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Abstract. The satisfiability problem of the branching time logic CTL is
studied in terms of computational complexity. Tight upper and lower bounds
are provided for each temporal operator fragment. In parallel, the minimal
model size is studied with a suitable notion of minimality. Thirdly, flat CTL
is investigated, i.e., formulas with very low temporal operator nesting depth.
A sharp dichotomy is shown in terms of complexity and minimal models:
Temporal depth one has low expressive power, while temporal depth two is
equivalent to full CTL.

1 Introduction
Background. In the last decades, temporal logics have become established as a well-
known framework for verification of dynamic, reactive systems. The first to systematically
introduce time into modern logic was Arthur Prior, who used the framework of modal
logic [Pri57]. The resulting language was called tense logic. Amir Pnueli discovered the
usefulness of such logics for formally describing the behavior of dynamic systems with
discrete time steps [Pnu77]. His suggested method of temporal reasoning on programs
evolved into a broad family of logics; especially the linear time logic LTL, the branching
time logic CTL, and their extensions have remarkable importance in industrial-scale
software verification. They have been researched thoroughly in terms of their expressivity
and computational complexity. In particular, the tractable model checking problem of
CTL allows the application in practice, while its satisfiability problem is EXP-complete
and therefore highly intractable [All90, FL79, Pra80].

Many fragments of temporal logic have been investigated in the hope to find efficient
algorithms. This includes restricted temporal operator sets, bounded operator nesting
depth, bounded numbers of variables, and restricted sets of logical connectives [DS02,
Hal95, MM+09, Sch02, SC85]. The results are not too optimistic: For no fragment of
CTL or LTL the satisfiability problem becomes tractable, except for trivial combinations
of Boolean connectives [MM+09]. Restricting the CTL or LTL operators or the number of
propositions does not decrease the computational complexity noteworthily; and also very
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low temporal depth already carries the complexity of LTL beyond that of propositional
logic [DS02, Sch02, SC85].

Conversely, this means that even “simple” and “flat” temporal formulas have sufficient
expressive power, a fact that is reflected by their application in practice. Many important
properties of computations like safety, deadlock-freeness or fairness are expressible in
temporal depth two or three. Exceptions are CTL model checking, which is inherently
sequential only for unbounded temporal depth [BM+11]; furthermore modal satisfiability
(as a sublogic of CTL) drops down to NP for bounded depth, but is otherwise PSPACE-
complete even for only one proposition [Hal95].

The minimal model size of a formula—or of a class of formulas—can serve as an indicator
for its expressive power. Minimal models are also useful to consider for algorithms that
search a space of potential models, as then the size, or other measures, of minimal models
can deliver an upper bound for the required time or memory of the algorithm. For the
fragments of CTL investigated here, the results range over exponentially deep models,
large but shallow tree-like models down to polynomial models.

The complexity of a logical satisfiability problem heavily depends on the provided set
of Boolean connectives. Any finite set 𝐶 of Boolean connectives, which may contain
functions like ⊕, →, etc. instead of the standard connectives ∧, ∨, ¬, forms the base of
a so-called clone [𝐶], roughly speaking the set of all Boolean functions expressible via
connectives of 𝐶. There is a countable infinite number of distinct clones, and they form
a lattice with respect to inclusion. Today it is commonly known as Post’s lattice [Pos41].
For a complete illustration and a list of all bases, see e.g. Böhler et al. [BC+03].

Contribution. This paper continues the systematic study of fragments of temporal logic.
We consider sublogics of CTL obtained by limiting temporal operators, their nesting
depth, or both. For each resulting fragment, upper and lower bounds are established in
terms of computational complexity. The notion of minimal models is introduced and
upper and lower bounds are achieved, again as a mostly complete classification of all
fragments.

There are upper bounds in complexity that are corollaries from small minimal models
(like the NP cases), but several hardness results as well yield formulas that require large
models. For this reason, it may be not surprising that the results in both dimensions
closely correlate; specifically a temporal depth of two seems to be the “magical threshold”
for the hardness of CTL, a behavior that can also be observed for LTL [DS02].

All established upper bounds in terms of computational complexity and minimal models
are clone-independent, i.e., they hold for arbitrary sets of provided Boolean connectives.
The lower bounds, on the other hand, are shown for all clones that contain the negated
implication 𝑥9𝑦 (i.e., 𝑥 ∧ ¬𝑦). This is a consequent continuation of the work of Lewis
[Lew79], who showed that propositional satisfiability over 9 is already NP-complete,
whereas it is in P for all sets of Boolean connectives that are unable to express 9. In
the setting of temporal logic, similarly the tractable Boolean fragments were investigated
by Meier et al. [MM+09].

The article is organized as follows. Preliminary definitions of complexity theory and
temporal logic are given in Section 2. The main part, Section 3, classifies all fragments
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of CTL regarding the allowed temporal operators. The PSPACE-complete fragments of
CTL are investigated in Subsection 3.1 (AF), 3.2 (AG), 3.3 (AX) and 3.4 (AF,AX). The
remaining fragments of CTL are all EXP-complete and are addressed in Subsection 3.5.
The respective subsections contain model-theoretical upper and lower bounds as well.

In contrast to the above results, Section 4 focuses on flat CTL, i.e., all of the above
fragments with temporal depth at most one. It is shown that these fragments are all
NP-complete due to a polynomial model property. Finally, several meta-results with
respect to Boolean clones are given in Section 5, stating how to transfer upper and
lower bounds (in the computational or in the model-theoretical sense) to different sets of
Boolean connectives.

2 Preliminaries
Common mathematical symbols are used with the following meaning. N is the set of
natural numbers including zero, that is, N := {0, 1, . . .}. We however write [𝑛] for the
set {1, . . . , 𝑛}. The logarithm log 𝑥 is defined to the base 2, and is usually rounded up
when mapping to the natural numbers. If nothing else is stated, consequently log 𝑥 is a
shorthand for ⌈log2 𝑥⌉. For base 𝑒, we instead write ln 𝑥.

Complexity theory
Using the standard concept of resource-bounded Turing machines, we refer to common
complexity classes as follows. A computational problem is included in

• P (NP) if it is decided by a (non-)deterministic Turing machine in polynomial
time,

• PSPACE (NPSPACE) if it is decided by a (non-)deterministic Turing machine
in polynomial space,

• APSPACE if it is decided by an alternating Turing machine in polynomial space,

• EXP if it is decided by a deterministic Turing machine in time 2𝑝(𝑛) for a polynomial
𝑝.

Alternating Turing machines are a generalization of non-deterministic machines. They
are introduced by Chandra, Kozen, and Stockmeyer [CK+81], who also proved that
APSPACE = EXP.

To compare the computational complexity of decision problems, we use the notion of
reductions. Let 𝐴,𝐵 be computational problems. If there is a function 𝑟 computable by
a Turing machine in logarithmic space such that 𝑥 ∈ 𝐴 ⇔ 𝑟(𝑥) ∈ 𝐵, then we call 𝑟 a
logspace reduction from 𝐴 to 𝐵. A Turing machine works in logarithmic space if on any
input 𝑤 its tapes are restricted to size 𝒪(log |𝑤|), except a read-only input tape and a
special output tape where the head cannot move to the left.
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We say that 𝐴 is logspace-reducible to 𝐵, written 𝐴 ≤log
m 𝐵, if there exists a logspace

reduction from 𝐴 to 𝐵. Problems 𝐴 and 𝐵 such that 𝐴 ≤log
m 𝐵 and 𝐵 ≤log

m 𝐴 are called
logspace-equivalent. We say that a problem 𝐴 is ≤log

m -hard for a class 𝒞 if 𝐵 ∈ 𝒞 implies
𝐵 ≤log

m 𝐴, and ≤log
m -complete for 𝒞 if 𝐴 ∈ 𝒞 and 𝐴 is ≤log

m -hard for 𝒞. For the sake of
brevity, we write simply ≤ instead of ≤log

m and just say that a problem is hard or complete,
respectively.

Boolean functions
We call a Boolean function any function of the form 𝑓 : {0, 1}𝑛 → {0, 1}, where ar(𝑓) :=
𝑛 ∈ N is the arity of 𝑓 . It can be zero; there are exactly two such constant Boolean
functions, truth ⊤ and falsity ⊥.

A Boolean function 𝑓 is monotone in its 𝑖-th argument, where 1 ≤ 𝑖 ≤ ar(𝑓), if 𝑎𝑖 ≤ 𝑎′
𝑖

implies 𝑓(𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑛) ≤ 𝑓(𝑎1, . . . , 𝑎
′
𝑖, . . . , 𝑎𝑛). For example, 0 ≤ 1, but if 𝑓 is the

Boolean implication →, then it holds 𝑓(0, 0) ̸≤ 𝑓(1, 0), so → is not monotone in its first
argument. A function that is monotone in all arguments is monotone.

A full classification of all Boolean functions was accomplished by Post [Pos41] with
the concept of clones. A clone 𝐶 is a set of Boolean functions that is closed under
composition and projection to arguments. The smallest clone containing a set of Boolean
functions 𝐵 is written [𝐵], and 𝐵 is then called a base (of [𝐵]). Post proved that every
clone has a finite base, and for this reason we use only finite sets as bases.

In this work we focus on the clones BF := [{ ∧,¬ }] and S1 := [{ 9 }]. BF is the largest
clone in Post’s lattice, as all Boolean functions can be built from {∧,¬}; BF is also
called expressively complete. S1 is the clone of all so-called 1-separating functions. We
prove, analogously to Lewis’s result in propositional logic, that these clones induce equal
lower bounds regarding the computational complexity of the corresponding (temporal)
satisfiability problem.

Computation Tree Logic and its syntactical fragments
Computation Tree Logic (CTL) extends classical modal logic; as atoms we use a countable
infinite set of atomic propositional statements 𝒫𝒮 := {𝑝1, 𝑝2, . . .}, denoted by Latin letters.

Given a base 𝐶, ℬ(𝐶) denotes the corresponding fragment of CTL using only the
Boolean connectives in 𝐶. With this notation we follow Allen Emerson, Halpern and
Schnoebelen [AH86, Sch02] with “ℬ” for branching time, but generalize the notation
to accommodate different bases. The set of CTL formulas over 𝐶 is generated by the
following grammar:

𝜙 ::= 𝑝 | 𝑓(𝜙, . . . , 𝜙⏟  ⏞  
ar(𝑓) many

) | A𝜓 | E𝜓

𝜓 ::= X𝜙 | F𝜙 | G𝜙 | [𝜙U𝜙] | [𝜙R𝜙],

where 𝑝 ∈ 𝒫𝒮, 𝑓 ∈ 𝐶. The symbols A and E are called path quantifiers, and in CTL
formulas, they are always followed by X,F,G,U or R, which are called temporal operators.
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The set of CTL operators is

TL := {𝑄𝑂 | 𝑄 ∈ { A,E } , 𝑂 ∈ { X,F,G,U,R } } .

Note that the binary operators U and R are used in infix notation: we write e.g. A[𝜙U𝜓]
instead of AU(𝜙,𝜓). The duals of temporal operators resp. path quantifiers are A := E,
E := A, F := G, G := F, U := R, R := U and X := X.

If 𝑇 ⊆ TL, then ℬ(𝐶, 𝑇 ) is the set of all CTL formulas over 𝐶, restricted to the CTL
operators in 𝑇 and their duals. We always assume 𝐶 and 𝑇 disjoint.

An important property of formulas is their temporal depth, which is the maximal
nesting depth of temporal operators. It is inductively defined as

td(𝑝) := 0 for 𝑝 ∈ 𝒫𝒮,
td(𝑓(𝜙1, . . . , 𝜙ar(𝑓))) := max{0, td(𝜙1), . . . , td(𝜙ar(𝑓))} for 𝑓 ∈ 𝐶,
td(𝑄𝜙) := td(𝜙) for 𝑄 ∈ {A,E},
td(𝑂𝜙) := td(𝜙) + 1 for 𝑂 ∈ {X,F,G}, and
td([𝜙1𝑂𝜙2]) := max{td(𝜙1), td(𝜙2)} + 1 for 𝑂 ∈ {U,R}.

The fragment of ℬ(𝐶, 𝑇 ) that contains only formulas of temporal depth at most 𝑖 is
written ℬ𝑖(𝐶, 𝑇 ). We will often omit 𝑇 if 𝑇 = TL, and similarly 𝐶 if 𝐶 = {∧,∨,¬}. If
the meaning is clear, then we omit the curly brackets of the sets 𝐶 and 𝑇 .

For common Boolean operators, like 𝜙∧𝜓, we use the infix notation. Moreover, we will
use abbreviations like 𝜙 → 𝜓 and 𝜙 ↔ 𝜓. Unary operators (¬,X,F,G) take precedence
before binary operators, ∧ before ∨, and ∧,∨ before → and ↔.

The set of subformulas of a given formula 𝜙 ∈ ℬ(𝐶, 𝑇 ) is denoted SF(𝜙). It is
inductively defined as

SF(𝑝) := { 𝑝 } for 𝑝 ∈ 𝒫𝒮,
SF(𝑓(𝜙1, . . . , 𝜙ar(𝑓))) := {𝑓(𝜙1, . . . , 𝜙ar(𝑓))} ∪

⋃︁
1≤𝑖≤𝑛

SF(𝜙𝑖) for 𝑓 ∈ 𝐶,

SF(𝑄𝑂𝜙) := {𝑄𝑂𝜙} ∪ SF(𝜙) for unary 𝑄𝑂 ∈ 𝑇 ,
SF(𝑄[𝜙1𝑂𝜙2]) := {𝑄[𝜙1𝑂𝜙2]} ∪ SF(𝜙1) ∪ SF(𝜙2) for binary 𝑄𝑂 ∈ 𝑇 .

Kripke structures
A Kripke frame is a directed graph (𝑊,𝑅), where 𝑊 is the set of worlds or states, and
𝑅 ⊆ 𝑊 ×𝑊 is the successor relation. The reflexive, transitive closure of 𝑅 is denoted
𝑅*. We say that 𝑢 is reachable from 𝑣 if 𝑣𝑅*𝑢.

A Kripke structure is a tuple 𝒦 = (𝑊,𝑅, 𝑉 ) where (𝑊,𝑅) is a Kripke frame, and
𝑉 : 𝒫𝒮 → P(𝑊 ) is its valuation function that maps to each atomic proposition a subset
of worlds. Intuitively, the proposition 𝑝 “holds” in the worlds 𝑤 ∈ 𝑉 (𝑝). The set
{ 𝑝 ∈ 𝒫𝒮 | 𝑤 ∈ 𝑉 (𝑝) } of propositions holding in a world 𝑤 is sometimes also called the
labeling of 𝑤 in 𝒦, and if a proposition 𝑝 is in this set then we say that 𝑝 is labeled in
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𝑤. Finally, a rooted Kripke structure is a tuple ℳ = (𝑊,𝑅, 𝑉,𝑤) where (𝑊,𝑅, 𝑉 ) is a
Kripke structure and 𝑤 ∈ 𝑊 is called the root of ℳ.

For the semantics of CTL, we consider infinite paths through the underlying Kripke
frame of a structure. Given a Kripke frame 𝐹 = (𝑊,𝑅), a path 𝜋 through 𝐹 is an infinite
sequence 𝜋 = (𝑤0, 𝑤1, 𝑤2, . . .) of worlds 𝑤𝑖 ∈ 𝑊 such that 𝑤𝑖𝑅𝑤𝑖+1 for all 𝑖 ≥ 0. Paths
through (rooted) Kripke structures are defined accordingly.

Define 𝜋[𝑖] := 𝑤𝑖 as the 𝑖-th world of 𝜋, where 𝜋[0] is the origin of 𝜋, and 𝜋≥𝑘 :=
(𝜋[𝑘], 𝜋[𝑘 + 1], . . .) for all 𝑘 ≥ 0 are the suffixes of 𝜋. Conversely, any finite sequence
(𝜋[0], 𝜋[1], . . . , 𝜋[𝑘]) is a prefix of 𝜋. Moreover, if 0 ≤ 𝑖1 < 𝑖2 < . . ., then (𝜋[𝑖1], 𝜋[𝑖2], . . .)
is a subpath of 𝜋.

The set of all paths through 𝒦 with origin 𝑤 is written 𝛱𝒦(𝑤), or just 𝛱(𝑤) if 𝒦 is
clear. A Kripke frame resp. (rooted) structure is serial if every 𝑤 ∈ 𝑊 has at least one
𝑅-successor. A rooted Kripke structure (𝑊,𝑅, 𝑉,𝑤) is 𝑅-generable if every 𝑤′ ∈ 𝑊 is
reachable from 𝑤.

The semantics of CTL on Kripke structures can now be defined inductively. Here,
𝒦 = (𝑊,𝑅, 𝑉 ) is a serial Kripke structure, 𝑤 ∈ 𝑊 , 𝜋 is a path through 𝒦, 𝑓 is an 𝑛-ary
Boolean function and 𝑏⃗ = (𝑏1, . . . , 𝑏𝑛) ∈ {0, 1}𝑛 is a Boolean vector:

(𝒦, 𝑤) � 𝑝 for 𝑝 ∈ 𝒫𝒮 iff 𝑤 ∈ 𝑉 (𝑝)
(𝒦, 𝑤) � 𝑓(𝜙1, . . . , 𝜙𝑛) iff ∃⃗𝑏 : 𝑓 (⃗𝑏) = 1 and ∀𝑖 ∈ [𝑛] : 𝑏𝑖 = 1 ⇔ (𝒦, 𝑤) � 𝜙𝑖
(𝒦, 𝑤) � A𝜓 iff ∀𝜋 ∈ 𝛱(𝑤) : (𝒦, 𝜋) � 𝜓

(𝒦, 𝜋) � 𝑝 for 𝑝 ∈ 𝒫𝒮 iff 𝜋[0] ∈ 𝑉 (𝑝)
(𝒦, 𝜋) � 𝑓(𝜙1, . . . , 𝜙𝑛) iff ∃⃗𝑏 : 𝑓 (⃗𝑏) = 1 and ∀𝑖 ∈ [𝑛] : 𝑏𝑖 = 1 ⇔ (𝒦, 𝜋) � 𝜙𝑖
(𝒦, 𝜋) � A𝜓 iff (𝒦, 𝜋[0]) � A𝜓
(𝒦, 𝜋) � X𝜓 iff (𝒦, 𝜋≥1) � 𝜓
(𝒦, 𝜋) � 𝜓U𝜓′ iff ∃𝑖 ≥ 0 : (𝒦, 𝜋≥𝑖) � 𝜓′ and ∀𝑗 < 𝑖 : (𝒦, 𝜋≥𝑗) � 𝜓

The remaining operators are treated follows: Interpret E𝜓 as ¬A¬𝜓, G𝜓 as ¬F¬𝜓, F𝜓 as
⊤U𝜓, and 𝜙R𝜓 as ¬[¬𝜙U¬𝜓]. If the Kripke structure 𝒦 is clear from the context, we
simply write 𝑤 � 𝜙 or 𝜋 � 𝜙 instead of (𝒦, 𝑤) � 𝜙 and (𝒦, 𝜋) � 𝜙.

If 𝜙 and 𝜓 are CTL formula, then 𝜙 implies or entails 𝜓, written 𝜙 � 𝜓, if ℳ � 𝜙
implies ℳ � 𝛹 for all rooted serial Kripke structures ℳ. 𝜙 and 𝜓 are equivalent, written
𝜙 ≡ 𝜓, if 𝜙 � 𝜓 and 𝜓 � 𝜙.

If the necessary Boolean functions are available, many sets of CTL operators can be
defined by smaller sets. For instance, formulas using the operator set {AF,AU,EG,ER}
can be rewritten to use only {AU} when the connectives ¬ and ∨ are allowed. For
this reason, we will denote all CTL fragments by stating a defining set of universally
quantifying CTL operators, like {AU}.

If 𝛷 ⊆ ℬ is a CTL fragment, then SAT(𝛷) is the set of all satisfiable formulas 𝜙 ∈ 𝛷,
i.e., for which there is a rooted serial Kripke structure ℳ such that ℳ � 𝜙. Call any
such structure a model of 𝜙. Obviously every serial rooted Kripke structure contains a
serial, 𝑅-generable rooted structure that satisfies the same set of CTL formulas.
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3 Complexity of CTL and its temporal operator fragments
To measure the complexity of a fragment of CTL, we require a sensible notion of the
length of a formula. We define the length |𝜙| of 𝜙 as the number of symbols in 𝜙, where
any CTL operator, Boolean connective, proposition and parenthesis is counting as one
symbol.

In the following, we introduce the idea of optimal model size and optimal model
extent. For the different fragments of CTL, these measures range between constant
and exponential, and also influence the computational complexity of the corresponding
satisfiability problem.

Definition 1 (Size and extent). Let a Kripke frame 𝐹 = (𝑊,𝑅) be 𝑅-generable and
non-empty. The size of 𝐹 is the number |𝑊 | of worlds. The extent of 𝐹 is the greatest
𝑛 ∈ N such that some 𝑅-path visits 𝑛+ 1 distinct vertices.

The size and extent of a (rooted) Kripke structure is defined as the size and extent of
the underlying frame.

