
ar
X

iv
:1

70
9.

06
21

4v
1

 [
cs

.D
C

]
 1

9
Se

p
20

17

Deterministic rendezvous with detection using beeps ∗

Samir Elouasbi† Andrzej Pelc‡

Abstract

Two mobile agents, starting at arbitrary, possibly different times from arbitrary nodes of an
unknown network, have to meet at some node. Agents move in synchronous rounds: in each
round an agent can either stay at the current node or move to one of its neighbors. Agents
have different labels which are positive integers. Each agent knows its own label, but not the
label of the other agent. In traditional formulations of the rendezvous problem, meeting is
accomplished when the agents get to the same node in the same round. We want to achieve
a more demanding goal, called rendezvous with detection: agents must become aware that the
meeting is accomplished, simultaneously declare this and stop. This awareness depends on how
an agent can communicate to the other agent its presence at a node. We use two variations of
the arguably weakest model of communication, called the beeping model, introduced in [8]. In
each round an agent can either listen or beep. In the local beeping model, an agent hears a beep
in a round if it listens in this round and if the other agent is at the same node and beeps. In
the global beeping model, an agent hears a loud beep in a round if it listens in this round and if
the other agent is at the same node and beeps, and it hears a soft beep in a round if it listens
in this round and if the other agent is at some other node and beeps.

We first present a deterministic algorithm of rendezvous with detection working, even for
the local beeping model, in an arbitrary unknown network in time polynomial in the size of the
network and in the length of the smaller label (i.e., in the logarithm of this label). However, in
this algorithm, agents spend a lot of energy: the number of moves that an agent must make, is
proportional to the time of rendezvous. It is thus natural to ask if bounded-energy agents, i.e.,
agents that can make at most c moves, for some integer c, can always achieve rendezvous with
detection as well. This is impossible for some networks of unbounded size. Hence we rephrase
the question: Can bounded-energy agents always achieve rendezvous with detection in bounded-
size networks? We prove that the answer to this question is positive, even in the local beeping
model but, perhaps surprisingly, this ability comes at a steep price of time: the meeting time
of bounded-energy agents is exponentially larger than that of unrestricted agents. By contrast,
we show an algorithm for rendezvous with detection in the global beeping model that works for
bounded-energy agents (in bounded-size networks) as fast as for unrestricted agents.

Keywords: algorithms, rendezvous, detection, synchronous, deterministic, network, graph,beep.

∗A preliminary version of this paper appeared in Proc. 11th International Symposium on Algorithms and Exper-
iments for Wireless Sensor Networks (ALGOSENSORS 2015), LNCS 9536, 85-97.

†Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mail:
elos02@uqo.ca.

‡Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada. E-mail:
pelc@uqo.ca. Supported in part by NSERC discovery grant 8136 – 2013 and by the Research Chair in Distributed
Computing of the Université du Québec en Outaouais.

http://arxiv.org/abs/1709.06214v1

1 Introduction

The background and the problem. Two mobile agents, starting at arbitrary, possibly different

times from arbitrary nodes of an unknown network, have to meet at some node of it. This task is

known as rendezvous [2]. The network is modeled as a simple undirected connected graph, and

agents move in synchronous rounds: in each round an agent can either stay at the current node or

move to one of its neighbors. Hence in each round an agent is at a specific node. Agents are mobile

entities with unlimited memory; from the computational point of view they are modeled as Turing

machines. In applications, these entities may represent mobile robots navigating in a labyrinth or

in corridors of a building, or software agents moving in a communication network. The purpose of

meeting might be to exchange data previously collected by the agents at nodes of the network, or

to coordinate future network maintenance tasks, for example checking functionality of websites or

of sensors connected in a network.

Agents have different labels which are positive integers. Each agent knows its own label, but not

the label of the other agent. Agents do not know the topology of the network, they do not have

any bound on its size. They do not know the starting node or activation time of the other agent.

They cannot mark the visited nodes in any way. Each agent appears at its starting node at the

time of its activation by the adversary.

We seek rendezvous algorithms that do not rely on the knowledge of node labels, and can work in

anonymous networks as well (cf. [2]). The importance of designing such algorithms is motivated by

the fact that, even when nodes are equipped with distinct labels, agents may be unable to perceive

them because of limited sensory capabilities, or nodes may refuse to reveal their labels to agents,

e.g., due to security or privacy reasons. On the other hand, we assume that edges incident to a

node v have distinct labels in {0, . . . , d − 1}, where d is the degree of v. Thus every undirected

edge {u, v} has two labels, which are called its port numbers at u and at v. Port numbering is local,

i.e., there is no relation between port numbers at u and at v. An agent entering a node learns the

port of entry and the degree of the node. Note that, in the absence of port numbers, rendezvous is

usually impossible, as all ports at a node look identical to an agent and the adversary may prevent

the agent from taking some edge incident to the current node.

In traditional formulations of the rendezvous problem, meeting is accomplished when the agents get

to the same node in the same round. We want to achieve a more demanding goal, called rendezvous

with detection: agents must become aware that the meeting is accomplished, simultaneously declare

this and stop. This awareness depends on how an agent can communicate to the other agent its

presence at a node. We use two variations of the beeping model of communication. In each round

an agent can either listen, i.e., stay silent, or beep, i.e., emit a signal. In the local beeping model, an

agent hears a beep in a round if it listens in this round and if the other agent is at the same node

and beeps. In the global beeping model, an agent hears a loud beep in a round if it listens in this

round and if the other agent is at the same node and beeps, and it hears a soft beep in a round if

it listens in this round and if the other agent is at some other node and beeps.

The beeping model has been introduced in [8] for vertex coloring, and used in [1] to solve the

MIS problem, and in [23] to construct a minimum connected dominating set. In [15], the authors

studied the quantity of computational resources needed to solve problems in complete networks

1

using beeps. In the variant from the above papers the beeping entities were nodes rather than

agents, and beeps of a node were heard at adjacent nodes. The beeping model is widely applicable,

as it makes small demands on communicating devices, relying only on carrier sensing. In the case

of mobile agents, both the local and the global beeping models are applicable in different settings.

The local model is applicable even for agents having very weak transmissions capabilities, limiting

reception of a beep to the same node. The global model is applicable for more powerful agents, that

can beep sufficiently strongly to be heard in the entire network, and having a listening capability

of differentiating a beep emitted at the same node from a beep emitted at a different node.

