ·y. We find dx((x+ y)∗) =
(ǫ+φ) · (x+ y)∗ and dy(dx((x+ y)∗)) = (φ+φ) · (x+ y)∗+(φ+ ǫ) · (x+ y)∗. The
final expression is nullable. Hence, we can conclude that x · y ∈ L((x+ y)∗).

Based on the derivative method, it is surprisingly easy to compute parse trees
for some input word w. The key insights are as follows:

1. Build all parse trees for the final (nullable) expression.
2. Transform a parse tree for dx(r) into a parse tree for r by injecting symbol

x into dx(r)’s parse tree. Injecting can be viewed as reversing the effect of
the derivative operation.

Definition 7 (Empty Parse Trees). Let r be an expression. Then, allEpsr
yields a set of parse trees. The definition of allEpsr is by induction on r.

allEps ǫ = { () } allEpsφ = { } allEpsx = { }
allEps r∗ = { [] } allEps r1 · r2

= {( v1, v2) | v1 ∈ allEps r1 ∧ v2 ∈ allEps r2 }
allEps r1+r2

= { L v1 | v1 ∈ allEpsr1 } ∪ { R v2 | v2 ∈ allEpsr2 }

If the expression is not nullable it is easy to see that we obtain an empty set.
For nullable expressions, allEpsr yields empty parse trees.

Proposition 4 (Empty Parse Trees). Let r be a nullable expression. Then,
for any v ∈ allEpsr we have that ⊢ v : r and |v| = ǫ.
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Example 5. For the final (nullable) expression from Example 4 we find that
allEps(φ+φ)·(x+y)∗+(φ+ǫ)·(x+y)∗ = R (R (), []).

For nullable, non-problematic expressions r, we can state that allEpsr yields
all parse trees v for r where |v| = ǫ.

Proposition 5 (All Empty Non-Problematic Parse Trees). Let r be a
non-problematic expression such that ǫ ∈ L(r). Let v be a parse tree such that
⊢ v : r where |v| = ǫ. Then, we find that v ∈ allEpsr.

The non-problematic assumption is necessary. Recall Example 3.
What remains is to describe how to derive parse trees for the original expres-

sion. We achieve this by injecting symbol x into dx(r)’s parse tree.

Definition 8 (Injecting Symbols into Parse Trees). Let r be an expression
and x be a symbol. Then, injsdx(r) is a function which maps a dx(r)’s parse
tree to a set of parse trees of r. footnoteAdditional arguments are x and r but
we choose the notation injsdx(r) to highlight the definition is defined by pattern
match over the various cases of the derivative operation. The definition is by
induction on r.

injsdx (ǫ) = { } injsdx (φ) = { } injsdx (x) () = { x } injsdx (y) = { }

injsdx (r∗) (v , vs) = { v ′ : vs | v ′ ∈ injsdx (r) v }
injsdx ((r1·r2)) =

λ v . case v of

(v1, v2) → { (v , v2) | v ∈ injsdx (r1) v1 }

L (v1, v2) → { (v , v2) | v ∈ injsdx (r1) v1 }

R v2 → { (v , v ′) | v ∈ allEpsr1 ∧ v ′ ∈ injsdx (r2) v2 }
injsdx ((r1+r2)) =

λ v . case v of

L v1 → { L v | v ∈ injsdx (r1) v1 }

R v2 → { R v | v ∈ injsdx (r2) v2 }

In the above, we use Haskell style syntax such as lambda-bound functions
etc. The first couple of cases are straightforward. For brevity, we use the ‘don’t
care’ pattern and make use of a non-linear pattern in the third equation. In
case of Kleene star, the parse tree is represented by a sequence. We call the
injection function of the underlying expression on the first element. In case of
concatenation r1 · r2, we observe the shape of the parse tree of dx(r1 · r2). For
example, if we encounter R v2, the left component r1 must be nullable. Hence,
we apply allEpsr1 .

Via a straightforward inductive proof on r, we can verify that the injection
function yields valid parse trees.

Proposition 6 (Soundness of Injection). Let r be an expression, x be a
symbol and v be a parse tree such that ⊢ v : dx(r). Then, for any v′ ∈ injsdx(r)

we find that ⊢ v′ : r.

