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Abstract. Motivated by the Babai conjecture and the Černý conjecture,
we study the reset thresholds of automata with the transition monoid
equal to the full monoid of transformations of the state set. For automata
with n states in this class, we prove that the reset thresholds are upper-
bounded by 2n2 − 6n + 5 and can attain the value n(n−1)

2
. In addition,

we study diameters of the pair digraphs of permutation automata and

construct n-state permutation automata with diameter n
2

4
+ o(n2).

1 Background and Overview

Completely reachable automata, i.e., deterministic finite automata in which ev-
ery non-empty subset of the state set occurs as the image of the whole state set
under the action of a suitable input word, appeared in the study of descriptional
complexity of formal languages [26] and in relation to the Černý conjecture [13].
In [6] an emphasis has been made on automata in this class with minimal tran-
sition monoid size. In the present paper we focus on automata being in a sense
the extreme opposites of those studied in [6], namely, on automata of maximal
transition monoid size. In other words, we consider automata with full transition

monoid, i.e., transition monoid equal to the full monoid of transformations of the
state set; clearly, automata with this property are completely reachable. There
are several reasons justifying special attention to automata with full transition
monoid. First, as observed in [6], the membership problem for this class of au-
tomata is decidable in polynomial time (of the size of the input automaton) while
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and a FNRS Research Associate.
A short version of this work has been presented at the conference DLT 2017.

http://arxiv.org/abs/1704.04047v2


2 F. Gonze et al.

the complexity of membership in the class of all completely reachable automata
still remains unknown. Second, this class contains automata that correspond to
Brzozowski’s most complex regular languages [7] and to other regular languages
that play a distinguished role in descriptive complexity analysis. Finally, and
most importantly from our viewpoint, automata with full transition monoid are
synchronizing and their synchronization issues constitute a sort of meeting point
for two famous open problems—the Babai conjecture and the Černý conjecture.
Next, we recall these conjectures and outline the contribution of the present
paper in view of these problems.

1.1. The Babai Conjecture. Let A be a set of generators of a finite group
G. The Cayley graph Γ (G,A) consists of G as the set of vertices and the edges
{g, ga} for all g ∈ G, a ∈ A. The diameter of Γ (G,A) is the maximum among the
lengths of shortest paths between any two vertices. In group theory terms, the
diameter of Γ (G,A) is the smallest ℓ such that every g ∈ G can be represented
as g = aε11 aε22 · · · aεℓℓ , where εi ∈ {1,−1} and ai ∈ A for all i = 1, . . . , ℓ. The
diameter diam(G) of G is the maximal diameter of Γ (G,A) among all generating
sets A of G. The notion of group diameter is related to the growth rate in
groups, expander graphs, random walks on groups and their mixing times, see,
e.g., [23, 33]. Recently, the following conjecture received significant attention:

Conjecture 1 (Babai [4]) The diameter of each non-abelian finite simple group

G does not exceed (log |G|)O(1), where the implied constant is absolute.

Note that for the case of the symmetric group Sn, this conjecture readily implies
diam(Sn) ≤ nO(1). (The group Sn is not simple but for n ≥ 5 it contains a
non-abelian simple subgroup of index 2.)

The Babai conjecture was proved for various classes of groups, but despite
intensive research effort it remains open, see [22] for an overview. In the case of
Sn, a recent breakthrough gives only a quasipolynomial upper bound, namely,
exp(O((log n)4 log logn), and it relies on the Classification of Finite Simple
Groups [22]. It is even more astonishing if we compare it to the best known
lower bound in this case: for the classical set of generators consisting of the
transposition (1, 2) and the full cycle (1, 2, . . . , n), every permutation in Sn can

be expressed as a product of at most ∼ 3n2

4 (asymptotically) generators [40].

1.2. The Černý Conjecture. Recall that a deterministic finite state automa-
ton (DFA) is a triple1 〈Q,Σ, δ〉, where Q is a finite set of states, Σ is a finite set
of input symbols called the alphabet, and δ is a function δ : Q × Σ → Q called
the transition function. A word is a sequence of letters from the alphabet. The
length of a word is the number of its letters. We can look at δ(q, a) as the result
of the action of the letter a ∈ Σ at the state q ∈ Q. We extend this action to
the action of words over Σ on Q denoting, for any word w and any state q ∈ Q,
the state resulting in successive applications of the letters of w from left to right
by q·w. For a subset P ⊆ Q, we write P ·w for the set {p·w | p ∈ P}.

1 As initial and final states play no role in our considerations, we omit them.
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A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exist a word w and
a state f such that Q·w = {f}. Any such word is called a synchronizing or
reset word. The minimum length of reset words for A is called the reset thresh-

old of A and is denoted by rt(A ). Synchronizing automata appear in various
branches of mathematics and are related to synchronizing codes [5], part orient-
ing problems [27, 28], substitution systems [16], primitive sets of matrices [19],
synchronizing groups [3], convex optimization [20], and consensus theory [11].

Conjecture 2 (Černý [9, 10]) The reset threshold of an n-state synchronizing

automaton is at most (n− 1)2.

If the conjecture holds true, then the value (n− 1)2 is optimal, since for every n
there exists an n-state automaton Cn with the reset threshold equal to (n−1)2 [9].

The Černý conjecture has gained a lot of attention in automata theory. It has
been shown to hold true in various special classes [14,21,24,31,35,36], but in the
general case, it remains open for already half a century. For more than 30 years,

the best upper bound was n3−n
6 , obtained in [15, 30] and independently in [25].

Recently, a small improvement on this bound has been reported in [37]: the new
bound is still cubic in n but improves the coefficient 1

6 at n3 by 4
46875 . A survey

on synchronizing automata and the Černý conjecture can be found in [38].
In order to make the relationship between the Černý and the Babai conjec-

tures more visible, we borrow from [2] the idea of restating the former in terms
similar to those used in the formulation of the latter. Let Tn be the full trans-
formation monoid of an n-element set Q. A transformation t ∈ Tn is a constant

if there exists f ∈ Q such that for all q ∈ Q we have t(q) = f . We can state
the Černý conjecture as follows: for every set of transformations A ⊆ Tn, if the
submonoid generated by A contains a constant, then there exists a constant g
such that g = a1a2 · · ·aℓ, where ℓ ≤ (n− 1)2 and ai ∈ A for all i = 1, . . . , ℓ. It is
easy to see that this formulation is equivalent to the original one by treating the
letters of an automaton as the transformations of its state set since reset words
precisely correspond to constant transformations.