It should be noted that our local beeping model is arguably the weakest way of communication

between agents: they can communicate only when residing simultaneously at the same node, they

cannot hear when they beep, and messages are the simplest possible. In fact, as mentioned in [8],

local beeps are an even weaker way of communicating than using one-bit messages, as the latter

ones allow three different states (0,1 and no message), while local beeps permit to differentiate only

between a signal and its absence. Clearly, without any communication, rendezvous with detection

is impossible, as agents cannot become aware of each other’s presence at a node. Notice also that

in the global beeping model it would not be possible to remove the distinction between hearing a

loud beep when the beeping agent is at the same node and hearing a soft beep when the beeping

agent is at a different node. Indeed, the same strength of beep reception would make it impossible

for an agent A1 to inform the other agent A2 of the presence of A1 at the same node, and hence

rendezvous with detection would be impossible. The global beeping model is at least as strong as

the local one, in the sense that any algorithm of rendezvous with detection working in the local

model works also in the global model, by simply ignoring soft beeps. We will see that the converse

is not true.

For a given network, the execution time of an algorithm of rendezvous with detection, for agents

with given labels starting in given rounds from given initial positions, is the number of rounds from

the activation of the later agent to the declaration of rendezvous. For a given class of networks, the

time of an algorithm of rendezvous with detection is its worst-case execution time, over all networks

in the class, all initial positions, all pairs of distinct labels and all starting times.

Our results. Our first result answers the basic question: Is it possible to achieve rendezvous with

detection in arbitrary networks, and if so, how fast it can be done? We present a deterministic

algorithm of rendezvous with detection working, even for the local beeping model, in an arbitrary

unknown network in time polynomial in the size of the network and in the length of the smaller

label (i.e., in the logarithm of this label). In fact, the time complexity of our algorithm matches

that of the fastest, known to date, rendezvous algorithm without detection, constructed in [22].

However, in this algorithm, agents spend a lot of energy: the number of moves that an agent must

make, is proportional to the time of rendezvous. On the other hand, in many applications, e.g.,

when agents are mobile robots, they are battery-powered devices, and hence the energy that an

agent can spend on moves is limited. It is thus natural to ask if bounded-energy agents, i.e., agents

that can make at most c moves, for some integer c, can always achieve rendezvous with detection

as well. This is impossible for some networks of unbounded size. Hence we rephrase the question:

Can bounded-energy agents always achieve rendezvous with detection in bounded-size networks?

We prove that the answer to this question is positive, even in the local beeping model but, perhaps

2

surprisingly, this ability comes at a steep price of time: the meeting time of bounded-energy agents

is exponentially larger than that of unrestricted agents. By contrast, we show an algorithm for

rendezvous with detection in the global beeping model that works for bounded-energy agents (in

bounded-size networks) as fast as for unrestricted agents.

Related work. The vast literature on rendezvous can be divided according to the mode in which

agents move (deterministic or randomized) and the environment where they move (a network

modeled as a graph or a terrain in the plane). An extensive survey of randomized rendezvous in

various scenarios can be found in [2], cf. also [3, 17]. Rendezvous of two or more agents in the

plane has been considered e.g., in [12, 13].

Our paper is concerned with deterministic rendezvous in networks, surveyed in [20]. In this setting

a lot of effort has been dedicated to the study of the feasibility of rendezvous, and to the time

required to achieve this task, when feasible. For instance, deterministic rendezvous with agents

equipped with tokens used to mark nodes was considered, e.g., in [18]. Time of deterministic

rendezvous of agents equipped with unique labels was discussed in [10, 22]. Memory required by

the agents to achieve deterministic rendezvous has been studied in [4, 14] for trees and in [9] for

general graphs. In [19] the authors studied tradeoffs between the time of rendezvous and the total

number of edge traversals by both agents until the meeting.

Apart from the synchronous model used in this paper, several authors have investigated asyn-

chronous rendezvous in the plane [7, 12, 13] and in network environments [5, 11]. In the latter

scenario the agent chooses the edge which it decides to traverse but the adversary controls the

speed of the agent. Under this assumption rendezvous in a node cannot be guaranteed even in

very simple graphs, and hence the rendezvous requirement is relaxed to permit the agents to meet

inside an edge.

2 Preliminaries

In the rest of the paper the word “graph” means a simple connected undirected graph modeling a

network. The size of a graph is the number of its nodes. In this section we recall two procedures

known from the literature, that will be used as building blocks in our algorithms. The aim of

the first procedure is graph exploration, i.e., visiting all nodes of a graph by a single agent. The

procedure, called EXP (m), is based on universal exploration sequences (UXS) [16], and follows

from the result of Reingold [21]. Given any positive integer m, it allows the agent to visit all nodes

of any graph of size at most m, starting from any node of this graph, using R(m) edge traversals,

where R is some polynomial.

A UXS is an infinite sequence x1, x2, . . . of non-negative integers. Given this sequence, whose

effective construction follows from [16, 21], the procedure EXP (m) can be described as follows. In

step 1, the agent leaves the starting node by port 0. For i ≥ 1, the agent that entered the current

node of degree d by some port p in step i, computes the port q by which it has to exit in step i+1

as follows: q = (p+ xi) mod d. The result of Reingold implies that if an agent starts at any node

v of an arbitrary graph with at most m nodes, and applies procedure EXP (m), then it will visit

all nodes of the graph after R(m) steps.

3

The second procedure, due to Ta-Shma and Zwick [22], guarantees rendezvous (without detection)

in an arbitrary graph. Below we briefly sketch this procedure, which will be used in our algorithm

of rendezvous with detection for unrestricted agents.

Let Z+ denote the set of positive integers and let Z∗ denote the set of integers greater or equal than

−1. For any positive integer L, Ta-Shma and Zwick define a function ΦL : Z+ × Z
+ × Z

∗ −→ Z
∗.

Intuitively, this function describes a walk in the graph: when an agent starts at some node v of

the graph, the function Φ indicates which port the agent should take in the t-th step of its walk,

or that it should stay idle (i.e., do not move) in the tth step. The three parameters of the function

are: the next step number t, the degree d of the current node, and the port number p by which

the agent entered the current node in the previous step, or −1 if it stayed idle in the previous step.

The value of the function is either the port number by which the agent should leave the current

node in the next step, or −1 if it should stay in the next step.

More formally, the function ΦL is applied by an agent with label L in a graph G at a node v of G

as follows. Let v0 = v and let v1 be the node adjacent to v0, such that the edge {v0, v1} has port

number 0 at v0. Suppose that nodes v0, v1, . . . , vt−1 are already constructed, so that vi+1 either

equals vi or is adjacent to vi. The node vt is defined as follows. In the case when vt−1 = vt−2 and

the degree of vt−1 is d, then vt = vt−1 if ΦL(t, d,−1) = −1; if ΦL(t, d,−1) = q ≥ 0 then vt is the

node adjacent to vt−1 such that the port number at vt−1 corresponding to edge {vt−1, vt} is q. In

the case when vt−1 6= vt−2, the port number at vt−1 corresponding to edge {vt−1, vt−2} is p and

the degree of vt−1 is d, then vt = vt−1 if ΦL(t, d, p) = −1; if ΦL(t, d, p) = q > 0 then vt is the node

adjacent to vt−1 such that the port number at vt−1 corresponding to edge {vt−1, vt} is q. Hence

the application of function ΦL at node v defines an infinite walk of the agent with label L in the

graph G. This walk starts at v and in each round t the agent either stays at the current node or

moves to an adjacent node by a port determined by the function ΦL on the basis of the degree of

the current node and of the port by which the agent entered it. A round t is called active for the

agent if vt 6= vt−1 and it is called passive if vt = vt−1.

