
ar
X

iv
:1

80
1.

10
43

6v
3

 [
cs

.F
L

]
 1

7
Se

p
20

18

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Lower Bounds for Synchronizing Word Lengths in Partial Automata

Michiel de Bondt

Department of Computer Science, Radboud University Nijmegen, The Netherlands

m.debondt@math.ru.nl

Henk Don

Department of Mathematics, Radboud University Nijmegen, The Netherlands

h.don@math.ru.nl

Hans Zantema

Department of Computer Science, TU Eindhoven, The Netherlands, and

Department of Computer Science, Radboud University Nijmegen, The Netherlands

h.zantema@tue.nl

It was conjectured by Černý in 1964, that a synchronizing DFA on n states always has
a synchronizing word of length at most (n − 1)2, and he gave a sequence of DFAs for
which this bound is reached. Until now a full analysis of all DFAs reaching this bound
was only given for n ≤ 5, and with bounds on the number of symbols for n ≤ 12. Here
we give the full analysis for n ≤ 7, without bounds on the number of symbols.

For PFAs (partial automata) on ≤ 7 states we do a similar analysis as for DFAs
and find the maximal shortest synchronizing word lengths, exceeding (n− 1)2 for n ≥ 4.
Where DFAs with long synchronization typically have very few symbols, for PFAs we
observe that more symbols may increase the synchronizing word length. For PFAs on
≤ 10 states and two symbols we investigate all occurring synchronizing word lengths.

We give series of PFAs on two and three symbols, reaching the maximal possible
length for some small values of n. For n = 6, 7, 8, 9, the construction on two symbols is
the unique one reaching the maximal length. For both series the growth is faster than
(n− 1)2, although still quadratic.

Based on string rewriting, for arbitrary size we construct a PFA on three symbols
with exponential shortest synchronizing word length, giving significantly better bounds
than earlier exponential constructions. We give a transformation of this PFA to a PFA on
two symbols keeping exponential shortest synchronizing word length, yielding a better
bound than applying a similar known transformation. Both PFAs are transitive.

Finally, we show that exponential lengths are even possible with just one single
undefined transition, again with transitive constructions.

Keywords: DFA, PFA, careful synchronization, Černý conjecture

1. Introduction and Preliminaries

A deterministic finite automaton (DFA) over a finite alphabet Σ is called synchro-

nizing, if it admits a synchronizing word. A word w ∈ Σ∗ is called synchronizing (or

directed, or reset), if, starting in any state q, after reading w, one always ends in one

1

http://arxiv.org/abs/1801.10436v3

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

particular state qs. So reading w acts as a reset button: no matter in which state

the system is, it always moves to the particular state qs. Now Černý’s conjecture [2]

states:

Every synchronizing DFA on n states admits a synchronizing word

of length ≤ (n− 1)2.

Surprisingly, despite extensive effort, this conjecture is still open, and even the

best known upper bounds are still cubic in n. In 1983 Pin [17] established the

bound 1
6 (n3 − n) − 1 for n > 4, based on [9] and Pin’s thesis. Recently, a slight

asymptotic improvement to Pin’s bound has been obtained by Szyku la [20] (effective

for n ≥ 724). For a survey on synchronizing automata and Černý’s conjecture, we

refer to [22].

Formally, a deterministic finite automaton (DFA) over a finite alphabet Σ con-

sists of a finite set Q of states and a map δ : Q × Σ → Q.a For w ∈ Σ∗ and q ∈ Q,

we define qw inductively by qλ = q and qaw = δ(q, a)w for a ∈ Σ, where λ is the

empty word. So qw is the state where one ends, when starting in q and reading

the symbols in w consecutively, and qa is a short hand notation for δ(q, a). A word

w ∈ Σ∗ is called synchronizing, if a state qs ∈ Q exists such that qw = qs for all

q ∈ Q.

In [2], Černý already gave DFAs for which the bound of the conjecture is at-

tained: for n ≥ 2 the DFA Cn is defined to consist of n states 1, 2, . . . , n, and two

symbols a, b, acting by qa = q + 1 for q = 1, . . . , n− 1, δ(n, a) = 1, and qb = q for

q = 2, . . . , n, 1b = 2.

1 2

34

a, b

a

a

a

b

bb
C4

For n = 4, this is depicted on the right. For Cn,

the string w = b(an−1b)n−2 of length |w| = (n − 1)2

satisfies qw = 2 for all q ∈ Q, so w is synchronizing. No

shorter synchronizing word exists for Cn, as is shown

in [2], showing that the bound in Černý’s conjecture is

sharp.

One goal of this paper is to investigate the synchro-

nizing word lengths of all DFAs on at most 7 states. We

also search for the maximal word lengths when restricting to DFAs with a given

alphabet size. The main result on DFAs is that Černý’s conjecture is true for n ≤ 7.

Our results extend those in [12], in which Černý’s conjecture is verified for n ≤ 5.

A complete analysis of all DFAs of n = 6 and n = 7 states is not provided in [12]:

the number of symbols is limited to 6 and 4 respectively. The computations in [12]

extend several results by the same authors.

A generalization of a DFA is a Partial Finite Automaton (PFA); the only dif-

ference is that now the transition function δ is allowed to be partial. In a PFA,

qw may be undefined, in fact it is only defined if every step is defined. A word

aFor synchronization the initial state and the set of final states in the standard definition may be
ignored.

2

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

w ∈ Σ∗ is called carefully synchronizing for a PFA, if a state qs ∈ Q exists such

that qw is defined and qw = qs for all q ∈ Q. In other words: starting in any state

q and reading w, every step is defined and one always ends in state qs. A PFA, in

particular a DFA, is called transitive or strongly connected if for every ordered pair

(q, q′) of states, there is a word w ∈ Σ⋆ such that qw = q′. As being a generalization

of DFAs, the shortest carefully synchronizing word may be longer. For all n ≥ 4

we show that this is indeed the case: for n = 4, 5, 6, 7 we find the maximal shortest

carefully synchronizing word length to be 10, 21, 37 and 63, respectively.

Also for PFAs we investigate the dependence on the alphabet size. To exclude

infinitely many trivial extensions, we only consider basic PFAs: no two symbols

act in the same way, no symbol acts as the identity and no symbol is a restricted

version of either another symbol or the identity. Obviously, these properties have no

influence on synchronization. Somewhat surprisingly, we find that larger alphabets

may lead to longer carefully synchronizing words, in contrast to the situation for

DFAs.

We compute all binary PFAs with up to 10 states, to obtain all possible synchro-

nization lengths, both for DFAs and proper PFAs. For DFAs, the authors of [12] got

as far as 12 states with obtaining these lenghts. With that, they extended the max-

imum number of states from earlier analyses, by themselves and by others, ranging

from 9 states to 11 states. The authors of [12] obtained all possible synchronization

lengths for ternary DFAs with 8 states as well. Several gaps exist in the ranges of

synchronization lengths for binary DFAs. It appears that such gaps also exist for

binary PFAs.

For every n we give a PFA on n states and 2 symbols for which we exactly

compute the shortest carefully synchronizing word length, for every n ≥ 6 strictly

exceeding (n − 1)2. This length is quadratic in n, but it is not a polynomial: the

precise formula deals with Fibonacci numbers. For n = 6, 7, 8, 9 this is the only con-

struction giving the maximal shortest synchronizing word length for binary PFAs.

Similarly, we give a sequence of PFAs on three symbols, reaching the maximal length

for n = 3, 4, 5.

For PFAs the maximal length grows exponentially in n, as was already observed

by Rystsov [19]. Rystsov established the lower bound Ω((3 − ε)n/3) and the upper

bound O((3 + ε)n/3). The upper bound can be found in [10] as well. Martyugin [14]

established the lower bound Ω(3n/3) with a construction in which the number of

symbols is linear in n.

In [13], the author Martyugin obtained a lower bound for the synchronization of

PFAs with a constant alphabet size, which lies between polynomial and exponential,

as a result of an elegant construction of a series of PFAs (see also the last section

of [4]). In [16], the same author obtained a near-exponential lower bound, using a

different construction of PFAs. In [23] it was shown that exponential bounds exist

for every constant alphabet size being at least two. For two symbols the bound

Ω(2n/36) was given for the transitive case and the bound Ω(2n/26) for the general

case. Our construction strongly improves this and gives length Ω(2n/3−3 log2(n)/2) =

3

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

Ω(2n/3/n3/2) for binary PFAs and length Ω(22n/5−log2(n)) = Ω(22n/5/n) for ternary

PFAs, with transitive constructions. Finally we show that both in the binary and

ternary case exponential growth is even possible with a single undefined transition,

again with transitive constructions. For the ternary construction, the key idea is

that synchronization is forced to mimic exponentially many string rewrite steps,

similar to binary counting. This ternary PFA can be transformed to a binary PFA

by a standard construction for which we develop a substantial improvement.

The decision problems which correspond to our asymptotic constructions are

PSPACE-complete, if we do not take transitivity into account. This follows from

[15], in which the most specific decision problem is treated, namely the problem

of determining if a binary PFA with only one undefined transition is carefully

synchronizing. The fact that this problem is PSPACE-complete already suggested

the existence of a nonpolynomial construction, because otherwise we would have

had PSPACE = NP. However, the construction in [15] is not transitive. Using [23,

Lemma 2] and [23, Lemma 6], one can make the construction transitive, but the

property of having only one undefined transition will be affected. So if we do take

transitivity into account, then PSPACE-completeness is obtained for the decision

problems which correspond to our asymptotic constructions, except the last one

(with only one undefined transition).

The basic tool to analyze (careful) synchronization is the power automaton.

