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Non-self-embedding grammars are a restriction of context-free grammars which does not
allow to describe recursive structures and, hence, which characterizes only the class of reg-
ular languages. A double exponential gap in size from non-self-embedding grammars to
deterministic �nite automata is known. The same size gap is also known from constant-
height pushdown automata and 1-limited automata to deterministic �nite automata.
Constant-height pushdown automata and 1-limited automata are compared with non-
self-embedding grammars. It is proved that non-self-embedding grammars and constant-
height pushdown automata are polynomially related in size. Furthermore, a polynomial
size simulation by 1-limited automata is presented. However, the converse transformation
is proved to cost exponential. Finally, a di�erent simulation shows that also the conver-
sion of deterministic constant-height pushdown automata into deterministic 1-limited
automata costs polynomial.

1. Introduction

It is well known that the extra capability of context-free grammars with respect

to regular ones is that of describing recursive structures as, for instance, nested

parentheses, arithmetic expressions, typical programming language constructs. In

terms of recognizing devices, this capability is implemented through the pushdown

store, which is used to extend �nite automata in order to make the resulting model,

namely pushdown automata, equivalent to context-free grammars.

∗A preliminary version of this paper has been presented at CIAA 2018 [B. Guillon, G. Pighizzini
and L. Prigioniero, Non-Self-Embedding Grammars, Constant-Height Pushdown Automata, and
Limited Automata, CIAA 2018, LNCS 10977 (Springer, 2018), pp. 186�197].
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To emphasize this capability, in one of his pioneering papers, Chomsky inves-

tigated the self-embedding property [5]: a context-free grammar is self-embedding

if it contains a variable A which, in some sentential form, is able to reproduce it-

self surrounded by two nonempty strings α and β, in symbols A
?

==⇒ αAβ. Roughly

speaking, this means that the variable A is �truly� recursive. He proved that, among

all context-free grammars, only self-embedding ones can generate nonregular lan-

guages. Hence, non-self-embedding grammars are no more powerful than �nite au-

tomata.

The relationships between the description sizes of non-self-embedding grammars

and �nite automata have been investigated in [1] and [17]. In the worst case, the size

of a deterministic automaton equivalent to a given non-self-embedding grammar

is doubly exponential in the size of the grammar. The gap reduces to a simple

exponential in the case of nondeterministic automata.

Other formal models characterizing the class of regular languages and exhibiting

gaps of the same order with respect to deterministic and nondeterministic automata

have been investigated in the literature. Two of them are constant-height pushdown

automata and 1-limited automata. The aim of this paper is to study the size relation-

ships between non-self-embedding grammars, constant-height pushdown automata,

and 1-limited automata, three models that restrict context-free acceptors to the

level of regular recognizers.

Constant-height pushdown automata are standard nondeterministic pushdown

automata where the amount of available pushdown store is �xed. Hence, the number

of their possible con�gurations is �nite. This implies that they are no more powerful

than �nite automata. The exponential and double exponential gaps from constant-

height pushdown automata to nondeterministic and deterministic automata have

been proved in [6]. Furthermore, in [2] the authors showed the interesting result that

the gap from nondeterministic to deterministic constant-height pushdown automata

is double exponential also. We can observe that both non-self-embedding grammars

and constant-height pushdown automata are restrictions of the corresponding gen-

eral models, where true recursions are not possible. In the �rst part of the paper we

compare these two models by proving that they are polynomially related in size.

In the second part, we turn our attention to the size relationships between

1-limited automata and non-self-embedding grammars. For each integer d > 0, a

d-limited automaton is a one-tape nondeterminstic Turing machine which is allowed

to rewrite the content of each tape cell only in the �rst d visits. These models have

been introduced by Hibbard in 1967, who proved that for each d ≥ 2 they character-

ize context-free languages [7]. This yields a hierarchy of acceptors, merely obtained

by restricting one-tape Turing machines, corresponding to Chomsky's classi�ca-

tion. Furthermore, as shown in [21, Thm. 12.1], 1-limited automata are equivalent

to �nite automata. This equivalence has been investigated from the descriptional

complexity point of view in [16], by proving exponential and double exponential gaps

from 1-limited automata to nondeterministic and deterministic �nite automata, re-

spectively. Our main result is a construction transforming each non-self-embedding
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Figure 1. Some bounds discussed in the paper. Dotted arrows denote trivial relationships, while
the dashed arrow indicates the famous Sakoda and Sipser's question [20]. The exponential cost of
the simulation of h-pdas by 2nfas is discussed at the end of Section 4.2.

grammar into a 1-limited automaton of polynomial size. As a consequence, each

constant-height pushdown automaton can be transformed into an equivalent 1-lim-

ited automaton of polynomial size. We also prove, using a di�erent construction,

that even the conversion of deterministic constant-height pushdown automata into

deterministic 1-limited automata costs polynomial in size. For the converse transfor-

mation, we show that an exponential size is necessary. Indeed, we prove a stronger

result by exhibiting, for each n > 0, a language Ln accepted by a two-way determin-

istic �nite automaton with O(n) states, which requires exponentially many states

to be accepted even by an unrestricted pushdown automaton. From the cost of the

conversion of 1-limited automata into nondeterministic automata, it turns out that

for the conversion of 1-limited automata into non-self-embedding grammars an ex-

ponential size is also su�cient. Figure 1 summarizes the main results discussed in

the paper.

2. Preliminaries

Given a set S, we denote by #S its cardinality, and by 2S the family of all its

subsets. We assume the reader familiar with notions from formal languages and

automata theory, in particular with the fundamental variants of �nite automata

(1dfas, 1nfas, 2dfas, 2nfas, for short, where 1 and 2 mean one-way and two-way,

respectively, and d and n mean deterministic and nondeterministic, respectively).

For further details see, e.g., [8]. The empty word is denoted by ε. Given a word u ∈
Σ∗, we denote by |u| its length. For two-way devices operating on a tape, we use

the special symbols . and / not belonging to the input alphabet, respectively called

the left and the right endmarkers, that surround the input word.

Given a context-free grammar (cfg, for short) G = 〈V,Σ, P, S〉, we denote

by L (G) the language it generates. The relations ⇒ and
?

==⇒ are de�ned in the

usual way. For a �xed alphabet Σ, we measure the size of G by considering the to-

tal number of symbols used to specify it, de�ned as
∑

(A→α)∈P (2+ |α|), cf. [10]. The
production graph of G is a directed graph which has V as vertex set and contains an
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edge from A to B if and only if there is a production A→ αBβ in P , for A,B ∈ V
and some α, β ∈ (V ∪ Σ)∗. The strongly connected components of the production

graph induce a partial order on variables: a variable A is smaller than B if there

exists a path from A to B and no path from B to A.

De�nition 1. Let G = 〈V,Σ, P, S〉 be a context-free grammar. A variable A ∈ V is

said to be self-embedded when there are two strings α, β ∈ (V ∪Σ)+ such that A
?

==⇒
αAβ. The grammar G is self-embedding if it contains at least one self-embedded

variable, otherwise G is non-self-embedding (nse, for short).

Chomsky proved that nse grammars generate only regular languages, i.e., they

are no more powerful than �nite automata [4,5]. As shown in [1], given a grammar G

it is possible to decide in polynomial time whether or not it is nse.

A pushdown automaton (pda) is usually obtained from a nondeterministic �-

nite automaton by adding a pushdown store, containing symbols from a pushdown

alphabet Γ. Following [2,6], we consider pdas in the following form, where the transi-

tions manipulating the pushdown store are clearly distinguished from those reading

the input tape. Furthermore, we consider a restriction of the model in which the

capacity of the pushdown store is bounded by some constant h ∈ N.