The following result, proved in [22], guarantees rendezvous without detection in polynomial time,

if two agents apply functions ΦL corresponding to their labels, in an unknown graph.

Theorem 2.1 There exists a polynomial P in two variables, with the following property. Let G be

an n-node graph and consider two agents with distinct labels L1, L2 respectively, starting at nodes

v and w of the graph in rounds t1 ≥ t2. Let t ≥ t1 and let ℓ be the smaller label. If agent with

label Li applies function ΦLi
at its starting node, for i = 1, 2, then agents are simultaneously at the

same node in some round of the time interval [t, t+ P (n, log ℓ)]. Moreover, rendezvous occurs in a

round which is active for one of the agents and passive for the other. The same property remains

true if one of the agents stays idle and the other agent applies its function ΦLi
.

3 Rendezvous with detection of unrestricted agents

In this section we describe and analyze an algorithm of rendezvous with detection which works for

unrestricted agents, i.e., for agents that can spend an arbitrary amount of energy on moves. It

works even for the weaker of our two models, i.e., for the local beeping model. Our algorithm uses

4

the following procedure which describes an infinite walk of an agent with label L, based on the

above described application of the function ΦL.

Procedure Beeping walk

Consider an agent with label L starting at node v of a graph G. Let W be the walk resulting from

the application of ΦL in graph G at node v. Each round of W is replaced by 2 consecutive rounds

as follows. If round t of W is passive, i.e., vt = vt−1, then this round is replaced by two rounds in

which the agent stays at vt and listens. If round t of W is active, i.e., vt 6= vt−1, then this round is

replaced by the following two rounds: in the first of these rounds the agent goes to vt and beeps,

and in the second of these rounds the agent stays at vt and listens.

We now describe our algorithm for rendezvous with detection. It is executed by each agent. Note

that the execution of procedure Beeping walk, called by the algorithm, depends on the label of

the agent.

Algorithm RV-with-detection

Perform procedure Beeping walk until you hear a beep
Let s be the current round number (counted since your wake-up)
Stay idle forever
Beep in round s+ 1 listen in round s+ 2
If you hear no beep in round s+ 2 then

declare rendezvous in round s+ 3 and stop
else

listen in round s+3, declare rendezvous in round s+4, and stop.

We now show that Algorithm RV-with-detection correctly accomplishes rendezvous with detec-

tion and works in time polynomial in the size of the graph and in the logarithm of the smaller

label. The agent that starts later will be called the later agent and the other one the earlier agent.

If agents start simultaneously, these qualifiers are attributed arbitrarily.

Theorem 3.1 Consider two agents with distinct labels L1, L2 respectively, starting at nodes v

and w of an n-node graph in possibly different rounds. Let ℓ be the smaller label. If both agents

execute Algorithm RV-with-detection, then they meet and simultaneously declare rendezvous in

time O(P (n, log ℓ)), i.e., polynomial in n and in log ℓ, after the start of the later agent.

Proof. An agent executing Algorithm RV-with-detection starts by performing procedure Beeping

walk. We first prove that when both agents execute this procedure there must be a round in which

one of them hears the beep of the other. By Theorem 2.1, when agent with label Li applies function

ΦLi
at its starting node, for i = 1, 2, there is a round r when they meet, and this round is active

for one agent and passive for the other. (The names of the rounds are for the ease of description

only, as none of the agents knows them.) This holds regardless of the starting rounds and starting

positions of the agents. By definition, procedure Beeping walk is a simulation of the application

of ΦLi
with 2-round segments corresponding to rounds. A segment simulating an active (resp.

passive) round will be called an active (resp. passive) segment.

5

Suppose that the segment simulating the meeting round r is the ρth segment of the earlier agent.

If the segments of the two agents are aligned, i.e., the first round of the later agent is the first

round of a segment of the earlier agent, then in the first round of the ρth segment of the earlier

agent one agent beeps and the other listens because this segment is active for one of them and

passive for the other. Since both agents are at the same node in this round, one of them hears the

beep of the other. Hence we may assume that the segments are not aligned. Suppose that the σth

segment of the later agent starts during the ρth segment of the earlier agent, i.e., the first round of

the σth segment of the later agent is the second round of the ρth segment of the earlier agent. By

Theorem 2.1 there are two cases: either the ρth segment of the earlier agent is passive and the σth

segment of the later agent is active, or the ρth segment of the earlier agent is active and the σth

segment of the later agent is passive. In the first case let r′ be the first round of the σth segment

of the later agent. In round r′ both agents are at the same node and the later agent beeps while

the earlier agent listens, hence it hears the beep. Consider the second case. Regardless of whether

the (σ − 1)th segment of the later agent is active or passive, during this segment the later agent

is at the same node as the earlier agent during its ρth segment. Let r′′ be the first round of the

ρth segment of the earlier agent. Since segments of agents are not aligned, in round r′′, when the

earlier agent beeps, the later agent listens, and hence hears the beep. This shows that in all cases

there must be a round in which one of the agents hears the beep of the other.

Let t be the first round in the execution of Algorithm RV-with-detection by both agents, in which

one agent hears the beep of the other. Denote by A1 the agent that listens in round t and by A2 the

other agent. By the algorithm, agent A1 stays idle from round t on, and beeps in round t+ 1. In

this round agent A2 stays idle at the same node and listens, as it still executes procedure Beeping

walk, and this is the second round of a segment for this agent. Hence agent A2 hears a beep in

round t+1. This is the first beep that it hears. Consequently, agent A2 stays idle from round t+1

on, and beeps in round t + 2. Hence agent A1 hears a beep in round t + 2. By the algorithm, it

listens in round t+ 3, declares rendezvous in round t+ 4 and stops. As for agent A2, it listens in

round t + 3 and does not hear a beep in this round. Hence it also declares rendezvous in round

t+ 4 and stops.