For any DFA or PFA (Q,Σ, δ), its power automaton is the DFA (2Q,Σ, δ′) where

δ′ : 2Q × Σ → 2Q is defined by δ′(V, a) = {q ∈ Q | ∃p ∈ V : δ(p, a) = q}, if δ(p, a)

is defined for all p ∈ V , otherwise δ′(V, a) = ∅. For any V ⊆ Q,w ∈ Σ∗, we define

V w as before, using δ′ instead of δ. From this definition, one easily proves that

V w = {qw | q ∈ V } if qw is defined for all q ∈ V , otherwise V w = ∅, for any

V ⊆ Q,w ∈ Σ∗. A set of the shape {q} for q ∈ Q is called a singleton. So a word w

is (carefully) synchronizing, if and only if Qw is a singleton. Hence a DFA (PFA) is

(carefully) synchronizing, if and only if its power automaton admits a path from Q

to a singleton, and the shortest length of such a path corresponds to the shortest

length of a (carefully) synchronizing word.

This paper is an extended version of the DLT2017 paper [5]. It contains several

new contributions, in particular:

Sec. 2 – For DFAs we extend the complete analysis from n ≤ 6 to n ≤ 7.

– We further investigate DFAs with given alphabet size.

Sec. 3 – For PFAs we also extend the analysis to n ≤ 7, and fine tune it by also

taking the number of symbols into account.

– We investigate the carefully synchronizing word lengths for binary PFAs

on n ≤ 10 states.

Sec. 4 – We give sequences of binary and ternary PFAs, reaching the maximal

possible length for some values of n.

Sec. 7 – We improve our asymptotic results and include a construction with a

single undefined transition.

4

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

The most important update to Sections 5 and 6 is that transitivity is taken

into account. Section 5 presents our construction of PFAs on three symbols with

exponential shortest carefully synchronizing word length. In Section 6 we improve

the transformation used by Martyugin [14] and Vorel [23] to reduce to alphabet size

two. We conclude in Section 8.

2. Critical DFAs on at Most 7 States

A natural question when studying Černý’s conjecture is: what can be said about

automata in which the bound of the conjecture is actually attained, the so-called

critical automata? Throughout this section we restrict ourselves to basic DFAs. As

has already been noted by several authors [7, 21, 22], critical DFAs are rare. There

is only one construction known which gives a critical DFA for each n, namely the

well-known sequence Cn, discovered by and named after Černý [2]. Apart from this

sequence, all known critical DFAs have at most 6 states. In [7], all critical DFAs on

less than 5 states were identified, without restriction on the size of the alphabet.

For n = 5 and n = 6 it was still an open question if there exist critical (or even

supercritical) DFAs, other than those already discovered by Černý, Roman [18] and

Kari [11]. In [5], we verified that this is not the case, so for n = 5 only two critical

DFAs exist (Černý, Roman) and also for n = 6 only two exist (Černý, Kari). Here

we extend the analysis to n = 7, for which Černý’s DFA is the only critical DFA.

In fact our results also prove the following theorem:

Theorem 1. Every synchronizing DFA on n ≤ 7 states admits a synchronizing

word of length at most (n− 1)2.

As Trahtman already noted in his paper [21], for n ≥ 6 there seems to be a gap

in the range of possible shortest synchronization lengths. For example, his analysis

showed that there are no DFAs on 6 states with shortest synchronizing word length

24, and no DFAs on 7 states with length 33, 34 or 35, when restricting to at most

4 symbols. Our analysis shows that this is true without restriction on the alphabet:

there is no DFA on 6 states with shortest synchronizing word length 24. For n ≤ 6

all other lengths are feasible: if n ≤ 6 and 1 ≤ k ≤ (n − 1)2, k 6= 24, then there

exists a DFA on n states with shortest synchronizing word length exactly k. For

n = 7 all values k ≤ 32 occur as shortest synchronizing word length.

As the number of DFAs on n states grows like 2n
n

, an exhaustive search is a

non-trivial affair, even for small values of n. The problem is that the alphabet size

in a basic DFA can be as large as nn − 1. Up to now, for n = 5, 6, 7 only DFAs

with at most four symbols were checked by Trahtman [21]. Here we describe our

algorithm to investigate all DFAs on 5, 6 and 7 states, without restriction on the

alphabet size.

Before explaining the algorithm, we introduce some terminology. A DFA B ob-

tained by adding some symbols to a DFA A will be called an extension of A. If

A = (Q,Σ, δ), then S ⊆ Q will be called reachable if there exists a word w ∈ Σ∗

5

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

such that Qw = S. We say that S is reducible if there exists a word w such that

|Sw| < |S|, and we call w a reduction word for S. Our algorithm is mainly based

on the following observation:

Property 1. If a DFA A is synchronizing, and B is an extension of A, then B is

synchronizing as well and its shortest synchronizing word is at most as long as the

shortest synchronzing word for A.

The algorithm roughly runs as follows. We search for (super)critical DFAs on n

states, so a DFA is discarded if it synchronizes faster, or if it does not synchronize

at all. For a given DFA A = (Q,Σ, δ) which is not yet discarded or investigated,

the algorithm does the following:

(1) If A is synchronizing and (super)critical, we have identified an example we

are searching for.

(2) If A is synchronizing and subcritical, it is discarded, together with all its

possible extensions (justified by Property 1).

(3) If A is not synchronizing, then find an upper bound L for how fast any

synchronizing extension of A will synchronize (see below). If L < (n− 1)2,

then discard A and all its extensions. Otherwise, discard only A itself.

The upper bound L for how fast any synchronizing extension of A will synchro-

nize, is found by analyzing distances in the directed graph of the power automaton

of A. For S, T ⊆ Q, the distance dist(S, T) from S to T in this graph is equal to

the length of the shortest word w for which Sw = T , if such a word exists.

The distances in the directed graph of the power automaton are computed by

way of the Floyd-Warshall algorithm. As the computation complexity of the Floyd-

Warshall algorithm is cubic, the complexity in terms of n is Θ(8n), which is actually

quite bad. For that reason, we took the effort to implement it far more efficiently

than the straightforward way, see [3].

We do not compute dist(S, T) if T is a singleton. Instead, we compute

min{dist(S, T) | T ⊂ Q and |T | ≤ i}

for every S ⊆ Q and i = 1, 2, . . . , n− 1: for i = 1 as a replacement, yielding vacated

space in the distance matrix, and for larger i as a usage of this space.

A possible upper bound L is as follows:

(1) Determine the size |S| of a smallest reachable set S. Let m be the minimal

distance from Q to a set of size |S|.
(2) For each k ≤ |S|, partition the collection of irreducible sets of size k into

strongly connected components. Let mk be the number of components plus

the sum of their diameters.

(3) For each reducible set R of size k ≤ |S|, find the length lR of its shortest

reduction word. Let lk be the maximum of these lengths.

6

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

(4) Now note that a synchronizing extension of A will have a synchronizing

word of length at most

L =

|S|
∑

k=2

(mk + lk) +m.

A slightly better upper bound is the following. Let M be the maximum distance

from Q to a set of size |S|. Partition the irreducible sets of size |S| which can be

reached from Q into strongly connected components, and let c be the number of

components plus the sum of their diameters. Then a synchronizing extension of A
will have a synchronizing word of length at most

L′ =

|S|
∑

k=2

(mk + lk) − c+ 1 +M.

So one can say that Q as a reducible subset is treated differently in the construction

of L′ than in the construction L. As a consequence, L′ ≤ L, so L′ is a better upper

bound than L. In the upper bound L′′ which is actually used in the computations,

we extend this different treatment to other reducible subsets.

But first, we describe L in an inductive way. We take L = L|S| +m, and define

L1 = 0,

Lk = mk + lk + Lk−1

= mk + max{lR | R is reducible and |R| = k} + Lk−1 if k > 1.

Here, Lk is an upper bound for the maximum length of the shortest synchronizing

word for any subset of size k. We take L′′ = L′′
Q, and we define inductively an upper

bound L′′
R for the length of the the shortest synchronizing word for a reducible subset

R, and an upper bound L′′
k for the maximum length of the shortest synchronizing

word for any subset of size k. Define SR, mR, MR and cR as S, m, M and c

respectively, but with Q replaced by R.

L′′
R = mR if |SR| = 1,

L′′
R = L′′

|SR| − cR + 1 +MR if |SR| > 1,

L′′
1 = 0,

L′′
k = mk + max{L′′

k−1, L
′′
R | R is reducible and |R| = k} if k > 1.

Although L′′ yields a better upper bound than L′ in general, we do not always have

L′′ ≤ L′. To overcome this, we improved the definition of L′′
R in the newest version

of the code, but only for R 6= Q, by taking the minimum of what is given above,

and L′′
|R|−1 + lR. (The calculations on DFAs with 7 states have not been redone.)

The algorithm performs a depth-first search. So after investigating a DFA, first

all its extensions (not yet considered) are investigated before moving on. Still, we

can choose which extension to pick first. We would like to choose an extension that

is likely to be discarded immediately together with all its extensions. Therefore, we

7

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

apply the following heuristic: for each possible extension B by one symbol, we count

how many pairs of states in B would be reducible. The extension for which this is

maximal is investigated first. The motivation is that a DFA is synchronizing if and

only if each pair is reducible [2].

Furthermore, we only investigate extensions B by one symbol if either the num-

ber of pairs which synchronize in B is larger than in A, or A (and hence also B) is

synchronizing. The idea behind this is the following, which is easy to prove. If A is

not synchronizing and B is an extension of A which is synchronizing, then B has a

symbol, which, when added to A, increases the number of synchronizing pairs.

The algorithm which has actually been used also takes symmetries on the set of

states into account, making it almost n! times faster. The symmetry reduction on

the states is perfect for automata which do not have a pair of conjugate symbols (two

symbols a and b are conjugate if there exists a symmetry σ such that σbσ−1 = a).

Furthermore, we used a multithreaded version of the algorithm for the case of n = 7

states.