De�nition 2. For h ∈ N, a pushdown automaton of height h (h-pda) is a tuple

A = 〈Q,Σ,Γ, δ, q0, F 〉 where Q is the set of states, q0 ∈ Q is the initial state,

F ⊆ Q is the set of �nal states, Σ is the input alphabet, Γ is the pushdown alphabet,

and δ ⊆ Q × ({ε} ∪ Σ ∪ {−,+}Γ) × Q is the transition relation with the following

meaning:

• (p, ε, q) ∈ δ: A can reach the state q from the state p without using the input

tape nor the pushdown store (these transitions are also called ε-moves);

• (p, a, q) ∈ δ: A can reach the state q from the state p by reading the symbol a

from the input but without using the pushdown store;

• (p,−X, q) ∈ δ: if the symbol on the top of the pushdown store is X, A can

reach the state q from the state p by popping o� X, not using the input

tape;

• (p,+X, q) ∈ δ: if the number of symbols contained in the pushdown store is

less than h, A can reach the state q from the state p by pushing X on the

pushdown store, without using the input tape.

The model accepts an input word w ∈ Σ∗ if, starting from the leftmost tape cell

in the initial state q0 with an empty pushdown store, it can eventually reach an

accepting state qf ∈ F , after having read all the input symbols.

Without the restriction on the pushdown height, the model is equivalent to clas-

sical pushdown automata, while preserving comparable size (namely, translations

both ways have at most polynomial costs, see [2]). By contrast, 0-pdas are exactly

1nfas, since they can never push symbols.
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An h-pda can be replaced by an equivalent standard pda without the built-in

limit on pushdown size, by counting in the �nite control the pushdown height, with

an increase in the number of states that is linear in h. For this reason, the size of

an h-pda over a �xed input alphabet Σ is given by a polynomial in #Q, #Γ, and

h [6].

One-limited automata (1-las, for short) extend two-way �nite automata by pro-

viding the ability to overwrite each tape cell at its �rst visit by the head. This

extension does not increase the expressiveness of the model. However, they can be

signi�cantly smaller than equivalent �nite automata. For instance, the size gaps

from 1-las to 1nfas and 1dfas are exponential and double exponential, respec-

tively [16], while 2nfas can require a size that is exponential with respect to that

of deterministic 1-las even in the unary case, as shown in [18] improving [11,12].

De�nition 3. A 1-limited automaton is a tuple A = 〈Q,Σ,Γ, δ, q0, F 〉, where

Q,Σ, q0, F are de�ned as for 2nfas, Γ is a �nite working alphabet such that Σ ⊆ Γ,

and δ : Q×Γ./ → 2Q×Γ./×{−1,+1} is the transition function, where Γ./ = Γ∪{., /}
with ., / /∈ Γ.

In one move, according to δ and to the current state, A reads a symbol from the

tape, changes its state, replaces the symbol just read by a new symbol, and moves its

head to one position backward or forward. However, replacing symbols is subject to

some restrictions, which, essentially, allow to modify the content of a cell during the

�rst visit only. Formally, symbols from Σ shall be replaced by symbols from Γ \ Σ,

while symbols from Γ./ \ Σ are never overwritten. In particular, at any time, both

special symbols . and / occur exactly once on the tape at the respective left and

right boundaries. Acceptance for 1-las can be de�ned in several ways, for instance

we can say that a 1-la A accepts an input word if, starting from the left endmarker

in the initial state, a computation eventually reaches the right endmarker in an

accepting state. The language accepted by A is denoted by L (A).

The size of a 1-la 〈Q,Σ,Γ, δ, q0, F 〉 over a �xed alphabet Σ is given by a poly-

nomial in #Q and #Γ. The size of an n-state nfa (resp., dfa) is quadratic (resp.,

linear) in n.

3. nse Grammars versus h-pdas

In this section we prove that nse grammars and h-pdas are polynomially related

in size.

3.1. From nse grammars to h-pdas

In [1], the authors showed that nse grammars admit a particular form based on a

decomposition into �nitely many simpler grammars, that will be now recalled.

First of all, we remind the reader that a grammar is said right-linear (resp.,

left-linear), if each production is either of the form A → wB (resp., A → Bw), or
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of the form A→ w, for some A,B ∈ V and w ∈ Σ∗. It is well known that right- or

left-linear grammars generate exactly the class of regular languages.

Given two cfgs G1 = 〈V1,Σ1, P1, S1〉 and G2 = 〈V2,Σ2, P2, S2〉 with V1∩V2 = ∅,
the ⊕-composition of G1 and G2 is the grammar G1 ⊕G2 = 〈V,Σ, P, S〉, where V =

V1∪V2, Σ = (Σ1 \ V2) ∪ Σ2, P = P1∪P2, and S = S1. Intuitively, the grammar G1⊕
G2 generates all the strings which can be obtained by replacing in any string w ∈
L (G1) each symbol A ∈ Σ1∩V2 with some string derived in G2 from the variable A

(notice that the de�nition of G1⊕G2 does not depend on the start symbol S2 of G2).

The ⊕-composition is associative and preserves the non-self-embedding property of

grammars [1]. The decomposition presented in the following result was obtained

in [1], while its size is discussed in [17].

Theorem 4. For each nse grammar G there exist g grammars G1, G2, . . . , Gg such

that G = G1⊕G2⊕· · ·⊕Gg, where each Gi is either left- or right-linear. Furthermore

the sum of sizes of Gi's is linear in the size of G.

Studying the relationships between nse grammars and pdas, in [1] the authors

claimed that from any nse grammar in canonical normal form (namely with pro-

ductions A → aγ or A → γ, A ∈ V , a ∈ Σ and γ ∈ V ∗), by applying a standard

transformation, it is possible to obtain an equivalent constant-height pda. Unfor-

tunately, the argument fails when the grammar contains left-recursive derivations,

i.e., derivations of the form A
?

==⇒ Aγ, with γ 6= ε. For them, the resulting pda

has computations with arbitrarily high pushdown stores. This problem can be �xed

by replacing each left-linear grammar corresponding to a strongly connected com-

ponent of the production graph of the given nse grammar by a set of equivalent

right-linear grammars, as shown in the following lemma:

Lemma 5. Each nse grammar can be converted into an equivalent nse grammar of

polynomial size which can be expressed as a ⊕-composition of right-linear grammars.

Proof. First of all, we observe that from each left-linear grammar G = 〈V,Σ, P, S〉
we can obtain an equivalent right-linear grammar G′ = 〈V ∪ {S′},Σ, P ′, S′〉 whose
size is linear in the size of G, with one more variable S′ /∈ V and the following

productions:

• B → w, for each S → Bw in P ,

• B → wA, for each A→ Bw in P (including S → Bw),

• S′ → wA, for each A→ w in P .

We point out that if we apply the above transformation to the grammar G|Ŝ =

〈V,Σ, P, Ŝ〉 obtained by changing the initial symbol of G into Ŝ ∈ V , then the set

of productions of the resulting grammar could be di�erent from P ′.

Now suppose to have an nse grammar G, where G = G1 ⊕ G2 ⊕ · · · ⊕ Gg
and each Gi is left-linear or right-linear. The idea is to de�ne an equivalent gram-

mar G′ by keeping each right-linear Gi, and by replacing each left-linear Gi by
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an equivalent right-linear grammar. However, when doing grammar ⊕-composition,

we could use derivations of Gi that begin from variables of Vi di�erent than the

start symbol Si. For this reason, from each left-linear Gi we obtain a family of

right-linear grammars G′iA, with A ∈ Vi, where G
′
iA is equivalent to the gram-

mar Gi|A = 〈Vi,Σi, Pi, A〉, and all the variables of Gi|A, with the exception of A,

are renamed in such a way that the grammars in the family do not share any vari-

able. Let G′i be a grammar whose sets of variables and productions are the unions

of the corresponding sets in Gi|A. We then replace each left-linear Gi by the right

linear grammar G′i. It can be veri�ed that the size of the resulting grammar G′ is

at most quadratic in the size of G.