For instance, in a finite directed tree, the extent equals its depth. The difference to, say,
the diameter of a graph1 is that transitive edges reduce the diameter, but not the extent.
This distinction is important, as several CTL operators cannot differentiate between a
structure and its transitive closure. For this reason, the diameter of models cannot be a
meaningful measure in the classification of CTL fragments.

Definition 2 (Optimal model size and extent). Let 𝛷 ⊆ ℬ be a set of satisfiable CTL
formulas. Let 𝜎 : N → N.

• 𝜎 is a model size upper bound of 𝛷 if every satisfiable 𝜙 ∈ 𝛷 has a model of size at
most 𝒪(𝜎(|𝜙|)).

• 𝜎 is a model size lower bound of 𝛷 if 𝛷 contains an infinite family of satisfiable
formulas 𝜙1, 𝜙2, . . . such that each 𝜙𝑖 has only models of size at least 𝛺(𝜎(|𝜙𝑖|)).

• 𝜎 is an optimal model size of 𝛷 if it is both an upper and lower bound.

Similarly define model extent upper/lower bound and optimal model extent 𝜖.

As no path can visit more distinct vertices than the frame contains, it follows that size
forms an upper bound for extent.

An exponential model size upper bound for full CTL was proven by Allen Emerson
and Halpern [AH85, Thm. 4.1.]. Although they did not consider Boolean clones, the
proof indeed works independently of the particular clone.

Theorem 3 (Small model property of CTL [All90]). ℬ(𝐶, 𝑇 ) has optimal model size of
at most 2𝒪(𝑛) for every base 𝐶 and 𝑇 ⊆ TL.

1The maximal length of a shortest path between two vertices
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A deterministic exponential time algorithm for satisfiability of propositional dynamic
logic (PDL), which subsumes CTL, was given by Pratt [Pra80]. Allen Emerson and
Halpern presented a similar algorithm for CTL directly; it constructs a structure of
exponential size to check the satisfiability of the formula [AH85, Thm. 5.1.]. See also
Allen Emerson [All90].

Theorem 4 ([All90, AH85, Pra80]). SAT(ℬ) ∈ EXP.

In this rest of this section, for every temporal operator fragment of CTL, these upper
bounds of the computational complexity are either improved, or proven tight. We begin
by showing the lower bound for the PSPACE-complete fragment ℬ(AF).

3.1 The AF fragment
For the hardness of SAT(ℬ(AF)), we consider a reduction from the PSPACE-complete
problem of quantified Boolean formulas (qbfs). The grammar of qbfs is

𝜙 ::= 𝜙 ∧ 𝜙 | ¬𝜙 | ∀𝑝𝜙 | ∃𝑝𝜙 | 𝑝,

where 𝑝 ∈ 𝒫𝒮. The semantics are defined via Boolean assignments, which are functions
𝜃 : 𝛷 → {0, 1} for finite 𝛷 ⊆ 𝒫𝒮. In particular, for a Boolean assignment 𝜃 it holds
𝜃 � ∀𝑝𝜙 if 𝜃𝑝𝑏 � 𝜙 for all 𝑏 ∈ {0, 1}, where 𝜃𝑝𝑏 (𝑝) := 𝑏 and 𝜃𝑝𝑏 (𝑞) := 𝜃(𝑞) for 𝑝 ̸= 𝑞. ∃𝑝𝜙
behaves like ¬∀𝑝¬𝜙, and the other connectives are defined as in propositional logic. Say
that a qbf 𝜙 is closed if has no free variables, and say that a qbf is true if it is closed and
satisfied by some Boolean assignment.

The corresponding computational problem is:

TQBF :=
{︃
𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓

⃒⃒⃒⃒
⃒ {𝑄1, . . . , 𝑄𝑛} ⊆ {∃,∀}, {𝑥1, . . . , 𝑥𝑛} ⊆ 𝒫𝒮, 𝜓 ∈ ℬ0

and 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓 is a closed, true qbf

}︃

Theorem 5 (Meyer and Stockmeyer [MS73]). TQBF is PSPACE-complete.

A formula in the above form, with all quantifiers at the beginning, is called prenex
form, with prefix 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛 and matrix 𝜓 ∈ ℬ0.

The following is an alternative definition of the truth of qbfs; it is helpful in the
subsequent reduction to CTL.

Definition 6. Let 𝜙 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓 be a closed qbf. A proof tree 𝑇 = (𝛩,𝐸) for 𝜙
is a tree of Boolean assignments that meets the following conditions:

1. the everywhere undefined assignment 𝜃0 ∈ 𝛩 is the root of 𝑇 ,

2. if 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1} is in 𝛩, 𝑚 ≤ 𝑛, and 𝑄𝑚 = ∀ (∃), then for all (some)
𝑏 ∈ {0, 1}, 𝜃𝑥𝑚+1

𝑏 ∈ 𝛩 and (𝜃, 𝜃𝑥𝑚+1
𝑏 ) ∈ 𝐸,

3. if 𝜃 : {𝑥1, . . . , 𝑥𝑛} → {0, 1} is in 𝛩, then 𝜃 � 𝜓.
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𝑥1 ¬𝑥1

𝑥2 𝑥2¬𝑥2 ¬𝑥2

𝑠1 𝑏1

𝑠2 𝑠2𝑏2 𝑏2

𝑥1 ¬𝑥1

𝑥2 ¬𝑥2 𝑥2 ¬𝑥2

Proof tree of qbf 𝜙 Kripke structure of 𝜙*

⇒

Figure 1: Sketch of the reduction from TQBF to SAT(ℬ(AF))

Intuitively, (1) describes the empty Boolean assignment, (2) simulates universal and
existential branching with respect to the Boolean quantifiers, and (3) states that the
matrix is true under the “leaf” Boolean assignments 𝜃. It is straightforward to show by
induction:

Proposition 7. A closed qbf is true if and only if it has a proof tree.

It follows the hardness proof of SAT(ℬ2(AF)) by reduction from TQBF. The standard
reduction from TQBF to modal satisfiability (see Ladner [Lad77]) would be to span a
proof tree of exponential size, with the help of modal operators, directly in a Kripke
structure. This approach, however, does not work here as the operators AF and EG have
“mixed” path and state quantifiers, i.e., whenever the path quantifier is universal, then
the state on this path is quantified existentially, and vice versa. This leaves no sensible
way to span a tree of exponential size. Consequently, the proof tree has to be encoded
on a single path in a complicated manner.

Theorem 8. SAT(ℬ2(AF)) is PSPACE-hard.

Proof. Let 𝜙 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓 be a closed qbf. The reduction maps 𝜙 to a formula
𝜙* ∈ ℬ2(AF) that is satisfiable if and only if 𝜙 is true.

The idea is to enforce a “flattened” proof tree as a long path inside the model. The
given path is successively subdivided into segments: the first half should uniformly
set 𝑥1 true, while on the other half ¬𝑥1 holds. Each of the segments is then again
divided to account for the possible truth values of 𝑥2, and so on. Figure 1 illustrates this
construction.

The implementation uses several auxiliary propositions. The variables 𝑡𝑖 and 𝑡′𝑖 span
an interval on the path where 𝑥𝑖 is true. Conversely, 𝑓𝑖 and 𝑓 ′

𝑖 span an interval where 𝑥𝑖
is false. The actual truth resp. falsity of 𝑥𝑖 in these segments is enforced by the formula
𝛾𝑖. The formulas 𝛼∀

𝑖 and 𝛼∃
𝑖 are responsible for the mentioned subdivision of a path: in

one case, both the “true” and “false” subsegments are forced to appear in this order. In
the second case, one can be chosen.

Intuitively, the propositions 𝑠𝑖 and 𝑏𝑖 have the following meaning. Every occurrence of
𝑠𝑖 on the path starts the subdivision into either one or two subsegments with respect to
the truth of 𝑥𝑖. Any occurrence of 𝑏𝑖 blocks all imposed AFs containing ¬𝑏𝑖, such as in
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the 𝛼-subformulas. This is due to 𝑏𝑖 → EG𝑏𝑖 holding everywhere on the path, and the
fact that the AFs in 𝛼𝑄𝑖

𝑖 are of the form AF(. . . ∧ ¬𝑏𝑖).
As a result, the formula 𝛽𝑖 ensures that there is no “overlapping” of segments: the

AF-subformulas of 𝛼𝑄𝑖
𝑖 are fulfilled on the path exactly in the order as they appear in

the formula. Furthermore, the subdivisions for 𝑥𝑖+1 between 𝑡𝑖 and 𝑡′𝑖 resp. 𝑓𝑖 and 𝑓 ′
𝑖 are

contained inside these segments.
The proposition 𝑒 simply enforces the initial 𝑏1 to appear on the path. The complete

formula 𝜙* is defined as

𝜙* := 𝑠1 ∧ AF𝑒 ∧ EG
[︂
𝜓 ∧ (𝑒 → 𝑏1) ∧

𝑛⋀︁
𝑖=1

(︀
𝛼𝑖 ∧ 𝛽𝑖 ∧ 𝛾𝑖

)︀]︂
,

where 𝛼𝑖 := 𝛼𝑄𝑖
𝑖 ,

𝛼∀
𝑖 :=

(︀
𝑠𝑖 → AF(𝑡𝑖 ∧ ¬𝑏𝑖)

)︀
∧ 𝛼∃

𝑖 :=
(︀
𝑠𝑖 → AF((𝑡𝑖 ∨ 𝑓𝑖) ∧ ¬𝑏𝑖)

)︀
∧(︀

𝑡𝑖 → (𝑠𝑖+1 ∧ AF(𝑡′𝑖 ∧ ¬𝑏𝑖))
)︀

∧
(︀
𝑡𝑖 → (𝑠𝑖+1 ∧ AF(𝑡′𝑖 ∧ ¬𝑏𝑖))

)︀
∧(︀

𝑡′𝑖 → (𝑏𝑖+1 ∧ AF(𝑓𝑖 ∧ ¬𝑏𝑖))
)︀

∧
(︀
𝑡′𝑖 → 𝑏𝑖+1

)︀
∧(︀

𝑓𝑖 → (𝑠𝑖+1 ∧ AF(𝑓 ′
𝑖 ∧ ¬𝑏𝑖))

)︀
∧

(︀
𝑓𝑖 → (𝑠𝑖+1 ∧ AF(𝑓 ′

𝑖 ∧ ¬𝑏𝑖))
)︀

∧(︀
𝑓 ′
𝑖 → 𝑏𝑖+1

)︀ (︀
𝑓 ′
𝑖 → 𝑏𝑖+1

)︀
and

𝛽𝑖 := (𝑏𝑖 → EG𝑏𝑖)
𝛾𝑖 :=

(︀
AF𝑡′𝑖 → 𝑥𝑖

)︀
∧
(︀
AF𝑓 ′

𝑖 → ¬𝑥𝑖
)︀
.

It is easy to show that 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are all logspace-constructible. The following
lemmas prove the correctness of the reduction.

First we prove that there are in fact the required intervals with 𝑥𝑖 being true resp. false
between occurrences of 𝑠𝑖 and 𝑏𝑖. Let ℳ be a model of 𝜙* and 𝜋 a path through it. Say
that 𝑥𝑖 ∈ 𝒫𝒮 is uniformly true (resp. uniformly false) on a sequence 𝜌 = (𝜋[𝑗], . . . , 𝜋[𝑘])
of worlds if 𝜋[𝑜] � 𝑥𝑖 (resp. 𝜋[𝑜] � ¬𝑥𝑖) for all 𝑜 ∈ {𝑗, . . . , 𝑘}.

For sequences 𝜌 = (𝜋[𝑗], . . . , 𝜋[𝑘]) and 𝜌′ = (𝜋[𝑗′], . . . , 𝜋[𝑘′]), 𝜌 contains 𝜌′ if 𝑗 ≤ 𝑗′ ≤
𝑘′ ≤ 𝑘. For 𝑗 ≤ 𝑘, call a subsequence 𝜌 = (𝜋[𝑗], . . . , 𝜋[𝑘]) an 𝑚-segment of 𝜋 if 𝜋[𝑗] � 𝑠𝑚,
𝜋[𝑘] � 𝑏𝑚, and 𝑥𝑖 is uniformly true or uniformly false on 𝜌 for all 𝑖 ∈ [𝑚− 1].

Lemma 9. Let ℳ be a model of 𝜙* and 𝜋 a path through it that satisfies the outermost
EG operator. Let 𝜌 be an 𝑚-segment on 𝜋.

If 𝑄𝑚 = ∃, then 𝜌 contains an (𝑚 + 1)-segment. If 𝑄𝑚 = ∀, then 𝜌 contains an
(𝑚+ 1)-segment where 𝑥𝑚 is uniformly true and another (𝑚+ 1)-segment where 𝑥𝑚 is
uniformly false.

Proof. Let 𝜌 = (𝜋[𝑗], . . . , 𝜋[𝑘]) be an 𝑚-segment. Then 𝜋[𝑗] � 𝑠𝑚 and 𝜋[𝑘] � 𝑏𝑚. For the
rest of the proof, suppose 𝑄𝑚 = ∀ (the case 𝑄𝑚 = ∃ is handled similarly).
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Let 𝑜1 ≥ 𝑗 be the smallest number such that 𝜋[𝑜1] � 𝑡𝑚 ∧ ¬𝑏𝑚, and similarly 𝑜2 ≥ 𝑜1
the smallest such that 𝜋[𝑜2] � 𝑡′𝑚 ∧ ¬𝑏𝑚; 𝑜3 ≥ 𝑜2 such that 𝜋[𝑜3] � 𝑓𝑚 ∧ ¬𝑏𝑚; and 𝑜4 ≥ 𝑜3
such that 𝜋[𝑜4] � 𝑓 ′

𝑚 ∧ ¬𝑏𝑚. These worlds occur on 𝜋 in this order due to 𝜋[𝑗] � 𝛼∀
𝑚.

Next, we prove 𝑜1, . . . , 𝑜4 ≤ 𝑘. Assume for the sake of contradiction that, e.g.,
𝑜3 ≤ 𝑘 < 𝑜4. (𝑜2 ≤ 𝑘 < 𝑜3 etc. lead to a contradiction analogously.) For all 𝑜3 ≤ 𝑜 < 𝑜4,
it holds 𝜋[𝑜] � (¬𝑓 ′

𝑚 ∨ 𝑏𝑚) by definition of 𝑜4. Furthermore, 𝜋[𝑘] � EG𝑏𝑚 by 𝛽𝑚.
Consequently, 𝜋[𝑜3] � EG𝑏𝑚, contradicting 𝜋[𝑜3] � AF(𝑓 ′

𝑚 ∧ ¬𝑏𝑚).
These subsegments of 𝜌 have correct “delimiters” due to 𝛼∀

𝑚: the first one, as 𝜋[𝑜1] �
𝑠𝑚+1 and 𝜋[𝑜2] � 𝑏𝑚+1, and the second one, as 𝜋[𝑜3] � 𝑠𝑚+1 and 𝜋[𝑜4] � 𝑏𝑚+1. In order
to prove that (𝜋[𝑜1], . . . , 𝜋[𝑜2]) and (𝜋[𝑜3], . . . , 𝜋[𝑜4]) are the desired (𝑚+ 1)-segments,
by 𝛾𝑚 it suffices to show that 𝜋[𝑜] � AF𝑡′𝑚 for all 𝑜1 ≤ 𝑜 ≤ 𝑜2. (Showing 𝜋[𝑜] � AF𝑓 ′

𝑚 for
all 𝑜3 ≤ 𝑜 ≤ 𝑜4 again works similarly.)

For the sake of contradiction, suppose there exists 𝑜 ∈ {𝑜1, . . . , 𝑜2} such that 𝜋[𝑜] �
EG¬𝑡′𝑚. Clearly 𝑜 ≠ 𝑜2, as 𝜋[𝑜2] � 𝑡′𝑚. But then all worlds between 𝜋[𝑜1] and 𝜋[𝑜] satisfy
(¬𝑡′𝑚 ∨ 𝑏𝑚), so 𝜋[𝑜1] � EG(¬𝑡′𝑚 ∨ 𝑏𝑚), contradiction.

In what follows, we say that a world 𝑤 agrees with some assignment 𝜃 : {𝑥1, . . . , 𝑥𝑚} →
{0, 1}, in symbols 𝑤 ⊢ 𝜃, if 𝜃(𝑥𝑖) = 1 ⇔ 𝑤 � 𝑥𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}. Similarly, given
an 𝑚-segment 𝜌 = (𝜋[𝑗], . . . , 𝜋[𝑘]), we say that 𝜌 agrees with 𝜃, in symbols 𝜌 ⊢ 𝜃, if the
worlds 𝜋[𝑗], . . . , 𝜋[𝑘] all agree with 𝜃.

Lemma 10. If 𝜙* is satisfiable, then 𝜙 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓 has a proof tree.

Proof. Let ℳ be a model of 𝜙*, and let 𝜋 be a path through ℳ that witnesses the
outermost EG operator in 𝜙*. The following graph 𝑇 = (𝛩,𝐸) contains a proof tree
for 𝜙. 𝛩 is the set of all assignments 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1} for which there is an
agreeing 𝑚-segment 𝜌 on 𝜋, formally

𝛩 :=
{︃
𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1}

⃒⃒⃒⃒
⃒ 1 ≤ 𝑚 ≤ 𝑛+ 1, ∃ 𝑚-segment 𝜌

on 𝜋 such that 𝜌 ⊢ 𝜃

}︃
.

The edges are

𝐸 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (𝜃, 𝜃′) ∈ 𝛩2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

if 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1},
then ∃ 𝑏 ∈ {0, 1} such that 𝜃′ = 𝜃𝑥𝑚

𝑏

∃𝑚-segment 𝜌, ∃(𝑚+ 1)-segment 𝜌′

such that 𝜌 contains 𝜌′, 𝜌 ⊢ 𝜃 and 𝜌′ ⊢ 𝜃′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Following Definition 6, we show that 𝑇 indeed contains a proof tree of 𝜙.2 The empty
assignment is in 𝛩, since there is an 1-segment (with arbitrary assignment) between the
root of ℳ (which satisfies 𝑠1) and the first point of 𝜋 that satisfies 𝑏1.

If 𝜃 ∈ 𝛩 for 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1}, then by definition of 𝛩 there is an 𝑚-segment
𝜌 with 𝜌 ⊢ 𝜃. Assume 𝑄𝑚 = ∃. By Lemma 9, 𝜌 contains an (𝑚+ 1)-segment 𝜌′. Then

2(𝛩, 𝐸) may have “wrong”, successor-free vertices, so it may not be a proof tree. Nevertheless, we can
just crop all worlds unreachable from the root to obtain one.

11



the assignment 𝜃′ := 𝜃𝑥𝑚
0 (if 𝑥𝑚 is uniformly false on 𝜌′) or 𝜃′ := 𝜃𝑥𝑚

1 (if 𝑥𝑚 is uniformly
true on 𝜌′) is in 𝛩, and consequently (𝜃, 𝜃′) ∈ 𝐸. The case 𝑄𝑚 = ∀ works analogously.

It remains to show that all leaf assignments 𝜃 : {𝑥1, . . . , 𝑥𝑛} → {0, 1} in 𝛩 actually
satisfy the matrix 𝜓. First observe that for each such 𝜃, 𝜌 ⊢ 𝜃 for some (𝑛+ 1)-segment
𝜌 of 𝜋. As G𝜓 holds on 𝜋, at least one world 𝜋[𝑗] agrees with 𝜃 on {𝑥1, . . . , 𝑥𝑛} and still
satisfies 𝜓.

The above lemma shows the first direction of the correctness. For the other direction—
𝜙* actually being satisfiable if 𝜙 is true—we construct a model of 𝜙* by an inductive
approach. For 𝑚 = 0, 1, . . . , 𝑛, we define a Kripke structure 𝒦𝑚 = (𝑊𝑚, 𝑅𝑚, 𝑉𝑚) such
that 𝒦𝑚 contains an 𝑅𝑚-path 𝜋𝑚 and for all 𝑤 := 𝜋𝑚[𝑗], 𝑗 ≥ 0:

1. 𝑤 � (𝑒 → 𝑏1) ∧
⋀︀𝑚
𝑖=1(𝛼𝑖 ∧ 𝛾𝑖) ∧

⋀︀𝑚+1
𝑖=1 𝛽𝑖,

2. 𝑤 satisfies exactly one of { 𝑠𝑖, 𝑏𝑖 | 𝑖 ∈ [𝑛] },

3. 𝑤 satisfies none of { 𝑡𝑖, 𝑡′𝑖, 𝑓𝑖, 𝑓 ′
𝑖 , 𝑠𝑖+1, 𝑏𝑖+1 | 𝑖 > 𝑚 },

4. some 𝜃 : {𝑥1, . . . , 𝑥𝑚} → {0, 1} in 𝑇 agrees with 𝑤,

5. 𝑤 � (𝑠1 ∧ AF𝑒) if 𝑤 = 𝜋𝑚[0].

Since 𝑇 is a proof tree of 𝜙, (4) implies (𝒦𝑛, 𝜋𝑛) � G𝜓. By additionally (1) and (5),
(𝒦𝑛, 𝜋𝑛[0]) is the desired model of 𝜙*. The properties (2)–(3) are not directly required,
but simplify the inductive step.