It follows that in round t+4 both agents are at the same node, declare rendezvous and stop. This

proves the correctness of Algorithm RV-with-detection. It remains to estimate its time. Round

t must occur at most 2P (n, log ℓ) rounds after the start of the later agent. Since simultaneous

declaration of rendezvous is in round t+ 4, this proves the theorem. �

4 Rendezvous with detection of bounded-energy agents

In this section we study rendezvous with detection of agents that can perform a bounded number

of moves. Let c be a positive integer. A c-bounded agent is defined as an agent that can perform at

most c moves. (Notice that we do not restrict the number of beeps; indeed, the amount of energy

required to make a move is usually so much larger than the amount of energy required to beep that

ignoring the latter seems to be a reasonable approximation of reality in many applications.) Can

c-bounded agents, for some integer c, perform rendezvous with detection in arbitrary graphs? The

6

answer to this question is, of course, negative, even if detection is not required. For any integer

c, c-bounded agents starting at distance larger than 2c cannot meet because at least one of them

would have to make more than c steps. Even if we assume that the initial distance between the

agents is 1, meeting of c-bounded agents is impossible in some graphs. Indeed, consider two n-node

stars whose centers are linked by an edge, with agents starting at the centers of the stars. In the

worst case, at least one of the agents must make at least n − 1 steps before meeting (to find the

connecting edge), which is impossible for c-bounded agents, when n is large.

Thus, we rephrase the question: Can c-bounded agents always achieve rendezvous with detection

in bounded-size graphs? More precisely, for any integer n, does there exist an integer c, such that

c-bounded agents can achieve rendezvous with detection in all graphs of size at most n? (Notice

that, for example, Algorithm RV-with-detection cannot be used here. In this algorithm, the

number of steps performed by an agent with label L is proportional to P (n, logL), and hence, even

when the size of the graph is bounded, this number can be arbitrarily large.) The answer to our

question turns out to be positive, even in the local beeping model. Below we describe an algorithm

that performs this task.

4.1 Bounded-energy agents in the local beeping model

Our algorithm uses the following procedure, for an integer parameter n.

Procedure Beeping exploration (n)

Let EXP (n) be the procedure described in Section 2 that permits exploration of all graphs of size

at most n. Replace each round r of EXP (n) by three consecutive rounds as follows. If in round

r of EXP (n) the agent takes port p to move to node w, then in the first of the three replacing

rounds the agent takes port p to move to w and beeps, and in the second and third of the replacing

rounds it stays at w and listens.

Hence, in each of the three rounds replacing a round r of EXP (n), the agent is at the same node

in Procedure Beeping exploration (n) as it is in Procedure EXP (n) in round r.

We now describe our algorithm for rendezvous with detection of bounded-energy agents, executed

by an agent with label L in a graph of size at most n. Recall that R(n) is the execution time of

EXP (n). The idea of the algorithm is the following. Its main part, called block, consists of two

executions of Procedure Beeping exploration (n) between which a long waiting period is inserted,

during which the agent is silent (it listens) and stays idle. The length of this period depends on

the label of the agent. We will prove that, regardless of the delay between the starting times of

the agents, an entire execution of Procedure Beeping exploration (n) of one of the agents must

either fall within the waiting period of the other agent, or must be executed after both executions

of this procedure by the other agent. The block of the algorithm executed by a given agent is

interrupted in one of the two cases: either when (a) the agent hears a beep during its waiting

period or after completing its block, or when (b) it hears beeps in two consecutive rounds during

one of the executions of Procedure Beeping exploration (n). In case (a) the agent responds by

beeps in two consecutive rounds, declares rendezvous in the next round and stops. In case (b) it

declares rendezvous in the next round and stops.

7

Below we give the pseudo-code of the algorithm executed by an agent with label L in a graph of

size at most n. During the executions of Procedure Beeping exploration (n), a boolean variable

waiting is set to false, and during the waiting period and after the second execution of Procedure

Beeping exploration (n) it is set to true. We use a boolean valued function condition which

takes the variable waiting as input, and returns, after each round, the boolean value of the expres-

sion

(waiting and you hear a beep) or (¬waiting and you hear beeps in two consecutive rounds).

Algorithm Bounded-energy-RV-with-detection

waiting := false
Perform the following sequence of actions in consecutive rounds
and verify the value of condition in each round
until condition becomes true

Perform Procedure Beeping exploration (n)
waiting := true
Stay idle and listen for 6L ·R(n) rounds
waiting := false
Perform Procedure Beeping exploration (n)
waiting := true
Stay idle forever and listen

s := the round number when condition becomes true (counted since your wake-up)
if waiting then

beep in rounds s+ 1 and s+ 2
declare rendezvous in round s+ 3 and stop

else

declare rendezvous in round s+ 1 and stop.

Theorem 4.1 For any positive integer constant n there exists a positive integer c, such that Algo-

rithm Bounded-energy-RV-with-detection can be executed by c-bounded agents in any graph of

size at most n. If two such agents with distinct labels execute this algorithm in such a graph, then

they meet and simultaneously declare rendezvous in time O(ℓ∗) after the start of the later agent,

where ℓ∗ is the larger label.

Proof. Let n be a fixed positive integer. In order to show the existence of the integer c, it is enough

to show that the number of steps prescribed by the algorithm depends only on the integer n (and

not on the label L of the agent). The agent moves only during the two executions of Procedure

Beeping exploration (n), at most once every three rounds. Since a full execution of Procedure

Beeping exploration (n) takes E = 3R(n) rounds, the agent moves at most 2E/3 = 2R(n) times,

and hence it is enough to take c = 2R(n).

We now prove the correctness of the algorithm. Let B(L) be the sequence of actions

Perform Procedure Beeping exploration (n);

Stay idle for 6L ·R(n) rounds and listen; (waiting period)

8

Perform Procedure Beeping exploration (n);

For any label L, the sequence B(L) of actions will be called the block of the agent with label L.

We will use the following claim.

Claim. Consider blocks B(L1) and B(L2), for L1 > L2, arbitrarily shifted in time with respect

to each other. Then one of the two following properties must hold. Either an entire execution of

Procedure Beeping exploration (n) in one of the blocks falls within the waiting period of the

other block, or an entire execution of Procedure Beeping exploration (n) in one of the blocks

falls after the end of the other block.

In order to prove the claim, consider blocks B(L1) and B(L2), for L1 > L2. Call the block B(L1)

the larger block and the block B(L2) the smaller block. The waiting period of the smaller block

has length Y = 2EL2 ≥ 2E. Since L1 ≥ L2 + 1, the waiting period of the larger block has length

2EL1 ≥ 2E(L2 + 1) = 2EL2 + 2E = Y + 2E. Let the starting round of the block that starts

earlier have number 0. We will use global round numbers starting from this round. (This is for the

purpose of analysis only, as agents do not have access to any global round counter.)

If the smaller block starts earlier, then the second execution of Procedure Beeping exploration

(n) of the larger block is performed after the end of the smaller block, and the claim is proved.

Hence we may assume that the larger block starts earlier or simultaneously with the smaller block.

Let p be the first round of the smaller block. Consider three cases.

Case 1. 0 ≤ p ≤ E.

In this case the second execution of Procedure Beeping exploration (n) in the smaller block falls

entirely within the waiting period of the larger block.

Case 2. E < p ≤ 2L1E.