In the table below, we counted for every number of symbols (alph. size) and

every minimal synchronization length (sync.) ≥ 31, the number of corresponding

basic DFAs with seven states, up to symmetry. We do not require the automata to

be minimal, meaning that we allow solutions from which symbols can be removed

without changing the synchronization length. This explains why our numbers differ

from those found by Szyku la in his thesis.

alph. sync. sync. sync. sync. sync. sync.

size 36 35 34 33 32 31

1

2 1 3 3

3 3 8

4 4

total 1 0 0 0 6 15

Tables for less than seven states can be found in [6], which is an extended version

of [7]. See also the graph in subsection 3.2.

In [12], the synchronization upper bounds which are used for pruning the search

are different, and only work for DFAs. But there are also differences in the way

the searching is performed. In [12], the searching is done by way of breadth-first

search instead of depth-first search, taking far less overhead and resources, so it

can be done for larger number of states as well. But it leads to more redundancy

in the search: more DFAs need to be scanned, increasing the computation time. It

appeared that with our search algorithm, one can compute all critical DFAs with

6 states within a day (using [12, Theorem 1] as a synchronization upper bound for

pruning; with our synchronization upper bound it is about 400 times faster.)

8

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

3. PFAs with Small State Set

In the remainder of this paper, we study PFAs and shortest carefully synchroniz-

ing word lengths. In this section and the next, we focus on PFAs that have long

shortest synchronizing words and a small number of states. In later sections we con-

struct PFAs on two or three symbols with shortest carefully synchronizing words of

exponential length for general n.

3.1. PFAs on at Most 7 States

To find PFAs with small number of states and long shortest carefully synchronizing

word, we exploit that Property 1 also holds for PFAs. However, for PFAs it is not

true that reducibility of all pairs of states guarantees careful synchronization. There-

fore, we apply a different search algorithm. We search for a PFA with synchronizing

length equal to or greater than some given target length. To construct it, we build

the alphabet by choosing the symbols of a long shortest synchronizing word from

left to right. More precisely, on the stack of the search function we always have a

prefix of a possible synchronizing word. The search is pruned in the following three

cases, where w is the prefix on the stack:

(1) There exists a word u consisting of the letters of w, with |u| < |w|, such

that either Qu = Qw, or Qu and Qw are both singletons;

(2) The automaton A, whose symbols are the letters of w, has a synchronizing

word which is shorter than the target length;

(3) The value of the upper bound L′′ for the automaton A is smaller than the

target length.

If the search is not pruned, the prefix w will be extended by one letter a. To reduce

the number of solutions and speed up the algorithm even further, we only select a

candidate symbol a as follows:

(1) If Qwa = Qwb for a letter b of w, then a is only selected if it is equal to

the first such letter in w;

(2) If Qwa = Qwb does not hold for any letter b of w, then a is only selected

if it is undefined outside Qw.

The purpose of symbol a is to get from Qw to the next subset. In the situation of

(1), no new symbol need to be added to make the transition from Qw to the next

subset. We choose a to be an old symbol, because there is no need to add a new

symbol at this point in the search. In the situation of (2), we choose a to be defined

on states of Qw only, because the purpose of a is to get from Qw to the next subset.

There is no need to add a more complete symbol at this point in the search.

The selection rules (1) and (2) above significantly reduce the number of cases,

but (2) has the drawback that the algorithm does not necessarily find the solution

with the smallest possible alphabet any more. For example, it did not find a solution

9

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

of length 37 with only 6 symbols for n = 6. But postprocessing all solutions for n = 6

did reveal a solution of length 37 with only 6 symbols indeed.

During the postprocessing of a solution, symbols are made more complete, so

(2) does not hold any longer. There are many ways to make the symbols more

complete, but most of them will affect the synchronization length, which gives us

effective pruning. For every solution with more complete symbols, symbols may

have become the same, and we count the number of distinct symbols.

Just as for the DFAs, we took symmetry into account. But we did not need a

multithreaded version of the algorithm for the case of n = 7 states.

For n ≤ 7, our algorithm has identified the maximal length p(n) of a shortest

carefully synchronizing word in a PFA on n states. The results are:

n 2 3 4 5 6 7

p(n) 1 4 10 21 37 63

For n = 8 states, 102 can be reached as shortest carefully synchronizing word length,

using 9 symbols. But 8 states are too many for us to prove computationally that

this is the largest possible length.

Whereas for n ≥ 6, no critical DFAs are known with more than two symbols,

PFAs with long shortest carefully synchronizing word lengths tend to have more

symbols: for n = 4, 5, 6, 7 states, the minimal numbers of symbols achieving the

maximal shortest carefully synchronizing word lengths 10, 21, 37 and 63 are 3, 6, 6

and 8 respectively. Below we give examples of PFAs on 4, 5, 6 and 7 states reaching

these lengths.

a, c

b

b, c

b, c

a

aa

b

a, d, e, f

c

c

c

d

e

e

f
a

a, b

a, b

a, b, c, d

The left one has two synchronizing words of length 10: abcabab(b+ c)ca. The right

one has unique shortest synchronizing word abcabdbebcabdbfbcdeca of length 21.

b

a, b, d, e, f

c

b

c

d

c

e
f

e
a

a

a, b

a, b

a, b, c, d

The shortest synchronizing word is ab2ab2cb2ab2db2eb2cb2ab2db2fb2cdecb2a for this

10

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

PFA on 6 states. It is unique and has length 37.

f, g, h

a, e
b

c, d

c, f, g, h

d

c

e

e

f

e

g
h

g

a a, b

a, b a, b, c, d

a, b, c, d

a, b, c, d, e, f

There are 81 shortest synchronizing words (of length 63) for this PFA on 7 states,

all being of the form

abcabdbebcabdbfbdbgbdbebcabdbfbdbhbdbeb................bdefgeca.

This word is remarkably similar to the one for 5 states and also the actions of some

of the symbols are comparable. It is however not yet sufficient to detect a pattern

that could be extrapolated to larger n.

3.2. PFAs on at Most 7 States with Fixed Alphabet Size

Write p(n, k) for the maximal shortest carefully synchronizing word length for a

PFA on n states and k symbols. Computing the values of p(n, k) for all n ≤ 7 and

all k ≤ 41 is a lot more involved than computing p(n) for all n ≤ 7. We made several

improvements to the algorithm to get it done, among which the following:

(1) It appeared that most of the times where upper bound L′′ needs to be

determined, the PFA is already synchronizing. So we start with trying a

breadth first search with bit vectors, and only compute L′′ in the above-

described way if the PFA is not synchronizing.

(2) We estimate the number of required symbols after postprocessing (making

symbols more complete) already before the postprocessing, and use this

estimate to prune the search.

(3) If the estimate on the number of required symbols is equal to the maximum

allowed number of symbols, then for every extension B of A, the PFAs we

get by postprocessing B are contained in the PFAs we get by postprocess-

ing A directly. For that reason, we do not search further for extensions

of A in this case, but postprocess immediately. So the postprocessing is

not only to reduce the number of symbols in this case, but also to obtain

synchronization.

In the graph below, the values of p(n, k) are plotted for all n ≤ 7 and all k ≤ 40 in

light gray. Furthermore, the values of d(n, k) for DFAs are plotted for all n ≤ 7 and

all k ≤ 40 in dark gray, except the cases where n = 7 and 5 ≤ k ≤ 40.

So, we see that for DFAs with n ≤ 7 states, after having the maximum d(n, k) =

(n − 1)2 at k = 2, the values of d(n, k) decrease for larger k. So it seems that for

11

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

45

50

55

60

n = 4 PFA

n = 5 PFA

n = 6 PFA

n = 7 PFA

n = 2 n = 3

n = 4 DFA

n = 5 DFA

n = 6 DFA

n = 7 DFA, k ≤ 4

k

d(n, k)
p(n, k)

DFAs with a greater number of symbols, it is harder to get large synchronization

lengths.

For PFAs, this behaviour is quite different. Due to partiality, symbols may be

only applicable on a few subsets of the set of all states, which gives less possibilities

to synchronize carefully and therefore more possibilities for coexistence of symbols

in a slowly synchronizing PFA.

3.3. Binary DFAs and PFAs on at Most 10 States

Now that we know that the maximal carefully synchronization lengths of PFAs with

n states are larger than the synchronization lengths of DFAs, we can wonder what

will happen if we fix the alphabet size to 2. For DFAs all evidence suggests that

12

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

this choice gives the largest possible synchronization lengths. In contrast, for binary

PFAs the lengths grow slower than for general PFAs, although the growth is still

exponential as we will see in Section 6.

Using breadth first search with bit vectors, combined with symmetry reduction

on the states, we computed all possible carefully synchronization lengths of binary

PFAs with n ≤ 9 states. For the binary PFAs with n = 10 states, we additionally

used multithreading and applied a few low level optimizations. One of the optimiza-

tion techniques was to view the PFAs as CNFAs, namely by replacing undefined

transitions by transitions to the whole set of states. The results are displayed below,

where the maximum carefully synchronization lengths p(n, 2) are in boldface. For

comparison, we also added the known synchronization lengths for general PFAs.

n binary DFA proper binary PFA PFA

2 1 1 1

3 1–4 1–3 1–4

4 1–9 1–7 1–10

5 1–16 1–15 1–21

6 1–23, 25 1–23, 26 1–37

7 1–32, 36 1–33, 35–36, 39 1–63

8 1–44, 49 1–45, 48, 50, 52, 55

9 1–52, 56–58, 64 1–63, 65, 68, 72–73

10 1–66, 72–74, 81 1–80, 82–84, 87, 89, 93–94

A notable feature in this table is that several gaps appear in the ranges of possible

values. Unfortunately, we still lack a deeper understanding of this behaviour. For

DFAs, existence of gaps has already been observed in [1,12,21] and has been studied

further in [8].

4. Specific PFA Constructions

In this section we present two series of PFAs (parameterized by its size n) of special

interest: they have quadratic shortest synchronizing word length exceeding (n−1)2,

for each n for which this is possible. Furthermore, they reach the maximum possible

synchronization length for some low values of n. The constructed series fill up a void

between the computations up to 7 or 10 states respectively, and the asymptotic

results in the next sections.