1.3. Our Contributions. The first part of our paper is devoted to the following
hybrid Babai–Černý problem2: given a set of generators A of the full transfor-
mation monoid Tn, what is the length ℓ(A) of the shortest product a1a2 · · · aℓ
with ai ∈ A which is equal to a constant? Namely, we are interested in the
bounds on ℓ(A) that depend only on n. The hybrid Babai–Černý problem is
a special case of the Černý problem. Indeed, it is a restriction to the class of
DFAs with the transition monoid, i.e., the transformation monoid generated by
the actions of letters, equal to Tn. Of course, the general cubic upper bound is
valid, but not the lower bound, since the Černý automata Cn do not belong to
this class (even though they are completely reachable, see [6]). In Section 2 we
establish that the growth rate of ℓ(n) is Θ(n2), more precisely, we show that

2 During the preparation of this paper we discovered that the same question was also
posed in [34, Conjecture 3], though its connection with Babai’s problem was not
registered there.
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n(n−1)
2 ≤ ℓ(n) ≤ 2n2 − 6n+5. We also present the exact values of ℓ(n) for small

values of n resulting from our computational experiments. Our contribution can
be also seen as a progress towards resolution of Conjecture 3 from [34].

The second part of our paper is devoted to a “local” version of the Babai
problem where we restrict our attention to the action on the set of (unordered)
pairs. Let A be a set of permutations from Sn. The pair digraph P (A) consists
of pairs {i, j} as the set of vertices and the edges ({i, j}, {ia, ja}) for all i, j
and a ∈ A. The diameter of P (A), denoted diamP (A), is the maximum among
the lengths of shortest (directed) paths between any two vertices. We study the
behavior of diamP (A) in terms of n. The problem comes from analysis of certain
aspects of Markov chains and group theory [17], but our interest in it is mainly
motivated by its importance for the theory of synchronizing automata. Indeed,
every synchronizing automaton A must have a letter a, say, whose action merges
a pair of states. Thus, one can construct a reset word for A by successively
moving pairs of states to a pair merged by a. If A possesses sufficiently many
letters acting as permutations (as automata with the full transition monoid do),
one can move pairs by these permutations, and hence, upper bounds on the
diameter of the corresponding pair digraph induce upper bounds on rt(A ).

Clearly, diamP (A) ≤ n(n−1)
2 for all A ⊆ Sn. In Section 3 we establish the

lower bound n2

4 + o(n2) on diamP (A) by presenting a series of examples with
only two generators for every odd n.

1.4. Related Work. The diameters of groups and semigroups constitute a
relatively well studied topic. A general discussion on diameters and growth rates
of groups can be found in [23]. Various results about the diameter of Tn and its
submonoids are described in [29,34]. The length of the shortest representation of
a constant (including the case of partially defined transformations) is typically
studied in the framework of synchronizing automata, see [1, 38, 39].

2 Automata with Full Transition Monoid

2.1. Näıve Construction. Recall that, on the one hand, the Černý automata
Cn from [9] have two letters of which one acts as a cyclic permutation and the
other fixes all states, except one, which is mapped to the next element in the
cyclic order defined by the cyclic permutation. On the other hand, the extremal
case of the Babai conjecture for Sn is composed of a cyclic permutation and the
transformation which fixes all elements except two, which are neighbors in the
cyclic order defined by the cyclic permutation. Therefore, one could wonder if
a combination of these transformations could result in a DFA with both large
reset threshold and full transition monoid.

The construction is defined as follows. There are n states q1, . . . , qn and
three letters a, b, and c. The letter a acts as a cyclic permutation on the states,
following their indices. The letter b fixes all states, except q1, which is mapped
to q2 by b. The letter c fixes all states, except qk and qk+1, for some k, which are
swapped by c. The resulting automaton CBn,k is shown in Fig. 1. We notice that
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qn q1 q2 q3

· · ·

qk−1qkqk+1qk+2

· · ·
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a, c
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a

c

b

a

b, c

a

Fig. 1: The automaton CBn,k

if we remove the letter c, we obtain the automaton Cn from the Černý family
providing the largest currently existing lower bound in the Černý problem, and
if we remove the letter b, we obtain a generating set of the group Sn providing
the largest currently existing lower bound in the Babai problem for Sn. Also
observe that in the case where k = 2, our automaton is nothing but Brzozowski’s
“Universal Witness” [7] recognizing the most complex regular language, i.e., the
language witnessing at once practically all tight lower bounds found for the state
complexity of various operations with regular languages, see [7, Theorem 6]. The
next result shows that, however, the reset threshold of the automaton CBn,k is
upper-bounded by O(n log n), while, as we show later, among automata with full
transition monoid there exist ones whose reset threshold is a quadratic function
of their state number.

Theorem 1. The automaton CBn,k has a reset word of length at most 4n⌈log2 n⌉.

Proof. Recall that we aim to show that, for each k, the automaton CBn,k has a
reset word of length at most 4n⌈log2 n⌉. It is easy to see that the word b(cab)n−2

of length 3n − 5 < 4n⌈log2 n⌉ resets the automaton CBn,1, so that we assume
that k > 1 in the rest of the proof.

We construct a word w letter-by-letter in several rounds, starting with the
empty word. The main parameter in our construction is the current image of
the state set of CBn,k under the action of the word constructed so far; let S
stand for this image. (Thus, we have S = {q1, . . . , qn} at the beginning, and S
becomes a singleton at the end of the process.) It is quite helpful to visualize S as
the set whose states bear certain tokens. If one colors states covered by tokens
light-gray, then Fig. 1 represents the initial position while Fig. 2 shows some
intermediate situation. When a letter x ∈ {a, b, c} is applied to S, the token that
covers qi, say, moves to the state qi·x; in more visual terms, the token “slides”
along the arrow representing the transition qi → qi·x. If two tokens arrive at the
same state, which happens whenever both q1 and q2 bear tokens and the letter
b is applied, we remove one of the tokens.