In this case the first execution of Procedure Beeping exploration (n) in the smaller block falls

entirely within the waiting period of the larger block.

Case 3. p > 2L1E.

In this case the second execution of Procedure Beeping exploration (n) in the smaller block falls

entirely after the end of the larger block.

This proves the claim.

Consider agents with labels L1 > L2. Call the agent with label L1 the larger agent and the agent

with label L2 the smaller agent. The claim implies that there must exist a round r in which

condition is satisfied (i.e., has value true) for one of the agents. Indeed, if such a round has not

occurred previously, it must occur during the execution of Procedure Beeping exploration (n) by

one of the agents, call it A1, that falls entirely either in the waiting period of the other agent, call

it A2, or after the end of the second execution of Procedure Beeping exploration (n) by agent

A2. In both situations, agent A2 has its variable waiting set to true, it is idle and listens during

an entire execution of Procedure Beeping exploration (n) by agent A1. During this execution,

agent A1 visits all nodes of the graph and beeps at each node. Hence agent A2 hears a beep while

its variable waiting is set to true, which means that condition is true for agent A2.

Let r0 be the first round in which condition is true for some agent. We will show that for this

9

agent the first possibility, i.e., (waiting and you hear a beep) must be satisfied in round r0. Indeed,

suppose that the second possibility, i.e., (¬waiting and you hear beeps in two consecutive rounds)

is satisfied in round r0. These beeps in two consecutive rounds that the agent heard must have been

produced in rounds r0 − 1 and r0 by the other agent. It could not be during the execution of its

block because then the agent beeps only during the execution of Procedure Beeping exploration

(n) and this never happens in two consecutive rounds. Hence it must have happened after the

block of the other agent has been interrupted. This is possible only when condition has been true

for the other agent, which must have occurred before round r0, contradicting the definition of this

round.

Consider round r0 and the agent, call it A3, for which the clause (waiting and you hear a beep)

is satisfied in round r0. Agent A3 is at some node v in round r0. In round r0, the other agent,

call it A4, must still execute its block, and more precisely it must execute Procedure Beeping

exploration (n). It is also at node v in round r0. Hence it remains idle at v and listens in the two

rounds after it has beeped, i.e., in rounds r0 +1 and r0 +2. In these rounds agent A3 stays idle at

v and beeps. Then it declares rendezvous in round r0 +3 (still remaining at node v) and stops. As

for agent A4, after hearing beeps in rounds r0 + 1 and r0 + 2, the clause (¬waiting and you hear

beeps in two consecutive rounds) becomes satisfied for it in round s = r0+2. Hence agent A4 (still

remaining at node v) declares rendezvous in round s + 1 = r0 + 3 and stops. This concludes the

proof of correctness.

It remains to estimate the time between the start of the later starting agent and the declaration of

rendezvous. Since n is constant, R(n) is also constant, and hence the duration of the execution of

its block by an agent with label L is (2L+2) · 3R(n) ∈ O(L). Let Li, where i = 1, or i = 2, be the

label of the later starting agent. Hence the time between the start of this agent and the declaration

of rendezvous is at most (2Li + 2) · 3R(n) + 3 ∈ O(Li) = O(ℓ∗) because Li ≤ ℓ∗. This concludes

the proof. �

It is interesting to compare the time sufficient to complete the task of rendezvous with detection,

given by Algorithm RV-with-detection for unrestricted agents, with the time given by Algorithm

Bounded-energy-RV-with-detection for bounded-energy agents. This comparison is meaningful

on the class of graphs for which both types of agents can achieve rendezvous with detection, i.e., for

graphs of bounded size. Consider the class Cn of graphs of size at most n, for some constant n, and

consider c-bounded agents for some integer c large enough to achieve rendezvous with detection on

the class Cn using Algorithm Bounded-energy-RV-with-detection. By Theorem 3.1, unrestricted

agents can accomplish rendezvous with detection in time O(P (n, log ℓ)), i.e., since n is constant,

in time polylogarithmic in the smaller label. By contrast, by Theorem 4.1, bounded-energy agents

can accomplish rendezvous with detection in time O(ℓ∗), i.e., linear in the larger label. It is natural

to ask if this exponential gap in time, due to energy restriction, is unavoidable. The following

lower bound shows that the answer to this question is yes. In fact, this lower bound holds even for

the two-node graph, even with simultaneous start of the agents, and even for rendezvous without

detection.

Theorem 4.2 Let c be a positive constant. In the local beeping model, the time of rendezvous on

the two-node graph of c-bounded agents with labels from the set {1, . . . ,M} is Ω(c
√
M).

10

Proof. Consider any rendezvous algorithm A of c-bounded agents on the two-node graph. Suppose

that labels of the agents can be drawn from the set {1, . . . ,M} and that agents start simultaneously.

Let T be the worst-case meeting time over all pairs of labels from the set {1, . . . ,M}. For any label

L ∈ {1, . . . ,M}, let ΦL : {1, . . . , T} −→ {0, 1} denote the binary sequence of length T with the

following meaning. If agent with label L executes alone algorithm A in the two-node graph (we

call it the solo execution), then it moves in round i, if ΦL(i) = 1, and it stays idle in round i, if

ΦL(i) = 0. For any label L, the function ΦL is well-defined because in the two-node graph the

history of the agent in any round is exactly the binary sequence describing the previous moves

(i.e., the agent cannot “learn” anything from the environment during the navigation in this graph,

as opposed to more complicated graphs in which it could learn degrees of visited nodes or port

numbers by which it enters them). Hence a solo execution of algorithm A by an agent in the two

node graph depends only on the label of the agent. Notice that, if there are two agents in this

graph, executing algorithm A, then the behavior of each of them before the meeting is the same as

in the solo execution.

Since agents are c-bounded, the number of values 1 in each function ΦL is at most c. The number

of such functions is
(

T

0

)

+

(

T

1

)

+ · · ·+
(

T

c

)

≤ 1 + T + T 2 + · · ·+ T c ≤ 2T c.

If 2T c < M , there would exist two labels L1, L2 ∈ {1, . . . ,M}, for which ΦL1
= ΦL2

. Agents with

these labels could not meet by round T , as they would move exactly in the same rounds until

round T , hence in every round they would be at different nodes. It follows that 2T c ≥ M , hence

T ∈ Ω(c
√
M). �

Theorem 4.2 implies that in the local beeping model, any rendezvous algorithm for bounded-energy

agents must have time at least Ω(c
√
ℓ∗), where ℓ∗ is the larger label and c is some constant. Theorems

3.1, 4.1 and 4.2 imply the following corollary.

Corollary 4.1 Rendezvous with detection of bounded-energy agents is feasible in the class of bounded-

size graphs in the local beeping model, but its time must be exponentially larger than the best time

of rendezvous with detection of unrestricted agents in this class of graphs.