We now prove that each nse grammar can be transformed into an h-pda of

polynomial size.

Theorem 6. Each nse grammar G = 〈V,Σ, P, S〉 can be converted into

an h-pda A with both h and the size of A polynomial in the size of G.

Proof. We start from a nse grammar G = G1 ⊕ G2 ⊕ · · · ⊕ Gg such that the

sum of the sizes of the Gi's is polynomial in the size of G, and where each Gi =

〈Vi,Σi, Pi, Si〉 is right-linear, by Theorem 4 and Lemma 5. First, as in the con-

struction presented in [1], we show that if a variable A ∈ Vi, 1 ≤ i ≤ g, derives a

string xα by a leftmost derivation, i.e., A
?

==⇒
lm

xα, where x is the longest pre�x

of xα consisting only of terminal symbols, then the length of α is linear in g − i.
More precisely, we claim that |α| ≤ K(g − i) + 1, where K is the maximum length

of production right-hand sides. We are going to prove this claim by induction on

the number h of steps of the derivation A
?

==⇒
lm

xα.

For h = 0 we have |α| = 1 and, hence, the claim is trivial.

Consider now h > 0. If α = ε then the claim is obvious. Otherwise, let A →
X1X2 · · ·Xs be the �rst production used in the derivation under consideration, i.e.,

A ==⇒ X1X2 · · ·Xs
?

==⇒
lm

α1α2 · · ·αs = xα

where Xk ∈ Σ ∪
⋃g
j=i Vj and Xk

?
==⇒
lm

αk, for k = 1, . . . , s. Let `, 1 ≤ ` ≤ s,

be the smallest index such that α` contains at least one variable. Hence, we can

write x = x′x′′ where x′ = α1α2 · · ·α`−1, x
′′α′ = α`, αk = Xk for k = `+ 1, . . . , s,

and α = α′X`+1 · · ·Xs.

Since the derivation X`
?

==⇒
lm

x′′α′ consists of less than h steps, from the in-

duction hypothesis we get that |α′| ≤ K(g − j) + 1, where j is the index satisfy-

ing X` ∈ Vj . Thus, |α| = |α′|+ s− ` ≤ K(g − j) + 1 + s− `.
Due to the fact that s − ` < K, when j > i from the last inequality we ob-

tain |α| < K(g − i) + 1. Furthermore, since Gi is right-linear, the case j = i could

occur only when ` = s, thus implying α = α′ and, hence |α| = |α′| ≤ K(g − i) + 1.

This completes the proof of the claim.
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From the grammar G we can apply a standard construction to obtain a pda M

which simulates a leftmost derivation of G, by replacing any variable A occurring

on the top of the pushdown by the right-hand side of a production A→ α, and by

popping o� the pushdown any terminal symbol occurring on the top and matching

the next input symbol (for details see, e.g., [8]). After consuming an input pre�x y,

the pushdown store of M can contain any string zα such that S
?

==⇒
lm

yzα, yz is

the longest pre�x of yzα consisting only of terminal symbols, and z is a suitable

factor of the string which was most recently pushed on the pushdown. Since |z| ≤ K
and, according to the �rst part of the proof |α| ≤ K(g − 1) + 1, we conclude that

the pushdown height is bounded by Kg + 1. Hence, M is a constant-height pda.

Finally, M can be converted in the form given in De�nition 2, by keeping its size

polynomial.

3.2. From h-pdas to nse grammars

We �rst show that, modulo acceptance of the empty word, with only a polynomial

increase in the size we can transform any h-pda in a special form. Subsequently,

we will associate to any h-pda in such form, a nse grammar and show that it is

equivalent to the h-pda.

Lemma 7. For each h-pda A = 〈Q,Σ,Γ, δ, q0, F 〉 there exists an h-pda A′ =

〈Q′,Σ,Γ′, δ′, q−, {q+}〉 and a mapping h̃ : Γ′ → {1, . . . , h} such that:

• L (A′) = L (A) \ {ε};
• A′ has polynomial size with respect to A;
• A′ accepts with empty pushdown;

• A′ has no ε-moves;

• each symbol X ∈ Γ′ can appear on the pushdown only at height h̃(X);

• every nonempty computation path of A′ starting and ending with the same

symbol X on the top of the pushdown, and never popping o� X in the

meantime, consumes some input letters.

Proof. First, we create two new states q− and q+, intuitively the new initial and

unique �nal states, respectively, and we add transitions (q−, ε, q0) and (p, ε, q+) for

each p ∈ F . Furthermore, in order to empty the pushdown store at the end of the

accepting computations, we add the transition (q+,−X, q+) for each X ∈ Γ. We

denote by Q? the set Q ∪ {q−, q+}.
Second, by extending Q? to Q? × {0, . . . , h}, we can suppose that each state

stores the current height of the pushdown as second component. After this change,

we set (q−, 0) as initial state and (q+, 0) as unique �nal state (as a consequence,

acceptance is necessarily made with empty pushdown). We then set Γ′ = Γ ×
{1, . . . , h} and we modify the transitions in such a way that a symbol (γ, i) ∈ Γ′

can be pushed only from a state in Q × {i− 1}, i.e., only at pushdown height i.

The mapping h̃ is then de�ned on Γ′ as the projection over the second component.
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Now, for each state (p, i) ∈ Q?×{0, . . . , h}, we de�ne the set E(p,i) of states (q, i)

which are accessible from (p, i) by using only transitions in

(Q? × {i, . . . , h})× ({ε} ∪ {−,+}Γ)× (Q? × {i, . . . , h}).

The restriction to states from Q?×{i, . . . , h} ensures that the considered computa-

tion paths can never pop o� symbols under their initial level, while the restriction

on the set of actions forbids any reading of the input. We �rst replace such compu-

tations by a single ε-move. This can be achieved as follows:

• we create a transition ((p, i), ε, (q, i)) for each (q, i) ∈ E(p,i);

• we add a new state component storing an element in {push, pop, read}
that saves the last operation performed during the computation (with the

natural meaning, ε-moves being not considered as operations) and we forbid

transitions of the form ((p, j),−X, (q, j − 1)) whenever the last operation

is push. (For simplicity, the newly-introduced component will not appear

in the end of the proof.)

After such transformation, the only computations that start and end with same

symbol on the top of the pushdown, without popping o� symbols under the cor-

responding level, and without scanning any input letter, are necessarily sequences

of ε-moves. Hence, each set E(p,i), which is kept unchanged by the above transfor-

mation, is now equal to the set of states accessible from (p, i) through a sequence

of ε-moves.

We �nally proceed to the elimination of ε-moves, using classical techniques. First,

we consider the set E(q−,0) of states that are accessible from the initial con�guration

through a sequence of ε-moves. For each state (p, 0) ∈ E(q−,0) and each transition

((p, 0),κ, (r, i)) with κ 6= ε, we create a transition ((q−, 0),κ, (r, i)). We then re-

move every ε-move from q−, i.e., every transition of the form ((q−, 0), ε, (p, 0)). As

a consequence, the empty word cannot be accepted by the resulting h-pda. How-

ever, since every computation of A accepting a nonempty word should perform a

transition of the form ((p, 0),κ, (r, i)) with κ 6= ε at some point, our transformation

preserves acceptance of nonempty words.

Lastly, the remaining ε-moves are eliminated as follows. For each transition

of the form ((p, i),κ, (q, j)) with κ 6= ε and each (r, j) ∈ E(q,j), we create the

transition ((p, i),κ, (r, j)). We �nally remove all remaining ε-moves.

The complete construction has polynomial cost and the resulting h-pda A′
accepts an input word if and only if the word is nonempty and was accepted by

the original h-pda A. Acceptance is furthermore done by empty pushdown, indeed

the only �nal state (q+, 0) stores the information that the current pushdown height

is 0. Moreover, the projection h̃ over the pushdown alphabet Γ′, associates to each

pushdown symbol, the only height index to which it may appear in the pushdown

store.

