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COMPOSITIONS OF FUNCTIONS AND PERMUTATIONS

SPECIFIED BY MINIMAL REACTION SYSTEMS

WEN CHEAN TEH

Abstract. This paper studies mathematical properties of reaction systems
that was introduced by Enrenfeucht and Rozenberg as computational models
inspired by biochemical reaction in the living cells. In particular, we con-
tinue the study on the generative power of functions specified by minimal
reaction systems under composition initiated by Salomaa. Allowing degener-
ate reaction systems, functions specified by minimal reaction systems over a
quarternary alphabet that are permutations generate the alternating group
on the power set of the background set.

1. Introduction

Reaction systems, introduced by Ehrenfeucht and Rozenberg [6], is a natural
computing approach ultimately aiming to understand the functioning of the
living cells. Studies on reaction systems have been on various diverse lines, on
the basic framework, as well as on various extensions. For motivational surveys
on reaction systems, we refer the reader to [3, 4].

This work belongs to the line of research that focus on the mathematical
properties of functions specified by reaction systems (for example, [5,7,10,14,17,
19]), exclusively those specified by minimal reaction systems [1,2,11–13,15,16,
18]. In [12] Salomaa showed that the set of functions specified by nondegenerate
(see Definition 2.2) minimal reaction systems over a ternary alphabet each of
which permute the nonempty proper subsets of the background set is closed
under composition. This implies that nondegenerate minimal reaction systems
have limited generative power because not every function specified by a reaction
system can be generated from them. This paper revisits Salamaa’s results
while allowing degenerate reaction systems and further extends them to the
quarternary alphabet.

Section 2 provides the basic terminology for reaction systems and describes
our representation of functions that are specified by reaction systems used in our
computer simulation. The subsequent section revisits some of Salomaa’s work in
[12] from different perspective and further extends his results to the quarternary
alphabet. Our final section shows that functions specified by minimal reaction
systems exhibit different mathematical behaviour when degeneracy is allowed.
In particular, for the ternary alphabet, three functions specified by degenerate
minimal reaction systems possess full generative power under composition.

2. Preliminaries

Basic Notions of Reaction Systems. If S is an arbitrary finite set, then
the cardinality of S is denoted by ∣S∣ and the power set of S is denoted by 2S.
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Definition 2.1. Suppose S is a finite nonempty set. A reaction in S is a triple
a = (Ra, Ia, Pa), where Ra and Ia are disjoint (possibly empty) subsets of S and
Pa is a nonempty subset of S. The sets Ra, Ia, and Pa are the reactant set,
inhibitor set, and product set respectively.

Definition 2.2. A reaction system (over S) is a pair A = (S,A) where S is a
finite nonempty background set and A is a (possibly empty) set of reactions in
S. We say that A is nondegenerate iff Ra and Ia are both nonempty for every
a ∈ A.

From now onwards, S is a fixed finite nonempty background set.

Definition 2.3. SupposeA = (S,A) is a reaction system. The function resA∶2S →
2S is defined by

resA(X) = ⋃
a∈A

Ra⊆X,Ia∩X=∅

Pa , for all X ⊆ S.

We may identify resA with resA when S is understood.

Definition 2.4. Every function f ∶2S → 2S is called an rs function over S. It is
nondegenerate iff f(∅) = f(S) = ∅. We say that f can be specified by a reaction
system A over S iff f = resA.

In [2] nondegeneracy of reaction systems is an adopted assumption. Hence,
over there every rs function specified by a reaction system over S is nonde-
generate. However, unless stated explicitly otherwise, a reaction system can
be degenerate in this work. Since every rs function over S can be canonically
specified by a unique maximally inhibited1 reaction system over S, it follows
that the class of rs functions over S is exactly the class of functions specified
by reaction systems over S.

Definition 2.5. [2] Suppose f is an rs function over S.

(1) f is union-subadditive iff f(X ∪ Y ) ⊆ f(X) ∪ f(Y ) for all X,Y ⊆ S.
(2) f is intersection-subadditive iff f(X∩Y ) ⊆ f(X)∪f(Y ) for all X,Y ⊆ S.