5



Example 6. Consider our running example where ⊢ R (R (), []) : dy(dx((x +
y)∗)). Then, injsdy(dx((x+y)∗)) (R (R (), [])) = {(L (), [y])} where ⊢ (L (), [y]) :

dx((x + y)∗) and dx((x + y)∗) = (ǫ+ φ) · (x+ y)∗.

As in case of allEpsr, we can only guarantee completeness for non-problematic
expressions.

Proposition 7 (Completeness of Non-Problematic Injection). Let r be a
non-problematic expression and v a parse tree such that ⊢ v : r where |v| = x ·w
for some letter x and word w. Then, there exists a parse tree v′ such that (1)
⊢ v′ : dx(r) and (2) v ∈ injsdx(r) v

′.

Definition 9 (Parse Tree Construction). Let r be an expression. Then, the
derivative-based procedure to compute all parse trees is as follows.

allParse r ǫ = allEps r
allParse r x · w = { v | v ∈ injsdx (r) v ′ ∧ v ′ ∈ (allParse dx (r) w) }

Proposition 8 (Valid Parse Trees). Let r be an expression. Then, for each
v ∈ allParse r |v| we find that ⊢ v : r.

For non-problematic expressions, we obtain a complete parse tree construction
method.

Proposition 9 (All Non-Problematic Parse Trees). Let r be a non-problematic
expression and v a parse tree such that ⊢ v : r. Then, we find that v ∈
allParse r |v|.

In case of a fixed expression r, calls to allParse r repeatedly build the
same set of derivatives. We can be more efficient by constructing a finite state
transducer (FST) for a fixed expression r where states are descendants of r. The
outputs are parse tree transformation functions. This is what we will discuss
next.

4 Derivative-Based Finite State Transducer

The natural candidate for FST states are derivatives. That is, δ(r, x) = dx(r). In
general, descendants (derivatives) are not finite. Thankfully, Brzozowski showed
that the set of dissimilar descendants is finite.

Definition 10 (Similarity). We say two expressions r and s are similar, writ-
ten r ≈ s, if one can be transformed into the other by application of the following
rules.

(Idemp) r + r ≈ r (Comm) r1 + r2 ≈ r2 + r1

(Assoc) (r1 + r2) + r3 ≈ r1 + (r2 + r3) (Ctxt)
s ≈ t

R[s] ≈ R[t]

The (Ctxt) rules assumes expressions with a hole. We write R[s] to denote the
expression where the hole [] is replaced by s.

(Hole Expressions) R[] ::= [] | R[] · s | s · R[] | R[] + s | s+R[]

6



There is no hole inside Kleene star because the derivative operation will only
ever be applied on unfoldings of the Kleene star but never within a Kleene star
expression.

We write d(r)/≈ to denote the set of equivalence classes of d(r) w.r.t. the
equivalence relation ≈.

Proposition 10 (Brzozowski [6]). d(r)/≈ is finite for any expression r.

Based on the above, we build an automata where the set of states consists
of a canonical representative for all descendants of some expression r. A similar
approach is discussed in [14].

Definition 11 (Canonical Representative). For each expression r we com-
pute an expression C(r) by systematic application of the similarity rules: (1) Put
alternatives in right-associative normal form via rule (Assoc). (2) Remove dupli-
cates via rules (Idemp) where via rule (Comm) we push the right-most duplicates
to the left. (3) Repeat until there are no further changes.

Proposition 11 (Canonical Normal From). Let r be an expression. Then,
C(r) represents a canonical normal form of r.

Furthermore, alternatives keep their relative position. For example, C(r+s+
s1+ ...+sn+s+ t) = r+s+s1+ ...+sn+ t. This is important for the upcoming
construction of POSIX and Greedy parse trees.

Proposition 12 (Finite Dissimilar Canonical Descendants). Let r be an
expression. Then, the set D(r) = {C(s) | r � s} is finite.

Like in case of injs , we need to maintain information how to transform parse
trees among similar expressions. Hence, we attach parse tree transformation
functions to the similarity rules.