Both series are closely related to Černý’s DFAs. The first series is Tn on n states

and three symbols; for this we give the full analysis which is quite straightforward.

The second series is Pn on n states and two symbols. For this series the full analysis

13

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

is much more involved; in this paper we give the construction and the results, but

the full analysis leading to these results will be presented in a separate paper.

We start by Tn. For n ≥ 4, Tn is defined to be the PFA on the n states 1, 2, . . . , n

and the three symbols a, b, c such that

qa =







q + 1 1 ≤ q ≤ n− 2

1 q = n− 1

n q = n

qc =







2 q = 1

⊥ 2 ≤ q ≤ n− 1

2 + ⌊n−1
2 ⌋ q = n

qb =

{

2 q = 1

q 2 ≤ q ≤ n

For n = 3 we take the same definition in which nc = 2 + ⌊n−1
2 ⌋ is taken modulo

n − 1, so 3c = 1. Note that for all n the PFA is obtained by extending Cn−1 by

an extra node n on which a and b act as the identity, and an extra symbol c that

is only defined on 1 and n. The PFA Tn under consideration is depicted below for

n = 7.

1 2

3

45

6

7

a, b, c

a

a

ac

a

a

b

b

bb

b

a, b

Theorem 2. For every n ≥ 3 the PFA Tn is carefully synchronizing with unique

shortest synchronizing word (ban−2)n−2cv of length 3(n−1)(n−2)
2 + 1, where v =

(an−2b)(n−2)/2 if n is even, and v = a(n−3)/2b(an−2b)(n−3)/2 if n is odd.

Proof. First we show that the given word is carefully synchronizing. Write Q =

{1, . . . , n}. Since Cn−1 synchronizes with (ban−2)n−3b ending in state 2, we obtain

Q(ban−2)n−3b = {2, n}, followed by an−2 yielding Q(ban−2)n−2 = {1, n}, being the

set on which c is defined, hence Q(ban−2)n−2c = {2, 2 + ⌊n−1
2 ⌋}. It is easily checked

that in Cn−1 one has {2, 2 + ⌊n−1
2 ⌋}v = {2}, passing all

(

n−1
2

)

subsets of size 2 of

{1, . . . , n− 1} exactly once, and decreasing the distance between the two elements

by 1 every time a b from v is processed.

Conversely, let w be a shortest carefully synchronizing word for Tn. To include

the state n in synchronization, w should contain a c, so write w = w1cw2 in which

w1 ∈ {a, b}∗. Since c should be defined on Qw1, we have Qw1 ⊆ {1, n}. Ignoring

state n, we obtain {1, . . . , n − 1}w1 = {1} in Cn−1. Since the shortest prefix of

14

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

w1 that synchronizes in Cn−1, synchronizes in state 2, n − 2 more a steps are

needed to synchronize in state 1, so w1 has length at least n − 2 plus the shortest

synchronization length of Cn−1 being (n− 2)2, yielding |w1| ≥ (n− 1)(n− 2). Note

that the synchronizing word we gave satisfies |w1| = (n − 1)(n − 2). Since both 1

and n are contained in Qw1, we obtain Qw1c = {2, 2 + ⌊n−1
2 ⌋}.

So until the singleton is obtained after applying w2 to this set, all intermediate

sets consist of two elements from {1, . . . , n − 1}. One checks that the distance be-

tween these two elements can only decrease by a b step, and only in the case the set

contains state 1 and a state in {2, 3, . . . , ⌊n−1
2 ⌋}. Synchronization is obtained if this

distance becomes 0. Counting the numbers of bs and the numbers of intermediate

a steps required to satisfy this requirement shows that v is the shortest candidate

for w2. Hence no shorter carefully synchronizing word is possible than the one we

gave.

Note that for n = 3, 4 the PFA Tn has the highest possible carefully synchro-

nizing word length among all PFAs (4 and 10), while for n = 5 it is the highest

possible among all PFAs on 3 symbols. Moreover, for all n ≥ 4 it strictly exceeds

(n− 1)2. Furthermore, one can adapt symbol c of Tn, to obtain a PFA of which the

synchronization length is any given number in {1, 2, . . . , 3(n−1)(n−2)
2 }.

A natural question is what are the worst cases for binary PFAs and small n.

It turns out that we can find a similar class of binary PFAs, so with two symbols

rather than three, and having similar properties. In the class of binary PFAs, Černý’s

example still is the worst possible for n ≤ 5. For 6 ≤ n ≤ 10, there is a unique binary

PFA reaching the maximal length, being 26, 39, 55, 73 and 94 for n = 6, 7, 8, 9, 10

respectively. The first four of these PFAs are all members of a sequence Pn that we

introduce now. Again it looks very much like Černý’s sequence. For n ≥ 3, Pn is

defined by

qa =







⊥ q = 1

q + 1 2 ≤ q ≤ n− 1

1 q = n

qb =

{

q + 1 1 ≤ q ≤ 2

q 3 ≤ q ≤ n

The PFA Pn under consideration is depicted below for n = 6.

1 2

3

45

6

b

a, b

a

a

a

a

b

bb

b

15

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

Although the construction of Pn is quite simple, the synchronization lengths

show a somewhat curious pattern. Where sequences of DFAs in the literature gen-

erally give rise to quadratic or linear formula’s, this is not the case for Pn. The

lengths are quadratic in size, but no explicit quadratic formula for it exists. The

synchronization length of Pn is strictly larger than (n− 1)2 for all n ≥ 6. As b and

ab act as Cn−1 on {2, . . . , n} it is easily seen that b(b(ab)n−2)n−3b is a carefully

synchronizing word for Pn, but for n ≥ 5 it is not a shortest one.

The synchronization length can be expressed in the Fibonacci numbers fib(m)

defined by fib(0) = 0, fib(1) = 1 and fib(m) = fib(m− 1) + fib(m− 2) for m ≥ 2.

Let φ = 1+
√
5

2 be the golden ratio.

Theorem 3. For n ≥ 3, let m be the unique integer for which fib(m− 1) < n−2 ≤
fib(m). If w is a shortest synchronizing word for Pn, then

|w| = n2 +mn− 5n− fib(m+ 1) − 2m+ 8 = n2 +
n log(n)

log(φ)
+ Θ(n).

Furthermore, |w| > (n− 1)2 for n ≥ 6.

The proof of this theorem is expected to appear in a forthcoming paper by Stijn

Cambie and the first two authors. Below is a table of |w| for small n.

n 3 4 5 6 7 8 9 10 11

|w| 2 7 15 26 39 55 73 93 116

5. Exponential Bounds for PFAs on Three Symbols

In this section, we demonstrate our techniques to construct PFAs with only three

symbols and exponential shortest synchronizing word length. These constructions

are based on string rewrite systems. In the next section we will show a reduction

to two symbols and the last section is devoted to more elaborate constructions that

lead to sharper asymptotic results.

For any k ≥ 3, we build a transitive PFA on n = 3k states and three symbols,

which is carefully synchronizing, and the shortest carefully synchronizing word has

length Ω(φn/3), where φ = 1+
√
5

2 ≈ 1.618. The set of states is Q = {Ai, Bi, Ci |
i = 1, . . . , k}. If a set S ⊆ Q contains exactly one element of {Ai, Bi, Ci} for every

i, it can be represented by a string over {A,B,C} of length k. The idea of our

construction is that the PFA will mimic rewriting the string C2Ak−2 to the string

C2Ak−3B with respect to the rewrite system R, which consists of the following

three rules

BBA→ AAB, CBA→ CAB, CCA→ CCB.

The key argument is that this rewriting is possible, but requires an exponential

number of steps. This is elaborated in the following lemma, in which we use →R for

rewriting with respect to R, that is, u→R v, if and only if u = u1ℓu2 and v = u1ru2,

16

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

for strings u1, u2 and a rule ℓ → r in R. Its transitive closure is denoted by →+
R.

Just as in the previous section, we write fib for the standard Fibonacci function. It

is well-known that fib(n) = Θ(φn).

Lemma 4. For k ≥ 3, we have CCAk−2 →+
R CCAk−3B. Furthermore, the smallest

possible number of steps for rewriting CCAk−2 to a string ending in B, is exactly

fib(k) − 1.

Proof. For the first claim we do induction on k. For k = 3, we have CCA→R CCB.

For k = 4, we have CCAA →R CCBA →R CCAB. For k > 4, applying the

induction hypothesis twice, we obtain

CCAk−2 →+
R CCAk−4BA→+

R CCAk−5BBA→R CCAk−3B.

For the second claim, we define the weight W (u) of a string u = u1u2 · · ·uk over

{A,B,C} of length k by

W (u) =
∑

i:ui=B

(fib(i) − 1).

So every B on position i in u contributes fib(i) − 1 to the weight, and the other

symbols have no weight.

Now we claim that W (v) = W (u) + 1 for all strings u, v with u →R v and

u, v only having C’s in the first two positions. Since the Cs only occur at positions

1 and 2, by applying CCA → CCB, the weight increases by fib(3) − 1 = 1 by

the creation of B on position 3, and by applying CBA → CAB, it increases by

fib(4)− 1− (fib(3)− 1) = 1 since B on position 3 is replaced by B on position 4. By

applying BBA→ AAB, the contributions to the weight fib(i)− 1 and fib(i+ 1)− 1

of the two Bs are replaced by fib(i+ 2)− 1 of the new B, which is an increase by 1

according to the definition of fib.

So this weight increases by exactly 1 at every rewrite step, hence it requires

exactly fib(k) − 1 steps, to go from the initial string CCAk−2 of weight 0 to the

weight fib(k) − 1 of a B symbol on the last position k, if that is the only B, and

more steps if there are more Bs.