By adapting the classical construction of cfgs from pdas (see, e.g., [8, Sec. 6.3]),

from an h-pda A = 〈Q,Σ,Γ, δ, q−, {q+}〉 in the form of Lemma 7, we de�ne a
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grammar G = 〈V,Σ, P, S〉, where V consists of an initial symbol S and of triples

of the form [pXq] and 〈pXq〉, for q, p ∈ Q, X ∈ Γ⊥ = Γ ∪ {⊥}, with the new

symbol ⊥ /∈ Γ denoting the �missed top� in the empty pushdown store.

Before de�ning the set P of productions, we give a short explanation of the

meaning of the variables we just introduced. Each triple [pXq] is used to generate

any string which is consumed in a computation path C that starts in the state p

withX on the top of the stack and ends in the state q with the same occurrence ofX

on the top of the stack, i.e., the height of the stack at the beginning and at the end

of C is the same and it cannot be lower in between. Notice that this implies that C
does not depend on the symbols that are on the stack at the beginning and at the

end of C. Any string generated by a variable 〈pXq〉 is consumed in a computation

path C which, besides the previous conditions, does not visit other con�gurations

with same stack height, namely, either C consists of a single step, or it starts by

pushing a symbol which is popped o� only at its last step. As we will prove, the

use of two types of triples allows to obtain an nse grammar.

We now list the productions in the set P and then we will prove that the grammar

has the desired behavior:

(i) 〈pXq〉 → a, for (p, a, q) ∈ δ
(ii) 〈pXq〉 → [p′Y q′], for (p,+Y, p′), (q′,−Y, q) ∈ δ, i.e., push and pop of a same

symbol Y

(iii) [pXq]→ 〈pXr〉[rXq], for p, q, r ∈ Q, X ∈ Γ⊥
(iv) [pXq]→ 〈pXq〉, for p, q ∈ Q, X ∈ Γ⊥
(v) S → [q−⊥q+].

Lemma 8. For each x ∈ Σ∗, p, q ∈ Q and X ∈ Γ⊥, [pXq]
?

==⇒ x if and only if there

exists a computation path C of A satisfying the following conditions:

(1) C starts in the state p and ends in the state q, in both these con�gurations

the symbol at the top of the pushdown is X;a

(2) along C the pushdown is never popped o� under height h̃(X).

(3) the input factor consumed along C is x.

Furthermore, 〈pXq〉 ?
==⇒ x if and only if besides the above conditions (1) and (3),

the following condition (stronger than (2)) is satis�ed:

(2 ′) in all con�gurations of C other than the �rst and the last one, the pushdown

height is greater than h̃(X).

Proof. First of all, we are going to prove that for all x, p, q,X as in the statement of

the lemma, [pXq]
?

==⇒ x implies (1), (2), and (3), while 〈pXq〉 ?
==⇒ x implies (1), (2′),

aWhen X = ⊥ the pushdown store in these con�gurations is empty. Furthermore, we stipu-
late h̃(⊥) = 0.
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and (3). We proceed by induction on the length k ≥ 1 of the derivation [pXq]
k

==⇒ x

or 〈pXq〉 k
==⇒ x.

For k = 1, there are no derivations [pXq]
1

==⇒ x, while 〈pXq〉 1
==⇒ x implies

that x is a terminal symbol and (p, x, q) ∈ δ (the production is of the form (i)),

from which (1), (2′), and (3) trivially follow.

Suppose now k > 1. The �rst production applied in a derivation [pXq]
k

==⇒ x

is either of the form (iii) or of the form (iv). In the �rst case we have [pXq] ==⇒
〈pXr〉[rXq] k−1

===⇒ x, 〈pXr〉 k′
==⇒ x′, [rXq]

k′′
==⇒ x′′, for some r ∈ Q, 1 ≤ k′, k′′ < k,

k′+k′′ = k−1, x′, x′′ ∈ Σ+ such that x′x′′ = x. Using the induction hypothesis, we

can �nd two computations path C′ and C′′, from state p to r and from state r to q,

respectively, with X at the top of the pushdown at the beginning and at the end,

such that the pushdown is never popped under its level at the beginning of these

paths, and consuming the factors x′ and x′′, respectively. By concatenating these

two paths, we �nd the path C satisfying in (1), (2), and (3).

If [pXq] ==⇒ 〈pXq〉 k−1
===⇒ x (i.e., the �rst production applied is of the form (iv)),

(1), (2), and (3) follow from the induction hypothesis applied to the deriva-

tion 〈pXq〉 k−1
===⇒ x.

We now consider a derivation 〈pXq〉 k
==⇒ x, with k > 1. The �rst step can

only be of the form (ii), namely 〈pXq〉 ==⇒ [p′Y q′]
k−1

===⇒ x. From the induction

hypothesis, there is a computation path C′ from state p′ to state q′ which starts and

ends with Y at the top of the pushdown, never popping o� the pushdown under

the initial level, and consuming x from the input tape. From a con�guration with

state p and X at the top of the pushdown, A can start a computation path which

pushes Y , simulates C′, and �nally pops Y o� the pushdown. While simulating C′
the pushdown always contains the symbol Y over X. Hence, it is higher than in the

�rst and in the last con�guration of C. This proves (1), (2′), and (3).

To prove the converse implications, we proceed by induction on the length k of

the computation path C satisfying conditions (1), (2), (3), and, possibly, the further
condition (2′).

If k = 1 then C should consist only of one move, which consumes the input

symbol x = a and does not modify the pushdown store. According to the de�nition

of G, the only possible derivations corresponding to such path are 〈pXq〉 ==⇒ x and

[pXq] ==⇒ 〈pXq〉 ==⇒ x.

For k > 1 we consider two cases. First we suppose that C satis�es (1), (2), (3), but
does not satisfy (2′). We decompose C in two shorter paths C′ and C′′ that are delim-

ited by the �rst con�guration which is reached in C with the same pushdown height

as at the beginning and at the end of C. These two paths satisfy (1), (2), (3). Further-
more, C′ satis�es also (2′). By the induction hypothesis, we get that 〈pXr〉 ?

==⇒ x′,

[rXq]
?

==⇒ x′′, where r is the state reached at the end of C′ and x′x′′ = x. Using

production (iv) we obtain the derivation [pXq] ==⇒ 〈pXr〉[rXq] ?
==⇒ x′x′′ = x.
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If C satis�es (1), (2′), and (3), then it should start in state p with a push of

a symbol Y moving in a state p′, ends after a pop of the same symbol Y from

a state q′ to state q, where the symbol Y is never popped o� the pushdown in

between. The path C′, consisting of k − 2 moves, obtained by removing from C the

�rst and the last move, consumes the same input string x which is consumed by C.
From the induction hypothesis, we obtain that [p′Y q′]

?
==⇒ x and, considering (ii),

〈pXq〉 ==⇒ [p′Y q′]
?

==⇒ x. Furthermore, by (iv), we also obtain [pXq]
?

==⇒ x.

From Lemma 8, considering production (v), we can conclude that the grammarG

so de�ned is equivalent to the given pda A.

Lemma 9. The above-de�ned grammar G is non-self-embedding.

Proof. From productions (ii), we observe that h̃(X ′) > h̃(X) for any possible vari-

able 〈p′X ′q′〉 or [p′X ′q′] that can appear in a sentential form from a variable 〈pXq〉.
Hence, each variable 〈pXq〉 is not self-embedded.

Now, we consider any variable of the form [pXq]. We observe that in each deriva-

tion [pXq]
+

==⇒ α[pXq]β, α, β ∈ (V ∪Σ)∗, the occurence of [pXq] on the right-hand

side can be obtained only if, each time the rightmost variable is rewritten, produc-

tions of the form (iii) are used. Hence, the string β must be empty. This allows us

to conclude that each [pXq] is not self-embedded.