In the course of our construction, rounds of two sorts alternate: merging, in
which only a’s and b’s are applied to S, and pairing, in which only a’s and c’s are
applied. We call a state from S isolated if both its neighbor states (with respect
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Fig. 2: Tokens mark a subset in CBn,k

to the cyclic order defined by a) are not in S. A merging round starts whenever
|S| > 1 and S has at most one isolated state, and it lasts while S contains non-
isolated states; a pairing round starts whenever |S| > 1 and all states in S are
isolated, and it lasts while S contains more than one isolated state. Every round
consists of a number of steps, in each of which we choose a letter, append the
chosen letter to the word w and update the set S by applying the letter to it.
The choice is done according to one of the two following rules (M) and (P) used
during merging and pairing rounds, respectively:

(M) b is chosen whenever q1, q2 ∈ S; otherwise a is chosen;
(P) c is chosen whenever qk+1 ∈ S, but qk, qk+2 /∈ S (so that qk+1 is isolated);

otherwise a is chosen.

Clearly, at the beginning no state is isolated, and hence, the first round of our
construction must be merging. It amounts to an immediate calculation to see that

by the end of the first round, we have w = b(a2b)⌊
n−1

2
⌋ and S = {q2, q4, . . . q2⌊n

2
⌋}.

Now we are going to verify two claims.
Claim 1. If |S| = m before any of the next merging rounds, then |S| = ⌈m

2 ⌉
at the end of the round.

We say that two neighbor states qℓ, qℓ·a ∈ S form an isolated couple if each
of these states has exactly one neighbor in S.

Claim 2. If |S| = m before a pairing round, then at the end of the round S
is partitioned in either m

2 isolated couples (if m is even) or m−1
2 isolated couples

and one isolated state (if m is odd).
First we prove Claim 2. The distance from qi to qj is min{d ∈ N | qi·a

d = qj}.
We order tokens that cover the states in S according to the distance from their
states to the state qk+1: the i-th token is the one that covers the state with
the distance di to qk+1, where 0 ≤ d1 < d2 < · · · < dm < n. Now consider
the evolution of the set S under the choice of letters according to the rule (P).
Clearly, the first d1 choices are all a’s. After that the first token reaches qk+1.
Since the action of a translates the set S, without affecting distances between
its states, all states in S remain isolated at this point. In particular, qk+1 is
isolated, and hence, (P) forces the letter c to be applied. This moves the first
token “backwards” to the state qk while all other tokens keep their positions.
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The next letter to be applied is a, and its application moves all tokens one step
“forwards” so that the token from qk returns to qk+1. Clearly, the distance from
the state that holds the second token to qk+1 becomes d2−d1−1 after these two
moves. If the state qk+1 remains isolated, another application of c is invoked,
followed by another application of a, and this results in a further decrement
of the distance from the state that holds the second token to qk+1. Eventually,
after the suffix ad1(ca)d2−d1 is appended to w, the second token reaches the state
qk. At this moment, the third token (if it exists) covers a state with distance
d3 − d2 > 1 to qk whence qk+1, qk form an isolated couple in S. The two tokens
covering these states will then remain adjacent till the end of the round.

If m = 2 or m = 3, we are done. If m > 3, we proceed in the same way.
Namely, the next d3 − d2 choices are all a’s. After that the third token reaches
qk+1. Except the first two, all other tokens remain isolated. Now (P) forces c
and a to be alternatively chosen d4 − d3 times each. This makes the third token
shuffle between qk+1 and qk, while the fourth and the next tokens move d4 − d3
steps “forwards”. After that qk+1, qk form yet another isolated couple in S, etc.

We have shown that at the end of the round, the set S indeed consists of
either m

2 isolated couples (if m is even) or m−1
2 isolated couples and one isolated

state (if m is odd). Moreover, the suffix appended to w during the round is of
the form

ad1(ca)d2−d1ad3−d2(ca)d4−d3ad5−d4(ca)d6−d5 · · · . (1)

The letter a occurs in this suffix dm times ifm is even and dm−1 times ifm is odd,
and the number of occurrences of c is less than that of a. Since dm−1 < dm < n,
we conclude that the length of the suffix (1) is less than 2n.

Now it is easy to prove Claim 1. In view of Claim 2, at the beginning of
the round, the set S consists of either m

2 isolated couples (if m is even) or
m−1
2 isolated couples and one isolated state (if m is odd). If {qℓ, qℓ·a} is an

isolated couple, we say that qℓ is its left state. Now we order isolated couples in
S according to the distance from their left states to the state q1: the i-th couple
is the one with the distance di from its left state to q1, where 0 ≤ d1 < d2 <
· · · < d⌈m

2
⌉ < n. Consider the evolution of the set S under the choice of letters

according to the rule (M). The first d1 choices are all a’s. After that the tokens
that initially covered the states of the first isolated couple arrive at the states q1
and q2, and hence, (M) forces the letter b to be applied. This application removes
the token from q1 and does not change anything else. The state q2 then becomes
isolated. The next d2−d1 choices are again all a’s, and the successive applications
of these a’s bring tokens that initially covered the states of the second isolated
couple to the states q1 and q2. Then, again, b is chosen, removing the token from
q1 and creating yet another isolated state in S, etc. At the end of the round,
exactly one token from each isolated couple is removed and all remaining states
are isolated. The number of these states is m

2 if m is even or m+1
2 if m is odd;

in short, ⌈m
2 ⌉, as claimed.

Moreover, the suffix appended to w during the round is of the form

ad1bad2−d1b · · ·a
d⌈m

2
⌉−d⌈m

2
⌉−1b. (2)
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The letter a occurs in this suffix d⌈m

2
⌉ < n times and the letter b occurs ⌈m

2 ⌉ < n
times, whence the length of the suffix (2) is less than 2n.

Claim 1, together with the observation we made about the first merging
round, readily implies that the number of merging rounds is at most ⌈log2 n⌉.
Since merging and pairing rounds alternate, the total number of rounds is upper-
bounded by 2⌈log2 n⌉. As observed after the proofs of Claims 1 and 2, a suffix
of length less than 2n is appended to the current word w during each round.
Clearly, at the end of the process, w becomes a reset word for CBn,k, and by
the construction the length of w is less than 2n · 2⌈log2 n⌉ = 4n⌈log2 n⌉. ⊓⊔

2.2. Random Sampling and Exhaustive Search. Every DFA with the tran-
sition monoid Tn necessarily has permutation letters that generate the whole
symmetric group Sn and a letter of rank n − 1 (i.e., a letter whose image has
n − 1 elements). It is a well known fact that the converse is also true, i.e., the
transition monoid of any automaton with permutation letters generating Sn and
a letter of rank n− 1 is equal to Tn, see, e.g., [18, Theorem 3.1.3].