Now we are ready to define the PFA on Q = {Ai, Bi, Ci | i = 1, . . . , k} and three

symbols. The three symbols are a start symbol s, a rewrite symbol r and a cyclic

17

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

shift symbol c. The transitions are defined as follows (writing ⊥ for undefined):

Ais = Bis= Cis = Ci, for i = 1, 2,

Ais = Bis= Cis = Ai, for i = 3, . . . , k,

A1r=⊥, B1r=A1, C1r=C1,

A2r=⊥, B2r=A2, C2r=C2,

A3r=B3, B3r=⊥, C3r=B2,

Air=Ai, Bir=Bi, Cir=Ci, for i = 4, . . . , k,

Aic=Ai+1, Bic=Bi+1, Cic=Ci+1, for i = 1, . . . , k − 1,

Akc=A1, Bkc=B1, Ckc=C1.

A shortest carefully synchronizing word starts by s, since r is not defined on all

states and c permutes all states. After s, the set of reached states is S(CCAk−2) =

{C1, C2, A3, . . . , Ak}. Here, for a string u = a1a2 · · · ak of length k over {A,B,C},

we write S(u) for the set of k states, containing Ai if and only if ai = A, containing

Bi if and only if ai = B, and containing Ci if and only if ai = C, for i = 1, 2, . . . , k.

Note that for x ∈ {A,B,C} and v ∈ {A,B,C}k−1, we have S(vx)c = S(xv), so c

performs a cyclic shift on strings of length k.

The next lemma states that the symbol r indeed mimicks rewriting: applied on

sets of the shape S(u), up to cyclic shift it acts as rewriting on u with respect to R

defined above.

Lemma 5. Let u be a string of the shape CCw, where w ∈ {A,B}k−2. If u →R v

for a string v, then S(u)circk−i = S(v) for some i < k.

Conversely, if u does not end in B and there exists an i such that r is defined

on S(u)ci, then u→R v for a string v of the shape CCw, where w ∈ {A,B}k−2.

Proof. First assume that u →R v. If u = u1BBAu2 and v = u1AABu2, then let

i = |u2| + 3, so

S(u)circk−i = S(u1BBAu2)circk−i = S(BBAu2u1)rck−i

= S(AABu2u1)c
k−i = S(u1AABu2) = S(v).

If u = u1CBAu2 and v = u1CABu2, then again let i = |u2| + 3, so

S(u)circk−i = S(u1CBAu2)circk−i = S(CBAu2u1)rck−i

= S(CABu2u1)ck−i = S(u1CABu2) = S(v).

Finally, if u = u1CCAu2 and v = u1CCBu2, then u1 = λ and the result follows for

i = 0.

Conversely, suppose that S(u)cir is defined. Since S(u)ck = S(u), we may as-

sume that i < k and can write u = u1u2, such that |u2| = i. Then S(u)ci = S(w),

where w = u2u1. Write w = a1a2 · · ·ak. Since S(u2u1)r is defined, we get a1 6= A,

a2 6= A and a3 6= B. Moreover, a1 = a2 = a3 = C does not occur since u only

18

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

contains 2 Cs, and a1a2 = BC or a2a3 = BC does not occur since u does not end

in B. The remaining 3 cases are

a1a2a3 = BBA, a1a2a3 = CBA, and a1a2a3 = CCA,

where a1a2a3 is replaced by the corresponding right hand side of the rule by the

action of r. Then in S(u)circk−i, the two Cs are on positions 1 and 2 again, and

we obtain S(u)circk−i = S(v) for a string v of the given shape, satisfying u→R v.

Combining Lemmas 4 and 5 and the fact that fib(n) = Ω(φn), we obtain the

following.

Corollary 6. There is a word w such that S(CCAk−2)w = S(CCAk−3B); the

shortest word w for which S(CCAk−2)w is of the shape S(u)ci for u ending in B

has length Ω(φk).

Now we are ready to prove the lower bound:

Lemma 7. If w is carefully synchronizing, then |w| = Ω(φk).

Proof. Assume that w is a shortest carefully synchronizing word. Then we already

observed that the first symbol of w is s, and w yields S(CCAk−2) after the first step

in the power automaton. By applying only c-steps and r-steps, according to Lemma

5, only sets of the shape S(u)ci for which CCAk−2 →+
R u can be reached, until u

ends in B. In this process, each r-step corresponds to a rewrite step. Applying

the third symbol s does not make sense, since then we go back to S(CCAk−2).

According to Corollary 6, in the power automaton at least Ω(φk) steps are required

to reach a set which is not of the shape S(u)ci. So for reaching a singleton, the total

number of steps is at least Ω(φk).

Note that for the reasoning until now, the definition of C3r = B2 did not play

a role, and by s, r all states were replaced by states having the same index. But

after the last symbol of u has become B, this C3r = B2 will be applied, leading to

a subset in which no state of the group A3, B3, C3 occurs any more. We could have

chosen C3r = A2 or C3r = C2 as well: it is just that C3r = B2 makes r injective,

like c. Now we arrive at the main result of this section. Optimizations leading to

sharper bounds will be presented in Section 7.

Proposition 8. There exists a sequence of transitive carefully synchronizing PFAs

with three symbols, n states and shortest synchronizing word length Ω(φn/3).

Proof. Let n = 3k + m with m ∈ {0, 1, 2}. Take our PFA on 3k states and select

m states with more than one ingoing arrow. Split each of them into two states,

each inheriting some of the ingoing arrows. This affects the injectivity of r and c,

but the PFA remains transitive, and the bound for 3k states is maintained. The

bound was proved in Lemma 7; it remains to prove that the PFA with 3k states is

synchronizing, that is, it is possible to end up in a singleton in the power automaton.

19

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

Let w be the word from Corollary 6. Since S(CCAk−2)w = S(CCAk−3B) and

the number of c’s in w is divisible by k, we have C1w = C1, C2w = C2, A3w =

A3, . . . , Ak−1w = Ak−1, Akw = Bk. Hence

{A1, B1, C1}swcr = {C1}cr = {C2} ⊆ {A1, B1, C1}c,
{A2, B2, C2}swcr = {C2}cr = {B2} ⊆ {A2, B2, C2},
{Ai, Bi, Ci}swcr = {Ai}cr = {Ai+1} ⊆ {Ai, Bi, Ci}c, for i = 3, 4, . . . , k − 1,

{Ak, Bk, Ck}swcr = {Bk}cr = {A1} ⊆{Ak, Bk, Ck}c.

So for all i 6= 2, {Ai, Bi, Ci}swcr is contained in the cyclic successor {Ai, Bi, Ci}c
of {Ai, Bi, Ci}. {A2, B2, C2}swcr is just contained in {A2, B2, C2} itself. Since for

any i, one can take the cyclic successor of {Ai, Bi, Ci} at most k − 1 times before

ending up in {A2, B2, C2}, we deduce that

{Ai, Bi, Ci}(swcr)k−1 ⊆ {A2, B2, C2} for i = 1, 2, . . . , k.

As {A2, B2, C2}s = {C2}, we obtain the carefully synchronizing word (swcr)k−1s

of the PFA.

The word (swcr)k−1s is a lot longer than necessary. In fact, one can prove that

only O(k2) c-steps and O(k) r-steps and s-steps suffice after swcr.

6. Reduction to Two Symbols

In this section we construct PFAs with two symbols and exponential shortest care-

fully synchronizing word length. We do this by a general transformation to two-

symbol PFAs, as was done before, e.g. in [23]. There a PFA on n states and m

symbols was transformed to a PFA on mn states and two symbols, preserving syn-

chronization length. In the next theorem, we improve this resulting number of states

to (m− 1)n or even less, only needing a mild extra condition. Using this result, we

reduce our 3-symbol PFA with synchronizing length Ω(φn/3) to a 2-symbol PFA

with synchronizing length Ω(φn/5).

Theorem 9. Let P = (Q,Σ) be a carefully synchronizing PFA with |Q| = n, |Σ| =

m, and shortest carefully synchronizing word length f(n). Assume s ∈ Σ and Q′ ⊆ Q

satisfy the following properties.

(1) there is some number p such that all symbols are defined on Qsp for a

complete symbol s,

(2) qs = q for all q ∈ Q′, and
(3) qa = qb for all q ∈ Q′ and all a, b ∈ Σ \ {s}.

Let n′ = n−|Q′|. Then there exists a carefully synchronizing PFA on n+n′(m− 2)

states and 2 symbols, with shortest carefully synchronizing word length at least f(n).

The new PFA is deterministic and/or transitive if P is.

20

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

Note that if Q′ = ∅ then only requirement 1 remains, and the resulting number

of states is n+ n′(m− 2) = (m− 1)n.

Proof. Write Q = {1, 2, . . . , n}, Q′ = {n′ + 1, . . . , n}, and Σ = {s, a1, . . . , am−1}.

Let the states of the new PFA be P1,j for j = 1, . . . , n and Pi,j for i = 2, . . . ,m− 1,

j = 1, . . . , n′. Define the following two symbols a, b on these states:

Pi,ja =















Pi+1,j , if i < m− 1, j ≤ n′,

P1,js, if i = m− 1, j ≤ n′,

P1,j , if i = 1, j > n′.

P1,1 · · · P1,n′ P1,n′+1 · · · P1,n

P2,1 · · · P2,n′

...
...

Pm−1,1 · · · Pm−1,n′

and Pi,jb = P1,jai
, for all i = 1, . . . ,m− 1 and j = 1, . . . , n for which Pi,j exists and

jai is defined.

If we arrange the states as indicated above, then on the leftmost n′ columns, a

moves the states one step downward if possible, and for the bottom row jumps to

the top row and acts there as s. For the remainder of the top row a also acts as s

(which is the identity). On the leftmost n′ columns, the symbol b acts as ai on row

i and then jumps to the top line. For the remainder of the top row, all ai act in the

same way and b acts likewise.

Define ψ(ai) = ai−1b for i = 1, . . . ,m − 1, and ψ(s) = am−1. Then on the top

line ψ(ai) acts in the same way as ai in the original PFA. Similarly, ψ(s) acts as s.

On any other row, ψ(s) acts as s, too. Since every symbol ai is defined on qsp for

every q ∈ Q, we obtain that ψ(s)pb = a(m−1)pb is defined on every state and ends

up in the top row.