Lemma 11. Let 𝑇 be a proof tree. For all 𝑚 ∈ {0, 1, . . . , 𝑛}, there is a Kripke structure
𝒦𝑚 = (𝑊𝑚, 𝑅𝑚, 𝑉𝑚) satisfying the properties (1)–(5).

Proof. Let 𝒦0 be as in the following picture. It is easy to verify (1)–(5) for 𝑚 = 0, in
particular 𝑇 contains the empty assignment which agrees with all worlds of 𝒦0.

𝑠1 𝑏1, 𝑒

We proceed with the inductive step: assume that 𝒦𝑚−1 = (𝑊𝑚−1, 𝑅𝑚−1, 𝑉𝑚−1) and an
𝑅𝑚−1-path 𝜋 exist as above. First note that, by condition (4) of the induction hypothesis,
for all 𝑗 the tree 𝑇 contains an assignment 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1} that agrees with
𝜋[𝑗]. Call that assignment 𝜃𝜋[𝑗] here.

Define the new structure as follows. Modifications are performed immediately between
worlds 𝜋[𝑗] ∈ 𝑉𝑚−1(𝑠𝑚) and their successor 𝜋[𝑗 + 1]. Namely, the edge between them is
removed and the substructure depicted in Figure 2 is inserted. If 𝑄𝑚 = ∃ and 𝜃 := 𝜃𝜋[𝑗]
has 𝜃𝑥𝑚

1 as a child in 𝑇 , then insert worlds 𝑢𝑗𝑡 , 𝑢
𝑗
𝑡′ . Otherwise insert 𝑢𝑗𝑓 , 𝑢

𝑗
𝑓 ′ , and if 𝑄𝑚 = ∀,

then insert all four worlds. The worlds 𝑢𝑗𝑔, 𝑢
𝑗
ℓ are added unconditionally. Formally, if

𝑄𝑚 = ∃, then

𝑊𝑚 := 𝑊𝑚−1 ∪
⋃︁{︁

𝑈 𝑗
⃒⃒⃒
𝜋[𝑗] � 𝑠𝑚

}︁
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𝜋[𝑗]
Before:

𝜋[𝑗] 𝑢𝑗𝑝 𝑢𝑗𝑝′

𝑢𝑗ℓ𝑢𝑗𝑔

Case 𝑄𝑚 = ∃:
(𝑝 ∈ {𝑡, 𝑓})

𝜋[𝑗] 𝑢𝑗𝑡 𝑢𝑗𝑡′ 𝑢𝑗𝑓 𝑢𝑗𝑓 ′

𝑢𝑗ℓ𝑢𝑗𝑔

Case 𝑄𝑚 = ∀:

Figure 2: Subdivision step from 𝒦𝑚−1 to 𝒦𝑚

𝑅𝑚 := 𝑅𝑚−1 ∖ { (𝜋[𝑗], 𝜋[𝑗 + 1]) | 𝜋[𝑗] � 𝑠𝑚 } ∪
{︁
𝑅𝑗

⃒⃒⃒
𝜋[𝑗] � 𝑠𝑚

}︁
.

where 𝑈 𝑗 := {𝑢𝑗𝑝, 𝑢
𝑗
𝑝′ , 𝑢𝑗𝑔, 𝑢

𝑗
ℓ} with 𝑝 = 𝑡 if 𝜃𝜋[𝑗] has (𝜃𝜋[𝑗])𝑥𝑚

1 as a child in 𝑇 , and with
𝑝 = 𝑓 otherwise, and

𝑅𝑗 := {(𝜋[𝑗], 𝑢𝑗𝑝), (𝜋[𝑗], 𝑢𝑗𝑔), (𝑢𝑗𝑔, 𝑢𝑗𝑔), (𝑢𝑗𝑝, 𝑢
𝑗
𝑝′), (𝑢𝑗𝑝′ , 𝑢

𝑗
ℓ), (𝑢

𝑗
ℓ , 𝑢

𝑗
ℓ), (𝑢

𝑗
𝑝′ , 𝜋[𝑗 + 1])}.

If 𝑄𝑚 = ∀, then 𝑈 𝑗 := {𝑢𝑗𝑡 , 𝑢
𝑗
𝑡′ , 𝑢

𝑗
𝑓 , 𝑢

𝑗
𝑓 ′ , 𝑢

𝑗
ℓ , 𝑢

𝑗
𝑔} and

𝑅𝑗 :=
{︃

(𝜋[𝑗], 𝑢𝑗𝑡 ), (𝑢
𝑗
𝑡 , 𝑢

𝑗
𝑡′ , (𝑢

𝑗
𝑡′ , 𝑢

𝑗
𝑓 ), (𝑢𝑗𝑡′ , 𝑢

𝑗
ℓ)(𝑢

𝑗
𝑓 , 𝑢

𝑗
𝑓 ′),

(𝑢𝑗𝑓 ′ , 𝑢
𝑗
ℓ)(𝑢

𝑗
ℓ , 𝑢

𝑗
ℓ), (𝑢

𝑗
𝑓 ′ , 𝜋[𝑗 + 1])

}︃
.

Let 𝑈𝑧 denote the set of all inserted worlds 𝑢𝑗𝑧, i.e., 𝑈𝑧 :=
{︀
𝑢𝑗𝑧
⃒⃒
𝜋[𝑗] � 𝑠𝑚

}︀
for

𝑧 ∈ {𝑡, 𝑡′, 𝑓, 𝑓 ′, 𝑔, ℓ}.
After the worlds and edges, it remains to define the valuation 𝑉𝑚:

𝑉𝑚(𝑡𝑚) := 𝑈𝑡 ∪ 𝑈𝑔 𝑉𝑚(𝑠𝑚+1) := 𝑈𝑡 ∪ 𝑈𝑓

𝑉𝑚(𝑡′𝑚) := 𝑈𝑡′ 𝑉𝑚(𝑏𝑚+1) := 𝑈𝑡′ ∪ 𝑈𝑓 ′ ∪ 𝑈ℓ

𝑉𝑚(𝑓𝑚) := 𝑈𝑓 ∪ 𝑈ℓ 𝑉𝑚(𝑏𝑖) := 𝑉𝑚−1(𝑏𝑖) for 𝑖 ≤ 𝑚

𝑉𝑚(𝑓 ′
𝑚) := 𝑈𝑓 ′ 𝑉𝑚(𝑒) := 𝑉𝑚−1(𝑒) ∪ 𝑈𝑔 ∪ 𝑈ℓ

The assignments to 𝑥1, . . . , 𝑥𝑚−1 are expanded to 𝑥𝑚 as follows:

𝑉𝑚(𝑥𝑚) := 𝑈𝑡 ∪ 𝑈𝑡′ ∪
{︁
𝜋[𝑗]

⃒⃒⃒
𝜃𝜋[𝑗] has (𝜃𝜋[𝑗])𝑥𝑚

1 as child in 𝑇
}︁

,
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and for 𝑖 < 𝑚, the value of 𝑥𝑖 is just “copied” to the inserted worlds:

𝑉𝑚(𝑥𝑖) := 𝑉𝑚−1(𝑥𝑖) ∪
{︁
𝑢𝑗𝑝

⃒⃒⃒
𝑝 ∈ {𝑡, 𝑡′, 𝑓, 𝑓 ′}, 𝜋[𝑗] ∈ 𝑉𝑚−1(𝑥𝑖)

}︁
.

For all other propositions 𝑝, let 𝑉𝑚(𝑝) := 𝑉𝑚−1(𝑝) ∪ 𝑈𝑔 ∪ 𝑈ℓ.
Define 𝜋* as the path through 𝒦𝑚 that is obtained from 𝜋 by replacing every edge

(𝜋[𝑗], 𝜋[𝑗 + 1]) ∈ 𝑅𝑚−1 ∖ 𝑅𝑚 with the corresponding sequence of new 𝑅𝑚-edges, e.g.,
(𝜋[𝑗], 𝑢𝑗𝑡 , 𝑢

𝑗
𝑡′ , 𝜋[𝑗 + 1]). It is straightforward to verify the properties (2)–(5) in 𝜋*. We

proceed by showing property (1), i.e., that 𝜋*[𝑗] satisfies (𝑒 → 𝑏1), (⋀︀𝑚𝑖=1 𝛼𝑖 ∧ 𝛾𝑖), and
(⋀︀𝑚+1

𝑖=1 𝛽𝑖) for all 𝑗 ≥ 0. For the proof, we distinguish between old worlds 𝑤 ∈ 𝑊𝑚−1 and
new worlds 𝑤 ∈ 𝑈𝑡 ∪𝑈𝑡′ ∪𝑈𝑓 ∪𝑈𝑓 ′ . All worlds on 𝜋* are either old or new. Furthermore,
it is easy to verify in 𝑉𝑚 that all new worlds satisfy (⋀︀𝑚𝑖=1 𝛼𝑖),

(︁⋀︀𝑚+1
𝑖=1 𝛽𝑖

)︁
and ¬𝑒.

They also satisfy 𝛾𝑖 ≡ (𝑥𝑖 → EG¬𝑓 ′
𝑖) ∧ (¬𝑥𝑖 → EG¬𝑡′𝑖), which can be seen as follows.

For 𝑖 = 𝑚, Figure 2 shows the path from 𝑢𝑗𝑡 and 𝑢𝑗𝑡′ to 𝑢𝑗ℓ satisfying G¬𝑓 ′
𝑚, and a

similar path from 𝑢𝑗𝑓 and 𝑢𝑗𝑓 ′ satisfying G¬𝑡′𝑚, or both if 𝑄𝑚 = ∀. For 𝑖 < 𝑚, recall
that 𝑢𝑗𝑡 , 𝑢

𝑗
𝑡′ , 𝑢

𝑗
𝑓 , 𝑢

𝑗
𝑓 ′ agree with 𝜋[𝑗] on the value of 𝑥𝑖. If e.g. 𝑥𝑖 = 0, then by induction

hypothesis, (𝒦𝑚−1, 𝜋[𝑗]) � EG¬𝑡′𝑖 via some path 𝜋′ = (𝜋[𝑗], 𝜋[𝑗 + 1], . . .). Clearly 𝜋′ can
be extended to an 𝑅𝑚-path (𝜋[𝑗], . . . , 𝜋[𝑗 + 1], . . .) satisfying G¬𝑡′𝑖.

With the inductive step on the new worlds being settled, assume for the rest of the
proof that 𝑤 is old. By induction hypothesis (1), then 𝑤 � (𝑒 → 𝑏1). Furthermore,
𝑤 � 𝛼𝑚: old worlds fulfill none of 𝑡𝑚, 𝑡′𝑚, 𝑓𝑚, 𝑓 ′

𝑚 due to (3), and if 𝑤 � 𝑠𝑚, then 𝑤 � 𝛼𝑚
by the construction shown in Figure 2.

To see that still (𝒦𝑚, 𝑤) � 𝛼𝑖 for 1 ≤ 𝑖 < 𝑚, suppose (𝒦𝑚, 𝑤) 2 𝛼𝑖 for the sake of
contradiction. Since 𝑤 ∈ 𝑉𝑚(𝑝) ⇔ 𝑤 ∈ 𝑉𝑚−1(𝑝) for all 𝑝 ∈ 𝒫𝒮 ∩ SF(𝛼𝑖), this implies
(𝒦𝑚, 𝑤) 2 AF𝜉 and (𝒦𝑚−1, 𝑤) � AF𝜉, for some AF𝜉 ∈ SF(𝛼𝑖). So let (𝒦𝑚, 𝜋

′) � G¬𝜉
for a path 𝜋′ = (𝑤, . . .). This path cannot visit 𝑈𝑔 or 𝑈ℓ, since 𝑡𝑖, 𝑡

′
𝑖, 𝑓𝑖, 𝑓

′
𝑖 ,¬𝑏𝑖 and

consequently 𝜉 are true in every world of 𝑈𝑔 ∪ 𝑈ℓ. For this reason, it must already
hold (𝒦𝑚−1, 𝜋

′′) � G¬𝜉 for some subpath 𝜋′′ = (𝑤, . . .) of 𝜋′ through 𝒦𝑚−1. But this
contradicts (𝒦𝑚−1, 𝑤) � AF𝜉.

Next, we consider 𝛽𝑖 for 𝑖 ∈ [𝑚 + 1]. Trivially 𝛽𝑚+1 = (𝑏𝑚+1 → EG𝑏𝑚+1) holds
in all old worlds, since 𝑏𝑚+1 occurs only in new worlds. For 𝑖 ≤ 𝑚, we apply the
induction hypothesis: either 𝑤 2 𝑏𝑖, or there is an 𝑅𝑚−1-path 𝜋′ = (𝑤, . . .) such
that (𝒦𝑚−1, 𝜋

′) � G𝑏𝑖. But by property (2), 𝜋′ never visits a world where 𝑠𝑚 holds.
Consequently, it is still an 𝑅𝑚-path and witnesses (𝒦𝑚, 𝑤) � EG𝑏𝑖.

With respect to (⋀︀𝑚−1
𝑖=1 𝛾𝑖), the new worlds are “transparent” as follows. Whenever

(𝒦𝑚−1, 𝜋
′) � G¬𝑝 for 𝑝 ∈ {𝑡′𝑖, 𝑓 ′

𝑖}, then an 𝑅𝑚-path 𝜋′′ can be obtained from 𝜋′ by
replacing deleted edges (𝜋[𝑗], 𝜋[𝑗+ 1]) by the corresponding steps through the new worlds.
Then still (𝒦𝑚, 𝜋

′′) � G¬𝑝, as 𝑡′𝑖 or 𝑓 ′
𝑖 are false in all new worlds.

Finally, 𝑤 � 𝛾𝑚 holds for all old worlds 𝑤 because there is always an 𝑅𝑚-path 𝜋′ =
(𝑤, . . .) such that (𝒦𝑚, 𝜋

′) � G(¬𝑡′𝑚 ∧ ¬𝑓 ′
𝑚). Given 𝑤 = 𝜋[𝑗], we construct 𝜋′ as follows.

If a minimal 𝑘 ≥ 𝑗 exists such that 𝜋[𝑘] � 𝑠𝑚, let 𝜋′ := (𝜋[𝑗], 𝜋[𝑗+ 1], . . . , 𝜋[𝑘], 𝑢𝑘𝑔 , 𝑢𝑘𝑔 , . . .).
Otherwise 𝜋′ := 𝜋𝑗 contains only old worlds and, by the induction hypothesis (3), is the
desired path.
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The reduction maps any true qbf 𝜙 with prefix ∀𝑥1 · · · ∀𝑥𝑛 to a CTL formula 𝜙* of
length 𝒪(𝑛), and with any model of 𝜙* having extent at least 2𝑛.

Corollary 12. ℬ𝑘(AF) and ℬ(AF) have optimal model size and extent 2𝛩(𝑛) for all 𝑘 ≥ 2.

It may seem surprising that AF can enforce a single exponentially long path, whereas
this is not possible with the LTL-operators F and G. The reason for this is twofold: On
the one hand, F operators enjoy a certain “order invariance”: With respect to a formula
𝜙 and a model, the set of fulfilled subformulas of the form G𝜓 ∈ SF(𝜙) can only grow
along a given path. For this reason, every path has a finite prefix after which no new
G-formulas are imposed such that the order of fulfillment of F does not matter anymore.
On the other hand, all G-formulas occurring on a path affect that path due to the lack of
branching and must not contradict. With EG, paths may however “branch off” arbitrarily.
Both properties are used by Sistla and Clarke to show the polynomial model property of
certain LTL fragments [SC85], while conversely the absence of both properties is crucial
for the proof presented here.

3.2 The AG fragment
In terms of computational complexity, the AG fragment is well-understood: it is equivalent
to the modal logic S4D, i.e., on transitive, reflexive, serial frames.

Proposition 13. SAT(ℬ(AG)) ∈ PSPACE.

Proof. A ℬ(AG)-formula is satisfiable if and only if it has a serial, reflexive, and transitive
model. On such structures, however, AG is equivalent to the modal “Box” operator �.
Therefore the S4-satisfiability algorithm given by Ladner [Lad77] provides the desired
result, with little modifications to respect seriality.

Next, we will improve the lower bounds for this logic, in particular we show that it
already holds for temporal depth two. We refine the classical proof which reduces from
TQBF to S4D-satisfiability by expressing the existence of proof trees in modal logic.
While the idea is roughly the same as in the AF case—force a Kripke structure to carry
up to 2𝑛 different propositional assignments—the implementation fundamentally differs
due to the different semantics of AF and AG. When using the first operator, we must use
a single exponentially long path, and with the second we have an exponentially branching
tree with linear depth. We will later see a linear upper bound for the optimal model
extent as well.

Theorem 14. SAT(ℬ2(AG)) is PSPACE-hard.

Proof. Let 𝜙 = 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓 be a qbf. We reduce 𝜙 to the formula 𝜙*, defined as
follows:

𝜙* := 𝑦0 ∧ AG
(︁(︀

(𝑦𝑛 ∨ 𝑧𝑛) → 𝜓
)︀

∧
𝑛⋀︁
𝑖=1

𝛼𝑖
)︁
,

𝛼𝑖 :=
(︁
(𝑦𝑖−1 ∨ 𝑧𝑖−1) → (EF𝑦𝑖 ∘𝑖 EF𝑧𝑖)

)︁
∧
(︁
𝑦𝑖 → AG𝑥𝑖

)︁
∧
(︁
𝑧𝑖 → AG¬𝑥𝑖

)︁
,
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where ∘𝑖 := ∧ if 𝑄𝑖 = ∀, and ∘𝑖 := ∨ if 𝑄𝑖 = ∃, and for all 0 ≤ 𝑖 ≤ 𝑛, the symbols
𝑦𝑖, 𝑧𝑖 are fresh propositions. Clearly the formula is logspace-constructible. Intuitively,
as soon as 𝑦𝑖 is true in some world 𝑤, 𝑥𝑖 shall be true in all worlds reachable from 𝑤.
Analogously, if 𝑧𝑖 holds, then 𝑥𝑖 shall be false in all reachable worlds.

To prove the correctness of the reduction, we again use a lemma for each direction.

Lemma 15. If 𝜙* is satisfiable, then 𝜙 is true.

Proof. Let (𝒦, 𝑟) � 𝜙*, 𝒦 = (𝑊,𝑅, 𝑉 ). W.l.o.g. (𝒦, 𝑟) is 𝑅-generable. We prove that 𝒦
simulates a proof tree for 𝜙, similarly as in Lemma 10. Let 𝑋0 := {𝑟} and, for 1 ≤ 𝑚 ≤ 𝑛,
let 𝑋𝑚 := { 𝑤 ∈ 𝑉 (𝑦𝑚) ∪ 𝑉 (𝑧𝑚) | ∃𝑤′ ∈ 𝑋𝑚−1 : 𝑤′𝑅*𝑤 } . The meaning of the set 𝑋𝑚 is
that the truth of 𝑥1, . . . , 𝑥𝑚 is already “fixed” in 𝑤 ∈ 𝑋𝑚, in the sense that its assignment
to 𝑥1, . . . , 𝑥𝑚−1 is recursively determined by 𝑤 being reachable from a world in 𝑋𝑚−1,
and 𝑥𝑚 being selected from satisfying either 𝑦𝑚 or 𝑧𝑚.

We will ascertain that the following tree 𝑇 = (𝛩,𝐸) is a proof tree of 𝜙:

𝛩 := { 𝜃 : {𝑥1, . . . , 𝑥𝑚} → {0, 1} | 0 ≤ 𝑚 ≤ 𝑛,∃𝑤 ∈ 𝑋𝑚 : 𝑤 ⊢ 𝜃 }

𝐸 :=
{︃

(𝜃, 𝜃′) ∈ 𝛩2
⃒⃒⃒⃒
⃒ 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} → {0, 1}, 𝜃′ = 𝜃𝑥𝑚

𝑏 for some 𝑏 ∈ {0, 1},
and ∃𝑤 ∈ 𝑋𝑚−1,∃𝑤′ ∈ 𝑋𝑚, 𝑤 ⊢ 𝜃, 𝑤′ ⊢ 𝜃′, 𝑤𝑅*𝑤′

}︃

𝛩 contains the empty Boolean assignment, as 𝑟 ∈ 𝑋0. Whenever 𝜃 : {𝑥1, . . . , 𝑥𝑚−1} →
{0, 1} is in 𝛩, then it agrees with some 𝑤 ∈ 𝑋𝑚−1 by definition of 𝛩. Since 𝑤 ∈ 𝑋𝑚−1,
all worlds reachable from 𝑤 must have the same truth values for 𝑥1, . . . , 𝑥𝑚−1 as 𝑤.
Assuming 𝑄𝑚 = ∃, and by 𝛼𝑚, there is a world 𝑤′ ∈ 𝑋𝑚 that agrees either with 𝜃𝑥𝑚

0 or
with 𝜃𝑥𝑚

1 . Conversely, 𝑄𝑚 = ∀, then two worlds 𝑤′, 𝑤′′ ∈ 𝑋𝑚 agreeing with 𝜃𝑥𝑚
0 , 𝜃𝑥𝑚

1
exist. Ultimately, 𝜃𝑥𝑚

0 , 𝜃𝑥𝑚
1 , or both are in 𝛩 and children of 𝜃 in 𝑇 , depending on 𝑄𝑚.