4.2 Bounded-energy agents in the global beeping model

Our final result shows that in the stronger of our two models, i.e., the global beeping model, the

lower bound on time proved in Theorem 4.2 does not hold anymore. In fact, we show that in this

model, bounded-energy agents can meet with detection in the class of bounded-size graphs in time

logarithmic in the smaller label. We will also prove that this time is optimal even in the two-node

graph.

The high-level idea of the algorithm is to first break symmetry between the agents in time logarith-

mic in the smaller label, without making any moves, using the possibility of hearing the beeps of

the other agent, wherever it is in the graph. This is the purpose of Procedure Symmetry-breaking

11

in which agents beep or listen according to bits of their transformed label (the transformation will

be explained below). Moreover, at the end of this procedure, both agents declare the same round

to be red which permits them to synchronize in the next part of the algorithm.

After breaking symmetry, one of the agents remains idle and the other agent finds it using a

bounded number of moves. This is done during Procedure Modified-beeping-exploration, when

the moving agent performs exploration of the graph while beeping in every second round. This

procedure is started by the moving agent in round red, simultaneously declared by both agents in

Procedure Symmetry-breaking. Correct declaration of rendezvous is possible due to the distinction

between hearing loud and soft beeps, and due to synchronization of agents which permits each of

them to hear the beeps of the other agent.

We now proceed with the detailed description of the algorithm. We first define the following

transformations of the label L of an agent. Let (c1 . . . ck) be the binary representation of the label

L. Let T1(L) be the binary sequence (01c1c1c2c2 . . . ckck01), and let T2(L) be the result of replacing

each bit 0 of T1(L) by the string (00) and each bit 1 by the string (10). Note that the length of the

binary string T2(L) is 2(2k + 4) ∈ O(logL).

The following procedure, executed by an agent with label L and called upon the activation of the

agent, does not involve any moves and permits to break symmetry between any two agents with

different labels.

Procedure Symmetry-breaking

Let T2(L) = (d1 . . . ds)
i := 1
repeat in consecutive rounds until you hear a beep

if (i ≤ s and di = 1) then beep else listen
i := i+ 1

Let r be the round when you first hear a beep (counted since your wake-up)
if you beeped in round r − 1 then

declare round r + 1 red
role := waiting

else

beep in round r + 1
declare round r + 2 red
role := walking;

if the beep you heard was loud then

declare rendezvous in the red round and stop;

Lemma 4.1 Upon completion of Procedure Symmetry-breaking, both agents declare the same

round to be red. For one of the agents round red is the next round after it heard a beep for

the first time, and this agent sets role := waiting. For the other agent round red is two rounds

after it heard a beep for the first time, and this agent sets role := walking. The round declared red

is O(log ℓ) rounds after the activation of the later agent, where ℓ is the smaller label.

Proof. We first prove that there exists a round ξ in which both agents are present in the graph

12

and one of the agents hears a beep. Let L1 be the label of agent A1 and let L2 be the label of agent

A2. Consider three cases. In all of them we show a round ξ as above, assuming that none of the

agents heard a beep at any earlier round.

Case 1. Both agents are activated in the same round and have labels with binary representations

of equal length.

Let i be the first index for which strings T2(L1) and T2(L2) differ. Since agents are activated in

the same round, the same round corresponds to index i for both of them. In this round one of the

agents beeps and the other agent listens, hence it hears a beep.

Case 2. Both agents are activated in the same round and have labels with binary representations

of different length.

Without loss of generality, let L1 be the label of smaller length. Let T2(L1) = (d1 . . . ds). Let α be

the common activation round of the agents and let γ = α+ s− 1. Agent A1 beeps in round γ − 1

and listens in rounds γ − 3, γ − 2 and γ. Agent A2 either listens in all rounds γ − 3, γ − 2, γ − 1

and γ, or beeps in rounds γ − 3 and γ − 1 and listens in rounds γ − 2 and γ. In both cases one of

the agents hears a beep either in round γ − 3 or γ − 1.

Case 3. Agents are activated in different rounds.

Without loss of generality let A1 be activated earlier and let α be its activation round. Let β > α

be the activation round of A2. Let s be the length of T2(L1).

If β = α+ 1 or β = α+ 2 then A2 hears a beep in round α+ 2. If β = α+ 3 then A2 hears a beep

in round α+4 because the first bit of the binary representation of every label L is 1, hence the 5th

bit of T2(L1) is 1.

Next suppose that α+ 4 ≤ β ≤ α+ s− 8. Consider three possibilities. If β − α is odd then agent

A2 beeps in round β + 2 and agent A1 listens in this round, hence it hears a beep. If β − α is

divisible by 4 then agent A2 listens in round β and beeps in round β + 2. Agent A1 either listens

in rounds β and β + 2 or beeps in these rounds. Hence one of the agents hears a beep in one of

these rounds. The case of β − α = 4i + 2, for some integer i, is slightly more complicated. In this

case divide all rounds, starting from round α, into segments of size 2. Round β is in the beginning

of such a segment. Segments correspond to bits of sequences T1(L1) and T1(L2). Let T1(L1) be

the binary sequence (01c1c1c2c2 . . . ckck01) and consider the final bits 01 of T1(L2). Let I be the

segment corresponding to this bit 0 and let J be the segment corresponding to this bit 1. There

are four possible situations:

1. The segment I corresponds to some cj in T1(L1) and the segment J corresponds to cj+1.

In this case the second copy of cj+1 corresponds to a segment in which agent A2 has already

terminated and listens. If cj+1 = 0 then J corresponds to 0 in T1(L1) and to 1 in T1(L2). Hence A1

hears a beep in the first round of this segment. If cj+1 = 1 then in the first round of the segment

following J agent A1 beeps and agent A2 listens, hence it hears a beep.

2. The segment I corresponds to ck in T1(L1).

In this case I corresponds to the second copy of ck in T1(L1), and hence J corresponds to 0 in

T1(L1) and to 1 in T1(L2). Consequently, agent A1 hear a beep in the first round of this segment.

13

3. The segment I corresponds to the final 1 in T1(L1).

In this case A2 hears a beep in the first round of segment I.

4. In the segment I agent A1 has already terminated and listens.

In this case, in segment J corresponding to 1 in T1(L2) agent A1 also listens after termination.

Hence, it hears a beep in the first round of this segment.

It follows that, whenever α+4 ≤ β ≤ α+ s− 8, one of the agents hears a beep at the latest in the

round following the last round corresponding to a bit from T2(L2) (or equivalently, at the latest in

the round following the last round corresponding to a bit from T1(L2)).