Assume that w is carefully synchronizing in the original PFA. Then by the above

observations, a(m−1)pbψ(w) is carefully synchronizing in the new PFA. Conversely,

any carefully synchronizing word of the new PFA can be written as ψ(w)aj , where

0 ≤ j ≤ m− 2 and ψ(w) is a concatenation of blocks of the form ψ(l), l ∈ Σ. Now

note that aj can never synchronize two distinct states in the top row. Therefore,

ψ(w) synchronizes the top row and consequently w is synchronizing in the original

PFA. Clearly |ψ(w)aj | ≥ |w| ≥ f(n).

We apply Theorem 9 to our basic construction with 3k states andm = 3 symbols;

note that s, c are defined on all states and r is defined on Qs, so the requirements

of Theorem 9 hold for p = 1. As r and c act differently on all states, the only option

for Q′ is Q′ = ∅. Hence we obtain a carefully synchronizing PFA on (m− 1)3k = 6k

states and two symbols, with shortest carefully synchronizing word length Ω(φk).

For n being the number of states of the new PFA, this is Ω(φn/6).

However, instead of our three symbols s, c, r we also get careful synchronization

on the three symbols s, c, rc with careful synchronization length of the same order.

But then for i = 4, . . . , k we have Ais = Ai and Aic = Airc, so we may choose

Q′ = {A4, . . . , Ak} in Theorem 9, by which n′ = 3k − (k − 3) = 2k + 3, yielding a

21

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

PFA on two symbols and 5k + 3 states. This results in the following proposition,

where for n not of the shape 5k + 3 we remove up to four states from Q′.

Proposition 10. There exists a sequence of transitive carefully synchronizing

PFAs with two symbols, n states and shortest synchronizing word length Ω(φn/5).

This result will be sharpened in the next section as well.

7. Main Asymptotic Results

In this section we discuss some further optimizations. First we extend the number

of rewrite rules and then the number of letters in the system. These rewrite systems

will be used to construct PFAs on two and three symbols for which we will derive

asymptotic lower bounds for the synchronization length.

7.1. More Rewrite Rules

For any h ≥ 2 we define a rewrite system Rh by taking h+ 1 rewrite rules

CiBh−iA→ CiAh−iB (1)

for i = 0, . . . , h. Then it is possible to construct a PFA that mimicks rewriting of the

string ChAk−h to ChAk−h−1B in the system Rh. For h = 2 this coincides with our

construction in Section 5, but for h > 2, this gives a better bound. The following

lemma gives the number of steps needed. Note that f2(i) is equal to fib(i) − 1.

Lemma 11. For k ≥ h+ 1, we have ChAk−h →+
Rh

ChAk−h−1B. Furthermore, the

smallest possible number of steps for rewriting ChAk−h in the system Rh to a string

ending in B is exactly fh(k), where fh(k) satisfies the recursion

fh(k) =

{

0 1 ≤ k ≤ h

1 +
∑h

j=1 fh(k − j) k ≥ h+ 1

Proof. The proof is essentially analogous to the proof of Lemma 5. We define the

weight W (u) of a string u = u1u2 . . . uk over {A,B,C} by assigning weight wi to a

B on position i:

W (u) =
∑

i:ui=B

wi.

Other symbols have zero weight. Now we want to choose wi in such a way that every

rewrite step increases the weight of a string by 1. This gives a recursion for wi: to

create a B in position i, we need uj to be equal to B or C for all i− h ≤ j ≤ i− 1.

After that, one extra rewrite step is needed. We start having already C’s in positions

1, . . . , h. Therefore wi satisfies

wi =

i−1
∑

j=max{h+1,i−h}
wj ,

22

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

which means that wk = fh(k) as defined in the lemma. By construction, to reach a

string ending in B, exactly fh(k) rewrite steps are needed.

7.2. More Rewrite Symbols

Instead of just having A and B and rewriting the final A in a string into a B, we

could take m symbols A(1), . . . , A(m). For convenience we will sometimes denote

A(1) by A and A(m) by B. We take (h+ 1)(m− 1) rewrite rules

CiBh−iA(t) → CiAh−iA(t+1), (2)

for i = 0, . . . , h and t = 1, . . . ,m − 1. In this rewrite system Rh,m the goal is to

rewrite the string ChAk−h into a string ending in B.

Lemma 12. For k ≥ h + 1, we have ChAk−h →+
Rh,m

ChAk−h−1B. Furthermore,

the smallest possible number of steps for rewriting ChAk−h in the system Rh,m to

a string ending in B is exactly fh,m(k), where fh,m(k) satisfies the recursion

fh,m(k) =

{

0 1 ≤ k ≤ h

(m− 1) ·
(

1 +
∑h

j=1 fh,m(k − j)
)

k ≥ h+ 1

Proof. We define the weight W (u) of a string u1u2 . . . uk by assigning weights to

the symbols A(t) for t ≥ 2:

W (u) =

m
∑

t=2

∑

i:ui=A(t)

wi,t,

where wi,t is the weight of A(t) on position i. The symbols C and A(1) = A have

zero weight. Again weights will be chosen such that every rewrite step increases the

weight of a string by 1. Before we can replace a symbol A(t) in position i by A(t+1),

we need uj to be equal to A(m) = B or C for all i− h ≤ j ≤ i− 1. After that, one

extra rewrite step is needed. To replace a symbol A(1) in position i by A(t), this has

to be repeated t− 1 times. Therefore, we find the following recursion

wi,t = (t− 1)



1 +

i−1
∑

j=max{h+1,i−h}
wj,m



 .

Then for all k ≥ h+ 1, W
(

ChAk−h−1B
)

= wk,m = fh,m(k).

7.3. Construction of the PFA on Three Symbols

Using the rewrite rules (2), we can construct a PFA Pn
h,m on n = (m + 1)k

states A
(1)
i , . . . , A

(m)
i , Ci for i = 1, . . . , k. As before, we have a start symbol s,

a rewrite symbol r and a cyclic shift symbol c. Let X denote any of the letters

A(1), . . . , A(m), C. Then

Xis =

{

Ci i = 1, . . . , h

A
(1)
i otherwise

Xic =

{

X1 i = k

Xi+1 otherwise
(3)

23

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

Rewriting takes place in the states with indices 1 ≤ i ≤ h + 1. We define it on

(m+ 1)-tuples with index i by

(

A
(1)
i r, . . . , A

(m)
i r, Cir

)

=



















(

⊥, . . . ,⊥, A(1)
i , Ci

)

i = 1, . . . , h
(

A
(2)
i , . . . , A

(m)
i ,⊥, A(m)

i−1

)

i = h+ 1
(

A
(1)
i , . . . , A

(m)
i , Ci

)

otherwise.

Lemma 13. The PFA Pn
h,m is carefully synchronizing and the shortest synchroniz-

ing word has length at least fh,m(n/(m+ 1)).

Proof. Let Q be the state set of the PFA Pn
h,m. For a string u = u1 . . . uk over

{

A(1), . . . , A(m), C
}

, we define S(u) ⊆ Q in such a way that Xi ∈ S(u) if and only

if ui = X . Then Qs = S(ChAk−h). Every application of the symbol r to a set

S(u) corresponds to application of a rewrite rule to u. As long as the string does

not end in B, no other changes are possible, except for cyclic shifts and resetting

to ChAk−h. To reach the set S(ChAk−h−1B), we need at least a word of length

fh,m(k) = fh,m(n/(m+ 1)).

To see that Pn
h,m is synchronizing, let w be such that Qsw = S(ChAk−h−1B),

and let

Qi =
{

A
(1)
i , . . . , A

(m)
i , Ci

}

.

Then Qiswcr ⊆ Q(i+1) mod k for all i 6= h, and Qhswcr ⊆ Qh. Consequently,

Q(swcr)k−1s = {Ch} so that (swcr)k−1s is synchronizing.

7.4. Asymptotic Lower Bound for PFAs on Three Symbols

Theorem 14. There exists a sequence of transitive carefully synchronizing PFAs

with three symbols, n states and shortest carefully synchronizing word length

Ω
(

2
2
5n−log2(n)

)

= Ω

(

22n/5

n

)

.

Proof. As before, we can reduce to the case where m + 1 | n. For this case, we

analyze the recursion of Lemma 12 and choose h ≥ 2 and m ≥ 2 dependent on n in

such a way that fh,m(n/(m+1)) is maximal. First note that the recursive equations

can be rewritten to a homogeneous system, by taking gh,m(k) = fh,m(k)+ m−1
(m−1)h−1 :

gh,m(k) =

{

m−1
(m−1)h−1 k = 1, . . . , h

(m− 1)
∑h

j=1 gh,m(k − j) k ≥ h+ 1
(4)

The case m = h = 2 gives Fibonacci’s sequence. The general homogeneous recur-

rence relation has characteristic equation

xh = (m− 1)
(

xh−1 + xh−2 + . . .+ 1
)

= (m− 1) · x
h − 1

x− 1
,

24

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

provided x 6= 1. It can be rewritten as m − x = (m − 1)x−h, having a solution

close to m. Indeed, for given ε > 0, we can choose h large enough so that there is

a solution φh,m satisfying m − ε ≤ φh,m < m. This gives exponential growth with

rate at least m−ε, which we will prove by induction. For k = h+1, . . . , 2h, we have

gh,m(k) ≥ fh,m(k) = (m− 1)mk−h−1 ≥ m− 1

(m− ε)h+1
· (m− ε)k. (5)

For k > 2h, assuming the above inequality for k′ < k, we obtain

gh,m(k) = (m− 1)

h
∑

j=1

gh,m(k − j)

≥ (m− 1)2

(m− ε)h+1
· (m− ε)k−1 ·

h
∑

j=1

(m− ε)1−j

≥ (m− 1)2

(m− ε)h+1
· (m− ε)k

m− ε
· 1 − (m− ε)−h

1 − (m− ε)−1

=
m− 1

(m− ε)h+1
· (m− ε)k · (m− 1) − (m− 1)(m− ε)−h

(m− 1) − ε
.