Definition 2.6. [2, 18] Suppose A = (S,A) is reaction system. Then A is
minimal iff ∣Ra∣ ≤ 1 and ∣Ia∣ ≤ 1 for every reaction a ∈ A.

Theorem 2.7. [2, 18] Suppose f is an rs function over S. Then f = resA for
some (possibly degenerate) minimal reaction system A if and only if f is both
union-subadditive and intersection-subadditive.

The above characterization was obtained originally in [2] for the context of
nondegenerate reaction systems. Later it was shown to remain valid even when
the nondegeneracy assumption is dropped [18]. This partly motivates us to
extend Salomaa’s work in [12] to account also for degenerate reaction systems.

Definition 2.8. Let M(S) denote the set of of rs functions over S such that
each can be specified by a (possibly degenerate) minimal reaction systems.

1A reaction system (S,A) is maximally inhibited iff Ia = S/Ra for all a ∈ A.
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Representation of RS Functions. Suppose S = {s0, s1, s2, . . . , sn−1} is a fi-
nite set of size n. We can represent each subset of S by a nonnegative integer less
than 2n through binary representation. Precisely, the subset {si0 , si1 , si2 , . . . , sim},
where 0 ≤ i0 < i1 < i2 < ⋯ < im ≤ n − 1 is represented by 2im +⋯ + 2i2 + 2i1 + 2i0.
The representating integer is bolded to make a distinction.

Particularly, for the quarternary alphabet S = {s0, s1, s2, s3}, the representa-
tion of its subsets are as follows.

∅ 0 {s2} 4 {s3} 8 {s2, s3} 12

{s0} 1 {s0, s2} 5 {s0, s3} 9 {s0, s2, s3} 13

{s1} 2 {s1, s2} 6 {s1, s3} 10 {s1, s2, s3} 14

{s0, s1} 3 {s0, s1, s2} 7 {s0, s1, s3} 11 S 15

An rs function over S can thus be represented by a row vector of length 2∣S∣,
where the (i + 1)-th entry represents the image of i for 0 ≤ i ≤ 2∣S∣ − 1. For
example, the rs function f over S = {s0, s1, s2}, where

f(0) = 4, f(1) = 1, f(2) = 5, f(3) = 2,

f(4) = 7, f(5) = 2, f(6) = 4, f(7) = 6,

can be represented by the row vector [4 1 5 2 7 2 4 6]. If f permutes 2S,
we may denote it using the usual cycle decomposition for permutations. For
example, the permutation [0 1 5 3 7 2 4 6] can be denoted by (2 5)(4 7 6).

Finally, set operations and relations are conveniently extended to these rep-
resentations. For example, 3 ∩ 6 = 2 as {s0, s1} ∩ {s1, s2} = {s1} and 3 ⊆ 7 as
{s0, s1} ⊆ {s0, s1, s2}.

3. Extension of Salomaa’s Results

To avoid trivialities, we further assume that ∣S∣ ≥ 3.

Definition 3.1. Suppose σ∶S → S. Let fσ be the (nondegenerate) rs function
over S defined by

● fσ(∅) = fσ(S) = ∅;
● fσ(X) = σ[X] for all ∅ ≠X ⊊ S,

where σ[X] = {σ(x) ∣ x ∈X }. Let f c
σ(X) = fσ(S/X) for all X ⊆ S.

Let Sym(A) denote the symmetric group on a set A.

Definition 3.2. (1) FU(S) = {fσ ∣ σ∶S → S }.
(2) FP

U (S) = {fσ ∣ σ ∈ Sym(S)} ∪ {f
c
σ ∣ σ ∈ Sym(S)}.

The class FU(S) was introduced in [12] and shown to be closed under com-
position. Furthermore, every rs function in FU(S) belongs to M(S). The
subscript U is due to the fact that fσ(X) = ⋃x∈X fσ({x}) for every nonempty
proper subset X of S. Meanwhile, the superscript P in FP

U (S) refers to per-
mutation.