By combining the previous results, we obtain:

Theorem 10. For each h-pda there exists an equivalent nse grammar of polyno-

mial size.

Proof. From Lemmas 7, 8, and 9, from an h-pda A we can obtain an nse gram-

mar G of polynomial size generating L (A) \ {ε}. In case ε ∈ L (A), in order to

make G equivalent to A, we add the production S → ε.

As a consequence of Theorems 6, and 10, by paying a polynomial size increase,

each nse grammar can be transformed into an equivalent one in a particular form.

Corollary 11. Each nse grammar is equivalent (modulo the empty word) to a

grammar in Chomsky normal form of polynomial size, in which, for each produc-

tion X → Y Z, Y is greater than X according to the order induced by the production

graph.

Proof. By Theorem 6, from each nse grammar G we can obtain an equivalent

h-pda A of polynomial size which, according to Theorem 10, can be transformed

into an equivalent nse grammar G′ as de�ned above. We can observe that if X
+

==⇒
αXβ in G′, then β should be empty. This implies that for each production X →
Y Z, Y is greater than X according to the order induced by the production graph.

Furthermore, unit productions, namely productions (ii), (iv) and (v), can be easily

eliminated, yielding a grammar G′′ of the desired form.
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4. nse Grammars versus 1-las

In this section, we compare the sizes of nse grammars and of h-pdas with the

size of equivalent 1-limited automata. We prove that for each nse grammar there

exists an equivalent 1-la of polynomial size. As a consequence, the simulation of

constant-height pdas by 1-las is polynomial in size.

Concerning the converse transformation, we prove that 1-las can be more suc-

cinct than nse grammars and constant-height pdas. Actually, we prove a stronger

result showing the existence of a family (Ln)n>0 of languages such that each Ln is

accepted by a 2dfa with O(n) states, while each Chomsky normal form grammar

or pda accepting Ln would require an exponential size in n.

4.1. From nse grammars to 1-las

We start from an nse grammar G = 〈V,Σ, P, S〉 in the form given by Corollary 11.

Thus, every derivation tree of G has a particular form which can be expressed using

the notion we now introduce. For any constant j, we call j-tree any labeled tree

satisfying:

• internal nodes are labeled by variables, while leaves are labeled by terminal

symbols;

• each internal node either has exactly two children which are internal nodes,

or has a unique child which is a leaf;

• the root is an internal node;

• along every branch, the number of left turns (i.e., the number of nodes

which are left child of some node) is bounded by j.

We observe that any 0-tree consists of a root labeled by some variable which has as

unique child a leaf labeled by a terminal. Moreover, a j-tree is also a (j+1)-tree. We

also point out that we do not require that j-trees are consistent with the production

rules of G. However, due to the form given by Corollary 11, there exists a constant c

such that any derivation tree of G is a c-tree with root label S.

We now describe how we encode a j-tree T with m leaves into a word u of

length m over the alphabet Γj = Σ × V × V × {0, . . . , j}. The construction is

illustrated in Figure 2. First, we inductively index the nodes of T according to the

following rules:

• the root of T has index j;

• the left child of a node with index i has index i− 1;

• the right child of a node with index i has index i;

• a leaf has the same index as its parent.

In other words, the index of a node is an upper limit to the number of left turns

from that node to a leaf. From now on, we �x a parameter Y ∈ V whose meaning

will be discussed later. For a leaf ` of the j-tree labeled by a symbol a ∈ Σ, we

consider the symbol σ` = 〈a,X,Z, i〉 ∈ Γj where (X, i) is the indexed label of the
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Figure 2. An example of a 2-tree and its 2-compression. Here Tl and Tr denote the left and right
subtrees at depth 1 and TS

r denotes the subtree Tr in which the label of the root has been changed
to S.

closest ancestor of ` which is not a right child of any node (such nodes have square

shape in Figure 2) and Z is the label of its right sibling if any, or equals Y otherwise,

namely when that node is the root of the tree. Intuitively, the j-compression of the

j-tree T is the word σ`1 · · ·σ`m where `1, . . . , `m are the leaves of T taken from left

to right. Formally, it is inductively de�ned as follows. Let Y ∈ V and T be a j-tree

with root label X, for some j ≥ 0. If T consists of its root with only one child

being a leaf labeled by a ∈ Σ (which is always the case when j = 0 by de�nition

of j-trees), then µj,Y (T ) = 〈a,X, Y, j〉. Otherwise, j > 0 and T consists of a root

node yielding a left subtree Tl and a right subtree Tr. Let Z be the root label of Tr.

Then, denoting TXr the tree Tr in which the label of the root has been changed

to X, µj,Y (T ) = µj−1,Z(Tl) · µj,Y (TXr ) (see Figure 2).

Let us shortly discuss the parameter Y , which does not in�uence much the

j-compression: it occurs only in the rightmost symbol of the word encoding the

given j-tree. The parameter is meant to indicate the right sibling label of the root

node, when considering left subtrees of some (j − 1)-tree. Hence, when considering

full derivation trees of G, this parameter is meaningless, and we can �x it to some

arbitrarily chosen variable, say S (as in Figure 2). So-de�ned, the c-compression (or

simply compression) of a derivation tree of G is a word u ∈ Γ+
c whose projection

on Σ∗ is the word generated by the tree. The following remark, which directly

follows from the inductive de�nition of µj,Y , is instrumental for our later proofs.

Remark 12. If µj,Y (T ) = v · 〈a, Z, Y, j〉 then µj,Y (TX) = v · 〈a,X, Y, j〉, where TX
denotes the tree T in which the root label has been changed to X.

Not every word over Γj is the j-compression of a j-tree, and not every j-tree

is a derivation tree. We now introduce a property which allows us to check that a

word u ∈ Γ∗j is a correct j-compression and that the tree it encodes is a derivation
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tree, namely it is consistent with the production rules of G. We set Γ−1 = ∅.
A word u ∈ Γ+

j is a valid j-compression, 0 ≤ j ≤ c, if, on the one hand, u =

w · 〈a,X, Y, j〉 for some w ∈ Γ∗j−1, a ∈ Σ and X,Y ∈ V , and, on the other hand,

one of the following two cases holds:

(1) w = ε, and X → a belongs to P ;

(2) there exist v, w′ ∈ Γ∗j−1, b ∈ Σ, and W,Z ∈ V such that:

(a) w = v · 〈b,W,Z, j − 1〉w′
(b) X →WZ belongs to P ;

(c) v · 〈b,W,Z, j − 1〉 is a valid (j − 1)-compression;

(d) w′ · 〈a, Z, Y, j〉 is a valid j-compression.

In particular, valid 0-compressions are exactly the single-letter words 〈a,X, Y, 0〉
such that X → a ∈ P . Observe that Item 2c implies v ∈ Γ∗j−2 and therefore, the

decomposition of w (Item 2a) as well asW , Z, and b are determined by the leftmost

symbol of index j−1 of u. Notice furthermore that validity does not depend on the

variable Y .

Intuitively, validity of compressions corresponds to derivation consistency of

encoded trees. This is stated formally in the following lemma (remember that G|X
denotes the grammar G in which the starting symbol has been replaced by X).

Lemma 13. Let j ∈ {0, . . . , c}, X,Y ∈ V , a ∈ Σ, and u ∈ Γ∗j−1 · 〈a,X, Y, j〉.
Then u is a valid j-compression if and only if u = µj,Y (T ) for some derivation

tree T of G|X . In particular, the projection w of u to Σ∗ is generated by G|X
through T .

Proof. We �x a valid j-compression u ∈ Γ∗j−1 · 〈a,X, Y, j〉. We show, by induction

on the length of u, that there exists a derivation tree T ofG|X such that µj,Y (T ) = u.

If |u| = 1, then u = 〈a,X, Y, j〉 and X → a ∈ P by Item 1. Hence, u = µj,Y (T )

for T the derivation tree of G|X which derives the word a from X in one step.