In order to prove (5) for all k > h, the second fraction on the right hand side must

be at least 1, which is equivalent to

(m− 1)(m− ε)−h ≤ ε.

So we take

h =
⌈

logm−ε

(m− 1

ε

)⌉

.

This implies (m− ε)h−1 < (m− 1)/ε, which we substitute in (5) to get for k > h

gh,m(k) ≥ m− 1

(m− ε)2
· ε

m− 1
· (m− ε)k ≥ 1

m2
· ε · (m− ε)k. (6)

The PFA that has to be constructed has n = (m+ 1)k states, so to find the growth

in n, we substitute k = n
m+1 in (6). The following indirect argument shows that

this is a valid choice, i.e. that k > h. If k ≤ h, then the right hand side of (6) would

be less than 1. Since our choice of k will lead to a lower bound greater than 1, we

deduce that k > h. The best choice for m is m = 4, since this maximizes the growth

rate m1/(m+1). This choice gives

gh,m

(

n

m+ 1

)

≥ 1

16
· ε · (4 − ε)n/5.

Finally, we want to choose ε. The right hand side has a maximum at ε = 20/(n+5).

Note that this means that we rewrite a string of length k by substituting blocks of

length h+ 1 proportional to log(k). This choice leads to

gh,m

(

n

m+ 1

)

≥ 20

16(n+ 5)

(

4 − 20

n+ 5

)n/5

≥ 5

4(n+ 5)
· 4n/5 ·

(

1 − 5

n

)n/5

,

25

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

in which the last factor is bounded from below by a positive constant. Therefore

gh,m

(

n

m+ 1

)

= Ω

(

4n/5

n

)

= Ω
(

2
2
5n−log2(n)

)

.

Since fh,m
(

n/(m+ 1)
)

has the same growth rate, Lemma 13 gives the result.

7.5. Construction of the Binary PFA

To obtain an asymptotic lower bound for binary PFAs, we will use the reduction

technique from Section 6. Before doing so, we will slightly tune the construction of

Pn
h,m so that we obtain a bigger set Q′ in Theorem 9. Let P̃n

h,m be the PFA with

symbols c, rc and a modified start symbol s′, defined by

Xis
′ = Ci i = 1, . . . , h

A
(t)
i s′ = A

(t)
i and Cis

′ = A
(1)
i i = h+ 2, . . . , k − 4; t = 1, . . . ,m

Xis
′ = A

(1)
i i = h+ 1 and i = k − 3, . . . , k,

where X stands for any of the symbols C,A(1), . . . , A(m).

Lemma 15. The automaton P̃n
h,m is carefully synchronizing and its shortest syn-

chronizing word has length at least Ω
(

2
2
5n−log2(n)

)

.

Proof. Since s = (cs′)k, we deduce that P̃n
h,m is synchronizing. Now the set Qs′

corresponds to a collection of strings of length k. More precisely, all strings of the

form u = ChAuh+2 . . . uk−4A
4 with uj ∈

{

A(1), . . . , A(m)
}

for j = h+ 2, . . . , k − 4.

In this collection, the string with maximal weight is umax := ChABk−h−5A4. The

number of steps to synchronize P̃n
h,m is at least the number of steps needed to

rewrite umax into a string ending in B. To show that this is of the same order as

rewriting a string of weight zero, it suffices to show that

W (umax) ≤ 1

2
W

(

ChAk−h−1B
)

. (7)

First we prove that

W
(

ChBiAk−h−i
)

≤W
(

ChAi+1BAk−h−i−2
)

, 0 ≤ i ≤ k − h− 2. (8)

For i = 0 and i = 1 this is clear by construction of the weights. By induction it

then follows that

W (ChBi+2Ak−h−i−2) = W (ChBiAk−h−i) +W (ChAiB2Ak−h−i−2)

≤W (ChAi+1BAk−h−i−2) +W (ChAi+2BAk−h−i−3)

= W (ChAi+1B2Ak−h−i−3)

≤W (ChAi+3BAk−h−i−4),

so (8) holds if 0 ≤ i ≤ k − h− 2. Taking i = k − h− 4, we obtain

W (umax) ≤W (ChBk−h−4A4) ≤W (ChAk−h−3BA2) ≤ 1

2
W (ChAk−h−1B),

proving (7), so that we get a lower bound of the same order as for Pn
h,m.

26

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

7.6. Asymptotic Lower Bound for Binary PFAs

We will apply Theorem 9 to the sequence P̃n
h,m to derive an asymptotic lower bound

for binary PFAs.

Theorem 16. There exists a sequence of carefully synchronizing PFAs with two

symbols, n states and shortest carefully synchronizing word length

Ω
(

2
1
3n− 3

2 log2(n)
)

= Ω

(

2n/3

n
√
n

)

.

Proof. Consider the PFA P̃n
h,m. We check the conditions for Theorem 9. The sym-

bol s′ is complete and all symbols are defined on Qs′. Define the set of states Q′

by

Q′ = {C1, . . . , Ch} ∪
{

A
(t)
i

∣

∣h+ 2 ≤ i ≤ k − 4, 1 ≤ t ≤ m
}

,

fulfilling all conditions of Theorem 9. The reduction in this case gives a binary PFA

on N = 2n − |Q′| = 2(m + 1)k − h −m(k − h − 5) = (m + 2)k + (m − 1)h + 5m

states so that

k =
N − (m− 1)h− 5m

m+ 2
.

For gh,m(k) we still have the lower bound ε · (m− ε)k/m2 as in (6). This time the

main order term is mN/(m+2), which is again maximized by taking m = 4. For ε,

the best choice is ε = 24/(N + 6), which means h = logm−ε(N) +O(1). Finally, we

conclude that the length of the shortest synchronizing word for P̃n
h,m is bounded by

Ω
(

ε · (m− ε)k
)

= Ω
(

ε · (4 − ε)N/6 · (4 − ε)− log4−ε(N)/2
)

= Ω

(

4N/6

N
√
N

)

= Ω
(

2
N
3 − 3

2 log2(N)
)

.

If the number of states is not of the form (m+ 2)k+ (m− 1)h+ 5m = 6k+ 3h+ 20,

then we remove some states from Q′, just as before.

7.7. PFAs with a Single Undefined Transition

The PFA Pn
h,m as defined in Section 7.3 has h(m− 1) + 1 undefined transitions. In

this section we present a variation on the theme, showing that a single undefined

transition suffices to get exponential synchronizing word lengths. First note that the

recursion in Lemma 12 gives exponential growth for h = 1, provided m ≥ 3. In this

case, the recursion reduces to f1,m(k) = (m− 1)(1 + f1,m(k− 1)) with f1,m(1) = 0.

By a straightforward inductive argument, it follows that

f1,m(k) =
m− 1

m− 2

(

(m− 1)k − 1
)

.

27

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

We will use the system (2) to rewrite C
(

A(1)
)k−1

into a string ending in A(m).

We extend the rewrite system for h = 1 and m ≥ 3 with m − 2 letters

A(m+1), . . . , A(2m−2). We also extend the set of rewrite rules to

A(s)A(t) → A(s−(m−1))A(t+1) and CA(t) → CA(t+1)

for t = 1, . . . , 2m− 3 and s ≥ m. Furthermore, we close the system cyclically by

A(s)A(2m−2) → A(s−(m−1))A(1) and CA(2m−2) → CA(1).

for s ≥ m. Just as before, for any t ≥ 1, the weight of A(t) on some position is t− 1

times the weight of A(2) on the same position, and we see that the new rewrite rules

either decrease the weight of a string or increase it by at most 1. So these extensions

will not reduce the number of rewrite steps needed.

Now we build a PFA on n = (2m − 1)k states A
(0)
i , A

(1)
i , . . . , A

(2m−2)
i for i =

1, . . . , k mimicking this rewrite system. Just as before, we make the rewrite symbol

r injective, but this time it makes the construction slightly more complicated than

necessary. The idea will be that a letter A(t) on position i in the string corresponds

to the set of states

S
(t)
i :=







{

A
(t)
i , . . . , A

(t+m−2)
i

}

1 ≤ t ≤ m,
{

A
(1)
i , . . . , A

(t−m)
i , A

(t)
i , . . . , A

(2m−2)
i

}

m+ 1 ≤ t ≤ 2m− 2.

Furthermore, the letter C on position i will correspond to either

S
(0)
i :=

{

A
(0)
i , A

(1)
i , . . . , A

(m−2)
i

}

or S̄
(0)
i :=

{

A
(0)
i , A

(m)
i , . . . , A

(2m−3)
i

}

.

We define the start symbol s and the cyclic shift symbol c by

A
(t)
i s =

{

A
(t mod (m−1))
i (m− 1) ∤ t or i = 1

A
(m−1)
i otherwise

A
(t)
i c =

{

A
(t)
1 i = k

A
(t)
i+1 otherwise

With this definition of the start symbol s, we have Qs = S
(0)
1 ∪ ⋃k

i=2 S
(1)
i , repre-

senting the string A(0)
(

A(1)
)k−1

. The (injective) rewrite symbol is defined by

(

A
(0)
i r, . . . , A

(2m−2)
i r

)

=



















(

A
(0)
1 , A

(m)
1 , . . . , A

(2m−3)
1 ,⊥, A(1)

1 , . . . , A
(m−1)
1

)

i = 1
(

A
(2m−2)
1 , A

(2)
2 , . . . , A

(2m−2)
2 , A

(1)
2

)

i = 2
(

A
(0)
i , . . . , A

(2m−2)
i

)

i ≥ 3

This implies that r acts on the sets S
(t)
i for i = 1, 2 as

S
(t)
1 r =











S̄
(0)
1 t = 0

⊥ 1 ≤ t ≤ m− 1

S
(t−(m−1))
1 m ≤ t ≤ 2m− 2,

S
(t)
2 r =

{

S
(t+1)
2 1 ≤ t ≤ 2m− 3

S
(1)
2 t = 2m− 2,

Since S̄
(0)
1 r = S

(0)
1 in addition, the states with indices i = 1 and i = 2 exactly mimic

the rewrite rules. The action of r onto S
(0)
2 or S̄

(0)
2 does not give a set of the form

28

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

S
(t)
i , but can only be applied after reaching a string ending in A(t) for some t ≥ m.