Relying on a group-theoretic result by Dixon [12], Cameron [8] observed that
an automaton formed by two permutation letters taken uniformly at random and
an arbitrary non-permutation letter is synchronizing with high probability. We
give an extension by using another non-trivial group-theoretical result, namely,
the following theorem by Friedman et al. [17]:

Theorem 2. For every r and d ≥ 2 there is a constant C such that for d per-

mutations π1, π2, . . . , πd of Sn taken uniformly at random, the following property

Fr holds with probability tending to 1 as n → ∞: for any two r-tuples of distinct
elements in {1, 2, . . . , n}, there is a product of less than C logn of the πi’s which

maps the first r-tuple to the second.

Corollary 3. There is a constant C such that the reset threshold of an n-state
automaton with two random permutation letters and an arbitrary non-permuta-

tion letter does not exceed Cn logn with probability that tends to 1 as n → ∞.

Proof. Let A = 〈Q,Σ, δ〉 stand for the automaton in the formulation of the
corollary. We let a ∈ Σ be the non-permutation letter and assume that the two
permutation letters in Σ have the property F2 of Theorem 2 for r = 2 with
some constant C. By Theorem 2 this assumption holds true with probability
that tends to 1 as n → ∞.

There exists two different states q1, q2 ∈ Q such that q1·a = q2·a. The set
Q·a contains less than n elements. If |Q·a| = 1, then a is a reset word for A .
If |Q·a| > 1, take two different states p1, p2 ∈ Q·a. By F2, there is a product w
of less than C log n of the permutation letters such that pi·w = qi for i = 1, 2.
Now |Q·awa| < |Q·a|. If |Q·awa| = 1, awa is a reset word for A . If |Q·awa| > 1,
we apply the same argument to a pair of different states in Q·awa. Clearly, the
process results in a reset word in at most n− 1 steps while the suffix appended
at each step is of length at most C logn+ 1. Hence the length of the reset word
constructed this way is at most (C + 1)n logn. ⊓⊔
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Corollary 3 indicates that one can hardly discover an n-state automaton
with the transition monoid equal to Tn and sufficiently large reset threshold by
a random sampling. Therefore, we performed an exhaustive search among all
automata with two permutation letters generating Sn and one letter of rank
n− 1. Our computational results are summarized in Table 1.

Number of states 2 3 4 5 6 7
Reset threshold 1 4 8 14 19 27

Table 1: The largest reset thresholds of n-state automata two permutation letters
generating Sn and one letter of rank n− 1

As n grows, the reset thresholds of the obtained examples become much
smaller than (n − 1)2. We were unable to derive a series of n-state three-letter
automata with the transition monoid Tn and quadratically growing reset thresh-
olds. We suspect that the reset threshold of automata in this class is o(n2).

In the case of unbounded alphabet, for every n, we present an n-state au-

tomaton Vn with the transition monoid Tn such that rt(Vn) =
n(n−1)

2 . The state
set of Vn is Qn = {q0, . . . , qn−1} and the input alphabet consists of n letters
a1, . . . , an. The transition function is defined as follows:























qi·aj = qi for 0 ≤ i < n, 1 ≤ j < n, i 6= j, i 6= j + 1, j 6= n,
qi·ai = qi−1 for 0 < i ≤ n− 1,
qi·ai+1 = qi+1 for 0 ≤ i < n− 1,
q0·an = q1·an = q0,
qi·an = qi for 2 ≤ i ≤ n− 1.

Simply speaking, every letter ai for i ≤ n − 1 swaps the states qi and qi−1 and
fixes the other states. The letter an brings both q0 and q1 to q0 and fixes the
other states. The automaton V5 is depicted in Fig. 3.

q0 q1 q2 q3 q4

a2, a3, a4, a5

a1

a1, a5

a2

a3, a4

a2

a3

a1, a4, a5

a3

a4

a1, a2, a5

a4

a1, a2, a3, a5

Fig. 3: The automaton V5

Recall that a state z of an DFA is said to be a sink state (or zero) if z·a = z
for every input letter a. It is known that every n-state synchronizing automaton

with zero can be reset by a word of length n(n−1)
2 , cf. [31]. To show that this

upper bound is tight for each n, Rystsov [31] constructed an n-state and (n−1)-
letter synchronizing automaton Rn with zero which cannot be reset by any word

of length less than n(n−1)
2 . In fact, our automaton Vn is a slight modification of

Rn as the latter automaton is nothing but Vn without the letter a1.
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Theorem 4. For every n, the automaton Vn has Tn as its transition monoid

and rt(Vn) =
n(n−1)

2 .

Proof. The letters a1, . . . , an−1 generate Sn because the product a1 · · ·an−1 is a
full cycle and any full cycle together with any transposition generates Sn. Since
the letter an has rank n− 1, it together with a1, . . . , an−1 generates Tn.

The automaton Vn is synchronizing because so is the restricted automaton

Rn, and rt(Vn) ≤ n(n−1)
2 because every reset word for Rn resets Vn as well.

It remains to verify that the length of any reset word for Vn must be at least
n(n−1)

2 . Let w be a reset word of minimum length for Vn. Since an is the only non-
permutation letter, we must have w = w′an for some w′ such that |Qn·w

′| > 1.
This is only possible when Qn·w

′ = {q0, q1} whence Qn·w = {q0}. Consider
the function f from the set of all non-empty subsets of Qn into the set of non-
negative integers defined as follows: if S = {qs1 , . . . , qst}, then f(S) =

∑t

i=1 si.

Clearly, f({q0}) = 0 and f(Qn) =
n(n−1)

2 . For any set S and any letter aj , we
have f(S·aj) ≥ f(S) − 1 since each letter only exchanges two adjacent states
or maps q1 and q0 to q0. Thus, when we apply the word w letter-by-letter, the
value of f after the application of the prefix of w of length i cannot be less than
n(n−1)

2 − i. Hence, to reach the value 0, we need at least n(n−1)
2 letters. ⊓⊔

2.3. Upper Bound on the Reset Threshold. We now provide a quadratic
upper bound on the reset words of automata with the transition monoid equal
to Tn. Our proof is inspired by the method of Rystsov [32] adapted to our case.