Definition 12 (Similarity with Parse Tree Transformation). We write

r
f

≫ s to denote that expressions r and s are similar and a parse tree of s can be
transformed into a parse tree of r via function f . In case the function returns a

set of parse trees we write r
fs

≫ s. We write r ≫ s if the parse tree transformation

7



is not of interest.

(Idemp)
fs(u) = {L u,R u}

r + r
fs

≫ r
(Comm)

f(L u) = R u

f(R u) = L u

r1 + r2
f
≫ r2 + r1

(Assoc)

f(L u1) = L (L u1)

f(R (L u2)) = L (R u2)

f(R (R u3)) = R u3

(r1 + r2) + r3
f

≫ r1 + (r2 + r3)

(Lift)

r
f
≫ s

fs(u) = {f(u)}

r
fs
≫ s

(C1)

s
fs

≫ t

gs(ur, ut) = {(ur, us) | us ∈ fs(ut)}

r · s
gs
≫ r · t

(C2)

s
fs

≫ t

gs(ut, ur) = {(us, ur) | us ∈ fs(ut)}

s · r
gs
≫ t · r

(C3)

s
fs
≫ t

gs(L ur) = {L ur}

gs(R ut) = {R us | us ∈ fs(ut)}

r + s
gs
≫ r + t

(C4)

s
fs
≫ t

gs(L ut) = {L us | us ∈ fs(ut)}

gs(R ur) = {R ur}

s+ r
gs
≫ t+ r

The above rules are derived from the ones in Definition 10 by providing the
appropriate parse tree transformations. Due to the similarity rule (Idemp) we
may obtain a set of parse trees. Rules (C1-4) cover all the cases described by rule
(Ctxt). The attached (transformation) functions yield valid parse trees (sound-
ness) and every parse tree of a similar expression can be obtained (completeness).

Proposition 13 (Soundness of Transformation). Let r and s be two ex-

pressions and fs a function such that r
fs

≫ s. Then, we find that (1) r ≈ s and
(2) for any parse tree v where ⊢ v : s we have that ⊢ v′ : r for any v′ ∈ fs(v).

Proposition 14 (Completeness of Transformation). Let r and s be two

expressions and v be a parse tree such that ⊢ v : r and r ≈ s. Then, r
fs
≫ s

where v ∈ fs(v′) for some v′ such that ⊢ v′ : s.

The FST to compute parse trees for some expression r consists of states D(r).
Each state transition from s to C(dx(s)) yields as output a parse tree transformer

function which is a composition of injsdx(s) and fs where dx(s)
fs
≫ C(dx(s)).

Definition 13 (FST Construction). Let r be an expression. We define FST (r) =
(Q,Σ, δ, q0, F ) where Q = D(r), q0 = r, F = {s ∈ Q | ǫ ∈ L(s)} and for each

s ∈ Q and x ∈ Σ we set δ(s, x) = (C(dx(s)), gs) where dx(s)
fs
≫ C(dx(s)) and

gs(u) = {u2 | u1 ∈ fs(u) ∧ u2 ∈ injsdx(s) u1}.
The transition relation δ is inductively extended to words as follows. We

define δ(s, ǫ) = (s, λu.{u}) and δ(s, x · w) = (r, fs) where δ(s, x) = (t, gs) and
δ(t, w) = (r, hs) where fs(u) = {u2 | u1 ∈ hs(u) ∧ u2 ∈ gs(u1)}.
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Proposition 15 (All Non-Problematic Parse Trees via FST). Let r be a
non-problematic expression and v a parse tree such that ⊢ v : r. Let FST (r) =
(Q,Σ, δ, q0, F ). Then, we find that v ∈ fs(allEpsr′) where δ(r, |v|) = (r′, fs).

5 Computing POSIX and Greedy Parse Trees

Based on our earlier work [13] we can immediately conclude that the ‘first’
(left-most) match obtained by executing FST (r) is the POSIX match. 3 The
use of derivatives guarantees that the longest left-most (POSIX) parse tree is
computed.

Proposition 16 (POSIX). Let r be an expression and w be a word such that
w ∈ L(r). Let FST (r) = (Q,Σ, δ, q0, F ). Let δ(r, w) = (r′, fs) for some expres-
sion r′ and transformer fs. Then, fs(allEpsr′) = {v1, ..., vn} for some parse trees
vi where v1 is the POSIX match.