Proposition 3.3. The class FP
U (S) is closed under composition.
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Proof. Suppose σ, τ ∈ Sym(S). We will only show that f c
σ ○ fτ = f c

σ○τ . Clearly,
(f c

σ ○ fτ)(∅) = (f c
σ ○ fτ)(S) = ∅ = f c

σ○τ(∅) = f c
σ○τ(S). Suppose X is a nonempty

proper subset of S. Then

(f c
σ ○ fτ)(X) = f

c
σ(τ[X]) = fσ(S/τ[X]).

Since τ ∈ Sym(S), it follows that S/τ[X] = τ[S/X]. Hence,

(f c
σ ○ fτ)(X) = σ[τ[S/X]] = (σ ○ τ)[S/X] = f

c
σ○τ(X).

Similarly, it can be shown that fσ ○ f c
τ = f c

σ○τ and fσ ○ fτ = f c
σ ○ f c

τ = fσ○τ . �

Proposition 3.4. Every rs function in the class FP
U (S) permutes the nonempty

proper subsets of S and belongs to M(S).

Proof. Suppose σ ∈ Sym(S). Since σ is a permutation, it follows that fσ per-
mutes the nonempty proper subsets; thus so is f c

σ from the definition. Also,
since fσ ∈ FU(S), it follows that f ∈ M(S) and thus f c

σ ∈ M(S) by Remark 3.6.
(Alternatively, it can verified directly that fσ and f c

σ are union-subadditive and
intersection-subadditive.) �

The following result was found in [12] by exhaustively going through all the
720 rs functions that permute the nonempty proper subsets of S for ∣S∣ = 3.
Here, we give a formal proof and reformulate the result in terms of FP

U (S).

Theorem 3.5. [12] For ∣S∣ = 3, the class FP
U (S) is exactly the set of non-

degenerate rs functions over S that permute the nonempty proper subsets of S
and belong to M(S).

Proof. Suppose f is nondegenerate, permutes the nonempty proper subsets of S,
and belongs toM(S). By Theorem 2.7, f is union-subadditive and intersection-
subadditive.

First of all, we assume that the images of singletons under f are singletons.
Since f is union-subadditive and f permutes the nonempty proper subsets of
S, it forces that f({x, y}) = f({x}) ∪ f({y}) for all x, y ∈ S. Therefore, f = fσ
where σ is determined by f({x}) = {σ(x)} for all x ∈ S.

Secondly, we assume none of the image of singletons under f is a singleton.
Then the images of singletons under f c must be singletons because f permutes
the nonempty proper subsets of S. Since f is intersection-subadditive, it follows
that f c is union-subadditive by the De Morgan’s Law. Hence, as in the first
case, f c = fσ for some permutation σ on S. Therefore, f = f c

σ in this case.
Finally, we argue by contradiction that the case where some of the images

of singletons under f are singletons and some are not is impossible. Without
loss of generality, we may let S = {s0, s1, s2} and assume f({s0}) is a singleton
while f({s1}) is not.

Case 1. f({s0}) ∩ f({s1}) ≠ ∅.
Then choose a permutation σ∶S → S such that σ[f({s0})] = {s0} and σ[f({s1})] =
{s0, s1}. Let g = fσ ○ f . Then g({s0}) = {s0} and g({s1}) = {s0, s1}. It is
straightforward to show that g is union-subadditive, intersection-subadditive,
and permutes the nonempty proper subsets of S. Then g({s0, s1}) must be
{s1} because g({s0, s1}) ⊆ g({s0}) ∪ g({s1}) (and g permutes the nonempty
proper subsets of S). It follows that g({s0, s2}) = {s0, s2} because g({s0}) ⊆
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g({s0, s1})∪g({s0, s2}). Hence, the remaining possible values for g({s1, s2}) are
{s2} and {s1, s2}. However, this contradicts the fact that g({s1}) ⊆ g({s0, s1})∪
g({s1, s2}).

Case 2. f({s0})∩f({s1}) = ∅. Then choose a permutation σ∶S → S such that
σ[f({s0})] = {s0} and σ[f({s1})] = {s1, s2}. Let g = fσ ○ f . Then g({s0}) =
{s0} and g({s1}) = {s1, s2}. Similarly, g is union-subadditive, intersection-
subadditive, and permutes the nonempty proper subsets of S.