Let A = 〈Q,Σ, δ〉 be a DFA. Given a proper non-empty subset R ⊂ Q and a
word w over Σ, we say that R can be extended by w if the cardinality of the set
Rw−1 = {q ∈ Q | q·w ∈ R} is greater than |R|. Now assume that |Q| = n and the
transition monoid of A coincides with the full transformation monoid Tn. Then
there is a letter x of rank n−1. The set Q\Q·x consists of a unique state, which
is called the excluded state for x and is denoted by excl(x). Furthermore, the set
Q·x contains a unique state p such that p = q1·x = q2·x for some q1 6= q2; this
state p is called the duplicate state for x and is denoted by dupl(x). We notice
that a non-empty subset R ⊂ Q can be extended by x if and only if dupl(x) ∈ R
and excl(x) /∈ R. Moreover, if a word w is a product of permutation letters, R can
be extended by the word wx if and only if dupl(x) ∈ Rw−1 and excl(x) /∈ Rw−1.
To better understand which extensions are possible, we construct a series of
directed graphs (digraphs) Γi, i = 0, 1, . . . , with the set Q as the vertex set.

The digraph Γ0 has the set E0 = {(excl(x), dupl(x))} as its edge set. LetΠ be
the set of permutation letters of A . Notice thatΠ generates the symmetric group
Sn. ByΠ

i we denote the set of words of length at most i over the letters inΠ . The
digraph Γi for i > 0 has the edge set Ei = {(excl(x)·w, dupl(x)·w) | w ∈ Πi}.
The digraphs Γi, i = 0, 1, . . . , form a sort of stratification for the graph Γ∞ with
the edge set E∞ = ∪∞

i=0Ei; the latter digraph has been studied in [32] and [6]
(in the context of arbitrary completely reachable automata). Observe that none
of the digraphs Γi, i = 0, 1, . . . , have loops.
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Recall that a digraph is said to be strongly connected if for every pair of its
vertices, there exists a directed path from the first vertex to the second. We need
the two following lemmas.

Lemma 5. If the digraph Γk is strongly connected, then every proper non-empty

subset in Q can be extended by a word of length at most k + 1.

Proof. let R be a proper non-empty subset in Q. If Γk is strongly connected,
there exists an edge (q, p) ∈ Ek that connects Q \ R and R in the sense that
q ∈ Q \ R while p ∈ R. As (q, p) ∈ Ek, there exists a word w ∈ Πk such that
(q, p) = (excl(x)·w, dupl(x)·w). Then dupl(x) ∈ Rw−1 and excl(x) /∈ Rw−1,
whence the word xw extends R and has length at most k + 1. ⊓⊔

Lemma 6. The digraph Γ2n−3 is strongly connected.

Proof. We start with showing that the digraph Γn−1 contains an oriented cycle.
Consider the underlying digraph ∆ of the automaton 〈Q,Π, δ|Q×Π〉, i.e., the

digraph with the vertex set Q and the edge set {(q, q·a) | q ∈ Q, a ∈ Π}. This
digraph is strongly connected since Π generates the whole symmetric group Sn.
Therefore, for every q ∈ Q·x, there exists a directed path in ∆ from excl(x) to

q. If one takes such a path excl(x)
a1−→ · · ·

aℓ−→ q of minimum length, it does
not traverse any vertex in Q more than once, whence the length ℓ of the path
is at most n − 1. Thus, the word u = a1 · · · aℓ belongs to Πn−1 and the pair
(excl(x)·u, dupl(x)·u) is an outgoing edge of the vertex q = excl(x)·u in the
digraph Γn−1. We see that every state in Q·x has an outgoing edge in Γn−1.
Now, we can walk along the edges of Γn−1, starting at excl(x), which has the
outgoing edge (excl(x), dupl(x)), until we reach an already visited state, thus
getting an oriented cycle in the graph.

If Γ = (V,E) is a digraph, we say that a vertex v′ ∈ V is reachable from a
vertex v ∈ V if either v′ = v or there is a directed path from v to v′. The mutual
reachability relation is an equivalence on the set V , and the digraphs induced on
the classes of the mutual reachability relation are either strongly connected or
singletons (i.e., digraphs with 1 vertex and no edge). Slightly abusing terminol-
ogy, we call these induced digraphs (including singletons) the strongly connected

components of the digraph Γ .
Consider the strongly connected components of the digraph Γn−1 and let

C1, . . . , Cm denote their vertex sets. Without any loss we may assume that |C1| ≥
|C2| ≥ · · · ≥ |Cm|. Observe that m < n since Γn−1 contains an oriented cycle
which is not a loop whence at least one strongly connected component is non-
singleton. (Recall that digraphs of the form Γi are loopless.) If m = 1, then
already the digraph Γn−1 is strongly connected, and we are done. Otherwise
we analyze the evolution of the partition of Γk with k ≥ n − 1 into strongly
connected components under the action of the letters in Π . Since Π generates
the symmetric group Sn, it cannot preserve any non-trivial partition of Q. Thus,
there is a non-singleton component C among C1, . . . , Cm and a letter a in Π
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whose action sends two elements of C to different components, i.e. C·a∩Ci 6= ∅

and C·a ∩ Cj 6= ∅ for some Ci 6= Cj .
By the definition of the sets Ek, if (p, q) ∈ En−1, then (p·a, q·a) ∈ En.

Therefore each edge from En−1 that connects some vertices in Cs, s = 1, . . . ,m,
translates into an edge from En that connects the images of these vertices in
Cs·a. Therefore, the digraphs of Γn induced on the sets C1·a, . . . , Cm·a are either
strongly connected or singletons. In particular, the digraph of Γn induced on C·a
is strongly connected. Since C·a ∩Ci 6= ∅ and C·a ∩Cj 6= ∅, the digraph of Γn

induced on the set C·a ∪ Ci ∪ Cj also is strongly connected. This implies that
the number m′ of strongly connected components in Γn is less than m. If Γn is
not yet strongly connected, the same reasoning applied to its strongly connected
components, shows that the number of strongly connected components in Γn+1

is less than m′, etc.
Since at each step the number of strongly connected components is reduced

at least by 1, we conclude that we reach a strongly connected digraph in at most
n− 2 steps. Therefore, Γ2n−3 is strongly connected. ⊓⊔

Theorem 7. Let A be an n-state automaton with the transition monoid equal

to Tn. The reset threshold of A is at most 2n2 − 6n+ 5.