For i ≥ 3, we have S
(t)
i r = S

(t)
i for every t, and S̄

(0)
i r = S̄

(0)
i .

This construction leads to the following theorem.

Theorem 17. There exists sequences of carefully synchronizing PFAs with only

one undefined transition and shortest carefully synchronizing word length

• Ω(3n/7) for PFAs on three symbols,

• Ω(2n/5) for PFAs on two symbols,

where n is the number of states.

Proof. First we argue that the PFA constructed above is synchronizing. Let w be

a word to rewrite C(A(1))k−1 into a string ending in A(m). Write Qi for the set of

states with subindex i for each i. Then Qic
k−1swc ⊆ Qi for all i. Furthermore, r is

defined on Qck−1swc, so let v = ck−1swcr. Then Qiv ⊆ Qi for all i 6= 2.

To investigate Q2v, we group states modulo m − 1, by defining B
(0)
i =

{A(0)
i , A

(m−1)
i , A

(2m−2)
i }, and B

(t)
i = {A(t)

i , A
(t+m−1)
i } for all t 6= 0. Then B

(t)
1 sw ⊆

B
(t)
1 , so

B
(t)
2 v ⊆ B

(t)
2 r ⊆ B

((t+1) mod (m−1))
2

for all t 6= 0, and

B
(0)
2 v ⊆ {A(0)

2 }r ⊆ B
(0)
1 .

Consequently, Q2v
m−1 ⊆ Q1.

Furthermore, it follows by induction that Q (vm−1c)k−1 ⊆ Q1. From B
(0)
k w ⊆

B
(0)
k , we infer that B

(0)
1 v ⊆ B

(0)
1 . Hence Q (vm−1c)k ⊆ B

(0)
1 . As B

(0)
1 s = {A(0)

1 },

we conclude that (vm−1c)ks is a synchronizing word. So we have a synchronizing

n-state PFA with synchronizing word length

Ω((m− 1)k) = Ω((m− 1)
n

2m−1)

The best choice is m = 4, leading to the lower bound Ω(3n/7). If n is not of the

form 7k, then we can split up states just as before, but we must not split up state

A
(m−1)
1 .

For the binary construction with a single undefined transition, we proceed in

the spirit of Section 7.5. We take symbols c and rc and use an adapted start symbol

s′ such that A
(t)
i s′ = A

(t)
i for 1 ≤ t ≤ 2m − 2 and 3 ≤ i ≤ k − 4. Now we can

apply Theorem 9 with a set Q′ of size (2m− 2)(k− 6) +O(1). This gives a PFA on

n = 2mk states and a lower bound

Ω((m− 1)k) = Ω((m− 1)
n

2m).

The best choice is m = 5, giving Ω(4n/10) = Ω(2n/5).

29

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

8. Conclusions

For every n, we constructed PFAs on n states and two or three symbols for which

careful synchronization is forced to mimic rewriting with respect to a string rewrite

system. These systems require an exponential number of steps to reach a string of a

particular shape. The resulting exponential lengths are much larger than the cubic

upper bound for synchronization of DFAs. We show that for n = 4 the shortest

synchronization length for a PFA already can exceed the maximal shortest syn-

chronization length for a DFA.

For n ≤ 7 we found greatest possible shortest synchronization lengths, both

for DFAs and PFAs, where for DFAs until now this was only fully investigated for

n ≤ 4, that is, by not assuming any bound on the number of symbols. For these

n, we identify PFAs reaching the maximal length. These extreme cases require up

to eight symbols, where for DFAs the maximal lengths are generally attained by

binary examples.

Besides the proof of Theorem 3, several results which are related to those in this

paper were not selected in this paper. One of those results is a generalization of the

class Pn in Section 4. The other results have been gathered in [4].

Acknowledgement: We thank Stijn Cambie for his contribution to the proof

of Theorem 3.

References

[1] D. S. Ananichev, M. V. Volkov and V. V. Gusev, Primitive digraphs with large ex-
ponents and slowly synchronizing automata, Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI) 402(Kombinatorika i Teoriya Grafov. IV) (2012) 9–39,
218.

[2] J. Černý, Poznámka k homogénnym experimentom s konečnými automatmi,
Matematicko-fyzikálny časopis, Slovensk. Akad. Vied 14(3) (1964) 208–216.

[3] M. de Bondt, Fast algorithms for anti-distance matrices as a generalization of Boolean
matrices, available at https://arxiv.org/abs/1705.08743 (2017).

[4] M. de Bondt, Subset synchronization of DFAs and PFAs, and some other results,
Available at http://arxiv.org/abs/1807.04661 (2018).

[5] M. de Bondt, H. Don and H. Zantema, DFAs and PFAs with long shortest synchro-
nizing word length, Developments in Language Theory , eds. Charlier. É., Leroy. J.
and Rigo. M. Lecture Notes in Computer Science 10396, (Springer, Cham, 2017).

[6] M. de Bondt, H. Don and H. Zantema, Slowly synchronizing automata with
fixed alphabet size, Information and Computation, to appear. Available at
https://arxiv.org/abs/1609.06853 (2017).

[7] H. Don and H. Zantema, Finding DFAs with maximal shortest synchronizing word
length, Language and Automata Theory and Applications, eds. Drewes. F., Mart́ın-
Vide. C. and Truthe. B. Springer Lecture Notes in Computer Science 10168,
(Springer, Cham, 2017).

[8] M. Dzyga, R. Ferens, V. V. Gusev and M. Szyku la, Attainable Values of Reset Thresh-
olds, 42nd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2017), eds. K. G. Larsen, H. L. Bodlaender and J.-F. Raskin Leibniz
International Proceedings in Informatics (LIPIcs) 83, (Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017), pp. 40:1–40:14.

30

September 18, 2018 3:45 WSPC/INSTRUCTION FILE dfapfa

[9] P. Frankl, An extremal problem for two families of sets, European Journal of Combi-
natorics 3 (1982) 125–127.

[10] B. Gerencsér, V. V. Gusev and R. M. Jungers, Primitive sets of nonnegative matrices
and synchronizing automata, SIAM J. Matrix Anal. Appl. 39(1) (2018) 83–98.

[11] J. Kari, A counterexample to a conjecture concerning synchronizing words in finite
automata, EATCS Bulletin 73 (2001) 146–147.

[12] A. Kisielewicz, J. Kowalski and M. Szyku la, Experiments with synchronizing au-
tomata, Implementation and Application of Automata, eds. Y.-S. Han and K. Salo-
maa (Springer International Publishing, Cham, 2016), pp. 176–188.

[13] P. V. Martyugin, Lower bounds for the length of the shortest carefully synchronizing
words for two- and three-letter partial automata, Diskretn. Anal. Issled. Oper. 15(4)
(2008) 44–56, 99.

[14] P. V. Martyugin, A lower bound for the length of the shortest carefully synchronizing
words, Russian Mathematics (Iz. VUZ) 54(1) (2010) 46–54.

[15] P. V. Martyugin, Synchronization of automata with one undefined or ambiguous
transition, Implementation and Application of Automata, eds. N. Moreira and R. Reis
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 278–288.

[16] P. V. Martyugin, Careful synchronization of partial automata with restricted alpha-
bets, Computer Science – Theory and Applications, eds. A. A. Bulatov and A. M.
Shur (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 76–87.

[17] J.-E. Pin, On two combinatorial problems arising from automata theory, Annals of
Discrete Mathematics 17 (1983) 535–548.

[18] A. Roman, A note on Černý conjecture for automata with 3-letter alphabet, Journal
of Automata, Languages and Combinatorics 13(2) (2008) 141–143.

[19] I. Rystsov, Asymptotic estimate of the length of a diagnostic word for a finite au-
tomaton, Cybernetics 16(2) (1980) 194–198.

[20] M. Szyku la, Improving the Upper Bound on the Length of the Shortest Reset
Word, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018),
eds. R. Niedermeier and B. Vallée Leibniz International Proceedings in Informat-
ics (LIPIcs) 96, (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, 2018), pp. 56:1–56:13.

[21] A. N. Trahtman, An efficient algorithm finds noticeable trends and examples concern-
ing the Černý conjecture, Mathematical Foundations of Computer Science 2006: 31st
International Symposium, MFCS 2006 , eds. R. Královič and P. Urzyczyn (Springer
Berlin Heidelberg, 2006), pp. 789–800.

[22] M. Volkov, Synchronizing automata and the Černý conjecture, Proceedings of LATA,
Springer LNCS 5196 (2008), pp. 11–27.

[23] V. Vorel, Subset synchronization and careful synchronization of binary finite au-
tomata, Int. J. Found. Comput. Sci. 27(5) (2016) 557–578.

31

	1 Introduction and Preliminaries
	2 Critical DFAs on at Most 7 States
	3 PFAs with Small State Set
	3.1 PFAs on at Most 7 States
	3.2 PFAs on at Most 7 States with Fixed Alphabet Size
	3.3 Binary DFAs and PFAs on at Most 10 States

	4 Specific PFA Constructions
	5 Exponential Bounds for PFAs on Three Symbols
	6 Reduction to Two Symbols
	7 Main Asymptotic Results
	7.1 More Rewrite Rules
	7.2 More Rewrite Symbols
	7.3 Construction of the PFA on Three Symbols
	7.4 Asymptotic Lower Bound for PFAs on Three Symbols
	7.5 Construction of the Binary PFA
	7.6 Asymptotic Lower Bound for Binary PFAs
	7.7 PFAs with a Single Undefined Transition

	8 Conclusions