If a leaf assignment 𝜃 : {𝑥1, . . . , 𝑥𝑛} → {0, 1} is in 𝛩, then it agrees with some world
𝑤 ∈ 𝑋𝑛. But since (𝑦𝑛 ∨ 𝑧𝑛) → 𝜓 holds in all worlds of 𝒦, it also follows 𝑤 � 𝜓. By these
arguments, the conditions (1)–(3) of Definition 6 are true in 𝑇 , such that 𝑇 ultimately
contains a proof tree of 𝜙.

Lemma 16. If 𝜙 is true, then 𝜙* is satisfiable.

Proof. Suppose that 𝜙 is true and that accordingly 𝑇 = (𝛩,𝐸) is a proof tree of 𝜙. We
define a Kripke structure 𝒦 = (𝛩,𝐸, 𝑉 ) such that (𝒦, 𝜃0) � 𝜙*, where 𝜃0 ∈ 𝛩 is the
empty assignment.

For 𝑖 ∈ [𝑛], let

𝑉 (𝑥𝑖) := { 𝜃 ∈ 𝛩 | 𝜃(𝑥𝑖) is defined and 𝜃(𝑥𝑖) = 1 }
𝑉 (𝑦𝑖) := { 𝜃 ∈ 𝛩 | 𝜃 : {𝑥1, . . . , 𝑥𝑖} → {0, 1}, 𝜃(𝑥𝑖) = 1 }
𝑉 (𝑧𝑖) := { 𝜃 ∈ 𝛩 | 𝜃 : {𝑥1, . . . , 𝑥𝑖} → {0, 1}, 𝜃(𝑥𝑖) = 0 }

and otherwise 𝑉 (𝑦0) := {𝜃0}, 𝑉 (𝑧0) := ∅. By this construction, and since any assignment
𝜃 ∈ 𝛩 defined on {𝑥1, . . . , 𝑥𝑛} satisfies 𝜓, it follows (𝒦, 𝜃0) � 𝑦0 ∧ AG

(︀
(𝑦𝑛 ∨ 𝑧𝑛) → 𝜓

)︀
.

On the other hand, for 𝑖 ∈ [𝑛], the truth of 𝛼𝑖 is easy to verify by the definition of proof
trees.
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Corollary 17. ℬ𝑘(AG) and ℬ(AG) have model size lower bound 2𝛺(𝑛) and extent lower
bound 𝛺(𝑛) for all 𝑘 ≥ 2.

The next result is the matching upper bound for model extent. For this we introduce
the notion of quasi-models. The crucial difference to a model is that we do not need to talk
about truth of a subformula, but rather only whether or not a subformula or its negation
is necessitated in a specific world at all. The idea is that every necessary formula must
be true, but not vice versa. This approach is well-known in literature for establishing
upper bounds for model size, often together with filtration techniques. Related notions
are Hintikka structures, pseudo-models or tableaux, see also Allen Emerson and Halpern
[All90, AH85].

Let ∼𝜓 := 𝜉 if 𝜓 = ¬𝜉 for some 𝜉, and let ∼𝜓 := ¬𝜓 otherwise.

Definition 18 (Closure). Let 𝜙 ∈ ℬ(𝐶) for a base 𝐶. The closure 𝑐𝑙(𝜙) of 𝜙 is the
smallest set for which holds:

• 𝜙 ∈ 𝑐𝑙(𝜙).

• if 𝑄𝑂𝜓 ∈ 𝑐𝑙(𝜙) for unary 𝑄𝑂 ∈ TL, then {𝜓,𝑄𝑂∼𝜓} ⊆ 𝑐𝑙(𝜙),

• if 𝑄[𝜓𝑂𝜉] ∈ 𝑐𝑙(𝜙) for binary 𝑄𝑂 ∈ TL, then {𝜓, 𝜉,𝑄 [∼𝜓𝑂∼𝜉]} ⊆ 𝑐𝑙(𝜙),

• if 𝑓(𝜓1, . . . , 𝜓𝑛) ∈ 𝑐𝑙(𝜙), 𝑓 ∈ 𝐶, then 𝜓1, . . . , 𝜓𝑛 ∈ 𝑐𝑙(𝜙),

• 𝜓 ∈ 𝑐𝑙(𝜙) iff ∼𝜓 ∈ 𝑐𝑙(𝜙), that is, for every formula in 𝑐𝑙(𝜙) also a formula equivalent
to the negation is in 𝑐𝑙(𝜙).

For a set 𝛷 of formulas, define 𝑐𝑙(𝛷) := ⋃︀
𝜙∈𝛷 𝑐𝑙(𝜙).

The closure 𝑐𝑙 is similar to the Ladner-Fischer closure defined for PDL [FL79]. Note
that not necessarily ¬ ∈ 𝐶, but 𝑐𝑙(𝜙) ⊆ ℬ(𝐶 ∪ {¬}, 𝑇 ) if 𝜙 ∈ ℬ(𝐶, 𝑇 ).

Definition 19 (Quasi-models). Let 𝜙 ∈ ℬ(𝐶). A quasi-model of 𝜙 is then a tuple
𝒬 = (𝑊,𝑅,𝐿), where (𝑊,𝑅) is a serial Kripke frame, and 𝐿 : 𝑐𝑙(𝜙) → P(𝑊 ) is the
extended labeling function and obeys the following conditions:

(Q1) if 𝑓 ∈ 𝐶, 𝜉 = 𝑓(𝜓1, . . . , 𝜓ar(𝑓)) and 𝑤 ∈ 𝐿(𝜉) resp. 𝑤 ∈ 𝐿(∼𝜉), then ∃⃗𝑏 ∈ {0, 1}𝑛
such that

• 𝑓 (⃗𝑏) = 1 resp. 𝑓 (⃗𝑏) = 0
• ∀𝑖 ∈ [𝑛], 𝑏𝑖 = 1 implies 𝑤 ∈ 𝐿(𝜓𝑖) and 𝑏𝑖 = 0 implies 𝑤 ∈ 𝐿(∼𝜓𝑖),

(Q2) 𝐿(𝜓) ∩ 𝐿(∼𝜓) = ∅ for all 𝜓 ∈ 𝑐𝑙(𝜙),

(Q3) if 𝑤 ∈ 𝐿(¬𝑄𝑂𝜓) for unary 𝑄𝑂 ∈ TL, then 𝑤 ∈ 𝐿(𝑄𝑂∼𝜓),

(Q4) if 𝑤 ∈ 𝐿(¬𝑄[𝜓𝑂𝜉]) for binary 𝑄𝑂 ∈ TL, then 𝑤 ∈ 𝐿(𝑄[∼𝜓𝑂∼𝜉]),

(Q5) if 𝑤 ∈ 𝐿(E𝜓) (𝑤 ∈ 𝐿(A𝜓)), then for some (all) paths 𝜋 ∈ 𝛱(𝑤):
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• if 𝜓 = X𝛽, then 𝜋[1] ∈ 𝐿(𝛽)
• if 𝜓 = F𝛽 (G𝛽), then 𝜋[𝑖] ∈ 𝐿(𝛽) for some (all) 𝑖 ≥ 0,
• if 𝜓 = 𝛽U𝜉 (𝛽R𝜉), then for some (all) 𝑖 ≥ 0 it is 𝜋[𝑖] ∈ 𝐿(𝜉) and (or) 𝜋[𝑗] ∈ 𝐿(𝛽)

for all (some) 𝑗 < 𝑖,

(Q6) 𝐿(𝜙) ̸= ∅.

The properties (Q1)–(Q4) are the local quasi-label conditions.

As in usual Kripke structures, we sometimes call the set { 𝜓 ∈ 𝑐𝑙(𝜙) | 𝑤 ∈ 𝐿(𝜓) } the
quasi-labeling of 𝑤, or just labeling of 𝑤 if the context is clear, and for any formula 𝜓 in
the above set we say that 𝜓 is labeled in 𝑤.

Models and quasi-models are equivalent in the following sense:

Proposition 20. Let 𝜙 ∈ ℬ.

1. If (𝑊,𝑅, 𝑉,𝑤) is a model of 𝜙, then (𝑊,𝑅,𝐿𝜙) is a quasi-model of 𝜙, where
𝐿𝜙(𝜓) := { 𝑢 ∈ 𝑊 | (𝑊,𝑅, 𝑉, 𝑢) � 𝜓 } for all 𝜓 ∈ 𝑐𝑙(𝜙).

2. If (𝑊,𝑅,𝐿) is a quasi-model of 𝜙, then for all 𝑤 ∈ 𝐿(𝜙), (𝑊,𝑅, 𝑉𝐿, 𝑤) is a model
of 𝜙, where 𝑉𝐿(𝑝) := 𝐿(𝑝) for all 𝑝 ∈ 𝒫𝒮 ∩ SF(𝜙) and 𝑉𝐿(𝑝) := ∅ otherwise.

Proof. Induction on the length of the formula.

Definition 21. Let ℳ = (𝑊,𝑅, 𝑉,𝑤0) be a rooted Kripke structure. The tree unraveling
ℳ𝑇 of ℳ is defined as ℳ𝑇 = (𝑊 𝑇 , 𝑅𝑇 , 𝑉 𝑇 , (𝑤0)), where 𝑊 𝑇 is the set of all prefixes
of paths 𝜋 ∈ 𝛱(𝑤0), the relation

𝑅𝑇 :=
{︁ (︀

(𝑤0, . . . , 𝑤𝑛), (𝑤0, . . . , 𝑤𝑛, 𝑤𝑛+1)
)︀ ⃒⃒⃒

(𝑤0, . . . , 𝑤𝑛) ∈ 𝑊 𝑇 , 𝑤𝑛𝑅𝑤𝑛+1
}︁

is the maximal proper path prefix relation, and (𝑤0, . . . , 𝑤𝑛) ∈ 𝐿𝑇 (𝑝) if and only if
𝑤𝑛 ∈ 𝐿(𝑝).

In what follows, when a Kripke frame is called a tree, then the meaning is that it
forms a rooted, directed tree where every edge points away from the root. Clearly, the
underlying Kripke frame of ℳ𝑇 forms an infinite tree.

Proposition 22 ([All90]). If 𝜙 ∈ ℬ and ℳ is a model of 𝜙, then ℳ𝑇 is a model of 𝜙.

With (infinite tree) quasi-models in the toolbox, we are now able to prove the upper
bound in model extent for the AG fragment. The idea is to “greedily” construct a new
model, in the sense that EF-subformulas are always fulfilled in immediate successor
worlds.

Theorem 23. For any base 𝐶, ℬ(𝐶,AG) has model extent upper bound 𝒪(𝑛).
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Proof. Let 𝜙 ∈ ℬ(AG) be satisfiable, and (𝒯 , 𝑟) = (𝑊,𝑅,𝐿, 𝑟) an infinite tree quasi-model
obtained from the unraveling of a model of 𝜙. W.l.o.g. 𝑤 ∈ 𝐿(AG𝜉) implies 𝑢 ∈ 𝐿(AG𝜉)
for all for all AG𝜉 ∈ 𝑐𝑙(𝜙), 𝑤 ∈ 𝑊 , and 𝑅-successors 𝑢 of 𝑤.

For 𝑤 ∈ 𝑊 , define

ℱ(𝑤) := { 𝜉 ∈ 𝑐𝑙(𝜙) | 𝑤 ∈ 𝐿(EF𝜉) ∖ 𝐿(𝜉) } ,

i.e., the set of unfulfilled EF-formulas labeled in 𝑤. Analogously, let

𝒢(𝑤) := { 𝜉 ∈ 𝑐𝑙(𝜙) | 𝑤 ∈ 𝐿(AG𝜉) } .

We introduce a candidate set 𝒞𝜉(𝑤) ⊆ 𝑊 for each 𝑤 ∈ 𝑊 and 𝜉 ∈ 𝑐𝑙(𝜙). Let 𝒞𝜉(𝑤) :=
{ 𝑢 ∈ 𝑊 | 𝑢 ∈ 𝐿(𝜉), 𝑤𝑅*𝑢 }. For 𝜉 ∈ ℱ(𝑤), the set 𝒞𝜉(𝑤) is non-empty; it contains
reachable worlds 𝑢 that witness the truth of EF𝜉 in 𝑤. We define a subset

𝒞max
𝜉 (𝑤) :=

{︀
𝑢 ∈ 𝒞𝜉(𝑤)

⃒⃒
∀𝑢′ ∈ 𝒞𝜉(𝑤), 𝑢′ ̸= 𝑢, |𝒢(𝑢)| ≥ |𝒢(𝑢′)|

}︀
,

which is the restriction to candidates 𝑢 that are maximal with respect to the number of
their labeled AG-formulas. The new edge relation 𝐸 based on 𝒞max

𝜉 (𝑤) is

𝐸 :=
{︁

(𝑤, 𝑢) ∈ 𝑊 ×𝑊
⃒⃒⃒
𝜉 ∈ ℱ(𝑤), 𝑢 ∈ 𝒞max

𝜉 (𝑤)
}︁

.

To ensure the seriality of the new model, we furthermore require reflexive edges 𝐸ref :=
{ (𝑤,𝑤) ∈ 𝑊 ×𝑊 | ℱ(𝑤) = ∅ }.

We define the quasi-model 𝒯 ′ := (𝑊 ′, 𝐸 ∪𝐸ref , 𝐿′), where 𝑊 ′ := { 𝑤 ∈ 𝑊 | 𝑟𝐸*𝑤 } is
the restriction of 𝑊 to worlds reachable from 𝑟. Similarly, let 𝐿′(𝜉) := 𝐿(𝜉) ∩ 𝑊 ′ for
all 𝜉 ∈ 𝑐𝑙(𝜙). It is straightforward to check that 𝒯 ′ is a quasi-model for 𝜙. 𝒯 ′ is not
necessarily finite; the rest of the proof describes how to reduce 𝒯 ′ to a finite model with
linear extent.

First, consider a mapping 𝐽𝑤 from proper successors of 𝑤 to ℱ(𝑤) such that 𝐽−1
𝑤 (𝜉) ∈

𝐿′(𝜉) for all 𝜉 ∈ ℱ(𝑤). We can think of 𝐽𝑤 as the justifications, in the sense that every
successor is responsible for a EF-formula in 𝑤. W.l.o.g., 𝐽𝑤 is a bijection (clone successors
until there are enough, and delete unused ones). As all worlds 𝑢 in 𝒯 ′ have at most one
proper predecessor 𝑤, simply write 𝐽(𝑢) for 𝐽𝑤(𝑢).

Next, we show that justifications may only repeat on a path if the corresponding 𝒢-sets
are equal. Let 𝜋 = (𝑢0, 𝑢1, . . .) be a path through 𝒯 ′. For every world 𝑢𝑖 with 𝑖 ≥ 1, there
is a justification 𝜉 = 𝐽(𝑢𝑖). Assume 𝐽(𝑢𝑖) = 𝐽(𝑢𝑗) = 𝜉 for some 1 ≤ 𝑖 < 𝑗. We show
that 𝒢(𝑢𝑖) = 𝒢(𝑢𝑗). Clearly 𝒢(𝑢𝑖) ⊆ 𝒢(𝑢𝑗) follows from the assumption we made at the
beginning, since 𝑢𝑖𝑅*𝑢𝑗 . If however 𝒢(𝑢𝑖) ( 𝒢(𝑢𝑗), then 𝑢𝑖 /∈ 𝒞max

𝜉 (𝑢𝑖−1), contradiction.
We now transform 𝒯 ′ to a finite quasi-model ℳ as follows: While there is a long path

𝜋, furl that path. A path is long if it visits more than |{EF𝜉 ∈ SF(𝜙)}| distinct worlds
besides 𝑟. To furl a path 𝜋, choose the minimal 𝑗 such that 𝐽(𝜋[𝑗]) = 𝐽(𝜋[𝑖]) for some
𝑖 < 𝑗. Such an 𝑗 must exist if 𝜋 is long. The world 𝜋[𝑗] can then be replaced by a back
edge from 𝜋[𝑗 − 1] to 𝜋[𝑖] without violating any quasi-label condition: no AG is violated,
as 𝒢(𝜋[𝑖]) = 𝒢(𝜋[𝑗]), and no EF is violated, as every world 𝜋[𝑗] needs only to satisfy its
justification. As ℳ then has no long paths, 𝜙 has a model with extent 𝒪(𝜙).
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3.3 The AX fragment
The AX fragment of temporal logic is, similar to AG, well known from the context of
modal logic. The following theorems are adaptations of some of its properties.

Theorem 24. ℬ(AX) has a model size lower bound 2𝛺(√
𝑛) and extent lower bound 𝛺(𝑛).

ℬ𝑘(AX) has a model size lower bound 𝑛𝛺(𝑘) and extent lower bound 𝑘.

Proof. The temporal depth as lower bound for model extent is straightforward. For the
size lower bound, we enforce a large model with a standard approach (see also [Mar07]).
Let

𝜓𝑚𝑖 :=

⎡⎣𝑚−1⋀︁
𝑗=0

EX𝑐𝑖(𝑗)

⎤⎦ ∧
𝑖−1⋀︁
𝑠=1

⌈log𝑚⌉⋀︁
𝑡=0

(𝑝𝑠,𝑡 → AX𝑝𝑠,𝑡) ∧ (¬𝑝𝑠,𝑡 → AX¬𝑝𝑠,𝑡),

where 𝑐𝑖(𝑗) is a conjunction of log𝑚 literals of propositions 𝑝𝑖,1, . . . , 𝑝𝑖,log𝑚, such that
𝑐𝑖(𝑗) represents the binary value 𝑗. Then the satisfiable formula

𝜙𝑚,𝑘 := 𝜓𝑚1 ∧ AX(𝜓𝑚2 ∧ AX(. . . (AX𝜓𝑚𝑘 ) . . .))

has length 𝒪(𝑘2 ·𝑚 log𝑚) and temporal depth 𝑘, but no model with less than 𝑚𝑘 worlds.
For fixed 𝑚 ≥ 2, consequently 𝜙𝑚,𝑘 has length 𝒪(𝑘2) and only models of size ≥ 2𝑘.
Conversely, for fixed 𝑘, 𝜙𝑚,𝑘 has length 𝒪(𝑚 ln𝑚) ⊆ 𝒪(𝑚2), and only models of size
≥ 𝑚𝑘 = (𝑚2) 𝑘

2 . As a result, we obtain a family of formulas of size 𝑛 with models of size
at least 𝑛𝛺(𝑘).

Proposition 25. For any base 𝐶 and any 𝑘, ℬ𝑘(AX) has a model size upper bound 𝑛𝒪(𝑘)

and extent 𝑘. ℬ(AX) has a model extent upper bound 𝑛.

Proof. Clearly the temporal depth is an upper bound for the extent. Every world in a
model of 𝜙 requires at most max{1, ℓ } successors, where ℓ is the number of EX-subformulas
in 𝜙. The model size for 𝜙 ∈ ℬ𝑘(AX) follows, as ∑︀𝑘

𝑖=0 |𝜙|𝑖 ∈ |𝜙|𝒪(𝑘).

The gap between the upper bound 2𝒪(𝑛) and lower bound 2𝛺(√
𝑛) can be closed by

choosing a different encoding for modal formulas. In more succinct encodings, for instance
modal circuits (see Hemaspaandra, Schnoor, and Schnoor [HS+10]), a lower bound of
2𝛺(𝑛) can be achieved.

Proposition 26. For all 𝑘 ≥ 0, SAT(ℬ𝑘(AX)) is NP-complete.

Proof. The upper bound follows from the previous theorem: Guess a satisfying model
of polynomial size and verify it in polynomial time, since CTL model checking is in P
[CA+86]. The lower bound holds as ℬ0 is nothing else than propositional logic, for which
the satisfiability problem is already NP-complete [Coo71].

A complete classification of the computational complexity of modal satisfiability (in the
case of unbounded modal depth and arbitrary Boolean bases) was given by Hemaspaandra
et al. [HS+10]. Since serial modal logic KD with Boolean base 𝐶 is equivalent to ℬ(𝐶,AX),
clearly the next theorem follows:
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Theorem 27 ([HS+10]). Let 𝐶 be a base such that S1 ⊆ [𝐶]. Then SAT(ℬ(𝐶,AX)) is
PSPACE-complete.

3.4 The AF AX fragment
The next part establishes the matching upper bounds for the fragment with both AX and
AF. It requires some technical work; we show PSPACE membership by constructing a
canonical balloon model. It has a special form that allows to non-deterministically guess
and verify it on-the-fly, namely it is “pseudo-acyclic”: it almost resembles a tree, except
that its branches are closed into cycles. This poses a strong restriction to possible back-
edges, and allows to guess such a model in a depth-first search manner using polynomial
space.

We require several auxiliary definitions:

Definition 28 (Ultimately periodic path). A path 𝜋 of the form

𝜋 = (𝑤1, . . . , 𝑤𝑖, 𝑤𝑖+1, . . . , 𝑤𝑖+𝑘, 𝑤𝑖+1, . . .),

where 𝑖 ≥ 0, 𝑘 ≥ 1, is called ultimately periodic. It consists of a finite prefix that visits
every world at most once, followed by an infinite repetition of a finite, non-empty cycle.
The length of 𝜋 is 𝑖+ 𝑘, i.e., the sum of the lengths of its prefix and its cycle.