Proof. Let x be a letter of rank n−1 and h = dupl(x). We extend the set {h} by
x, getting a subset R2 with |R2| ≥ 2. Lemmas 5 and 6 imply that proper non-
empty subsets in Q can be extended by words of length at most 2n− 2. Starting
with R2, we extend subsets until we reach the full state set. Let ui be the word
of length at most 2n− 2 used for the i-th of these extensions and let m be the
number of the extensions. Observe that m ≤ n− 2. Clearly, the word um · · ·u1x
resets A and has the length at most 1 + (n− 2)(2n− 2) = 2n2 − 6n+ 5. ⊓⊔

Remark 8. Let A = 〈Q,Σ, δ〉 be an n-state DFA that has a letter of rank
n − 1, and let P be the subgroup of the symmetric group Sn generated by the
permutation letters from Σ. Our proof of Theorem 7 actually works in the case
if P is a 2-transitive group, that is, P acts transitively on the set of ordered
pairs of Q.

3 Bounds on the Diameter of the Pair Digraph

In this section we present a lower bound on the largest diameter of the pair
digraph P (A) for A ⊆ Sn. We proceed by presenting subsets A ⊆ Sn for every

odd n whose diameter is n2

4 + o(n2). In order to simplify the presentation, we
mostly use automata terminology and describe the corresponding examples as
a family of automata Fn = 〈Qn, A, δ〉 (the input letters of Fn form the subset
A). We let Qn = {q1, . . . , qn} and denote pairs of states such as {qi, qj} simply
by qiqj .

The automaton F7 shown in Fig. 4 is the first of the family Fn. The digraph
of pairs of its states is shown in Fig. 5. One can verify that the shortest word
mapping q2q4 to q4q7 has length 15.
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q1

q2

q3

q4

q5q6 q7
a

b

a

b

a

b

a

b

b

ab

a

a

b

Fig. 4: The automaton F7

The automata of the family are obtained recursively, starting with F7. From
Fn, we construct Fn+2. The effect of the letters is the same for the states
q1, . . . , qn−2 in Fn and Fn+2. The effect of the letters a and b at the states
qn−1, qn, qn+1 and qn+2 is defined as follows: the letters mapping qn−1 and qn
to themselves in Fn exchange qn−1 with qn+1 and qn with qn+2 respectively in
Fn+2. The other letter maps qn+1 and qn+2 to themselves and qn−1, qn to qn−3

and respectively qn−2. The result is shown in Fig. 6 (for n ≡ 3 (mod 4)), in
which k stands for n−5

2 .

Theorem 9. For odd n ≥ 7, the diameter of the pair digraph of the automaton

Fn is at least n2

4 + o(n2).

Proof sketch. For the automaton Fn (n > 7, n ≡ 3 (mod 4)), we claim that any

word mapping q2q4 to qk+2qk+4 with k = n−5
2 has length at least n2

4 + 5n
4 −7. For

this, we define a function N which associates a non-negative integer N(qiqj) to
each pair qiqj , i < j. This function is such that if a pair qiqj is mapped by a or b
to a pair qi′qj′ , then N(qi′qj′ ) ≥ N(qiqj)− 1. This implies that if (qiqj)·w = qsqt
for some word w, then the length of w is at least N(qiqj)−N(qsqt). The number

assigned to qk+2qk+4 is 0, while the number given to q2q4 is equal to n2

4 + 5n
4 −7,

thus, the claim holds.

q2q4q1q3

q5q6

q6q7 q1q7

q2q5

q3q7

q4q5

q5q7

q2q3

q3q4 q1q4

q1q2 q2q6

q1q6

q4q6

q3q6

q1q5

q2q7

q3q5

q4q7a

b

a

b

a

b

a
b

a
b

a

b

a ba

b

b

a a

b

a
b

a

b

a b

a

b

a
b

a
b

a

b

a

b

a

b

a

b

a
b

Fig. 5: The pair digraph of F7
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q1

q2

q3

q4

q5q6 · · ·· · · q2k+3 q2k+5q2k+4

a

b

a

b

a

b

a

b

b

a

b

ab

a a

b

b

ab

ab

a

Fig. 6: The automaton F2k+5, with k odd

In addition, we describe a word of length n2

4 + 5n
4 − 7 that maps q2q4 to

qk+2qk+4. Therefore
n2

4 + 5n
4 − 7 is the exact value of the “distance” between

these two particular pairs.
A similar argument holds for n ≡ 1 (mod 4), with the distance between two

particular pairs of states being at least n2

4 + 5n
4 − 7.5. ⊓⊔

Proof. Recall that we aim to define a function N which associates an integer
N(qiqj) ≥ 0 to each pair qiqj , i < j, and has the following property:

if qiqj is mapped by a or b to a pair qi′qj′ , then N(qi′qj′) ≥ N(qiqj)− 1. (3)

For an illustration, see Fig. 7 which presents the pair digraph of the automaton
F7 with the values of the corresponding function N shown at each vertex.

1514
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11

9

8 7

6 5

6

7
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2

1

0a

b

a

b

a

b

a
b

ab a

b

a ba

b

b

a a

b

a
b

a

b

a b

a

b

a
b

a
b

a

b

a

b

a

b

a

b

a
b

Fig. 7: The pair digraph of F7, with function values

For n > 7, n ≡ 3 (mod 4), the values of the function N are provided in the
two lists below. Some of the formulas in the lists involve one or two positive
integer parameters denoted by m and m′. We always use m′ for the index of the
first state of a pair and m for the index of the second state; we do not specify
the ranges of these parameters as they should be clear from the context. We use
the following conventions: k = n−5

2 , N1 = k+3
2 , N2 = (k + 4)(k − 1).
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Our first list contains the values of N for the pairs that involve one or two
of the “central” states q1, q2, q3, q4 of the automaton Fn or one or two of its
“extreme” states q2k+4 and q2k+5. (Our terminology follows the pictorial pre-
sentation of Fn in Fig. 6.)