Otherwise, u = v · 〈b,W,Z, j−1〉 ·w′ · 〈a,X, Y, j〉 by Item 2a, where X →WZ by

Item 2b. Moreover, on the one hand v · 〈b,W,Z, j− 1〉 is a valid (j− 1)-compression

by Item 2c, on the other hand w′ ·〈a, Z, Y, j〉 is a valid j-compression by Item 2d. By

induction, there exist two derivation trees Tl and Tr, respectively of G|W and G|Z ,

such that µj−1,Z(Tl) = v · 〈b,W,Z, j − 1〉 and µj,Y (Tr) = w′ · 〈a, Z, Y, j〉. Since
changing the label of the root node does a�ect only the rightmost symbol of its

compression (Remark 12), we have µj,Y (TXr ) = w′ · 〈a,X, Y, j〉 where TXr is the

tree Tr in which the root label has been changed toX. Consider the tree T consisting

of a root labeled by X which has Tl as left subtree and Tr as right subtree. By the

above properties, T is a derivation tree of G|X . Moreover, µj,Y (T ) = µj−1,Z(Tl) ·
µj,Y (TXr ) = u.

Conversely, we �x a derivation tree T of G|X that we supposed to be a j-tree.

We show by induction on the structure of T , that µj,Y (T ) is valid for any Y ∈ V .
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If T is a trivial derivation tree consisting of the root node which has as unique

child a leaf labeled by a, then, X → a ∈ P by de�nition, whence µj,Y (T ) =

〈a,X, Y, j〉 is valid through Item 1 for any Y and any j.

Otherwise, the root of T has two children, yielding a left subtree Tl and a

right subtree Tr. Let W and Z be the respective root labels of Tl and Tr. By

de�nition, u = µj,Y (T ) = µj−1,Z(Tl) · µj,Y (TXr ) where TXr denotes the tree Tr
in which the root label has been changed to X. Since T is a derivation tree, we

have X → WZ ∈ P (i.e., Item 2b). By induction, µj−1,Z(Tl) = v · 〈b,W,Z, j − 1〉
is a valid (j − 1)-compression (Item 2c), and µj,Y (Tr) = w′ · 〈a, Z, Y, j〉 is a valid

j-compression (Item 2d). Finally, since modifying the root label of a tree does only

a�ect the rightmost letter of its compressions, by Remark 12, we obtain that u =

v · 〈b,W,Z, j − 1〉w′ · 〈a,X, Y, j〉 (i.e., Item 2a).

Lemma 13 yields a strategy to check whether a word w ∈ Σ+ is generated

by G, using the property that all its derivation trees are c-trees. We �rst guess

the c-compression of a derivation tree generating w, thus obtaining a word u ∈ Γ+
c

whose projection to Σ equals w. We then check that u is a valid c-compression

with parameter Y = S. Although the initial guess makes use of nondeterminism,

the veri�cation can be performed deterministically once the guessed symbols have

been �xed. We now show how to do this veri�cation with a 2dfa. From now on, we

set Γ = Γc.

In any valid j-compression of length greater than 1, some factors represent the

(j − 1)-compressions of some subtrees of the encoded tree. They are exactly the

factors delimited to the left by a symbol of index greater than or equal to j or by

the left endmarker (not included in the factor), and to the right by the symbol of

index j corresponding to its root node (included in the factor). In other words, they

are maximal factors in Γ∗j−1 · Γj . This allows a reading head to locally detect the

boundaries of such factors when scanning the j-compression. This also implies that

the index of a symbol preceding a symbol of index j is always less than or equal

to j−1. For instance, the compression illustrated in Figure 2 admits �ve valid 1-com-

pression factors, namely the factor 〈a,A, F, 0〉〈b, B,E, 0〉〈a,A, F, 0〉〈b, E,C, 1〉, the
factor 〈b, B,A, 0〉〈a,E,D, 1〉, the factor 〈a,A, S, 1〉, the factor 〈a,A, F, 0〉〈b, E,C, 1〉,
and the factor 〈b, B,D, 1〉 which respectively correspond to the �ve subtrees rooted

in the square-shape nodes which have index 1.

We now describe how a 2dfa A can check that a word u ∈ Γ+
c is a valid

c-compression. First of all, the device checks that u belongs to Γ∗c−1 · 〈a, S, S, c〉 for
some letter a ∈ Σ. Then, it iteratively veri�es that every maximal factor of the

form Γ∗j−1 · 〈a,X, Y, j〉 is a valid j-compression. To this end, once the veri�cation

has been performed for the level j − 1, it just needs to check that the letter just

before 〈a,X, Y, j〉, if any, is of index at most j − 1, and that there is consistency

between letters of index j − 1 and 〈a,X, Y, j〉 of such maximal factor, as follows:

sweeping these letters 〈a1,W1, Z1, j − 1〉, . . . , 〈ak,Wk, Zk, j − 1〉 from left to right
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Procedure 1: CheckTree

/* start with the head on the left endmarker */

1 CheckRoot

2 for j ← 0 to c do
3 repeat move the head to the right until index(σ) ≥ j
4 while index(σ) = j do
5 CheckSubtree(j)
6 repeat move the head to the right until index(σ) ≥ j
7 repeat move the head to the left until σ = .

8 Accept

and setting Z0 = X, the 2dfa sequentially checks that Zi−1 → WiZi ∈ P for

i = 1, . . . , k, and Zk → a ∈ P . In other words, the device implements the above-

given inductive de�nition of valid compressions, with the di�erence that it tests

each subtree of level from 0 to c instead of performing recursive calls. This allows

to store only one variable Z at each time.

The 2dfa A implements a collection of deterministic subroutines, the top-level

of which is the procedure CheckTree. In each subroutine, σ denotes the symbol

currently scanned by the head, which is automatically updated at each head move.

Moreover, the special instruction Reject causes the whole computation to halt

and reject. We furthermore use the four natural projections over Γ: for a sym-

bol σ = 〈a,X, Y, j〉 ∈ Γ, we set letter(σ) = a, varLeft(σ) = X, varRight(σ) = Y ,

and index(σ) = j. We �x the convention index(.) = index(/) = c+ 1.

Procedure 2: CheckRoot

9 repeat move the head to the right until σ = /
10 move the head to the left
11 if varLeft(σ) 6= S or varRight(σ) 6= S or index(σ) 6= c then Reject

12 while σ 6= . do
13 move the head to the left
14 if index(σ) = c then Reject

As initial phase, the subroutine CheckRoot checks that the input word belongs

to Γ∗c−1 · 〈a, S, S, c〉 for some letter a ∈ Σ. Then, A checks the validity of each

compression of each level from 0 to c (Lines 2 to 7). This veri�cation uses the

procedure CheckSubtree (Line 5).

This latter subroutine is the direct implementation of the inductive de�nition of

valid compressions, where the recursive call to incremented level (Item 2c) is omit-

ted (the validity of these sub-compressions have already been checked by previous

call to CheckSubtree). It uses the subroutine SelectNext to locate the leftmost

symbol of index j − 1 in the factor under consideration, if any, or to check if the

factor has length 1, otherwise, thus checking Item 2a (or, partially, Item 1). Items 1
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Procedure 3: CheckSubtree(j)

/* start with the head scanning a symbol of index j */

15 C ← varLeft(σ)
16 repeat move the head to the left until index(σ) ≥ j
17 SelectNext(j − 1)
18 while index(σ) 6= j do
19 if C → varLeft(σ)varRight(σ) 6∈ P then Reject

20 C ← varRight(σ)
21 SelectNext(j − 1)

22 if C → letter(σ) 6∈ P then Reject

Procedure 4: SelectNext(j)

23 move the head to the right
24 if index(σ) 6= j + 1 then

25 while index(σ) < j do move the head to the right
26 if index(σ) 6= j then Reject

and 2b correspond to Lines 22 and 19, respectively, where C contains the variable Z

(Line 20), the variable label of the root of the subtree which is initially set to X

(Line 15), thus allowing to verify Item 2d (Lines 18 to 21).