If β = α + s − 7 then agent A2 listens in round β + 1 and beeps in round β + 2, while agent A1

either listens in both these rounds or beeps in round β+1 and listens in round β+2. Hence one of

the agents hears a beep in one of these rounds. If β = α+ s−6 then agent A2 beeps in round β+2

and agent A1 listens in this round, hence it hears a beep. If β = α+ s− 5 then agent A2 beeps in

round β+2 and agent A1 listens in this round, hence it hears a beep. Finally, if β > α+s−5, then

agent A2 beeps in round β + 4 (because the first bit of the binary representation of every label L

is 1, hence the 5th bit of T2(L2) is 1) and agent A1 listens in this round (as it already concluded

processing bits of T2(L1)), hence it hears a beep. This concludes the argument in Case 3.

Hence one of the agents must always hear a beep in some round ξ. Moreover, our case analysis

shows that round ξ is at most O(log ℓ) rounds after the activation of the later agent, where ℓ is the

smaller label.

Let ρ be the first round in which one of the agents hears a beep. Call this agent A3 and the other

agent A4. Notice that A3 could not beep in round ρ − 1. Otherwise, agent A4 that was already

active in round ρ − 1 and listened in this round (agents never beep in two consecutive rounds)

would hear a beep in round ρ− 1, contradicting the definition of round ρ. Hence, according to the

procedure, agent A3 beeps in round ρ+ 1 and declares round ρ+ 2 red. Agent A4 which listens in

round ρ + 1 hears a beep in this round for the first time. Since it beeped in round (ρ + 1) − 1, it

declares round (ρ+ 1) + 1 red. Hence both agents declare the same round ρ+ 2 red.

For agent A4, round red is the next round after it heard a beep for the first time, and this agent

sets role := waiting. For agent A3 round red is two rounds after it heard a beep for the first time,

and this agent sets role := walking.

Since round ρ is at most O(log ℓ) rounds after the activation of the later agent, the same is true for

the round declared red, which concludes the proof of the lemma. �

We will also use a modified version of Procedure Beeping-exploration, described at the beginning

of this section, for an integer parameter n.

Procedure Modified-beeping-exploration (n)

Let EXP (n) be the procedure described in Section 2 that permits exploration of all graphs of size

at most n. Replace each round r of EXP (n) by two consecutive rounds as follows. If in round r

of EXP (n) the agent takes port p to move to node w, then in the first of the two replacing rounds

the agent takes port p to move to w and beeps, and in the second replacing round it stays at w

and listens.

14

Hence, in each of the two rounds replacing a round r of EXP (n), the agent is at the same node in

Procedure Modified-beeping-exploration (n) as it is in Procedure EXP (n) in round r.

Below we give the pseudo-code of the algorithm executed by an agent with label L in a graph of

size at most n.

Algorithm Fast-bounded-energy-RV-with-detection

Perform Procedure Symmetry-breaking
if role = waiting then

stay idle and listen until you hear a loud beep
let t be the round when you first hear a loud beep (counted since your wake-up)
beep in round t+ 1, declare rendezvous in round t+ 2, and stop

else

perform Procedure Modified-beeping-exploration (n) starting in round red
(previously declared in the execution of Procedure Symmetry-breaking)
until you hear a loud beep
let t be the round when you first hear a loud beep (counted since your wake-up)
declare rendezvous in round t+ 1, and stop.

Theorem 4.3 For any positive integer constant n there exists a positive integer c, such that Al-

gorithm Fast-bounded-energy-RV-with-detection can be executed by c-bounded agents in any

graph of size at most n, in the global beeping model. If two such agents with distinct labels exe-

cute this algorithm in such a graph, then they meet and simultaneously declare rendezvous in time

O(log ℓ) after the start of the later agent, where ℓ is the smaller label. This time is optimal, even

in the two-node graph.

Proof. Let n be a positive integer constant. In order to show the existence of the integer c, it is

enough to show that the number of steps prescribed by the algorithm depends only on the constant

n (and not on the label L of the agent). The agent moves only during the execution of Procedure

Modified-beeping-exploration (n), once every two rounds. Since a full execution of Procedure

Modified-beeping-exploration (n) takes 2R(n) rounds (where R(n) is the execution time of

EXP (n)) it is enough to take c = R(n).

We now prove the correctness of the algorithm. By Lemma 4.1, both agents declare the same

round to be red. In Procedure Symmetry-breaking, either both agents heard a loud beep, or they

both heard a soft beep, because agents do not move during the execution of this procedure. If

the beep they heard was loud then they are at the same node in round red and they correctly

declare rendezvous in this round and stop. Hence we may assume that the beep they heard was

soft. By Lemma 4.1, in round red one of the agents, call it A1, has the variable role previously set

to waiting, and the other agent, call it A2, has the variable role previously set to walking. Agent

A1 stays idle forever at its starting node v. Let σ be the first round in which agent A2 arrives at

node v. Such a round exists because EXP (n) explores the entire graph. Agent A2 beeps in round

σ. Agent A1 hears a loud beep in this round for the first time. Hence it beeps in round σ + 1 and

declares rendezvous in round σ + 2. Agent A2 hears a loud beep for the first time in round σ + 1.

Hence it declares rendezvous in round σ + 2. This concludes the proof of correctness.

15

It remains to estimate the time between the start of the later starting agent and the declaration of

rendezvous. By Lemma 4.1, the round declared red in Procedure Symmetry-breaking is O(log ℓ)

rounds after the activation of the later agent, where ℓ is the smaller label. Since n is constant, R(n) is

also constant, and hence the duration of the execution of Procedure Modified-beeping-exploration

(n) is constant. It follows that the time between the activation of the later agent and the declaration

of rendezvous is O(log ℓ), where ℓ is the smaller label.

In order to prove that time Θ(log ℓ) is optimal, even in the global beeping model, consider the

two-node graph K2. For any integer x > 2 and any algorithm A for rendezvous with detection

in the global beeping model, working in time t < (x − 1)/2, we show two labels L1 and L2 with

binary representations of length x, such that this algorithm fails if agents, placed at both nodes of

K2 and activated simultaneously, have these labels. In every round, the behavior of an agent can

be described as a pair of bits, the first of which determines if the agent stays or moves in the given

round, and the second of which determines if the agent beeps or does not beep in the given round.

Hence, in an execution of an algorithm working in time t, there are 4t possible behaviors of agents.

In any execution in which an agent does not hear any beep, the behavior of the agent depends only

on its label. There are 2x−1 labels with binary representations of length x (each representation

starts with 1). Consequently, if t < (x− 1)/2, then 2t < x− 1, and hence 4t < 2x−1, which implies

that there are at least two labels with binary representations of length x, which induce identical

behavior of the agents. None of such agents hears any beep, as they beep in exactly the same

rounds, and they are at different nodes at all times. Hence the algorithm fails for them. This

implies that rendezvous with detection must take time Ω(log ℓ), where ℓ is the smaller label. �

5 Conclusion

We presented three algorithms of rendezvous with detection. The first two of them work even

in the local beeping model: one for unrestricted agents in arbitrary graphs, and the other for

bounded-energy agents in bounded-size graphs. We showed that in the latter case the meeting

time of bounded-energy agents must be exponentially larger than the best time of rendezvous with

detection of unrestricted agents. More precisely, in order to meet in bounded-size graphs, bounded-

energy agents must use time polynomial in the larger label, while unrestricted agents can meet in

time polylogarithmic in the smaller label. The third algorithm works for bounded-energy agents

only in the global beeping model, but it is much faster: it enables such agents to perform rendezvous

with detection in bounded-size graphs in time logarithmic in the smaller label, which is optimal.