Case 2.1. g({s2}) = {s1} or g({s2}) = {s2}.
Assume g({s2}) = {s1}. Then g({s0, s2}) = {s0, s1} and g({s1, s2}) = {s2} due
to union-subadditivity. Hence, g({s0, s1}) takes the remaining value {s0, s2}.
However, this contradicts g({s1}) ⊆ g({s0, s1})∪g({s1, s2}). The case g({s2}) =
{s2} is similar.

Case 2.2. g({s2}) = {s0, s1} or g({s2}) = {s0, s2}.
Assume g({s2}) = {s0, s1}. Then g({s0, s2}) = {s1} due to union-subadditivity.
It follows that g({s0, s1}) = {s0, s2} because g({s0}) ⊆ g({s0, s1}) ∪ g({s0, s2}).
Hence, g({s1, s2}) takes the remaining value {s2}. However, this contradicts
the fact that g({s1}) ⊆ g({s0, s1}) ∪ g({s1, s2}). The case g({s2}) = {s0, s2} is
similar. �

The previous proof implied implicitly the following observations, straightfor-
ward proofs of which are omitted.

Remark 3.6. Suppose σ∶S → S and f = resA. Then

(1) f c = resA′, where A′ = { (Ia,Ra, Pa) ∣ a ∈ A};
(2) fσ ○ f = resA′ , where A′ = { (Ra, Ia, σ[Pa]) ∣ a ∈ A};
(3) f ○ fσ = resA′ , where A′ = { (σ−1[Ra], σ−1[Ia], Pa) ∣ a ∈ A}.

Therefore, if f ∈ M(S), then f c, fσ ○ f ∈ M(S) and if additionally σ is one-to-
one, then f ○ fσ ∈ M(S).

The following twelve rs functions over S = {s0, s1, s2} constitute the class
FP

U (S):

fσ1
= [0 1 2 3 4 5 6 0], fσ2

= [0 2 1 3 4 6 5 0], fσ3
= [0 4 2 6 1 5 3 0],

fσ4
= [0 1 4 5 2 3 6 0], fσ5

= [0 2 4 6 1 3 5 0], fσ6
= [0 4 1 5 2 6 3 0],

f c
σ1
= [0 6 5 4 3 2 1 0], f c

σ2
= [0 5 6 4 3 1 2 0], f c

σ3
= [0 3 5 1 6 2 4 0],

f c
σ4
= [0 6 3 2 5 4 1 0], f c

σ5
= [0 5 3 1 6 4 2 0], f c

σ6
= [0 3 6 2 5 1 4 0],

where σ1 is the identity permutation, σ2 = (s0 s1), σ3 = (s0 s2), σ4 = (s1 s2),
σ5 = (s0 s1 s2), and σ6 = (s2 s1 s0). Due to our choice of representation, the
row vector representing the complement f c of an rs function f is the mirror
image of the row vector representing f .

Going beyond the ternary alphabet, we found out computationally that the
conclusion of Theorem 3.5 holds for the quarternary alphabet. Hence, we state
the following theorem based on our computer simulation.

Theorem 3.7. For ∣S∣ ∈ {3,4}, the class FP
U (S) is exactly the set of nondegen-

erate rs functions over S that permute the nonempty proper subsets of S and
belong to M(S).
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Notice that for a quarternary alphabet S, there are 14! = 87,178,291,200 rs
functions over S that permute the nonempty proper subsets of S. It is surprising
that only 48 out of these can be specified by nondegenerate minimal reaction
systems.2 Therefore, we ask whether the result of Theorem 3.7 holds for higher
alphabets and if that is the case, a formal proof would be more desirable.

Corollary 3.8. Suppose ∣S∣ ∈ {3,4}. The set of nondegenerate rs functions over
S belonging toM(S) does not constitute a complete set of generating functions
under composition for the set of all nondegenerate rs functions over S.