With little effort it is possible to customize our FST construction to com-
pute Greedy parse trees. The insight is to normalize derivatives such that they
effectively correspond to partial derivatives. Via this normalization step, we ob-
tain as the ‘first’ result the Greedy (left-most) parse tree. This follows from our
earlier work [12] where we showed that partial derivatives naturally yield greedy
matches.

We first define partial derivatives which are a non-deterministic generaliza-
tion of derivatives. Instead of a single expression, the partial derivative operation
yields a set of expressions.

Definition 14 (Partial Derivatives). 4 Let r be an expression and x be a
symbol. Then, the partial derivative of r w.r.t. x is computed as follows:

pdx(φ) = {}
pdx(ǫ) = {}

pdx(y) =

{

{ǫ} if x = y
{} otherwise

pdx(r1 + r2) = pdx(r1) ∪ pdx(r2) pdx(r
∗) = {r′ · r∗ | r′ ∈ pdx(r)}

pdx(r1 · r2) =

{

{r′1 · r2 | r′1 ∈ pdx(r1)} ∪ pdx(r2) if ǫ ∈ L(r1)
{r′1 · r2 | r′1 ∈ pdx(r1)} otherwise

Let M = {r1, ..., rn} be a set of expressions. Then, we define +M = r1+ ...+
rn and +{} = φ.

To derive partial derivatives via derivatives, we impose the following addi-
tional similarity rules.

Definition 15 (Partial Derivative Similarity Rules).

(Dist)

f(L (ur, ut)) = (L ur, ut)

f(R (us, tt)) = (R us, ut)

(r + s) · t
f
≫ r · t+ s · t

(ElimPhi1) φ+ r
λx .R x
≫ r

(ElimPhi2) φ · r
⊥

≫ φ

3 Technically, we treat the set of parse trees like a list. Recall that allEps
·
and the

simplification rule (Idemp) favor the left-most match. Alternatives keep their relative
position in an expression.

4 We omit the smart constructor found in [1] as this is not relevant here.
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Rule (Dist) mimics the set-based operations performed by pd·(·) in case of
concatenation and Kleene star. Rules (ElimPhi1-2) cover cases where the set is
empty. We use ⊥ to denote the undefined parse tree transformer function. As
there is no parse tree for φ this function will never be called.

Proposition 17 (Partial Derivatives as Normalized Derivatives). Let r
be an expression and x be a symbol. Then, we have that +pdx(r) is syntactically
equal to some expression s such that dx(r) ≫ s. We ignore the transformer
function which is not relevant here.

Based on the above and our earlier results in [12] we can immediately con-
clude the following.

Proposition 18 (Greedy). Let r be an expression and w be a word such that
w ∈ L(r). Let FST (r) = (Q,Σ, δ, q0, F ) where we additionally apply the similar-
ity rules in Definition 15 such that canonical representatives satisfy the property
stated in Proposition 17. Let δ(r, w) = (r′, fs) for some expression r′ and trans-
former fs. Then, fs(allEpsr′) = {v1, ..., vn} for some parse trees vi where v1 is
the Greedy parse tree.

Remark 1 (Linear-Time Complexity). Our approach has linear-time complex-
ity 5 in the size of the input word w assuming we treat the size of the regular
expression r as a constant and consider computation of the ’first’ parse tree only.
The size of dissimilar derivatives is at most exponential in the size of r. The size
of a parse tree is bound by r. Time complexity of parse tree transformation
functions is linear in the size of the input.

There is quite a bit of scope to improve the performance by for example em-
ploying more efficient representations of our parse tree transformation functions.
For efficiency reasons, we also may want to specialize FST (r) to compute the
POSIX and Greedy parse trees only. Currently, we rely on Haskell’s lazy evalua-
tion strategy to do only the necessary work when extracting the first parse tree
from the final result obtained by running FST (r). These are topics to consider
in future work.

6 Ambiguity Diagnosis

We can identify three situations where ambiguity of r arises during the construc-
tion of FST (r). The first situation concerns nullable expressions. If we encounter
multiple empty parse trees for a nullable descendant (accepting state) then we
end up with multiple parse trees for the initial state. Then, the initial expression
is ambiguous.