– N(q1q2) = N1 +N2 + 2k + 1;
– N(q1q3) = N1 +N2 + 4k + 7;
– N(q1q4) = N1 +N2 + 2k + 2;

– N(q1q4m+1) =

{

k+3
2 if m = N1 − 1,

N1 + (k + 4)(k − 2m− 1) + 2k + 3 otherwise;

– N(q1q4m+2) = N1 + (k + 4)(k − 2m− 1) + 2k − 2m+ 2;

– N(q1q4m+3) =

{

N1 +N2 + 2k + 6 if m = 1,

N1 + (k + 4)(k − 2m+ 1) + 2k + 8 otherwise;

– N(q1q4m+4) = N1 + (k + 4)(k − 2m+ 1) + 2k − 2m+ 3;
– N(q1q2k+4) = N1 + k + 2;
– N(q1q2k+5) = N1 + 2k + 8;

– N(q2q3) = N1 +N2 + 2k + 4;
– N(q2q4) = N1 +N2 + 4k + 8;

– N(q2q4m+1) =

{

N1 +N2 + 2k + 5 if m = 1,

N1 + (k + 4)(k − 2m+ 1) + 2k + 7 otherwise;

– N(q2q4m+2) = N1 + (k + 4)(k − 2m+ 1) + 2k − 2m+ 2;
– N(q2q4m+3) = N1 + (k + 4)(k − 2m− 1) + 2k + 6;
– N(q2q4m+4) = N1 + (k + 4)(k − 2m− 1) + 2k − 2m+ 1;
– N(q2q2k+4) = N1 + k + 1;
– N(q2q2k+5) = N1 − 1;

– N(q3q4) = N1 +N2 + 2k + 3

– N(q3q4m+1) =

{

k−1
2 if m = N1 − 1,

N1 + (k + 4)(k − 2m− 1) + 2k + 5 otherwise;

– N(q3q4m+2) = N1 + (k + 4)(k − 2m− 1) + 2k − 2m+ 4;

– N(q3q4m+3) =

{

N1 +N2 + 2k + 5 if m = 1,

N1 + (k + 4)(k − 2m+ 1) + 2k + 6 otherwise;

– N(q3q4m+4) = N1 + (k + 4)(k − 2m+ 1) + 2k − 2m+ 1;
– N(q3q2k+4) = N1 + k;
– N(q3q2k+5) = N1 + 2k + 6;

– N(q4q4m+1) =

{

N1 +N2 + 2k + 4 if m = 1,

N1 + (k + 4)(k − 2m+ 1) + 2k + 5 otherwise;

– N(q4q4m+2) = N1 + (k + 4)(k − 2m+ 1) + 2k − 2m+ 4;
– N(q4q4m+3) = N1 + (k + 4)(k − 2m− 1) + 2k + 4;
– N(q4q4m+4) = N1 + (k + 4)(k − 2m− 1) + 2k − 2m+ 3;
– N(q4q2k+4) = N1 + k + 3;
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– N(q4q2k+5) = N1 + 1;

– N(q4m′+1q2k+4) =

{

N1 +N2 + 3k + 7 if 2m′ = k + 1,

N1 + (k + 4)(2m′) + k + 1 otherwise;

– N(q4m′+1q2k+5) =

{

N1 + (k + 4)(2m′ − 2) + 2k + 4 + 2m′ if m′ = N1 − 1;

N1 + (k + 4)(2m′ − 2) + 2k + 5 + 2m′ otherwise;

– N(q4m′+2q2k+4) = N1 + (k + 4)2m′ + k + 1 + 4m′;

– N(q4m′+2q2k+5) =











N1 + 2k + 9 if m′ = 1,

N1 +N2 + 2k +m′ + 8 if 2m′ = k + 1,

N1 + (k + 4)(2m′ − 2) + 2k + 2m′ + 7 otherwise;

– N(q4m′+3, q2k+4) = N1 + (k + 4)(2m′) + k;

– N(q4m′+3q2k+5) =

{

N1 + (k + 4)(2m′) + 2k + 2m′ + 5 if 2m′ = k − 1,

N1 + (k + 4)(2m′) + 2k + 2m′ + 6 otherwise;

– N(q4m′+4q2k+4) = N1 + (k + 4)2m′ + k + 2 + 4m′;

– N(q4m′+4, q2k+5) =

{

N1 +N2 + 3k + 5 if 2m′ = k − 1,

N1 + (k + 4)(2m′) + 2k + 2m′ + 8 otherwise;

– N(q2k+4q2k+5) = N1 +N2 + 3k + 6.

Our second list contains the values of N for the remaining pairs. In addition
to our earlier conventions, we also use M = m+m′ and M ′ = m−m′ here.

– N(q4m′+1q4m+1) = N1 + (k + 4)(k − 2M ′ + 1) + 2k + 2m′ + 5;

– N(q4m′+1q4m+2) =

{

N1 +N2 + 4k + 8− 2m if m′ = m,

N1 + (k + 4)(k − 2M ′ + 1) + 2k − 2m+ 2 otherwise;

– N(q4m′+1q4m+3) =











N1 + (k + 4)(k − 2M − 1)) + 2k + 2m′ + 4 if 2M < k + 1;
4m−k−1

2 if 2M = k + 1;

N1 + (k + 4)(2M − k − 3) + 2k + 2m′ + 5 otherwise;

– N(q4m′+1q4m+4) =











N1 + (k + 4)(k − 2M − 1) + 2k − 2m+ 3 if 2M < k + 1;

N1 + 2m if 2M = k + 1;

N1 + (k + 4)(2M − k − 3) + 2k + 2m+ 8 otherwise;

– N(q4m′+2q4m+1) =

{

N1 +N2 + 2k + 2m′ + 5 if m′ = m− 1,

N1 + (k + 4)(k − 2M ′ + 1) + 2k + 2m′ + 7 otherwise;

– N(q4m′+2q4m+2) = N1 + (k + 4)(k − 2M ′ + 1) + 2k − 2m+ 4m′ + 2;

– N(q4m′+2q4m+3) =











N1 + (k + 4)(k − 2M − 1) + 2k − 2m+ 4 if 2M < k + 1;

N1 + 2m′ − 1 if 2M = k + 1;

N1 + (k + 4)(2M − k − 3) + 2k + 2m′ + 7 otherwise;

– N(q4m′+2q4m+4) =











N1 + (k + 4)(k − 2M − 1) + 2k − 2m′ + 1 if 2M < k + 1;

N1 + k + 2m′ + 1 if 2M = k + 1;

N1 + (k + 4)(2M − k − 1) + 4m′ + 2m otherwise;
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– N(q4m′+3q4m+1) =