Rendezvous with detection may be considered as a preprocessing procedure for other important

tasks in graphs. One of them is the task of constructing a map of an unknown graph by an agent.

It is well known that this task cannot be accomplished by a single agent operating in a graph, if

it cannot mark nodes (e.g., a single agent cannot learn the size of an oriented ring). For the same

reason it cannot be accomplished by two non-communicating agents, as they would not be aware

of the presence of each other, and thus each of them would act as a single agent. By contrast, our

algorithms of rendezvous with detection in the beeping model can serve, with a simple addition, to

achieve map construction by the agents: the algorithm working for arbitrary agents can be used to

16

accomplish this task in arbitrary graphs, and the algorithms working for bounded-energy agents can

be used to accomplish this task in bounded-size graphs. This addition can be described as follows.

Note that, in all our algorithms, at the time when agents declare rendezvous, symmetry between

them is broken: in the case of algorithms in the local model, one of the agents heard two beeps at

the meeting node, and the other agent heard only one beep, and in the case of the algorithm in the

global model, one of the agents has role set to waiting and the other to walking. Hence agents can

start simultaneously the following procedure in the round after rendezvous declaration. The first

agent stays idle and acts as a stationary token, beeping in every second round, while the second

agent silently executes exploration with a stationary token (at the end of which it acquires the map

of the graph), cf. e.g., [6], replacing each exploration round by two rounds, in the first of which it

moves as prescribed and in the second it stays idle. Beeps of the idle agent allow the circulating

silent agent to recognize the token at each visit and complete exploration and map construction.

At the end of the exploration, the second agent is with the first one and can inform it of the end of

the exploration by beeping in the last round, in which the first agent is silent (listens). Then the

roles of the agents may change to allow the previously idle agent to acquire the map in its turn.

(Note that an agent cannot efficiently communicate the already acquired map due to the restrictive

communication model.)

17

References

[1] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, F. Kuhn, Beeping a maximal

independent set. Proc. 25th International Symposium on Distributed Computing (DISC 2011),

LNCS 6950, 32-50.

[2] S. Alpern and S. Gal, The theory of search games and rendezvous. Int. Series in Operations

research and Management Science, Kluwer Academic Publisher, 2002.

[3] E. Anderson and S. Fekete, Two-dimensional rendezvous search, Operations Research 49

(2001), 107-118.

[4] D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, T. Masuzawa, Space-optimal rendezvous of

mobile agents in asynchronous trees. Proc. 17th Int. Colloquium on Structural Information

and Comm. Complexity, (SIROCCO 2010), LNCS 6058, 86-100.

[5] E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, A. Labourel, Almost optimal asynchronous

rendezvous in infinite multidimensional grids, Proc. 24th International Symposium on Dis-

tributed Computing (DISC 2010), LNCS 6343, 297-311.

[6] J. Chalopin, S. Das, A. Kosowski, Constructing a map of an anonymous graph: Applications of

universal sequences, Proc. 14th International Conference on Principles of Distributed Systems

(OPODIS 2010), 119-134.

[7] M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Distributed computing by mobile robots:

Gathering, SIAM J. Comput. 41 (2012), 829-879.

[8] A. Cornejo, F. Kuhn, Deploying wireless networks with beeps, Proc. 24th International Sym-

posium on Distributed Computing (DISC 2010), LNCS 6343, 148-162.

[9] J. Czyzowicz, A. Kosowski, A. Pelc, How to meet when you forget: Log-space rendezvous in

arbitrary graphs, Distributed Computing 25 (2012), 165-178.

[10] A. Dessmark, P. Fraigniaud, D. Kowalski, A. Pelc. Deterministic rendezvous in graphs. Algo-

rithmica 46 (2006), 69-96.

[11] Y. Dieudonné, A. Pelc, V. Villain, How to meet asynchronously at polynomial cost, SIAM J.

Comput. 44 (2015), 844-867.

[12] P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous robots with

limited visibility, Theoretical Computer Science 337 (2005), 147-168.

[13] P. Flocchini, N. Santoro, G. Viglietta, M. Yamashita, Rendezvous of two robots with con-

stant memory, Proc. 20th Int. Colloquium on Structural Information and Comm. Complexity

(SIROCCO 2013), LNCS 8179, 189-200.

[14] P. Fraigniaud, A. Pelc, Delays induce an exponential memory gap for rendezvous in trees,

ACM Transactions on Algorithms 9 (2013), article 17.

18

[15] S. Gilbert, C. Newport, The computational power of beeps, Proc. 29th International Sympo-

sium on Distributed Computing (DISC 2015), 31-46.

[16] M. Koucký, Universal traversal sequences with backtracking, Journal of Computer and System

Sciences 65 (2002), 717-726.

[17] E. Kranakis, D. Krizanc, and P. Morin, Randomized Rendez-Vous with Limited Memory, Proc.

8th Latin American Theoretical Informatics (LATIN 2008), LNCS 4957, 605-616.

[18] E. Kranakis, D. Krizanc, N. Santoro and C. Sawchuk, Mobile agent rendezvous in a ring, Proc.

23rd Int. Conf. on Distr. Computing Systems (ICDCS 2003), 592-599.

[19] A. Miller and A. Pelc, Time versus cost tradeoffs for deterministic rendezvous in networks,

Proc. 33rd Annual ACM Symposium on Principles of Distributed Computing (PODC 2014),

282-290.

[20] A. Pelc, Deterministic rendezvous in networks: A comprehensive survey, Networks 59 (2012),

331-347.

[21] O. Reingold, Undirected connectivity in log-space, Journal of the ACM 55 (2008).

[22] A. Ta-Shma and U. Zwick. Deterministic rendezvous, treasure hunts and strongly universal

exploration sequences. Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA

2007), 599-608.

[23] J. Yu, L. Jia, D. Yu, G. Li, X. Cheng, Minimum connected dominating set construction in

wireless networks under the beeping model, Proc. IEEE Conference on Computer Communi-

cations, (INFOCOM 2015), 972-980.

19

	1 Introduction
	2 Preliminaries
	3 Rendezvous with detection of unrestricted agents
	4 Rendezvous with detection of bounded-energy agents
	4.1 Bounded-energy agents in the local beeping model
	4.2 Bounded-energy agents in the global beeping model

	5 Conclusion