Definition 29 (Balloon path). Let 𝐹 = (𝑊,𝑅) be a finite Kripke frame with exactly
one predecessor-free world 𝑟 ∈ 𝑊 (its root), and all other worlds reachable from 𝑟. We
call 𝐹 a balloon path if there is exactly one 𝑅-path 𝜋 with origin 𝑟 (then 𝜋 must be
ultimately periodic with non-empty prefix, as 𝐹 is assumed finite). The length of 𝐹 is
then simply the length of 𝜋.

Definition 30 (Balloon frames). A Kripke frame 𝐹 = (𝑊,𝑅) is called a balloon frame
of level 𝑚 and length at most 𝑛, provided that

• for 𝑚 = 0, 𝐹 is a balloon path of length at most 𝑛.

• for 𝑚 > 0, 𝐹 is the union of Kripke frames 𝑃, 𝐹1, . . . , 𝐹𝑘, where 𝑃 is a balloon path
of length at most 𝑛, and for all 𝑖, 𝑗 ∈ [𝑘],

– 𝐹𝑖 is a balloon frame of length 𝑛 and level at most 𝑚− 1,
– for 𝑖 ̸= 𝑗, 𝐹𝑖 and 𝐹𝑗 are disjoint except their roots,
– 𝐹𝑖 and 𝑃 are disjoint except that the root of 𝐹𝑖 must be a world of 𝑃 .

Intuitively, 𝐹 is constructed by taking a balloon path of length at most 𝑛, and appending
to each world 𝑢 a finite number of balloon structures of level at most 𝑚− 1 and length
at most 𝑛. Appending here means identifying each of their roots with 𝑢 such that they
have no other worlds in common with each other.

Such a structure with bounded level 𝑚 has some useful properties. For instance, every
path must visit at most one balloon frame of level 𝑚,𝑚− 1, . . . , 𝑘 for some 𝑘 ≥ 1, and
then stay forever in that one with level 𝑘.
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If (𝑊,𝑅) is a balloon structure and (𝑊,𝑅,𝐿) is a quasi-model of a formula 𝜙, then
ℳ = (𝑊,𝑅,𝐿) is a balloon quasi-model of 𝜙.

The first step towards finding a balloon quasi-model is to identify ultimately periodic
paths as witnesses for E-formulas. Here, a path with origin 𝑤 witnesses a formula E𝛾
labeled in 𝑤 when 𝜋[1] ∈ 𝐿(𝛿) (if 𝛾 = X𝛿) resp. when { 𝜋[𝑖] | 𝑖 ≥ 0 } ⊆ 𝐿(𝛿) (if 𝛾 = G𝛿).

Lemma 31. Let ℳ = (𝑊,𝑅,𝐿) be a finite quasi-model of 𝜙 ∈ ℬ. Assume 𝛾 ∈ 𝑐𝑙(𝜙) is a
formula of the form EX𝛿 or EG𝛿. If 𝑤 ∈ 𝐿(𝛾), then there is a path 𝜋 ∈ 𝛱(𝑤) witnessing
𝛾 such that 𝜋 is ultimately periodic and of length at most |𝑊 |.

Proof. Let 𝜋 ∈ 𝛱(𝑤) be the path through ℳ that witnesses the truth of 𝛾. Let 𝑗 be
minimal such that 𝜋[𝑗] = 𝜋[𝑗′] for some 𝑗′ < 𝑗, i.e., 𝜋[𝑗] is the first world visited twice on
𝜋. Obviously 𝑗 must exist.

Then the path 𝜋′ := (𝜋[0], . . . , 𝜋[𝑗′], . . . , 𝜋[𝑗− 1], 𝜋[𝑗′], . . .) is ultimately periodic and of
length at most |𝑊 |. Furthermore, if 𝛾 = EX𝛿, then 𝜋′[1] ∈ 𝐿(𝛿), since always 𝜋′[1] = 𝜋[1],
and if 𝛾 = EG𝛿, then { 𝜋′[𝑖] | 𝑖 ≥ 0 } ⊆ { 𝜋[𝑖] | 𝑖 ≥ 0 } ⊆ 𝐿(𝛿).

Next, we restrict the possible selection of witness paths even further to obtain a
balloon-like structure. Formally, every finite quasi-model (𝑊,𝑅,𝐿) of 𝜙 has a choice
function 𝑓 : 𝑊 × 𝑐𝑙(𝜙) →

⋃︀
𝑤∈𝑊 𝛱(𝑤) with respect to satisfaction of labeled E-formulas.

For E𝛾 ∈ 𝑐𝑙(𝜙) and 𝑤 ∈ 𝐿(E𝛾), 𝑓(𝑤,E𝛾) is defined as a path 𝜋 ∈ 𝛱(𝑤) witnessing 𝛾. We
call such a choice function 𝑓 normal if:

• 𝑓 is injective,

• for any path 𝜋 in the image of 𝑓 , 𝜋 is ultimately periodic, and worlds having two
or more 𝑅-predecessors may only occur as the root of 𝜋 or in its cycle,

• for any two paths 𝜋, 𝜋′ in the image of 𝑓 , 𝜋≥1 and 𝜋′
≥1 are disjoint (but possibly

𝜋[0] is an element of 𝜋′ or vice versa).

Intuitively, a normal choice function in a balloon quasi-model means that witness paths
with origin 𝑤 always branch into a new balloon of shallower level and root 𝑤; moreover,
for every E-formula a distinct balloon is attached.

For easier argumentation, in what follows we assume w.l.o.g. that subformulas of 𝜙
containing temporal operators can occur only once in 𝜙. Formally,

(𝜓1 /∈ SF(𝜓2) ∧ 𝜓2 /∈ SF(𝜓1)) ⇒ 𝑐𝑙(𝜓1) ∩ 𝑐𝑙(𝜓2) ⊆ ℬ0.

In other words, if two formulas have no common subformulas, then they also have no
common elements in their closure except propositional formulas.3

For the rest of the subsection, we introduce a new quasi-label condition that can be
assumed without loss of generality.

(Q7) If 𝑤 ∈ 𝐿(AF𝜓) ∖ 𝐿(𝜓), then

3By, for instance, introducing enough copies 𝑂′, 𝑂′′, . . . of any temporal operator 𝑂.
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• 𝑢 ∈ 𝐿(𝜓) or 𝑢 ∈ 𝐿(AF𝜓) for all successors 𝑢 of 𝑤, and
• 𝑤 /∈ 𝐿(𝜓′) for all 𝜓′ ∈ 𝑐𝑙(𝜓) ∖ ℬ0.

The first condition is known as the fixpoint characterization of AF and is used in
the upcoming technical proof. The second condition is a sort of “negative downwards
closure”: if AF𝜓 is not fulfilled in 𝑤, then certainly none of its subformulas are required
in 𝑤. This can be assumed due to the uniqueness of subformulas explained above.

These conditions are crucial later to construct a model in finitely many steps. Note
that the second condition is exactly the failing point for the operators AG, AU and AR,
as they do always necessitate labeling their subformulas in 𝑤, with or without being
fulfilled.

Lemma 32 (Balloon lemma). If 𝑇 ⊆ {AF,AX}, 𝐶 is a base, and 𝜙 ∈ ℬ(𝐶, 𝑇 ), then 𝜙
is satisfiable if and only if it has a balloon quasi-model of level 𝒪(|𝜙|) and length 2𝒪(|𝜙|)

that has a normal choice function.

Proof. Let 𝜙 be satisfiable. From any balloon quasi-model we can obtain a model of 𝜙
by Proposition 20. Conversely, by Theorem 3 and Proposition 20, 𝜙 has a quasi-model
ℳ = (𝑊,𝑅,𝐿) of size 2𝒪(|𝜙|).

We construct a balloon quasi-model 𝒯 = (𝑊 ′, 𝑅′, 𝐿′) in stages as follows. Select a
world 𝑟 ∈ 𝐿(𝜙) as the root of 𝒯 , and w.l.o.g. assume that at least one E-formula is labeled
in 𝑟. Let 𝑟 ∈ 𝑊 ′. We will subsequently add more worlds to 𝑊 ′, connected by 𝑅′-edges,
and define their quasi-label given by 𝐿′ accordingly, such that 𝒯 eventually is a balloon
quasi-model of 𝜙.

In the construction, define 𝑐𝑙(𝑤) := ⋃︀
{ 𝑐𝑙(𝜓) | 𝜓 ∈ 𝑐𝑙(𝜙), 𝑤 ∈ 𝐿′(𝜓) }, the union of the

closures of all formulas labeled in 𝑤 ∈ 𝑊 ′. To keep track of the balloons of level 𝑚− 1
emanating from worlds on a balloon of level 𝑚, we further introduce a level function
ℓ : 𝑊 ′ → N. Set ℓ(𝑟) := |𝑐𝑙(𝜙)|. Moreover, we will define the required normal choice
function 𝑓 during the construction.

Now, for all formulas E𝛾 ∈ 𝑐𝑙(𝜙) and all worlds 𝑤 ∈ 𝐿′(E𝛾) with ℓ(𝑤) > 0, do the
following. If 𝑓(𝑤,E𝛾) is not yet defined, then select a path 𝜋 from ℳ with origin 𝑤
according to Lemma 31 to satisfy E𝛾. 𝜋 is ultimately periodic with length 2𝒪(|𝜙|). Append
a copy 𝜋′ of this path to 𝑤. If the appended path happens to have an empty prefix, i.e.,
𝜋 = (𝑣1, . . . , 𝑣𝑚, 𝑣1, . . . , 𝑣𝑚, . . .), then use as prefix a copy (𝑣′

1, . . . , 𝑣
′
𝑚) of the cycle, to

ensure that the appended worlds form a balloon path. Set ℓ(𝑢) := ℓ(𝑤) − 1 for each
such appended world 𝑢, and define the choice function as 𝑓(𝑤,E𝛾) := 𝜋′. Afterwards,
assuming 𝛾 = X𝛿 or 𝛾 = G𝛿, leave only formulas 𝜓 labeled in 𝜋′

≥1 such that, for all 𝑗 ≥ 1,

𝑐𝑙(𝜋′[𝑗]) ⊆ 𝑐𝑙(𝛿) ∪
⋃︁{︀

𝑐𝑙(𝛼)
⃒⃒
𝑤 ∈ 𝐿′(AX𝛼)

}︀
∪
⋃︁{︀

𝑐𝑙(AF𝛼)
⃒⃒
𝑤 ∈ 𝐿′(AF𝛼) ∖ 𝐿′(𝛼)

}︀
.

It is straightforward to check that this does not violate any quasi-label condition. This
construction terminates and leaves a balloon quasi-model 𝒯 of level |𝑐𝑙(𝜙)| and length
at most 2𝒪(|𝜙|), and having a normal choice function 𝑓 . To prove that 𝒯 is indeed a
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quasi-model of 𝜙, we have to show that all quasi-label conditions regarding E-formulas are
fulfilled in each world 𝑤.4 This is clear for worlds of level ℓ(𝑤) > 0 by the construction
of appended paths. So it remains to prove that all E-formulas labeled in worlds 𝑤 with
ℓ(𝑤) = 0 are satisfied; in fact we show that |𝑐𝑙(𝑤)| ≤ ℓ(𝑤) for all 𝑤, so for ℓ(𝑤) = 0 all
quasi-label conditions are vacuously satisfied in 𝑤.

The proof of |𝑐𝑙(𝑤)| ≤ ℓ(𝑤) is by induction on the distance of 𝑤 from the root 𝑟. By
definition, |𝑐𝑙(𝑟)| ≤ |𝑐𝑙(𝜙)| = ℓ(𝑟). Every world 𝑢 ̸= 𝑟 is of the form 𝑢 = 𝜋[𝑗], 𝑗 ≥ 1, for a
witness path 𝜋 = 𝑓(𝑤,E𝛾). Also, ℓ(𝑤) = ℓ(𝑢) + 1. By construction, 𝑐𝑙(𝑢) ⊆ 𝑐𝑙(𝑤). We
show 𝑐𝑙(𝑢) ̸= 𝑐𝑙(𝑤), so consequently |𝑐𝑙(𝑢)| ≤ (|𝑐𝑙(𝑤)| − 1) ≤ (ℓ(𝑤) − 1) = ℓ(𝑢).

For the sake of contradiction, suppose 𝑐𝑙(𝑢) = 𝑐𝑙(𝑤). Let < be a partial ordering on
formulas such that 𝜓1 < 𝜓2 iff 𝑐𝑙(𝜓1) ( 𝑐𝑙(𝜓2). Since 𝑐𝑙(𝑢) = 𝑐𝑙(𝑤), E𝛾 ∈ 𝑐𝑙(𝑢) for 𝛾 = X𝛿
or 𝛾 = G𝛿. Let 𝛾′ ∈ 𝑐𝑙(𝑢) be <-maximal such that E𝛾 ∈ 𝑐𝑙(𝛾′). By the construction of 𝜋,
either

1. 𝛾′ ∈ 𝑐𝑙(𝛿),

2. 𝛾′ ∈ 𝑐𝑙(𝛼) for some AX𝛼 with 𝑤 ∈ 𝐿′(AX𝛼),

3. 𝛾′ ∈ 𝑐𝑙(AF𝛼) for some AF𝛼 with 𝑤 ∈ 𝐿′(AF𝛼) ∖ 𝐿′(𝛼), or

(1) is impossible as 𝛿 is already a proper subformula of E𝛾. In case (2), AX𝛼 ∈ 𝑐𝑙(𝑤)
and consequently AX𝛼 ∈ 𝑐𝑙(𝑢). But 𝛾′ is a proper subformula of AX𝛼, contradicting the
<-maximality of 𝛾′ in 𝑐𝑙(𝑢). In the final case (3), 𝑤 /∈ 𝐿′(𝛼). By the quasi-label condition
(Q7), 𝑤 /∈ 𝐿′(E𝛾) despite 𝑓(𝑤,E𝛾) being defined, contradiction.

Such a “balloon model” can be constructed in a top-down depth-first search manner
to check the satisfiability of ℬ(𝐶, {AF,AX}) formulas in non-deterministic polynomial
space. A single balloon path is determined by the index of the world where the “back
edge” points to, i.e., where the cycle is closed, and then by consecutively guessing the
labeled formulas in each world on this path. If an E-formula occurs, then the algorithm
recursively guesses witness branches.

This method works in polynomial space, since visited worlds of a branch, unless incident
to the back edge, can be “forgotten” immediately. The correctness of this approach relies
on the existence of a normal choice function for witness paths: By injectivity and the
disjointness of different witness paths, the algorithm can branch into new sub-balloons
independently for each E-formula. Also, the witness paths are not allowed to visit worlds
with more than one predecessor, unless it is their root, or the target of their back edge.
This allows to track all quasi-label conditions that can affect the worlds on the path,
since at any time the algorithm knows the quasi-labels of possible predecessors.

Theorem 33. If 𝑇 ⊆ {AF,AX} and 𝐶 is a base, then SAT(ℬ(𝐶, 𝑇 )) ∈ PSPACE.

Proof. As NPSPACE = PSPACE, we consider Algorithm 1 which runs in non-
deterministic polynomial space. The previous lemma shows the correctness; the algorithm

4The local conditions and conditions regarding A-formulas have already been fulfilled in ℳ.

24



Algorithm 1: NPSPACE algorithm for SAT(ℬ(𝐶, {AF,AX}))
Input :𝜙 ∈ ℬ(𝐶, {AF,AX})
Output : Is 𝜙 satisfiable?

1 /* 𝒢: EG formula to satisfy */
2 /* ℱroot: unfulfilled F-formulas (eventualities) at the root of the

balloon */
3 /* 𝒳root: unfulfilled X formulas at the root of the balloon */
4 /* ℓ: remaining depth counter */
5 Procedure guesspath(𝒢,ℱroot,𝒳root, 𝑑)
6 if ℓ = 0 then return false
7 guess 𝑡 ∈ {1, . . . , 2𝑚·|𝜙|} /* world where the cycle is closed */
8 𝒳 := 𝒳root; ℱ := ℱroot; ℱ* := ∅; 𝐿* := ∅
9 for 𝑖 := 0 to 2𝑚·|𝜙| do

10 guess a set 𝐿 ⊆ 𝑐𝑙(𝜙)
11 if 𝐿 violates a local quasi-label condition then return false
12 if 𝒳 ̸⊆ 𝐿 then return false
13 if 𝒢 ̸⊆ 𝐿 then return false
14 𝒳 := { 𝜓 | AX𝜓 ∈ 𝐿 }
15 foreach AF𝜓 ∈ 𝐿 do
16 add AF𝜓 to ℱ
17 foreach 𝜓 ∈ 𝐿 do
18 remove AF𝜓 from ℱ and ℱ*

19 if 𝑖 = 𝑡 then
20 𝐿* := 𝐿 /* must be equal when closing the cycle */
21 ℱ* := ℱ /* must be fulfilled before closing the cycle */

22 foreach EG𝛾 ∈ 𝐿 do
23 if not guesspath({𝛾},ℱ ,𝒳 , ℓ− 1) then return false
24 foreach EX𝜉 ∈ 𝐿 do
25 if not guesspath(∅,ℱ ,𝒳 ∪ {𝜉}, ℓ− 1) then return false
26 if 𝑖 ≥ 𝑡 and ℱ* = ∅ and 𝐿 = 𝐿* then return true
27 return false /* could not fulfill all eventualities */

28 return guesspath(∅, ∅, {𝜙},𝑚 · |𝜙|)
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guesses a balloon quasi-model with a normal choice function by traversing its balloon
paths on-the-fly and recursively descending into deeper balloon levels as necessary.

There is an 𝑚 ∈ N such that 𝜙 is satisfiable if and only if it has balloon quasi-model
with balloon length 2𝑚·|𝜙| and level 𝑚 · |𝜙|. A guessed back edge is represented by a
pointer 𝑡 of linear length. The required space to remember the constantly many sets of
labeled formulas is again linear.

Finally the recursion depth is only linear as well, as the depth of recursion corresponds to
the level of the balloon path, so ultimately the overall space requirement is quadratic.

3.5 Hard fragments
The common proof of the EXP-hardness of the satisfiability problem of CTL is an
adaptation of a similar result for PDL by Fischer and Ladner [FL79]. They use a generic
reduction from APSPACE, as APSPACE = EXP [CK+81].

APSPACE (alternating polynomial space) is the class of sets decided by alternating
polynomial space-bounded single-tape Turing machines (pspace-ATMs). In the following,
we show that such machines can be simulated with a wide range of CTL operators,
namely AU, AR, and also AG if combined with AX or AF.

An alternating Turing machine is a tuple 𝑀 = (𝑄∃, 𝑄∀, 𝛴, 𝛤, 𝛿, 𝑞0,�, 𝑞acc, 𝑞rej), where
𝑄∃, 𝑄∀ are disjoint sets of existentially resp. universally branching states, 𝑄 := 𝑄∃ ∪𝑄∀
is the set of all states, 𝑞acc, 𝑞rej ∈ 𝑄 are the accepting resp. rejecting state, 𝑞0 ∈ 𝑄 is the
initial state, 𝛴 and 𝛤 ) 𝛴 are the input and tape alphabet, � ∈ 𝛤 ∖ 𝛴 is the blank
symbol and 𝛿 : 𝑄× 𝛤 → P(𝑄× 𝛤 ×𝑋) is the transition function, where 𝑋 = {−1, 0, 1}
and 𝛿(𝑞, 𝑎) is a finite set for all 𝑞 ∈ 𝑄, 𝑎 ∈ 𝛤 .

A configuration is a tuple (𝑞, 𝑖, 𝑡), where 𝑞 ∈ 𝑄 is the current state, 𝑖 ∈ N is the current
head position and 𝑡 ∈ 𝛤 * the current tape content, i.e., 𝑡 is a finite word (𝑐1, . . . , 𝑐𝑘)
consisting of symbols of 𝛤 , and 𝑖 ∈ [𝑘]. Write 𝛿(𝑞, 𝑖, 𝑡) for the set of all configurations
resulting from applying a transition of 𝛿(𝑞, 𝑡𝑖). Provided that 𝑞 ̸= 𝑞rej, a configuration
accepts if 𝑞 = 𝑞acc; or if 𝛿(𝑞, 𝑖, 𝑡) contains at least one configuration that accepts and
𝑞 ∈ 𝑄∃; or if it contains only accepting configurations and 𝑞 ∈ 𝑄∀. 𝑀 accepts an input
𝑥 ∈ 𝛴* if the initial configuration (𝑞0, 1, 𝑥) accepts. 𝑀 runs in polynomial space if there
is a polynomial 𝑔 such that on each input 𝑥 the head position 𝑖 is always in [𝑔(|𝑥|)] (we
can assume that 𝑀 does not leave the input to the left of position 1).

Theorem 34. SAT(ℬ2(𝑇 )) is EXP-hard if AU ∈ 𝑇 , AR ∈ 𝑇 , {AG,AX} ⊆ 𝑇 or
{AG,AF} ⊆ 𝑇 .