Proof. Suppose f is any nondegenerate rs function over S that permutes the
nonempty proper subsets of S but f ∉ FP

U (S). We claim that f cannot be
generated under composition by nondegenerate rs functions belonging toM(S).
We argue by contradiction. Assume there is such a composition equaling f .
Then each of the composing function must also permute the nonempty proper
subsets of S and thus is in FP

U (S) by Theorem 3.7. Since FP
U (S) is closed under

composition by Proposition 3.3, it follows that f ∈ FP
U (S), a contradiction. �

We end this section by mentioning further computational results for the
ternary alphabet for inspiration. Similar attempt on the quarternary alpha-
bet has to be aborted due to computational limitation. Out of 86 = 262144
nondegenerate rs functions over a ternary alphabet S, there are 24389 that
belong toM(S) and exactly twelve among these, namely those in FP

U (S), fur-
ther permute the nonempty proper subsets of S. Under composition, these
24389 functions generate 257404 nondegenerate rs functions over S, 98.2% of
all nondegenerate rs functions over S.

The following table shows the distribution of these 257404 rs functions ac-
cording to ∣{f(X) ∣ ∅ ≠X ⊊ S }∣, which is the same as the genus of f restricted
to 2S/{∅, S} and thus will be called here the N-genus of f , with N refers to
nondegenerate.

N -genus of f Number of f
1 8
2 1736
3 30240
4 109200
5 100800
6 15420

Table 1. Distribution of rs functions over a ternary alphabet
S generated under composition from nondegenerate rs functions
belonging toM(S)

Our result in fact shows that every nondegenerate rs function over a ternary
alphabet S with N-genus less than the maximum six can be generated un-
der composition from nondegenerate rs functions belonging toM(S). Among

2With our last refined simulation, the running time to obtain this computational result is
pleasantly short, compared to which was needed for Theorem 4.5.
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those with N-genus equal to six, there are 4740 that cannot be thus generated,
including 708 (= 6! − 12) that permute the nonempty proper subsets of S.

4. Further Extension Allowing Degenerate Reaction Systems

Now, we will study problems analogous to those encountered in the last
section with the allowance of degenerate reaction systems. In this context, we
are foremostly led to ask whether any permutation on the whole power set
of S that belongs to M(S) exists, apart from the identity permutation. The
following example not only answers this, but shows that, unlike the ternary
alphabet, the set of permutations on 2S that belong to M(S) is not closed
under composition.

Example 4.1. Let S = {s0, s1, s2}. Consider the rs functions f and g defined by
f = (2 3)(6 7) and g = (4 6)(5 7). Both f and g belong toM(S). Consider
the composition h = f ○ g (from right to left). Then h = (2 3)(4 7 5 6).
However, h is not intersection-subadditive because S = h({s2}) ⊈ h({s0, s2}) ∪
h({s1, s2}) = {s1, s2} ∪ {s2}. Therefore, h does not belong toM(S).

There are 88 = 16777216 rs functions over a ternary alphabet S. Computa-
tionally, we found that there are 405224 rs functions over S belonging toM(S).
Among these, 408 are permutations.

Theorem 4.2. Suppose S is a ternary alphabet. There are exactly 408 rs
functions over S belonging toM(S) that are permutations on 2S, which include
(2 7 0 1 4 3 6 5) and (2 7). The latter two form a basis of Sym(2S).

Proof. The first part is verified by our computer simulation. For the second
part, it is a standard result in group theory that (a1 a2 a3 ⋯ an) and (a1 a2)
form a basis of Sym(A), where A = {a1, a2, a3, . . . , an}. �

The following classical result regarding composition of unary operations over
a finite domain will be utilized.

Theorem 4.3. [8, 9] Suppose A is a finite set of size n ≥ 3. Then any three
functions form a complete set of generating functions for the set of all functions
from A into A if and only if two of them form a basis of Sym(A) and the genus
of the third is n − 1.

Corollary 4.4. Suppose S is a ternary alphabet. There exist three fixed rs
functions over S belonging to M(S) that form a complete set of generating
functions for the set of all rs functions over S.