N1 + (k + 4)(k − 2M − 1)) + 2k + 2m′ + 5 if 2M < k + 1;
4m−k−3

2 if 2M = k + 1;

N1 + (k + 4)(2M − k − 3) + 2k + 2m′ + 6 otherwise;

– N(q4m′+3q4m+2) =











N1 + (k + 4)(k − 2M + 1) + 2k − 2m+ 4 if 2M < k + 1;

N1 + 2m− 1 if 2M = k + 1;

N1 + (k + 4)(2M − k − 3) + 2k + 2m+ 7 otherwise;

– N(q4m′+3q4m+3) =

{

N1 + (k + 4)(k − 2M ′ + 1) + 2k + 2m+ 3 if m = m′ + 1,

N1 + (k + 4)(k − 2M ′ + 1) + 2k + 2m′ + 6 otherwise;

– N(q4m′+3q4m+4) =

{

N1 +N2 + 4k + 7− 2m if m′ = m,

N1 + (k + 4)(k − 2M ′ + 1) + 2k − 2m+ 1 otherwise;

– N(q4m′+4q4m+1) =











N1 + (k + 4)(k − 2M − 1) + 2k − 2m′ + 3 if 2M < k + 1;

N1 + 2m′ if 2M = k + 1;

N1 + (k + 4)(2M − k − 3) + 2k + 2m′ + 8 otherwise;

– N(q4m′+4, q4m+2) =











N1 + (k + 4)(k − 2M − 1) + 2k − 2m′ + 1 if 2M < k + 1;

N1 + k + 2m′ + 2 if 2M = k + 1;

N1 + (k + 4)(2M − k − 1) + 4m+ 2m′ − 1 otherwise;

– N(q4m′+4q4m+3) =

{

N1 +N2 + 2k + 2m′ + 6 if m = m′ + 1,

N1 + (k + 4)(k − 2M ′ + 1) + 2k + 2m′ + 8 otherwise;

– N(q4m′+4q4m+4) = N1 + (k + 4)(k − 2M ′ + 1) + 2k − 2m+ 4m′ + 3.

It can be routinely verified that the function N defined this way satisfies
(3). Therefore the shortest word mapping q2q4 to qk+2qk+4 is at least N(q2q4)−
N(qk+2qk+4) letters long. Unfolding the definition, we obtain N(qk+2qk+4) = 0
and

N(q2q4) = N1 +N2 + 4k + 8 =
k + 3

2
+ (k + 4)(k − 1) + 4k + 8

= k2 +
15k

2
+

11

2
=

n2

4
+

5n

4
− 7.

In addition, Table 2 provides the construction for a word of length n2

4 + 5n
4 −7

which maps q2q4 to qk+2qk+4. The word is composed of several factors being
labels of a certain segments of the directed path from q2q4 to qk+2qk+4 in the
pair digraph of the automaton Fn. For each segment we give its start and end
pairs as well as its label and length. There are 4 “starting” factors of total length
4k + 8, followed by 2(k − 1) “inner” factors, forming k−1

2 words of total length

2k+8 each, and 2 “finishing” factors of total length k+3
2 . Altogether they indeed

form a word of length

4k + 8 + k2 + 3k − 4 +
k + 3

2
= k2 +

15k

2
+

11

2
=

n2

4
+

5n

4
− 7.
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Sum of lengths
Start pair End pair Factor Length of the factor of factors

within the group

q2q4 q1q3 a 1

q1q3 q1q7 (ba)kb 2k + 1
q1q7 q3q8 aba3ba 7

q3q8 q1q11 (ba)k−1b 2k − 1
4k + 8

q1q11 q1q5 a3ba 5
q1q5 q3q6 b 1
q3q6 q3q12 a3ba 5

q3q12 q1q15 (ba)k−2b 2k − 3

q1q15 q1q9 a3ba 5
q1q9 q3q10 bab 3
q3q10 q3q16 a3ba 5
q3q16 q1q19 (ba)k−3b 2k − 5

. . . . . . . . . . . .

q1q2k+1 q1q2k−5 a3ba 5

q1q2k−5 q3q2k−4 (ba)
k−5

2 b k − 4
q3q2k−4 q3q2k+2 a3ba 5

q3q2k+2 q1q2k+5 (ba)
k+1

2 b k + 2

q1q2k+5 q1q2k−1 a3ba 5

q1q2k−1 q3q2k (ba)
k−3

2 b k − 2
q3q2k q3q2k+4 a3ba 5

q3q2k+4 q1q2k+3 (ba)
k−1

2 b k

(2k + 8)
k − 1

2

= k2 + 3k − 4

q1q2k+3 q3q2k+3 a2 2

q3q2k+3 qk+2qk+4 (ba)
k−3

4 b
k − 1

2
k + 3

2

Table 2: Construction of a word bringing q2q4 to qk+2qk+4

Our numerical experiments confirm that n2

4 + 5n
4 − 7 is indeed the diameter

of the pair graph of the automaton Fn for n ≡ 3 (mod 4) from n = 11 to n = 31

while n2

4 + 5n
4 − 7.5 is the exact value of the diameter for n ≡ 1 (mod 4) from

n = 13 to n = 29.
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We have also computed the largest diameter of the pair digraph P (A) for
all A ⊆ Sn with |A| = 2 and n = 5, 7, 9 and performed a number of random
sampling experiments with two permutations for larger values of n. The experi-
mental results suggest that the pair digraph of the automaton Fn has the largest
diameter among all possible pair digraphs. Thus, we formulate the following:

Conjecture 3 The diameter of the pair digraph for a subset of Sn is bounded

above by n2

4 + o(n2).

Conclusion

We studied the hybrid Babai–Černý problem, where the question is to find tight
bounds on the reset threshold for automata with the full transition monoid. We
presented a series of n-state automata Vn in this class with the reset threshold

equal to n(n−1)
2 , thus establishing a lower bound for the problem, and found an

upper bound with the same growth rate, namely, 2n2+o(n2). We also described a

series of n-state automata with diameter of the pair digraph equal to n2

4 +o(n2).
For follow-up work, one direction is to refine the bounds with respect to the

constants that do not match yet. Also, a lower bound for the hybrid problem
using only three letters (generators) is of interest, since the number of letters of
the presented family Vn is equal to the number of states.
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