Proof. Let 𝐴 ∈ EXP. As EXP = APSPACE [CK+81], 𝐴 is decided by a pspace-
bounded ATM 𝑀 = (𝑄∃, 𝑄∀, 𝛴, 𝛤, 𝛿, 𝑞0,�, 𝑞acc, 𝑞rej). W.l.o.g. 𝛿(𝑞, 𝑎) is always non-empty,
and on all inputs every computation path eventually assumes the state 𝑞acc or 𝑞rej. That
such an 𝑀 can be chosen is proved similar to [CK+81, Thm. 2.6].

We reduce 𝐴 to SAT(ℬ2(𝑇 )) via 𝑀 .

Case 1: AG,AX
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The following CTL formula 𝜙 ∈ ℬ2({AG,AX}) is satisfiable if and only if 𝑀 accepts 𝑥.
𝜙 is constructible in space that is logarithmic in |𝑥|. Let 𝐼 := [𝑔(|𝑥|)].

𝜙 := 𝜙init ∧ AG𝜙conf ∧ AG𝜙𝛿
𝜙init := 𝑠𝑞0 ∧ 𝑝1 ∧

⋀︁
1≤𝑖≤|𝑥|

𝑡𝑖,𝑥𝑖 ∧
⋀︁
𝑖∈𝐼
𝑖>|𝑥|

𝑡𝑖,�

𝜙conf :=
⋁︁
𝑞∈𝑄

⎛⎝𝑠𝑞 ∧
⋀︁

𝑞′∈𝑄∖{𝑞}
¬𝑠𝑞′

⎞⎠ ∧
⋁︁
𝑖∈𝐼

⎛⎝𝑝𝑖 ∧
⋀︁
𝑗∈𝐼∖{𝑖}

¬𝑝𝑗

⎞⎠ ∧
⋀︁
𝑖∈𝐼

⋁︁
𝑎∈𝛤

⎛⎝𝑡𝑖,𝑎 ∧
⋀︁

𝑎′∈𝛤∖{𝑎}
¬𝑡𝑖,𝑎′

⎞⎠
𝜙𝛿 := 𝑠𝑞acc ∨

(︃
¬𝑠𝑞rej ∧

⋀︁
𝑞∈𝑄∃
𝑎∈𝛤
𝑖∈𝐼

(︂
(𝑠𝑞 ∧ 𝑝𝑖 ∧ 𝑡𝑖,𝑎) →

⋁︁
(𝑞′,𝑎′,𝑋)
∈𝛿(𝑞,𝑎)

𝜙
(𝑞′,𝑖,𝑖+𝑋,𝑎′)
next

)︂

∧
⋀︁
𝑞∈𝑄∀
𝑎∈𝛤
𝑖∈𝐼

(︂
(𝑠𝑞 ∧ 𝑝𝑖 ∧ 𝑡𝑖,𝑎) →

⋀︁
(𝑞′,𝑎′,𝑋)
∈𝛿(𝑞,𝑎)

𝜙
(𝑞′,𝑖,𝑖+𝑋,𝑎′)
next

)︂)︃

𝜙
(𝑞′,𝑖,𝑖′,𝑎′)
next := EX(𝑠𝑞′ ∧ 𝑝𝑖′ ∧ 𝑡𝑖,𝑎′) ∧

⋀︁
𝑗∈𝐼
𝑗 ̸=𝑖
𝑎∈𝛤

(︀
(𝑡𝑗,𝑎 → AX𝑡𝑗,𝑎) ∧ (¬𝑡𝑗,𝑎 → AX¬𝑡𝑗,𝑎)

)︀

𝜙init fixes the root of models of 𝜙 to simulate the initial configuration of 𝑀 on 𝑥.
AG𝜙conf forces every reachable world to assume exactly one configuration of 𝑀 . AG𝜙𝛿
requires the existence of successor configurations resulting from 𝛿-transitions (and is
falsified if 𝑞 is the rejecting state), and finally 𝜙(𝑞′,𝑖,𝑖′,𝑎′)

next fixes all tape symbols at positions
where the head currently does not write. Now it holds that 𝜙 is satisfiable if and only if
the initial configuration of 𝑀 is accepting. At this point it is crucial that all computation
paths of 𝑀 eventually accept or reject. This allows a correct reduction even without
“eventuality” operators.

Case 2: AG,AF
Without AX, it is harder to express that the worlds quantified inside 𝜙(𝑞′,𝑖,𝑖′,𝑎′)

next coincide,
i.e., that the world representing the successor configuration is exactly the world where all
non-overwritten symbols stay the same. Obviously it will not work to just replace AX,EX
with AF,EF. As a solution, we do not quantify successors, but whole infinite paths. Each
such path then assumes a single reachable configuration and must eventually continue
the computation. Change several formulas as follows.

𝜙
(𝑞′,𝑖,𝑖′,𝑎′)
next := EG

[︁⋀︁
𝑗∈𝐼
𝑗 ̸=𝑖
𝑎∈𝛤

𝜙
(𝑗,𝑎)
keep ∧

(︁
(𝑞′, 𝑖′, 𝑎′) → (𝑠𝑞′ ∧ 𝑝𝑖′ ∧ 𝑡𝑖,𝑎′)

)︁]︁
∧ AF(𝑞′, 𝑖′, 𝑎′)

𝜙
(𝑗,𝑎)
keep :=

(︀
AF(𝑏 ∧ 𝑡𝑗,𝑎) → (𝑡𝑗,𝑎 ∧ AF(¬𝑏 ∧ 𝑡𝑗,𝑎))

)︀
∧
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(︀
AF(¬𝑏 ∧ 𝑡𝑗,𝑎) → (𝑡𝑗,𝑎 ∧ AF(𝑏 ∧ 𝑡𝑗,𝑎))

)︀
𝜙 := 𝜙init ∧ AG𝜙conf ∧ AG𝜙𝛿 ∧ AG

⋀︁
𝑗∈𝐼
𝑎∈𝛤

(︁
𝜙

(𝑗,𝑎)
keep ↔ 𝜙

(𝑗,𝑎)
keep

)︁

Here, the underlined expressions are atomic propositions. The formula 𝜙(𝑗,𝑎)
keep does not

directly occur to retain a low temporal depth.
We proceed by showing that 𝜋 � 𝑡𝑗,𝑎 → G𝑡𝑗,𝑎 for any path 𝜋 that fulfills 𝜙(𝑗,𝑎)

keep. The
following proof works by induction on the length ℓ of a prefix of 𝜋. The case ℓ = 1
is clear. Let ℓ > 1. 𝜋[ℓ] satisfies either 𝑏 or ¬𝑏, assume w.l.o.g. 𝜋[ℓ] � 𝑏 ∧ 𝑡𝑗,𝑎. Then
𝜋[ℓ] � 𝑏 ∧ AF(¬𝑏 ∧ 𝑡𝑗,𝑎). By definition of AF, the world 𝜋[ℓ+ 1] must fulfill AF[¬𝑏 ∧ 𝑡𝑗,𝑎]
and consequently 𝑡𝑗,𝑎 due to 𝜙(𝑗,𝑎)

keep.
The modified 𝜙(𝑞′,𝑖,𝑖′,𝑎′)

next eventually enforces a reachable world 𝑤 to assume a successor
configuration. All tape symbols at position 𝑗 ̸= 𝑖 remain unchanged. Then the computa-
tion continues from 𝑤 on fresh paths starting at 𝑤 (where then the tape symbol at the
new positions 𝑖′ can change and all others are fixed).

Case 3: AU
We further modify the approach in the previous case. To replace AG, we use the fact

that the computation tree has only to be verified to be legal until a point where 𝑞acc or
𝑞rej is reached. We introduce a new proposition ℎ (halted) and replace every AG𝜓 by
A[𝜓Uℎ]. Replace AF(𝑞′, 𝑖′, 𝑎′) by A[¬ℎU¬ℎ∧ (𝑞′, 𝑖′, 𝑎′)], every other AF𝜓 by A[⊤U𝜓], and
EG𝜓 by ¬A[⊤U¬𝜓]. This ensures that ¬ℎ holds as long as the computation is continued,
but also allows that the paths not usable for further computation (as they fixed all tape
symbols but one) can label ℎ after (𝑞′, 𝑖′, 𝑎′).

Case 4: AR
As AG𝜓 ≡ A[⊥R𝜓], we extend the AG,AX case and only modify 𝜙(𝑞′,𝑖,𝑖′,𝑎′)

next :

𝜙
(𝑞′,𝑖,𝑖′,𝑎′)
next :=

⋀︁
𝑞∈𝑄
𝑎∈𝛤

(𝑠𝑞 ∧ 𝑝𝑖 ∧ 𝑡𝑖,𝑎) → E[(𝑠𝑞 ∧ 𝑝𝑖 ∧ 𝑡𝑖,𝑎)U(𝑠𝑞′ ∧ 𝑝𝑖′ ∧ 𝑡𝑖,𝑎′)]

∧
⋀︁
𝑗∈𝐼
𝑖 ̸=𝑗
𝑐∈𝛤

(𝑡𝑗,𝑐 → A[¬(𝑠𝑞 ∧ 𝑝𝑖 ∧ 𝑡𝑖,𝑎)R𝑡𝑗,𝑐])

The formula 𝜙(𝑞′,𝑖,𝑖′,𝑎′)
next requires a reachable world where eventually 𝑠𝑞′ ∧ 𝑝𝑖′ ∧ 𝑡𝑖,𝑎′ holds.

The AR subformulas state for all 𝑗 ̸= 𝑖 that ¬(𝑠𝑞 ∧ 𝑝𝑖 ∧ 𝑡𝑖,𝑎) releases 𝑡𝑗,𝑐, i.e., the earliest
world where 𝑡𝑗,𝑐 no longer has to hold is exactly the world after the one where the EU is
fulfilled (w.l.o.g. one of 𝑞, 𝑖 or 𝑡𝑖 changes in the transition). This again fixes the tape
symbols that are not changed in the transition.

For a CTL formula to simulate the computation of a polynomially space bounded
machine, it is necessary that it can enforce exponentially long paths. This lower bound
will be shown for the four fragments from the previous theorem. The cases where 𝑇
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contains AU or AF follow from Corollary 12, as AF𝜓 ≡ A[⊤U𝜓]. It remains to consider
AR and {AG,AX}.

The fragment ℬ({AG,AX}) is almost similar to the modal logic KD enriched with the
universal modality �. The main difference is that �𝜙 usually means that 𝜙 holds in all
worlds of a model, but AG only refers to reachable worlds. Nevertheless, the modal logic
KD+� can enforce a model of depth 2𝑛 with a formula of size 𝒪(𝑛2) via the construction
of a binary counter [GK+05], using � only in the root. This approach is again translated
to also work with AU,AR and {AG,AF}.

Theorem 35. If AU ∈ 𝑇 , AR ∈ 𝑇 , {AG,AX} ⊆ 𝑇 or {AG,AF} ⊆ 𝑇 , then ℬ2(𝑇 ) has
extent lower bound 2𝛺(𝑛).

Proof. We simulate the approach of Grädel et al. [GK+05], using AG and AX, and further
optimize it with a few extra propositions to obtain a formula that does the same but has
only linear length. The formula is defined as follows.

𝛼 :=
(︁
𝑝0 ↔ carry≤0

)︁
∧

𝑛⋀︁
𝑖=1

(︀
𝑝𝑖 ∧ carry≤𝑖−1 ↔ carry≤𝑖

)︀
∧

(︀
reset≤0 → ¬𝑝0

)︀
∧

𝑛⋀︁
𝑖=1

(reset≤𝑖 → ¬𝑝𝑖 ∧ reset≤𝑖−1) ∧

𝑛⋀︁
𝑖=1

(store≥𝑖−1 → store𝑖−1 ∧ store≥𝑖) ,

𝛽 :=
𝑛⋀︁
𝑖=1

(store𝑖 → (𝑝𝑖 → AX𝑝𝑖) ∧ (¬𝑝𝑖 → AX¬𝑝𝑖))

𝛾 :=
𝑛⋀︁
𝑖=1

(︁
(carry≤𝑖−1 ∧ ¬𝑝𝑖) → AX

(︀
𝑝𝑖 ∧ reset≤𝑖−1

)︀
∧ store≥𝑖+1

)︁
∧ (¬𝑝0 → AX𝑝0 ∧ store≥1)

𝜙 := AG(𝛼 ∧ 𝛽 ∧ 𝛾) ∧
𝑛⋀︁
𝑖=0

¬𝑝𝑖

The idea is the same as in [GK+05]: The propositions 𝑝𝑖 form a binary counter of
length 𝑛 that assumes the values 0 . . . 2𝑛 − 1 in this order. The value 0 is assumed in the
root of the model. If the propositions in a world 𝑤 form the counter value 𝑘, they are
forced to form 𝑘+ 1 in every successor world of 𝑤. This is expressed in the subformula 𝛾:
Search for the least significant bit with value 0 that has only 1s to the right. Force it to
flip in the next world, but also flip all the bits to the right to 0. The higher significant
bits may not change between 𝑤 and its successor, which is ensured by 𝛽 and 𝛾.

The use of the formula 𝛼 improves the formula length from 𝒪(𝑛2) to 𝒪(𝑛). The
new propositions work as follows: carry≤𝑖 is true if and only if all bits at position ≤ 𝑖
were set to one and the incrementation causes a carry bit at position greater than 𝑖. It
depends only on 𝑝𝑖 and carry≤𝑖−1, which avoids repeated inner conjunctions like ⋀︀𝑗𝑗=0 𝑝𝑗
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to determine whether there is a carry at position 𝑖. Similarly, to set all positions ≤ 𝑖
back to zero, reset≤𝑖 is used to avoid ⋀︀𝑖𝑗=0 ¬𝑝𝑗 ; and to keep all positions ≥ 𝑖 unchanged,
store≥𝑖 avoids the formula ⋀︀𝑖𝑗=0 𝑝𝑗 → AX𝑝𝑗 .

When using AR, we can define AG and EU but not AX, so more work is required. In
particular, we have to distinguish two cases: Whether the counter value changes from
even to odd, i.e., the only changing bit is 𝑝0 and it changes from zero to one, or it changes
from odd to even, i.e., 𝑝0 flips from one to zero.

In 𝛾, replace AX
(︀
𝑝𝑖 ∧ reset≤𝑖−1

)︀
by E

[︀
𝑝0U(𝑝𝑖 ∧ reset≤𝑖−1)

]︀
(the odd-to-even case) and

AX𝑝0 by E[¬𝑝0U𝑝0] (the even-to-odd case). This formula flips the correct bit 𝑝𝑖 from zero
to one as well as lesser significant bits from one to zero in some reachable world, which is
however not necessarily a direct successor. To retain the values of more significant bits
until this world is actually reached, change 𝛽 to:

𝛽 :=
𝑛⋀︁
𝑖=1

(︂
store𝑖 →

(︁
𝑝0 → ( 𝑝𝑖 → A[¬𝑝0R 𝑝𝑖])

∧ (¬𝑝𝑖 → A[¬𝑝0R¬𝑝𝑖])
)︁

∧
(︁
¬𝑝0 → ( 𝑝𝑖 → A[ 𝑝0R 𝑝𝑖])

∧ (¬𝑝𝑖 → A[ 𝑝0R¬𝑝𝑖])
)︁)︂

The above formula preserves the state of the corresponding 𝑝𝑖 until the first change
of 𝑝0. However, the EU-subformulas of 𝛾 are chosen to maintain the state of 𝑝0 until
the actual point of fulfillment. Accordingly, all bits of higher significance are preserved
until this world, and altogether there is a simple path that assumes all the counter values
0 . . . 2𝑛 − 1 at least once.
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4 Flat CTL
The previous section has established lower bounds, in complexity and model size, for
temporal depth of at least two. This section, on the other hand, investigates the
corresponding fragments of flat CTL, i.e., with temporal depth at most one. In contrast
to the fragments with operator nesting permitted, all flat cases have the polynomial
model property.

We start with using only the operators AX and AG.

Theorem 36. Let 𝐶 be a base. If ∅ ( 𝑇 ⊆ {AX,AG}, then ℬ1(𝐶, 𝑇 ) has optimal model
size 𝒪(𝑛) and extent ≤ |𝑇 |.

Proof. Let 𝜙 ∈ ℬ1(𝐶, 𝑇 ) be satisfiable. 𝜙 is logically implied by a satisfiable formula of
the form

𝜙′ =
𝑚⋀︁
𝑖=1

E𝜓𝑖 ∧
𝑘⋀︁
𝑖=1

A𝜉𝑖,

where |𝜙′| ∈ 𝒪(|𝜙|). (Since 𝜙 is a Boolean combination of CTL formulas, think of 𝜙′ as
a “satisfying assignment”.)

It is clear that in the cases 𝑇 = {AX} and 𝑇 = {AG}, all E-subformulas 𝜙 can be
fulfilled in distinct successors of the root. The extent is then 1. If however 𝑇 = {AG,AX},
then an AX-subformula can prevent an EF-formula from being fulfilled in an immediate
successor. Nevertheless, the minimal extent is then at most 2. Clearly, in any model of
𝜙′ with extent ≤ 2, all but 𝑚 worlds of distance 1 and all but 𝑚 worlds of distance 2 can
be deleted to reach the size upper bound.

Theorem 37. Let ∅ ( 𝑇 ⊆ {AX,AG}. Then ℬ1(𝑇 ) has optimal model size 𝛺(𝑛) and
extent ≥ |𝑇 |.

Proof. Consider the formula family (𝜙𝑚)𝑚∈N defined by

𝜙𝑚 := AX𝜎(𝑝1, . . . , 𝑝𝑚) ∧
𝑚⋀︁
𝑖=1

EX𝑝𝑖

𝜎(𝑝1, . . . , 𝑝𝑚) :=
𝑚⋀︁
𝑖=1

(𝑝𝑖 → (𝑝<𝑖 ∧ 𝑝>𝑖)) ∧
𝑚⋀︁
𝑖=2

(𝑝<𝑖 → (𝑝<𝑖−1 ∧ ¬𝑝𝑖−1)) ∧

𝑚−1⋀︁
𝑖=1

(𝑝>𝑖 → (𝑝>𝑖+1 ∧ ¬𝑝𝑖+1)).

The idea is that every world satisfying 𝜎(𝑝1, . . . , 𝑝𝑚) can have at most one of 𝑝1, . . . , 𝑝𝑚
true. For this, we implement “carry propositions” 𝑝<𝑖 and 𝑝>𝑖 as in Theorem 35. Then
𝜙𝑚 is satisfiable and has length 𝒪(𝑚), but any model of 𝜙𝑚 has at least 𝑚 worlds. For
AG/EF instead of AX/EX the formula works analogously. The minimal extent is 1 for the
formulas 𝑝 ∧ EX¬𝑝 and 𝑝 ∧ EF¬𝑝, and 2 for (𝑝 ∧ 𝑞) ∧ AX(𝑝 ∧ ¬𝑞) ∧ EF(¬𝑝 ∧ 𝑞).

In the case where all CTL operators are available, both the size and the extent bounds
increase by a factor of 𝑛:
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Theorem 38. Let 𝐶 be a base and 𝑇 ⊆ TL. Then ℬ1(𝐶, 𝑇 ) has optimal model size
𝒪(𝑛2) and extent 𝒪(𝑛).

Proof. Let 𝜙 ∈ ℬ1(𝐶, 𝑇 ) be satisfiable. W.l.o.g. 𝑇 ⊆ {AX,AU,AR}. As in the proof of
Theorem 36, 𝜙 is logically implied by a satisfiable formula of the form

𝜙′ =
𝑚⋀︁
𝑖=1

E𝜓𝑖 ∧
𝑘⋀︁
𝑖=1

A𝜉𝑖,

where |𝜙′| ∈ 𝒪(|𝜙|). 𝜙′ has a model 𝒦 that consists of a root 𝑤0 and 𝑚 otherwise disjoint
branches 𝜋1, . . . , 𝜋𝑚 such that 𝜋𝑖 � 𝜓𝑖. W.l.o.g. these branches end in self-loops. In the
following we show that every branch can be shrunken down to at most 𝒪(𝑘) worlds. This
then proves the theorem.

We mark worlds on 𝜋𝑖 as follows. First, mark 𝜋𝑖[0] and 𝜋𝑖[1]. For every 𝜉𝑗 = 𝜗U𝜗′,
mark the first worlds where 𝜗′ holds. For 𝜉𝑗 = 𝜗′R𝜗, proceed similarly, provided that
such a world exists. Likewise, mark the world that fulfills 𝜓𝑖, if such a world exists.
Then clearly 𝜋𝑖 can be replaced by a subpath consisting of all ≤ (𝑘 + 2) marked worlds,
arranged in the same order as before, without violating E𝜓𝑖 or any A𝜉𝑗 .

For the corresponding lower bound, we identify several CTL operators that have the
capability to enforce a model consisting of 𝑛 disjoint paths of length 𝑛.

Theorem 39. Let 𝑇 contain AU, AR or {AG,AF}. Then ℬ1(𝑇 ) has optimal model size
𝛺(𝑛2) and extent 𝛺(𝑛).