To summarize, we obtained the following result.

Lemma 14. The language of valid compressions of derivation trees of G is recog-

nized by a 2dfa which uses O(c ·#V ) states.

Proof. The construction of such a 2dfa A has been described above. We now

estimate its size. The only memory used in the procedure CheckTree, is an index

j ∈ {0, . . . , c}, to which both the subroutines SelectNext and CheckSubtree have

read-only access. The subroutines CheckRoot and SelectNext use no additional

memory. The procedure CheckSubtree stores one variable, namely C, which ranges

over V . Hence, the number of states of A is linear in c ·#V .

We are now ready to state our main result.

Theorem 15. For every nse grammar G, there exist a 1-state letter-to-letter non-

deterministic transducer T and a 2dfa A of polynomial size such that a word w is

generated by G if and only if A accepts an image u of w by T . As a consequence, G

can be transformed into a 1-la of polynomial size.

Proof. From an nse grammar G, we obtain an nse grammar G′ over Σ of poly-

nomial size in the form given by Corollary 11, such that L (G′) = L (G) \ {ε}. The
transducer T replaces each letter a ∈ Σ with a symbol 〈a,X, Y, j〉 for some vari-

ables X and Y of G′ and some index j ≤ #V . Finally, we build A, using Lemma 14,
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which recognizes an output of T , if and only if its pre-image was generated by G′,

by Lemma 13. In case ε ∈ L (G), we modify A in order to accept ε.

The composition of T and A yields a 1-la which �rst performs a left-to-right

traversal during which each tape cell is nondeterministically rewritten according

to T , and then deterministically simulates A.

4.2. From 1-las to nse grammars: An exponential gap

In this section, we exhibit an in�nite family (Ln)n≥0 of languages over the alpha-

bet {0, 1}, such that each Ln is recognized by a 1-la with size polynomial in n, but

requires an exponential size in order to be recognized by any h-pda or nse gram-

mars. We can actually prove a stronger result, since each Ln is recognized by a 2dfa

(and even by a rotating deterministic automaton, in which all passes over the input

are from left to right [9]) of linear size, while any grammar in Chomsky normal form

generating Ln requires an exponential number of variables. As a consequence, every

pda recognizing Ln requires an exponential size. The proof of this lower bound is

obtained by using the interchange lemma for context-free languages [14]:

Lemma 16. Let G be a context-free grammar in Chomsky normal form, with c

variables, and let L be the language it generates. For all integers N,m, with 2 ≤ m ≤
N , and all subsets R of L∩ΣN , there exists a subset Z ⊆ R with Z = {z1, z2, . . . , zk}
such that k ≥ #R

cN2 , and there exist decompositions zi = wixiyi, with 1 ≤ i ≤ k, such
that the following conditions are satis�ed:

(1) |w1| = |w2| = · · · = |wk|;
(2) |y1| = |y2| = · · · = |yk|;
(3) m

2 < |x1| = |x2| = · · · = |xk| ≤ m;

(4) wixjyi ∈ L for all i, j with 1 ≤ i, j ≤ k.

Theorem 17. For each n > 0, let Ln be the language {uuu | u ∈ {0, 1}n}. Then:

• Ln is accepted by a 2dfa of size O(n);

• each context-free grammar in Chomsky normal form needs exponentially

many variables in n to generate Ln;

• the size of any pda accepting Ln is at least exponential in n.

Proof. A 2dfa A with O(n) states can accept Ln as follows. First A traverses the

whole input tape, in order to verify that the input length is 3n. Then A, by moving

the head back and forth, veri�es that all two symbols at distance n are equal. It is

not di�cult to observe that A can be implemented using O(n) states.

To prove that each context-free grammar generating Ln requires an exponential

number of variables, we observe that given u, u′ ∈ {0, 1}n, if we decompose the

strings z = uuu and z′ = u′u′u′ ∈ Ln as z = wxy and z′ = w′x′y′, with |w| = |w′|,
|y| = |y′|, n < |x| = |x′| ≤ 2n, then |wy| ≥ n, thus implying that u = ulur where ul
is a pre�x of w and ur is a su�x of y. If u 6= u′ then x 6= x′ and the string wx′y
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cannot belong to Ln. Applying Lemma 16, with N = 3n, R = Ln and m = 2n,

from the previous argument it follows that the resulting set Z cannot contain more

than one string. Hence, we conclude that each context-free grammar in Chomsky

normal form generating Ln should have at least 2n

9n2 variables.

Finally, since each pda can be converted into an equivalent context-free grammar

in Chomsky normal form with a polynomial number of variables, e.g., [19, Theo-

rem 8] we conclude that the size of any pda accepting Ln is at least exponential

in n.

Corollary 18. The size cost of the conversion of 1-las into nse grammars and

h-pdas is exponential.

Proof. The lower bound derives from Theorem 17. For the upper bound, in [16] it

was proved that each 1-la can be transformed into a 1nfa of exponential size from

which, by a standard construction, we can obtain a regular (and, so, nse) grammar,

without increasing the size asymptotically.

In [2], the question of the cost of the conversion of deterministic h-pdas into

1nfas was raised. To this regard, we observe that the language (a2n

)
∗
is accepted

by a deterministic h-pda of size polynomial in n for large enough h (see, e.g., [15])

but, by a standard pumping argument, it requires at least 2n states to be accepted

by 1nfas. Actually, as a consequence of state lower bound presented in [13], 2n

states are also necessary to accept it on each 2nfa. Considering Theorem 17, we

can conclude that both simulations from two-way automata to h-pdas and from

h-pdas to two-way automata cost at least exponential.

5. Deterministic h-pdas versus Deterministic 1-las

From the results in Sections 3 and 4, it turns out that there is a polynomial-

size conversion of h-pdas into 1-las. Here, we consider the deterministic case.

We present a polynomial size conversion of deterministic h-pdas into deterministic

1-las.

We now recall the de�nition of deterministic h-pdas, according to [3]. Let A =

〈Q,Σ,Γ, δ, q0, F 〉 be an h-pda. Let QΣ, Q+, and Q− be the sets of states p such

that there exists a transition (p, op, q) with op belonging to Σ, to {+}Γ, or to {−}Γ,
respectively. A is deterministic if it satis�es the following properties:

(1) it does not allow transitions of the form (p, ε, q);

(2) QΣ, Q+, and Q− form a partition of Q;

(3) if (p, op, q) and (p, op′, q′) are distinct transitions, then p ∈ QΣ∪Q− and op

and op′ are distinct elements of Σ if p ∈ QΣ, or of {−}Γ if p ∈ Q− (notice

that this implies that there exists exactly one outgoing transition from each

state in Q+);

(4) F ⊆ QΣ.
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Item 2 ensures that the action to perform is fully determined by the current state.

Based on this, Item 3 states that for any con�guration there exists at most one

outgoing transition, while Item 4 constrains acceptance, as explained in the fol-

lowing. As for nondeterministic h-pda, the machine accepts the input word if it

reaches an accepting state after having read all the input symbols. However, in or-

der to avoid exiting an accepting con�guration, Item 4 requires that the machine

halts by waiting for a next symbol to scan. We point out that, in the de�nition

of deterministic h-pda given in [3], states with no outgoing transitions are present

and transitions of the form (p, ε, q) are allowed under the restriction that from each

state at most one such transition is allowed, which should further be the unique

transition outgoing that state. With classical transformations, states without any

outgoing transition as well as ε-moves can be avoided without increasing the size

of the automaton, while preserving determinism. Hence Item 1 as well as the state-

ment of Item 2 which is stronger than those given in [3] can be ensured without loss

of generality.