The second situation concerns the case of injecting a symbol into the parse
tree of a descendant. Recall that the injs function from Definition 8 possibly
yields a set of parse trees. This will only happen if we apply the derivative
operation on some subterm t1 · t2 where t1 is a nullable expression with multiple
empty parse trees.

5 We do not measure the complexity of constructing FST (r) which can be exponential
in the size of r.
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The final (third) situation ambiguous situation arises in case we build canon-
ical representatives. Recall Definition 12. We end up with multiple parse trees
whenever we apply rule (Idemp).

These are the only situations which may give rise to multiple parse trees.
That is, if none of these situations arises the expression must be unambiguous.
We summarize these observations in the following result.

Definition 16 (Realizable State). We say that s ∈ D(r) is realizable, if
there exists a path in FST (r) such that (1) we reach s and (2) along this path
all states (expressions) including s do not describe the empty language.

Proposition 19 (Ambiguity Criteria). Let r be a non-problematic expres-
sion. Then, r is ambiguous iff there exists a realizable s ∈ D(r) and some symbol
x where one of the following conditions applies:

A1 |allEpss| > 1, or
A2 s = R[t1 · t2] where |allEpst1 | > 1, or

A3 L(C(dx(s))) 6= {} and dx(s)
fs
≫ C(dx(s)) with rule (Idemp) applied.

The above criteria are easy to verify. In terms of the FST generated, criteria
A1 is always connected to a final state whereas criteria A2 and A3 are always
connected to transitions. Our implementation automatically generates the FST
annotated with ambiguity information.

1 2x 3y 4y

Fig. 1. FST ((x+ x · y) · (y + ǫ))

In Figure 1, we consider the FST for (x + x · y) · (y + ǫ). Final state is
highlighted grey to indicate that ambiguity due to A1 arises. Indeed, for input
x · y we can observe that there are two distinct parse trees. Namely, (L x,L x)
and (R (x, y),R ()). Hence, the expression is ambiguous.

Consider another example taken from [4]. See Figure 2. We find ambiguous
transitions due to A2 and A3. Such transitions are represented as dotted arrows
with labels to indicate A2 and A3. Ambiguity due to A1 does not arise for this
example.

Let us investigate the ambiguous transition from state 2 to state 3. We carry
out the constructions of states starting with the initial expression r · y where
r = (x · x∗ + y · x+ x · y · x)∗. For brevity, we make use of additional similarity
rules such as ǫ·s ≈ s to keep the size of descendants manageable. In the following,

we write r
x
→ s if s = dx(r).

r · y
x
→ ((x∗ + y · x) · r) · y
y
→ (x · r) · y + (x · r) · y + ǫ
≈ (x · r) · y + ǫ

11



1

2

x
3

y

y|3

4

x

5
x

y|2-3
x|2-3

x

y

Fig. 2. FST ((x · x∗ + y · x+ x · y · x)∗ · y)

In the last step, we apply rule (Idemp). Hence, the ambiguous transition from
state 2 to state 3.

State 3 is final, however, x·y is not yet a full counter-example to exhibit ambi-
guity. In essence, x ·y is a prefix of the full counter-example x ·y ·x ·y. For this ex-
ample, we obtain parse trees ([L (x, []),L (R (x, y))], y) and (R (R (x, (y, x))), y).
The first one is obtained via Greedy and the second one via POSIX.

To summarize, from the FST it is straightforward to derive minimal prefixes
of counter-examples. To obtain actual counter-examples, minimal prefixes need
to be extended so that a final state is reached. Based on the FST, we could
perform a breadth-first search to calculate all such minimal counter-examples.
Alternatively, we can built (minimal) counter-examples during the construction
of the FST.

There is clearly much scope for more sophisticated ambiguity diagnosis based
on the information provided by the FST. An immediate application is to check
(statically) any differences among Greedy and POSIX. We simply check both
methods against the set of minimal counter-examples. It is clear that there are
only finitely many (minimal) counter-examples as there are a finite number of
states and transitions. Obtaining more precise bounds on their size is something
to consider in future work.
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A Proof Sketches

A.1 Propositions 4 and 5

For both statements, we proceed by induction on r. Consider Proposition 5. For
case r∗ due to the ’non-problematic’ assumption we find that ⊢ [] : r∗ is the
only possible candidate.