Proof. Let AG,AF ∈ 𝑇 . Let the formula 𝜎𝑝 state that at most one of 𝑝1, . . . , 𝑝𝑚 is true,
and let the formula 𝜎𝑞 state that at most one of 𝑞1, . . . , 𝑞𝑚 is true (independently of
𝑝1, . . . , 𝑝𝑚). Such formulas can be constructed as in the proof of Theorem 37. Then let

𝜙𝑚 := AG(𝜎𝑝 ∧ 𝜎𝑞) ∧
𝑚⋀︁
𝑖=1

EG(𝑟 ∨ 𝑝𝑖) ∧
𝑚⋀︁
𝑗=1

AF(𝑞𝑖 ∧ ¬𝑟).

𝜙𝑚 has length 𝒪(𝑚) and is satisfiable. But any model of 𝜙𝑚 must satisfy 𝑞1, . . . , 𝑞𝑚
in 𝑚 distinct worlds on every path. Moreover, paths 𝜋1, . . . , 𝜋𝑚 must exist with 𝑟 ∨ 𝑝𝑖
holding globally on 𝜋𝑖. These paths are disjoint in the fulfillment points of AF(𝑞1 ∧
¬𝑟), . . . ,AF(𝑞𝑚 ∧ ¬𝑟). As a result, any model has size at least 𝑚2 and extent 𝑚.

For the case AU ∈ 𝑇 , change the above formula to

𝜙𝑚 := A[𝜎𝑝U(𝜎𝑝 ∧ 𝑞𝑚)] ∧
𝑚⋀︁
𝑖=1

E[𝑞𝑚R(𝑝𝑖 ∨ 𝑟)] ∧
𝑚−1⋀︁
𝑖=1

A[¬𝑞𝑖+1U(¬𝑟 ∧ 𝑞𝑖)].

Due to the first conjunction, a world with 𝑞𝑚 is reached on any path, with 𝜎𝑝 being
true until that point. However, by the last conjunction, on every path the propositions
𝑞1, . . . , 𝑞𝑚−1 must appear before 𝑞𝑚 exactly in this order. Due to the middle conjunction,
there are at least 𝑚 such paths, and again any model has at least 𝑚2 worlds and extent
𝑚.
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Finally, for AR ∈ 𝑇 , the formula

𝜙𝑚 := A[⊥R𝜎𝑝] ∧
𝑚⋀︁
𝑖=1

E[(𝑝𝑖 ∨ 𝑟)U𝑞𝑚] ∧
𝑚⋀︁
𝑖=1

A[(𝑞𝑖 ∧ ¬𝑟)R¬𝑞𝑖+1]

works analogously. Due to the middle part, the last conjunction of ARs cannot be fulfilled
by simply having ¬𝑞1, . . . ,¬𝑞𝑚 true indefinitely. Instead, 𝑞1, . . . , 𝑞𝑚 have to be fulfilled
one after another on every path, and a similarly structured model as in the other cases is
enforced.

If the CTL operators are restricted to {AF} or {AF,AX}, then the above construction
does not work due to the “mixed quantifier” nature of AF and EG. Instead, a formula
that enforces 𝑛 worlds in a model is already of length 𝑛 log𝑛.

To express such a model size in terms of the length of the corresponding formula, we
require a function 𝑤 such that 𝑤−1(𝑛) = 𝑛 log𝑛. A function satisfying this equation, at
least asymptotically, is 𝑤 : R+ → R+ with 𝑤(𝑥) := 𝑥

𝑊 (𝑥) , where 𝑊 (𝑥) is the Lambert W
function [CG+96], the inverse function of 𝑊−1(𝑥) := 𝑥𝑒𝑥.

Proposition 40. For all 𝑥 ∈ R+, 𝑤(𝑥 ln 𝑥) = 𝑥, that is, 𝑤−1(𝑥) = 𝑥 ln 𝑥.

Theorem 41. Let AF ∈ 𝑇 . Then ℬ1(𝑇 ) has optimal model size 𝛺(𝑤(𝑛)2) and extent
𝛺(𝑛).

Proof. Consider the formula family (𝜙𝑚)𝑚∈N defined by

𝜙𝑚 :=
𝑚−1⋀︁
𝑖=0

AF(𝑐⃗(𝑖) ∧ ¬𝑟) ∧
𝑚−1⋀︁
𝑖=0

EG(𝑟 ∨ 𝑑(𝑖)),

where 𝑐⃗(𝑖) and 𝑑(𝑖) are conjunctions of ⌈log𝑚⌉ literals representing the value 𝑖 as a binary
vector, similarly as in Theorem 24.
𝜙𝑚 is satisfiable, but any model of it contains 𝑚2 worlds as in Theorem 39. For a

constant 𝑘, we can set 𝑛 := 𝑘 ·𝑚 ln𝑚 and obtain an infinite family of formulas of size
≤ 𝑛 and models with size at least 𝑤(𝑛𝑘 )2. Since 𝑤(𝑛𝑘 ) ≥ 1

𝑘𝑤(𝑛) for large enough 𝑘, it
follows 𝑤(𝑛𝑘 )2 ∈ 𝛺(𝑤(𝑛)2).

For the minimal extent 𝛺(𝑛), the formula 𝜙𝑚 := EG𝜎𝑝 ∧
⋀︀𝑚
𝑖=1 AF𝑝𝑖 works similarly as

in the proof of Theorem 39.

4.1 Existential Flat CTL
In the absence of universal path quantifiers, even smaller models can be found. Whenever
the formulas EX𝜓1, . . . ,EX𝜓𝑛 are satisfiable, they can be fulfilled in the same model.
Lower bounds for the model size can then only stem from, say, 𝜓𝑖∧𝜓𝑗 being not satisfiable
in a single successor.

Formally, 𝜙 ∈ ℬ1(𝐶) is called existential if it is a monotone Boolean combination
of propositional formulas and E-preceded CTL formulas. In this setting, model size
lower bounds emerge that depend solely on the number of contradicting subformulas.
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Propositional formulas 𝜓,𝜓′ are contradicting if 𝜓 and 𝜓′ are both satisfiable, but 𝜓 ∧𝜓′

is not.
Our goal is to determine the maximal number of contradicting subformulas that a

formula with a given length can exhibit. We reduce this problem to a graph-theoretical
problem called biclique covering. Recall that a biclique 𝐴 × 𝐵 is a complete bipartite
graph.5

Definition 42. Let 𝐺 = (𝑉,𝐸) be a graph. A biclique covering of 𝐺 is a sequence
(𝐴𝑖 ×𝐵𝑖)𝑖∈[𝑛] of biclique subgraphs of 𝐺 such that ⋃︀𝑖∈[𝑛](𝐴𝑖 ×𝐵𝑖) ∪ (𝐵𝑖 ×𝐴𝑖) = 𝐸. Its
weight is ⋀︀𝑖∈[𝑛] |𝐴𝑖| + |𝐵𝑖|.

The minimal biclique covering weight of 𝐺 is the minimal weight of a biclique covering
of 𝐺.

Proposition 43 ([Juk11, p. 46]). The 𝑛-vertex clique graph 𝐾𝑛 has a minimal biclique
covering weight of at least 𝑛 log𝑛.

We apply the above result in the following lemmas. If 𝜓 is a formula, ⟨𝜓⟩ denotes the
total number of occurrences of propositions in 𝜓. For example, ⟨𝑝 ∨ ¬𝑝⟩ = 2. Clearly
⟨𝜓⟩ ≤ |𝜓|.

Lemma 44. Let 𝐶 be a base, and let 𝜓, . . . , 𝜓𝑛 ∈ ℬ0(𝐶) be pairwise contradicting. Then∑︀
𝑖∈[𝑛]⟨𝜓𝑖⟩ ≥ 𝑛 log𝑛.

Proof. As 𝜓𝑖 is satisfiable for all 𝑖 ∈ [𝑛], it is implied by a satisfiable conjunction 𝜓*
𝑖 of

literals (i.e., over the base {∧,¬}), such that ⟨𝜓*
𝑖 ⟩ ≤ ⟨𝜓𝑖⟩. It follows that 𝜓*

1, 𝜓
*
2, . . . , 𝜓

*
𝑛

are again pairwise contradicting. For this reason, proving the lower bound for conjunctions
of literals is sufficient.

We use the 𝑛-vertex clique graph 𝐾𝑛 with vertices {𝜓𝑖 | 𝑖 ∈ [𝑛]}. The goal is to cover
all edges, where a covered edge (𝜓𝑖, 𝜓𝑗) in 𝐾𝑛 means that 𝜓𝑖 and 𝜓𝑗 are contradicting. To
cover an edge, we require the literal 𝑝 occurring in the conjunction 𝜓𝑖 and ¬𝑝 occurring
in 𝜓𝑗 (or vice versa).

Consider the subset 𝐴𝑝 ⊆ {𝜓1, . . . , 𝜓𝑛} such that 𝜓𝑖 implies 𝑝 for all 𝜓𝑖 ∈ 𝐴𝑝, and
similarly 𝐵𝑝 ⊆ {𝜓1, . . . , 𝜓𝑛} such that 𝜓𝑖 implies ¬𝑝 for all 𝜓𝑖 ∈ 𝐵𝑝. 𝐴𝑝 and 𝐵𝑝 are
disjoint. 𝐴𝑝 ∪ 𝐵𝑝 does not necessarily contain all vertices of 𝐾𝑛; nevertheless, every
𝜓𝑖 ∈ 𝐴𝑝 contradicts each 𝜓𝑗 ∈ 𝐵𝑝. Consequently, the edges covered due to the proposition
𝑝 form a biclique 𝐴𝑝×𝐵𝑝, and |𝐴𝑝| · |𝐵𝑝| edges in 𝐾𝑛 are covered. The weight |𝐴𝑝| + |𝐵𝑝|
of the biclique is simultaneously a lower bound for the number of occurrences of the
proposition 𝑝 in 𝜓1, . . . , 𝜓𝑛, as it must occur in all formulas in 𝐴𝑝 ∪ 𝐵𝑝 to make them
contradicting. Ultimately, if 𝑝1, . . . , 𝑝𝑚 are the propositions occurring in 𝜓1, . . . , 𝜓𝑛, then
𝐴𝑝1 ×𝐵𝑝1 , . . . , 𝐴𝑝𝑚 ×𝐵𝑝𝑚 must form a biclique covering of 𝐾𝑛.

However, by Proposition 43, the minimal biclique covering weight of 𝐾𝑛 is 𝑛 log𝑛. This
is then also the minimal number of occurrences of variables counted over all 𝜓1, . . . , 𝜓𝑛
(with at least one variable per biclique), which proves the lemma.

5That is, a graph with vertices 𝐴 ∪ 𝐵 such that 𝐴 and 𝐵 are disjoint, and with the edge (𝑢, 𝑣) existing
if and only if 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 or 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐴.
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The next lemma is the corresponding upper bound. It states that formulas that are
not pairwise contradicting can be “merged”.

Lemma 45. Let 𝛷 = {𝜓𝑖 | 𝑖 ∈ [𝑛]} ⊆ ℬ0(𝐶) be a set of satisfiable formulas. Then there
is a partition 𝛷1∪̇ · · · ∪̇𝛷𝑚 = 𝛷 such that

1. 𝑚 log𝑚 ≤
∑︀
𝑖∈[𝑛]

⟨𝜓𝑖⟩,

2. ⋀︀
𝜓∈𝛷𝑗

𝜓 is satisfiable for every 𝑗 ∈ [𝑚].

Proof. Let 𝑚 be minimal such that 𝛷1, . . . , 𝛷𝑚 is a partition that satisfies (2). Such an
𝑚 must exist. Let 𝜓*

𝑗 := ⋀︀
𝜓∈𝛷𝑗

𝜓 for 𝑗 ∈ [𝑚]. The formulas 𝜓*
1, . . . , 𝜓

*
𝑚 are pairwise

contradicting, otherwise we could coarsen the partition and 𝑚 would not be minimal. By
the previous lemma, then ∑︀𝑖∈[𝑚]⟨𝜓*

𝑖 ⟩ ≥ 𝑚 log𝑚. But as 𝛷1, . . . , 𝛷𝑚 is a partition of 𝛷,
it holds ∑︀𝑖∈[𝑛]⟨𝜓𝑖⟩ = ∑︀

𝑖∈[𝑚]⟨𝜓*
𝑖 ⟩, and (1) follows.

Theorem 46. Let 𝐶 be a base. Then existential ℬ1(𝐶) has optimal model size 𝒪(𝑤(𝑛))
and extent ≤ 1.

Proof. Let 𝜙 ∈ ℬ1(𝐶) be existential and satisfied by a model ℳ = (𝒦, 𝑤). It holds
𝜙 = 𝑓(𝜓0, 𝜓1, . . . , 𝜓𝑚) for a monotone Boolean combination 𝑓 , 𝜓0 ∈ ℬ0(𝐶), and E-
preceded arguments 𝜓1, . . . , 𝜓𝑚.

Let 𝐼 := {𝑖 ∈ {0, . . . ,𝑚} | ℳ � 𝜓𝑖}. Our goal is to transform ℳ to a model of 𝜙 of
size 𝒪(𝑤(𝑛)). By the monotonicity of 𝑓 , any transformation of ℳ that preserves the
truth of ⋀︀𝑖∈𝐼 𝜓𝑖 will suffice. Similarly as in Theorem 38, assume that every 𝜓𝑖 be fulfilled
on a distinct branch in ℳ.

In the next step, we aim to simplify all temporal operators to EX. On that account,
we define for every 𝜓𝑖 a “reduct” 𝜏ℳ(𝜓𝑖) such that 𝜏ℳ(𝜓𝑖) entails 𝜓𝑖 but is still true
in ℳ. For instance, w.l.o.g. every 𝜓𝑖 = EF𝜉 is fulfilled in 𝑤 or a successor of 𝑤.
Consequently, we define 𝜏ℳ(𝜓𝑖) as 𝜉 or EX𝜉. Similarly, for 𝜓𝑖 = E[𝜉U𝜉′] let 𝜏ℳ(𝜓𝑖) = 𝜉′

or 𝜏ℳ(𝜓𝑖) = 𝜉 ∧ EX𝜉′. The cases 𝜓𝑖 = EG𝜉 and 𝜓𝑖 = E[𝜉′R𝜉] already imply ℳ � 𝜉. As
ℳ can be assumed reflexive, in both cases let 𝜏ℳ(𝜓𝑖) := 𝜉.

Then by definition, the conjunction ⋀︀𝑖∈𝐼 𝜏ℳ(𝜓𝑖) entails 𝜙 on reflexive models and is
satisfiable. It can be written as

𝜙′ :=
𝑘⋀︁
𝑖=1

𝜉𝑖 ∧
ℓ⋀︁

𝑖=𝑘+1
EX𝜉𝑖,

where |𝜙′| ∈ 𝒪(|𝜙|) and 𝜉𝑖 ∈ ℬ0(𝐶) for 𝑖 ∈ [ℓ]. By Lemma 45, we can satisfy 𝜉1, . . . , 𝜉𝑘 in
𝑤(|𝜙′|) ∈ 𝒪(𝑤(|𝜙|)) worlds.

Theorem 47. Existential ℬ1 has optimal model size 𝛩(𝑤(𝑛)) and extent ≥ 1.

Proof. Consider (𝜙𝑚)𝑚∈N defined by 𝜙𝑚 := ⋀︀𝑚+1
𝑖=1 EF𝑐⃗(𝑖), with 𝑐⃗(𝑖) representing 𝑖 as

binary vector as in Theorem 41. 𝜙𝑚 has length 𝒪(𝑚 log𝑚), but only models of size ≥ 𝑚
and extent ≥ 1.
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5 Restricted Boolean clones
Post’s lattice of Boolean clones enormously helps to study the different nature of Boolean
functions. Regarding the propositional satisfiability problem, Lewis showed that the
clones containing S1 are NP-hard, while the problem is tractable when restricted to
arbitrary other clones [Lew79].

The Boolean clone S1 is the clone of 1-separating functions. A function 𝑓(𝑏1, . . . , 𝑏𝑛) is
1-separating if it has one argument 𝑏𝑖 that is always one if 𝑓 is one; or equivalently, if it
can be expressed using only the negated implication 9. In this section we show that
the same dichotomy as above holds for CTL, in the sense that all lower bounds already
emerge for the S1 clone. For the upper bounds of tractable fragments of CTL, see Meier
et al. [MM+09].

In the next lemma, we require the term short representation. For a Boolean function
𝑓(𝜙1, . . . , 𝜙𝑛) to have a short representation in the base 𝐶, it has to be equivalent to
a formula 𝑔(𝜙1, . . . , 𝜙𝑛) using only functions from 𝐶, with moreover every argument
𝜙1, . . . , 𝜙𝑛 occurring at most once in 𝑔. For example, ∧ has a short representation in
{¬,∨} via ∧(𝜙1, 𝜙2) ≡ ¬(∨(¬𝜙1,¬𝜙2)), whereas ⊕ (exclusive or) has none in {∧,∨,¬}.

Lemma 48. Let 𝐶 be a base such that [𝐶] = BF, and let 𝑇 ⊆ TL. Then every 𝜙 ∈ ℬ(𝑇 )
has a logspace-constructible, logically equivalent formula 𝜙′ ∈ ℬ(𝐶, 𝑇 ) with |𝜙′| ∈ 𝒪(|𝜙|).

Proof. In any base 𝐶 with [𝐶] = BF, the functions ¬,∧,∨ have short representations
[Lew79]. Let 𝑓¬(𝑥), 𝑓∧(𝑥, 𝑦) and 𝑓∨(𝑥, 𝑦) be formulas over 𝐶 that are short representations
of ¬(𝑥), ∧(𝑥, 𝑦) and ∨(𝑥, 𝑦). (Due to commutativity, we can assume that the order in
which the arguments appear in 𝑓∧ and 𝑓∨ is the same as in ∧ and ∨.)

For 𝑔 ∈ {¬,∧,∨}, we define the strings 𝑓𝑝𝑔 (the prefix of 𝑓𝑔, i.e., the symbols of its
body until before its first argument) and 𝑓𝑠𝑔 (the suffix of 𝑓𝑔, the symbols of its body
after its last argument). For 𝑔 ∈ {∧,∨}, furthermore we define its middle part 𝑓𝑚𝑔 , i.e.,
the symbols in 𝑓𝑔 between its arguments. For example, 𝑓∧(𝑦, 𝑧) can be written down as
𝑓𝑝∧ ∘ 𝑦 ∘ 𝑓𝑚∧ ∘ 𝑧 ∘ 𝑓𝑠∧, where ∘ is the concatenation operation.

Now define 𝜙′ as a symbol-wise translation of 𝜙: Any proposition or temporal operator
remains unchanged. Any “𝑔(”, for 𝑔 ∈ {¬,∧,∨}, is mapped to 𝑓𝑝𝑔 . The argument
separator “,” is mapped to 𝑓𝑚𝑔 , where 𝑔 is the function symbol whose arguments are
separated. Finally, any “)” is mapped to 𝑓 𝑠𝑔 , where 𝑔 is the function symbol whose
argument list is closed by “)”. Since it is possible in logspace to find the corresponding
function symbol of a “,” or “)” (e.g., by going backwards and counting opening and
closing parentheses), the whole procedure is implementable in logspace.

We introduce an equivalence relation between formulas, frame-equivalence, that is
weaker than logical equivalence but stronger than the equi-satisfiability relation. In
particular, this notion also relates the size and extent of satisfying structures.

Two satisfiable formulas 𝜙,𝜓 are called frame-equivalent if for every model (𝑊,𝑅, 𝑉,𝑤)
of 𝜙 there is a model (𝑊,𝑅, 𝑉 ′, 𝑤) of 𝜓 (i.e., only the valuations of the propositions are
different) and vice versa. Any two equivalent formulas are also frame-equivalent, but in
general not the other way around.
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This notion is used in the next lemma, which shows that certain formulas using the
constant function ⊤ have frame-equivalent formulas also without ⊤. This idea is originally
due to Lewis, who establish NP-hardness for the S1-fragment of propositional logic, which
cannot express ⊤.

Let 𝜙 be a CTL formula. 𝜙 is non-Boolean if it is not a proper Boolean combination,
i.e., it is a proposition or starts with a CTL operator. A subformula 𝜓 ∈ SF(𝜙) is a
temporal argument if 𝜓 is directly under the scope of a temporal operator in 𝜙. 𝜙 is now
said to be pseudo-monotone if 𝜙, and all temporal arguments 𝜓 ∈ SF(𝜙), are Boolean
combinations 𝑓(𝜉1, . . . , 𝜉𝑛) of non-Boolean formulas in such way that 𝑓 is monotone in
every argument of nonzero temporal depth. For example, AG(EX¬𝑝 ∧ ¬𝑞) is pseudo-
monotone, but AG(¬AX𝑝∧¬𝑞) is not (because ¬AX𝑝∧¬𝑞 is not monotone in the argument
¬AX𝑝). Similarly, ¬EF(AX𝑝 ∨ 𝑞) is not pseudo-monotone, despite all stated formulas
being equivalent.
Lemma 49. Let 𝐶 be a base such that ∧ ∈ [𝐶]. Let 𝑘 ∈ N and 𝑇 ⊆ TL. If 𝜙 ∈ ℬ𝑘(𝐶, 𝑇 )
is pseudo-monotone, then 𝜙 has a logspace-constructible, frame-equivalent formula 𝜓 ∈
ℬ𝑘(𝐶 ∖ {⊤}, 𝑇 ) such that |𝜓| ∈ 𝒪(|𝜙|).
Proof. Let 𝑡 be a proposition that does not occur in 𝜙. As ∧ ∈ [𝐶], the formula 𝑥 ∧ 𝑦
can be written expressed as 𝑓(𝑥, 𝑦), with 𝑓 using only functions in 𝐶.