Moreover, given a deterministic h-pda, it is always possible to obtain an equiv-

alent deterministic h-pda of at most the same size, in which there are no push

transitions entering a state of Q−. Indeed, in any computation, if a pop (p−,−Y, q)
immediately follows a push (p+,+X, p−) then X = Y . Thus, in presence of a

transition (p+,+X, p−) with p− ∈ Q−, we can eliminate the state p+ and its

outgoing transition after modifying the machine as follows: if there exists q such

that (p−,−X, q) ∈ δ then we replace each transition (p, op, p+) with the transi-

tion (p, op, q) and, furthermore, q becomes the initial state whenever p+ is initial.b

By iteratively applying this transformation, an equivalent deterministic h-pda with-

out any transition in Q+×{+}Γ×Q− is obtained. Finally, we can assume without

loss of generality that deterministic h-pdas do not contain any loop composed by

push transitions only. Indeed, without increasing the size of the model, these loops

can be eliminated since when entering such a loop, the machine surely halts and

rejects after at most h steps as the pushdown height will exceed its bound.

From now on, we assume without loss of generality that deterministic h-pdas

have neither a transition in Q+×{+}Γ×Q− nor a loop with push transitions only.

Let A = 〈Q,Σ,Γ, δ, q0, F 〉 be a deterministic h-pda, with QΣ, Q+, Q− de�ned as

above. By determinism, a state from Q+ has a unique outgoing transition. Hence,

until leaving Q+, the successive transitions from a state p ∈ Q+ generate a �nite

sequence of push transitions, which is fully determined from p. For ease of presen-

tation we will use the following functions that are de�ned for each state from Q+:

• η : Q+ → QΣ maps each state in Q+ to the �rst reachable state not

belonging to Q+ after a sequence of push transitions, which exists and

belongs to QΣ by assumption.

bIf p+ is the initial state but there exists no q such that (p−,−X, q) ∈ δ, then the complete device
recognizes the empty language, and can thus be replaced by a simpler single-state one.
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Procedure 5: simulatePush is called when a push has to be simulated, i.e.,

when the variable simulatedState contains a state q ∈ Q+

27 move the head rightward until reaching the leftmost symbol σ ∈ Σ ∪ {/}
28 if σ = / then
29 if η(q) ∈ F then Accept else Reject

30 detect move (η(q), σ, r) to be simulated
31 write(〈q, height〉)
32 if height + `(q) > h then Reject

33 height← height + `(q)
34 simulatedState← r

• ` : Q+ → {1, . . . , h} maps each state p+ ∈ Q+ to the maximum number of

consecutive push transitions that can be performed starting from p+.

• ω : Q+ → Γ≤h maps each state p+ ∈ Q+ to the string that can be pushed

during a maximal sequence of consecutive push transitions starting from p+.

Notice that the length of such a string is given by `(p+) ≤ h.

For instance, consider the maximal sequence of consecutive push transitions

(p0,+X1, p1), (p1,+X2, p2), . . . , (pn−1,+Xn, pn),

where pn ∈ QΣ and, for each i such that 0 ≤ i < n ≤ h, pi ∈ Q+ and Xi+1 ∈ Γ.

Then, η(p0) = pn, `(p0) = n, and ω(p0) = X1 · · ·Xn. These functions can be always

computed by analyzing the transition function δ.

Let us now show how the simulation works.

Theorem 19. Each deterministic h-pda admits an equivalent deterministic 1-la

of polynomial size.

Proof. Let A = 〈Q,Σ,Γ, δ, q0, F 〉 be a deterministic h-pda where, using the above

notations, Q = QΣ ∪Q+ ∪Q−. Hence, in every accepting computation, a sequence

of push transitions ends by entering a state from QΣ from which A scans the

next input symbol, or accepts. We de�ne a simulating deterministic 1-la A′ =

〈Q′,Σ,Γ′, δ′, q′0, F ′〉.
The main idea of the simulation is that at each step of its computation A′

is able to recover the content w ∈ Γ≤h of the pushdown store of the simulated

machine without storing w in its �nite control, but from the information written

on the already visited tape cells. The simulation, detailed below, is described in

Procedures 5, 6, and 7.

More precisely, we assume that A′ stores in its �nite control the current push-

down height, in a variable height with maximum value h that is initially set to 0, and

the current state, in a variable simulatedState initially containing the initial state
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Procedure 6: simulateRead is called when a read has to be simulated, i.e.,

when the variable simulatedState contains a state q ∈ QΣ

35 move the head rightward until reaching the leftmost symbol σ ∈ Σ ∪ {/}
36 if σ = / then
37 if η(q) ∈ F then Accept else Reject

38 detect move (q, σ, r) to be simulated
39 write(])
40 simulatedState← r

of A, of the con�guration reached in the simulated computation of A. In order to

simulate a maximal sequence of push transitions

(p0,+X1, p1), (p1,+X2, p2), . . . , (pn−1,+Xn, pn)

where p0, . . . , pn−1 ∈ Q+, X1, . . . , Xn ∈ Γ, and pn ∈ QΣ, A′ moves its head right-

ward to the leftmost tape cell which has not been visited so far (i.e., which has not

been rewritten) and performs, in one step, the following actions:

• it scans the input symbol a ∈ Σ, and determines the transition (pn, a, q)

(Line 30);

• it overwrites the cell content with the pair (p0, i) where i ≤ h− `(p0) is the

current pushdown height, stored in its �nite control (Line 31);

• if the height of the stack after pushing `(p0) symbols does not exceed h

(Line 32), it updates the pushdown height component to i + `(p0) ≤ h

(Line 33);

• it updates the state component to q (Line 34).

Hence, A′ does not only simulate the sequence of push, but also the successive

scan step. When all the cells have already been visited, i.e., when the head of A′
has reached the right endmarker, then it halts and accepts if and only if pn ∈ F
(Line 29).

When the next transition to be simulated has to scan the input (not just after

a sequence of push), A′ proceeds similarly (Procedure 6), but simply updates the

variable simulatedState accordingly (Line 40) without modifying the value of height,

and rewrites the corresponding cell content with the special symbol ] (Line 39).

When A′ has to access the content of the pushdown, namely when a pop tran-

sition has to be simulated, the simulating machine looks for the last sequence of

simulated push transitions whose �rst symbol was pushed from a level lower than

or equal to the current pushdown height. This can be done by scanning leftward

the tape, until reaching the rightmost cell containing a pair (p+, i), with i less than

or equal to the value of height (Line 41). At this point, by using i and ω(p+), A′
recovers the symbol at level equal to the height stored in the �nite control and de-

tects a suitable pop transition to be simulated (Line 42). If such a transition exists

then A′ updates both its state and pushdown height components according to this
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Procedure 7: simulatePop is called when a pop has to be simulated, i.e.,

when the variable simulatedState contains a state q ∈ Q−.
41 move the head leftward until reaching a symbol (p+, i) with i ≤ height

42 detect move (q,−X, r) to be simulated where X is the (height− i)-th symbol
of ω(p+)

43 height← height− 1
44 simulatedState← r

transition (Lines 44, and 43), and continues the simulation. Notice that A′ does
not need to recover the original head position, i.e., the head position of A in the

simulated computation, until it enters a state from QΣ ∪Q+. When this happens,

A′ proceed as explained previously.

If no move in δ can be simulated because no suitable transition is de�ned

(Lines 30, 38, and 42), then the simulating machine halts and rejects.

We now evaluate the size of the simulating deterministic 1-la A′. Notice that

the quantities computed by η, `, and ω do not depend on the input, whence are pre-

computed and hardly encoded in the transition table of A′. The working alphabet

of A′ is included in Q+ × {0, . . . , h− 1} ∪ {]}, while the �nite control stores two

variables: one state in Q and one pushdown height in {0, . . . , h}. Hence, the size

of A′ is polynomial in #Q and h. We point out that it does not depend on the size

of the pushdown alphabet of A.
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