Proof. The rs function fσ over S, where σ is the identity permutation, has genus
∣2S ∣ − 1. Hence, fσ together with the permutations (2 7 0 1 4 3 6 5) and
(2 7) form a complete set of generating functions for the set of all rs functions
over S by Theorems 4.2 and 4.3. �

When it comes to a quarternary alphabet S, the computational complexity
increases dramatically: for example, there are 1616 rs functions over S, as op-
posed to only 88 over a ternary alphabet. We are able to filter out rs functions
over S belonging toM(S) that are permutations by approximating them with
partial functions.
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For n ∈ {0,1,2, . . . ,15}, let

An = {f ∶{0,1,2, . . . ,n} → {0,1,2, . . . ,15} ∣ f is one-to-one and

f(X ∪ Y ) ∪ f(X ∩ Y ) ⊆ f(X) ∪ f(Y ) for all X,Y ∈ {0,1,2, . . . ,n}}.

n Size of An n Size of An

0 16 8 3463008
1 240 9 2835240
2 1840 10 1337520
3 17776 11 855576
4 74952 12 170592
5 223992 13 72216
6 360540 14 42456
7 1110864 15 23424

Table 2. Size of An

From the definition, the set A15 consists of rs functions over S that are
permutations, union-subadditve and intersection-subadditive. Our approach
significantly assists in reducing the complexity of our computation because for
every integer 0 ≤ n ≤ 14 and f ∈ An+1, the restriction of f to {0,1,2, . . . ,n}
belongs to An. Therefore, to obtain An+1, it suffices to find for every f ∈ An

every extension of f by an additional value that fulfills the additional relevant
clauses for union-subadditivity and intersection-subadditivity.

We now state the following result based on our computer simulation.

Theorem 4.5. Suppose S is a quarternary alphabet. There are exactly 23424 rs
functions over S belonging toM(S) that are permutations on 2S. Furthermore,
these 23424 are all even permutations.

The fact that no odd permutation on 2S belongs toM(S) for a quarternary
alphabet S is surprising at first in view of Theorem 4.2. Then it is plausible
that the permutations on 2S belonging to M(S) may generate under compo-
sition a proper subgroup of the alternating group on 2S. Interestingly, with
some standard properties on symmetric groups and partial assistance from the
computer, we obtain the following result.

Theorem 4.6. Suppose S is a quarternary alphabet. Under composition, per-
mutations on 2S belonging to M(S) generate the alternating group on 2S.

Proof. Let G denote the subgroup of Sym(2S) generated by permutations on
2S belonging to M(S). By Theorem 4.5, G is a subgroup of the alternating
group on 2S. Consider p = (8 11)(12 15) and q = (4 13)(6 15). Both
permutations belong toM(S). The composition p ○ q ○ p ○ q (again from right
to left) is equal to (6 15 12) and thus the latter 3-cycle belongs to G.3 Note
that if r ∈ G, then r−1 ∈ G because r−1 = ro(r)−1, where o(r) is the order of the
permutation r, and thus (r(6) r(15) r(11)) = r ○ (6 15 12) ○ r−1 ∈ G. Using

3It can be verified computationally that no 3-cycle belongs toM(S).
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computer, when we take a sufficiently large subset R of G (for example, R can
be the collection of permutations that are obtained from a composition of two
permutations belonging toM(S)), all 1120 (= 16P3/3) permutations on 2S that
are 3-cycles are included in { (r(6) r(15) r(11)) ∣ r ∈ R }. It is a well-known
fact that the set of those 3-cycles forms a complete set of generators for the
alternating group on 2S. Therefore, G is the alternating group on 2S. �

Corollary 4.7. Suppose S is a quarternary alphabet. The set of rs functions
over S belonging to M(S) does not constitute a complete set of generating
functions under composition for the set of all rs functions over S.

Proof. If a composition of rs functions is a permutation, then each of the com-
posing function must be a permutation. Hence, by Theorem 4.6, no odd per-
mutation of 2S can be generated by rs functions over S belonging toM(S). �

We end this paper with an open problem. In view of Theorem 4.6, it is
intriguing to know which subgroup of Sym(2S) do the permutations on 2S

belonging to M(S) generate for higher alphabets S. An immediate simpler
question is whether only even permutations are generated.
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