The formula 𝜓 is now defined as 𝑓(𝜙′, 𝑡), where 𝜙′ is obtained from 𝜙 by replacing
every occurrence of ⊤ with 𝑡 and every subformula 𝑄𝑂(𝜉), for 𝑄𝑂 ∈ 𝑇 , with 𝑄𝑂(𝑓(𝜉, 𝑡)),
and 𝑄[𝜉𝑂𝜉′] with 𝑄[𝑓(𝜉, 𝑡)𝑂𝑓(𝜉′, 𝑡)]. As the temporal depth is at most 𝑘, the formula size
increases at most by the constant factor 𝑐𝑘+1, where 𝑐 depends on the implementation
of 𝑓 (which is not necessarily a short representation). The construction is possible in
logspace with a straightforward recursive algorithm that uses only a constant recursion
depth.

Every model of 𝜙 can be converted to a model of 𝜓 by setting 𝑡 true in every world,
as 𝑡 is then equivalent to ⊤. Conversely, if 𝜓 has a model ℳ where 𝑡 holds in every
world, then ℳ is a model of 𝜙. Consequently, to prove the frame-equivalence of 𝜙 and
𝜓, we demonstrate that every model ℳ of 𝜓 can be enriched to have 𝑡 labeled in every
world. Formally, given a model (𝑊,𝑅, 𝑉,𝑤), we define the valuation 𝑉 ′ as 𝑉 ′(𝑡) := 𝑊 ,
and 𝑉 ′(𝑝) := 𝑉 (𝑝) for 𝑝 ̸= 𝑡. We show then by induction that all subformulas of the form
𝑓(𝜉, 𝑡) ∈ SF(𝜓) are preserved in all worlds 𝑤 ∈ 𝑊 , that is, (𝑊,𝑅, 𝑉,𝑤) � 𝑓(𝜉, 𝑡) implies
(𝑊,𝑅, 𝑉 ′, 𝑤) � 𝑓(𝜉, 𝑡).

The induction is on the temporal depth of 𝜉. Let (𝑊,𝑅, 𝑉,𝑤) � 𝑓(𝜉, 𝑡). If 𝜉 ∈ ℬ0, then
the statement is clearly true. If td(𝜉) = 𝑛 > 0, then 𝜉 is a Boolean combination of non-
Boolean formulas 𝛼1, . . . , 𝛼𝑘 such that td(𝛼𝑖) < 𝑛 for all 𝑖. Every 𝛼𝑖 is either a proposition,
of the form 𝑄𝑂𝛽𝑖 or 𝑄[𝛽𝑖𝑂𝛾𝑖]. If 𝛼𝑖 ∈ 𝒫𝒮, then 𝛼𝑖 ̸= 𝑡, so obviously 𝑉 (𝛼𝑖) = 𝑉 ′(𝛼𝑖).
If 𝛼𝑖 is of the form 𝑄𝑂𝛽𝑖 or 𝑄[𝛽𝑖𝑂𝛾𝑖], then 𝛽𝑖 and 𝛾𝑖 are of the form 𝑓(𝜉′, 𝑡). By
induction hypothesis, for all 𝑢 ∈ 𝑊 , (𝑊,𝑅, 𝑉, 𝑢) � 𝛽𝑖 implies (𝑊,𝑅, 𝑉 ′, 𝑢) � 𝛽𝑖, and
similarly for 𝛾𝑖. By the semantics of the CTL operators, accordingly (𝑊,𝑅, 𝑉, 𝑢) � 𝛼𝑖
implies (𝑊,𝑅, 𝑉 ′, 𝑢) � 𝛼𝑖 for all 𝑢 ∈ 𝑊 . Since 𝜉 is monotone in all arguments 𝛼𝑖 /∈ 𝒫𝒮,
(𝑊,𝑅, 𝑉 ′, 𝑤) � 𝜉 and consequently (𝑊,𝑅, 𝑉 ′, 𝑤) � 𝑓(𝜉, 𝑡) holds. Since 𝜓 itself is of the
form 𝑓(𝜉, 𝑡), the lemma follows.
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Lewis’s approach in propositional logic, substituting ⊤ with 𝑡, forces the truth of
𝑡 by replacing only 𝜙 itself with 𝑓(𝜙, 𝑡). For CTL, one could additionally surround
the argument 𝜉 of all temporal operators in 𝜙 with 𝑓(·, 𝑡). But then the pseudo-
monotonicity is still necessary, as the example EX⊤ ∧ ¬AX⊤ shows. It is unsatisfiable,
but (EX(𝑡 ∧ 𝑡) ∧ ¬AX(𝑡 ∧ 𝑡)) ∧ 𝑡 is satisfiable.

Theorem 50. Let 𝐶 be a base such that S1 ⊆ [𝐶]. Let 𝑘 ∈ N and 𝑇 ⊆ TL. Then every
𝜙 ∈ ℬ𝑘(𝑇 ) has a logspace-constructible, frame-equivalent formula 𝜙′ ∈ ℬ𝑘(𝐶, 𝑇 ) such that
|𝜙′| ∈ 𝒪(|𝜙|).

Proof. First, convert 𝜙, which is over {∧,∨,¬}, to negation normal form, i.e., negations
¬ appear only in front of propositional variables. Next, adjoin the constant function
⊤ to the base 𝐶. From S1 ⊆ [𝐶] it follows [𝐶 ∪ {⊤}] = BF [Pos41]. Consequently, 𝜙
can be translated to an equivalent formula 𝜓 ∈ ℬ(𝐶 ∪ {⊤}, 𝑇 ) by Lemma 48. Since 𝜙 is
in negation normal form, the resulting formula 𝜓 is pseudo-monotone. Conjunction is
expressible in S1, i.e., ∧ ∈ [𝐶] [Pos41]. Therefore we obtain a frame-equivalent formula
𝜙′ ∈ ℬ𝑘(𝐶, 𝑇 ) by Lemma 49.

It follows from the above result that all lower bounds, with respect to computational
complexity or optimal model measures, already hold for any base 𝐶 that can express S1.

Corollary 51. Let S1 ⊆ [𝐶], 𝑘 ∈ N and 𝑇 ⊆ TL. Then SAT(ℬ𝑘(𝑇 )) ≤ SAT(ℬ𝑘(𝐶, 𝑇 )).

Corollary 52. Let S1 ⊆ [𝐶], 𝑘 ∈ N and 𝑇 ⊆ TL. Let (𝜙𝑛)𝑛∈N be an infinite family of
satisfiable ℬ𝑘(𝑇 ) formulas such that 𝜙𝑛 has minimal model size 𝑠(𝑛) and minimal model
extent 𝑒(𝑛). Then there is an infinite family (𝜙′

𝑛)𝑛∈N of satisfiable ℬ𝑘(𝐶, 𝑇 ) formulas
with minimal model size 𝑠(𝑛) resp. extent 𝑒(𝑛), and |𝜙′

𝑛| ∈ 𝒪(|𝜙𝑛|).

After the lower bounds, the next theorem now generalizes the upper bounds with
respect to the standard base {∧,∨ ¬} to arbitrary bases of Boolean functions, under the
condition that the AG operator is available. The approach is due to Hemaspaandra et al.
for a similar result in modal logic [HS+10].

Theorem 53. Let 𝐶 be a base and 𝑇 ⊆ TL. Then every formula 𝜙 ∈ ℬ(𝐶, 𝑇 ) has a
logspace-constructible, frame-equivalent formula 𝜓 ∈ ℬ2(𝑇 ∪ {AG}).

Proof. We transform every 𝜙 ∈ ℬ(𝐶, 𝑇 ) to a formula 𝜓 ∈ ℬ2(𝑇 ∪ {AG}) such that 𝜙 and
𝜓 are frame-equivalent. For this we introduce a new atomic proposition 𝑥𝛼 for every
subformula 𝛼 ∈ SF(𝜙). The idea is that in any model the proposition 𝑥𝛼 should be
labeled exactly in the worlds where 𝛼 is true as well.

The formula 𝜓 is defined as 𝑥𝜙 ∧ AG𝜉, where

𝜉 :=
⋀︁

𝛼∈SF(𝜙)
𝛼=𝑓(𝛽1,...,𝛽𝑛)

⎡⎢⎢⎢⎢⎣𝑥𝛼 ↔

⎛⎜⎜⎜⎜⎝
⋁︁

𝑏⃗∈{0,1}𝑛

𝑓 (⃗𝑏)=1

⋀︁
𝑖∈[𝑛]
𝑏𝑖=1

𝑥𝛽𝑖
∧
⋀︁
𝑖∈[𝑛]
𝑏𝑖=0

¬𝑥𝛽𝑖

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
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∧
⋀︁

𝛼∈SF(𝜙)∩𝒫𝒮
(𝑥𝛼 ↔ 𝛼) ∧

⋀︁
𝛼∈SF(𝜙)
𝛼=𝑄𝑂𝛽

(𝑥𝛼 ↔ 𝑄𝑂𝑥𝛽) ∧
⋀︁

𝛼∈SF(𝜙)
𝛼=𝑄[𝛽𝑂𝛾]

(𝑥𝛼 ↔ 𝑄[𝑥𝛽𝑂𝑥𝛾 ]) .

Here, 𝛼 = 𝑓(𝛽1, . . . , 𝛽𝑛) means that 𝛼 is a subformula that starts with a Boolean
function 𝑓 ∈ 𝐶 with ar(𝑓) = 𝑛. The cases where 𝛼 is a proposition, or starts with a CTL
operator, are handled similarly.

Let 𝒦 = (𝑊,𝑅, 𝑉 ) be a Kripke structure where 𝜉 globally holds. We prove (𝒦, 𝑤) �
𝛼 ⇔ (𝒦, 𝑤) � 𝑥𝛼 by induction on |𝛼| for all 𝛼 ∈ SF(𝜙) and 𝑤 ∈ 𝑊 . If 𝛼 ∈ 𝒫𝒮, then
this is clear. If 𝛼 starts with a temporal operator, say, 𝛼 = 𝑄𝑂𝛽, then due to 𝜉 it holds
that 𝑥𝛼 is true if and only if 𝑄𝑂𝑥𝛽 is true, which is by induction hypothesis equivalent
to 𝑄𝑂𝛽 and hence to 𝛼. The case of binary temporal operators is similar. In the case
of Boolean functions, the first conjunction in 𝜉 together with the induction hypothesis
enforces the correct behaviour; this is easily verified from the definition of semantics of
CTL in Section 2.

For the correctness of the reduction, consider a model (𝒦, 𝑤) of 𝜙. For each subformula
𝛼 ∈ SF(𝜙), label 𝑥𝛼 in all worlds 𝑤′ where (𝒦, 𝑤′) � 𝛼. Call the resulting model (𝒦*, 𝑤).
Then (𝒦*, 𝑤) � 𝑥𝜙, and again by the CTL semantics, 𝜉 is true in all worlds of 𝒦*. As a
result, (𝒦*, 𝑤) � 𝜓.

Conversely, let (𝒦*, 𝑤) � 𝜓. We can assume (𝒦*, 𝑤) 𝑅-generable, so 𝜉 globally holds
in 𝒦*. As a consequence, (𝒦*, 𝑤) � 𝜙 is shown similarly as the other direction.

It remains to show that 𝜉 (and hence 𝜓) is constructible in logarithmic space. Given
a formula, it is possible to match parentheses, and consequently to iterate over all
subformulas, in logarithmic space using a counter. Note that each Boolean function
𝑓 ∈ 𝐶 with arity 𝑛 may have up to 2𝑛 satisfying assignments, but for every given base 𝐶
the maximal arity is constant, hence the large disjunctions have only constantly many
disjuncts.

This result allows to use the polynomial time model checking algorithm of CTL (see
Clarke et al. [CA+86]) on any fragment with the polynomial model property, even
under arbitrary bases 𝐶. Simply translate the formula to a frame-equivalent ℬ({∧,∨,¬})
formula first. As the translation has only polynomial blow-up, this preserves the property
to have a polynomial model.

Corollary 54. If 𝐶 is a base and 𝛷 ⊆ ℬ(𝐶) has the polynomial model property, then
SAT(𝛷) ∈ NP.

By Proposition 25, the AX fragment of bounded temporal depth has the polynomial
model property:

Corollary 55. For all bases 𝐶 and 𝑘 ∈ N, SAT(ℬ𝑘(𝐶,AX)) ∈ NP.

The same holds for flat CTL due to Theorem 38:

Corollary 56. For all bases 𝐶, SAT(ℬ1(𝐶,TL)) ∈ NP.
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6 Summary and conclusion
The results of the previous sections are summarized in the following theorems. They are
also illustrated in Figure 3 and 4. The first table reproduces all completeness results in a
compact way. All NP lower bounds stem from the propositional satisfiability problem
SAT(ℬ0). The NP upper bounds are all due to a polynomial model property and due to
the fact that CTL model checking is in P [CA+86]. The PSPACE lower bounds are
all due to reduction from the canonical PSPACE-complete problem TQBF, and the
upper bounds of AG and AX stem from the modal logics S4D and KD. The {AX,AF}
fragment, not corresponding to any modal logic, poses an exception; a “pseudo-acyclic”
canonical model was constructed for it in Lemma 32. Finally, the lower bounds for the
EXP-complete cases are shown by a generic reduction from APSPACE, namely for the
temporal operators AU, AR, {AG,AX} and {AG,AF}.

Theorem 57. Let 𝐶 be a base such that S1 ⊆ [𝐶]. Let ∅ ( 𝑇 ⊆ TL. Then SAT(ℬ(𝐶, 𝑇 ))
is

• PSPACE-complete if 𝑇 = {AX},

• logspace-equivalent to SAT(ℬ2(𝐶, 𝑇 )) otherwise, and consequently
– PSPACE-complete if {AF} ⊆ 𝑇 ⊆ {AX,AF} or 𝑇 = {AG},
– EXP-complete otherwise.

Furthermore all membership results hold for arbitrary bases 𝐶.

Proof. The PSPACE upper bound for 𝑇 ⊆ {AF,AX} was shown in Theorem 33 for all
bases. For 𝑇 ⊆ {AG} this follows from Propositions 13 and Theorem 53. The general
EXP upper bound is due to Theorem 4 and 53.

The AX lower bound is due to Theorem 27. The hardness for the cases with temporal
depth two is due to Theorems 8 and 14 combined with Corollary 51. The EXP lower
bounds follow from Theorem 34 and Corollary 51.

Theorem 58. Let 𝐶 a base such that S1 ⊆ [𝐶]. Let 𝑘 ∈ N. Then the problem
SAT(ℬ𝑘(𝐶,AX)) is NP-complete. Furthermore it is in NP for every base 𝐶.

Proof. For the standard base {∧,∨,¬} this is shown in Proposition 26. The lower bound
therefore follows from Corollary 51, and the upper bound follows from Corollary 55.

Theorem 59 (Flat CTL). Let 𝐶 a base such that S1 ⊆ [𝐶], and 𝑇 ⊆ TL. SAT(ℬ1(𝐶, 𝑇 ))
is NP-complete. Furthermore it is in NP for every base 𝐶.

Proof. Applying Corollary 51, the NP-hardness already holds for SAT(ℬ0) due to Cook
[Coo71]. For the upper bound, see Corollary 56.

Next we present the classification of optimal model measures. It is incomplete for the
AX case with bounded temporal depth, as well as the fragments {AF} and {AF,AX} of
flat CTL. All other upper and lower bounds are tight.
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Theorem 60. Let 𝑇 be a non-empty set of temporal operators. Let 𝐶 be a base such
that S1 ⊆ [𝐶]. Let 𝑘 ≥ 2.

1. If 𝑇 = {AX}, then the optimal model size is 2𝒪(𝑛) ∩ 2𝛺(
√
𝑛) for ℬ(𝐶, 𝑇 ) and 𝑛𝛩(𝑘)

for ℬ𝑘(𝐶, 𝑇 ).

2. For other 𝑇 ⊆ TL it is 2𝛩(𝑛) for ℬ(𝐶, 𝑇 ) and ℬ𝑘(𝐶, 𝑇 ).

3. ℬ(𝐶, 𝑇 ) has optimal model extent 𝛩(𝑛) if 𝑇 ∈ {{AX}, {AG}} and 2𝛩(𝑛) otherwise.
ℬ𝑘(𝐶, 𝑇 ) has optimal model extent 𝑘 if 𝑇 = {AX}, 𝛩(𝑛) if 𝑇 = {AG}, and again
2𝛩(𝑛) otherwise.

In the cases of flat CTL holds:

4. If 𝑇 ⊆ {AX,AG}, then ℬ1(𝐶, 𝑇 ) has optimal model size 𝛩(𝑛) and extent |𝑇 |.

5. If 𝑇 contains AU, AR or {AG,AF}, then ℬ1(𝐶, 𝑇 ) has optimal model size 𝛩(𝑛2)
and extent 𝛩(𝑛).

6. If 𝑇 contains AF, then ℬ1(𝐶, 𝑇 ) has optimal model size at least 𝛺(𝑤(𝑛)2) and
extent 𝛩(𝑛).

Furthermore all upper bounds hold for arbitrary bases 𝐶.

Proof. For flat CTL, all upper and lower bounds stem from Section 4, namely from
Theorem 36–41. All exponential upper bounds follow from Theorem 3.

The remaining lower bounds follow from Corollary 12 and Theorem 35 for AF and AU,
Corollary 17 for AG, Theorem 35 for AR and {AG,AX}, and from Theorem 24 for AX.
Finally, all lower bounds over {∧,∨,¬} are transferred to the base 𝐶 via Theorem 50.

𝑇 ℬ1 ℬ𝑘≥2 ℬ

AX NP-c. NP-c. PSPACE-c.
AG NP-c. PSPACE-c. PSPACE-c.
AF [,AX] NP-c. PSPACE-c. PSPACE-c.
AG,AX, * NP-c. EXP-c. EXP-c.
AG,AF, * NP-c. EXP-c. EXP-c.
AU, * NP-c. EXP-c. EXP-c.
AR, * NP-c. EXP-c. EXP-c.

Figure 3: Complexity of SAT(ℬ(𝑇 )) w. r. t. ≤log
m
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𝑇 𝜎(ℬ1) 𝜖(ℬ1) 𝜎(ℬ𝑘≥2) 𝜖(ℬ𝑘≥2) 𝜎(ℬ) 𝜖(ℬ)

AX 𝑛 1 𝑛𝛩(𝑘) 𝑘 𝛺(2
√

𝑛), 𝒪(2𝑛) 𝑛
AG 𝑛 1 2𝑛 𝑛 2𝑛 𝑛
AG,AX 𝑛 2 2𝑛 2𝑛 2𝑛 2𝑛

AF [,AX] 𝛺(𝑤(𝑛)2), 𝒪(𝑛2) 𝑛 2𝑛 2𝑛 2𝑛 2𝑛

AG,AF, * 𝑛2 𝑛 2𝑛 2𝑛 2𝑛 2𝑛

AU, * 𝑛2 𝑛 2𝑛 2𝑛 2𝑛 2𝑛

AR, * 𝑛2 𝑛 2𝑛 2𝑛 2𝑛 2𝑛

constant polynomial exponential

Figure 4: Optimal model size 𝜎 and extent 𝜖 of ℬ(𝑇 ), where 𝑛 = 𝛩(|𝜙|)

Conclusion.
The results show an interesting property of the computation tree logic CTL: besides for
the pure X fragment, the computational complexity abruptly jumps between temporal
depth one and two. The flat fragments are all in NP. But already for a nesting depth
of two, the complexity of full CTL emerges, which lies between PSPACE- and EXP-
completeness. This is reasonable if AG is available, as we then simply can “pull out”
too deeply nested subformulas until a temporal depth of only two (see Theorem 53),
but for the other fragments this is still an interesting result. From the viewpoint of
practical application, this paper is clearly a negative result, as many important properties
of transition systems are modeled as ℬ2- or ℬ3-formulas.

When comparing the results to a preceding study for the linear temporal logic LTL
[DS02], many similarities arise. All fragments of flat LTL are NP-complete. LTL also
falls down to NP when restricted to one of X,F or G; exponentially long paths cannot be
enforced in these cases [SC85]. Here, the possibility of branching gives an advantage to
CTL regarding such long paths. On the other hand, the fragments of LTL with PSPACE-
complete satisfiability, namely U and {F,G,X}, correspond to the EXP-complete CTL
cases AU, {AG,AX} and {AG,AF}.

Ultimately, the results for CTL and LTL match very nicely in the sense that (i) for
both logics the bounded X-case is NP-complete and (ii) the lower bounds for all other
operators already hold for temporal depth of two.

In future research it would be interesting to possibly expand this principle to similar
logics and show similar tight lower bounds. Candidates would be CTL+, which allows
arbitrary Boolean combinations of temporal operators in the scope of path quantifiers,
then the full branching time logic CTL* [AH86], and also the fairness extension of CTL
with the operators

∞
F := GF and

∞
G:= FG inside the path quantifiers.
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