A.2 Propositions 6 and 7

Again by induction on r. For Proposition 7, we consider some of the interesting
cases.

– Case r∗ where ⊢ v : r∗:

1. By assumption r∗ is non-problematic. Hence, v = v1 : vs for some v1
and vs where ⊢ v1 : r and |v1| = x · w for some word w.

2. By induction there exists v′ such that ⊢ v′ : dx(r) and v1 ∈ injsdx(r) v
′.

3. By definition of injs we find that v1 : vs ∈ injsdx(r∗) v
′ : vs.

4. Hence, there exists v′ : vs which guarantees (1) and (2) and we are done.

– Case r1 · r2 where ⊢ v : r1 · r2:

1. By assumption v = (v1, v2) where ⊢ v1 : r1, ⊢ v2 : r2 and |v1| = x · w
for some word w.

2. Suppose ǫ 6∈ L(r1).

(a) By induction there exists v′ such that ⊢ v′ : dx(r1) and v1 ∈
injsdx(r1) v

′.

(b) Under our assumptions dx(r1 · r2) = dx(r1) · r2.
(c) By definition of injs we find that (v1, v2) ∈ injsdx(r1·r2) (v

′, v2).

(d) Hence, there exists (v′, v2) which guarantees (1) and (2) and we are
done.

3. Otherwise ǫ ∈ L(r1) where we assume that v1 = x · w for some word w:

(a) Similar to the above reasoning we find (v1, v2) ∈ injsdx(r1)·r2 (v′, v2)

for some v′.
(b) By assumption dx(r1 · r2) = dx(r1) · r2 + dx(r2).
(c) Hence, (v1, v2) ∈ injsdx(r1·r2) L (v′, v2) via which we can establish

(1) and (2) and we are done.

4. The only remaining case is that ǫ ∈ L(r1) and |v1| = ǫ.

(a) Hence, |v2| = x · w for some word w.
(b) By induction on r2 we find that there exists v′ such that ⊢ v′ : dx(r2)

and v2 ∈ injsdx(21) v
′.

(c) By Proposition 5 we obtain that v1 ∈ allEpsr1 .
(d) By definition of injs we find that (v1, v2) ∈ injsdx(r1·r2) R v2 which

concludes the proof for the subcase of concatenated expressions.

14



A.3 Propositions 8 and 9

Proposition 8 follows straightforwardly from Propositions 4 and 6.
Consider Proposition 9 where we need to verify that for all non-problematic

r and v where ⊢ v : r we find that v ∈ allParse r |v|. We proceed by induction
on |v|.

Case |v| = ǫ: By Proposition 5 we find that v ∈ allEpsr. By definition of
allParse we conclude that v ∈ allParse r |v| and we are done.

Case |v| = x · w: By Proposition 7, there exists v′ such that ⊢ v′ : dx(r),
v ∈ injsdx(r) v′ and |v′| = w. Via a simple induction we can verify that if r is

non-problematic so must be dx(r). By I.H. (for dx(r) and v′) we find that v′ ∈
allParse dx(r) w. By definition of allParse we conclude that v ∈ allParse r |v|
and we are done.

A.4 Propositions 11 and 12

Consider Proposition 11. We can show that the thus systematically applied sim-
ilarity rules represent a terminating and confluent rewrite system. Hence, we
obtain canonical normal forms.

Consider Proposition12. The set of canonical representatives is finite. Follows
from Brzozowski’s result Proposition 10.

A.5 Propositions 13 and 14

Both results follow by induction. For Proposition 13, by induction on the deriva-

tion r
fs
≫ s. For Proposition 14, by induction r ≈ s.

A.6 Proposition 15

The set of states and transitions is finite. Follows from Proposition 12. The
resulting parse trees must valid as this follows from the respective results for injs
and parse tree transformations resulting from similarity. The same applies for
the completeness direction where we require the assumption that the expression
is non-problematic.

A.7 Proposition 16

Follows from our earlier results stated in [13]. Note that we strictly favor left-
most parse trees. Recall the definitions

allEpsr1+r2
= {L v1 | v1 ∈ allEpsr1} ∪ {R v2 | v2 ∈ allEpsr2}

and

(Idemp)
fs(u) = {L u,R u}

r + r
fs

≫ r
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A.8 Proposition 17

Helper statement: Let r and x be such that pdx(r) = {}. Then, we find that
dx(r) ≫

∑

t∈F t where F is a finite set consisting of terms of the shape φ or φ · t′

for some expression t′.
The proof of this statement is by induction on r.
Cases for φ, y and ǫ are straightforward.
Case s∗: By assumption pdx(s

∗) = {}. Hence, pdx(s) = {}. By induction
dx(s) ≫

∑

t∈F t for some F as described above. By definition dx(s
∗) = dx(s) ·s

∗.

By similarity, we find that dx(s) · s
∗ ≫ (

∑

t∈F t) · s∗. By similarity rule (Dist),

we find that (
∑

t∈F t) · s∗ ≫
∑

t∈F ′ t where F ′ = {t · s∗ | t ∈ F}. Hence,

dx(s
∗) ≫

∑

t∈F ′ t and we are done.
Case s1 + s2: Straightforward by induction.
Case s1 · s2: By induction and application of similarity rule (Dist).

Proof of Proposition: We proceed to verify Proposition 17 by induction on r.
We assume that = denotes for syntactic equality.

Case r1 + r2: By induction +pdx(ri) = si for some si where dx(ri) ≫ si for
i = 1, 2.

Subcase1: Suppose the sets pdx(ri) are non-empty:

pdx(r1) = {t1, ..., tl, t
′
1, ..., t

′
m} pdx(r2) = {t′′1 , ..., t

′′
n, t

′
1, ..., t

′
m}

for some tj , t
′
j , t

′′
j where t′j describe some common parts.

By definition pdx(r1+r2) = {t1, ..., tl, t
′
1, ..., t

′
m, t′′1 , ..., t

′′
n}. By definition dx(r1+

r2) = dx(r1) + dx(r2). Via similarity rules (Idemp) and (Comm) we can remove
duplicates t′j . Thus, we find that dx(r1+r2) ≫ t1+...+tl+t′1+...+t′m+t′′1+...+t′′n
and we are done.

Subcase2: Suppose both sets pdx(ri) are empty. Hence, pdx(r1 + r2) =
{} and +pdx(r1 + r2) = φ. Via the helper statement we can conclude that
dx(r1) ≫

∑

t∈F1
t and dx(r2) ≫

∑

t∈F2
t. Via similarity rules (ElimPhi1-2), we

can guarantee that dx(r1 + r2)
x
≫ φ and we are done.

Subcase3: One of the sets pdx(ri) is empty and the other is non-empty.
Similar reasoning as above.

Case r1 ·r2: We only consider the subcase where ǫ 6∈ L(r1) and pdx(r1) is non-
empty. Suppose pdx(r1) = {s11 , ...., s1m} and therefore +pdx(r1) = s11+....+s1m.
By induction dx(r1) ≫ s11 + ....+ s1m .

We conclude that +pdx(r1 ·r2) = +{s11 ·r2, ..., s1m ·r2} = s11 ·r2+...+s1m ·r2.
By definition, dx(r1 · r2) = dx(r1) · r2. By similarity and the above we find

that dx(r1 · r2) ≫ s11 · r2 + ...+ s1m · r2.
Thus, for some s we have that +pdx(r1 · r2) = s and dx(r1 · r2) ≫ s. Take s

equal to s11 · r2 + ...+ s1m · r2.
The other cases can be proven similarly.

A.9 Proposition 18

Proposition 17 is crucial here. Via the additional similarity rules from Defini-
tion 15 we can normalize derivatives such that they effectively correspond to
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partial derivatives. The result follows then straightforwardly from our earlier
results stated in [12].

A.10 Proposition 19

If any of the criteria A1-3 arise, we can construct a counter-example. See dis-
cussion in Section 6. Hence, the expression must be ambiguous.

If none of the criteria arises, the expression must be unambiguous. There is
no ambiguity in the parse tree construction. Our completeness results guarantee
that all possible parse trees are covered.
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