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Boğaziçi University

34342 Bebek, Istanbul, Turkey

Abstract

The problem of the commutative equivalence of context-free and regu-
lar languages is studied. Conditions ensuring that a context-free language
of exponential growth is commutatively equivalent with a regular language
are investigated.

Keywords: Commutative equivalence, Context-free language, Unique fa-
ctorization code, Exponential growth

Mathematics Subject Classification 2010: 68Q45, 68Q70, 94A45

1 Introduction

In this paper, we study the commutative equivalence of context-free and regular
languages. Two words are said to be commutatively equivalent if one is obtained
from the other by rearranging the letters of the word. Two languages L1 and L2

are said to be commutatively equivalent if there exists a bijection f : L1 → L2

such that every word u ∈ L1 is commutatively equivalent to f(u). This notion
plays an important role in the study of several problems of Theoretical Computer
Science such as, for instance, in the Theory of Codes, where it is involved in the
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celebrated Schützenberger conjecture about the commutative equivalence of a
maximal finite code with a prefix one (see, e.g, [5,25,41] and also [15] for some
related problems). The question of our interest can be formulated as follows:

Commutative Equivalence Problem Given a context-free language L1, does
there exist a regular language L2 which is commutatively equivalent to L1?

In the sequel, for short, we refer to it as CE Problem. A language which is
commutatively equivalent to a regular one will be called commutatively regular.

It is worth noticing that commutatively equivalent languages share the same
alphabet and their generating series are equal. In particular, every commuta-
tively regular language must be counting regular, that is, its generating series
is rational. This remark leads us to recall that a conceptually related study
was conducted by Béal and Perrin in [3], where it is proved that a formal series
s =

∑
n≥0 snx

n is the generating series of a regular language over a k-letter al-
phabet if and only if the series s and its complementary t =

∑
n≥0(kn − sn)xn

are both N-rational.
Recently, Ibarra, McQuillan, and Ravikumar investigated this topic in view

of the more general notion of strongly counting regularity [35]. Such notion
amounts to ask, for an arbitrary language L, that the language L∩L1 is counting-
regular, for every regular language L1. A thorough analysis of the structure
and of the decidability issues of this family of languages have been obtained
in [35,36].

For our discussion, the following notions are useful. Given a language L,
the growth function gL returns, for any non-negative integer n, the number of
the words of L whose length is less than or equal to n. A language L is called
sparse if its growth function is polynomially upper bounded. A language L is
said to be of exponential growth if there exists a real number k > 1 such that
gL(n) > kn for all sufficiently large n.

Two results are relevant in this context. The first provides a “gap property”
[8, 38]: every context-free language is either sparse or of exponential growth.
The second states that the class of sparse context-free languages coincides with
that of bounded context-free languages [34, 40]. We recall that a language L is
termed bounded if there exist k words u1, . . . , uk such that L ⊆ u∗1 · · ·u∗k.

Bounded context-free languages play a meaningful role in Computer Science
and in Mathematics and have been widely investigated in the past so that their
structure has been characterized by several theorems [6, 14, 17, 18, 22, 24, 27,
28, 32–37, 40, 42]. A characterization of regular bounded sets, based upon a
combinatorial property of the factors of the words of the language, has been
obtained by Restivo [42] and, subsequently, extended to context-free languages
by Boasson and Restivo [6]. A survey on the relationships between bounded
languages and semigroups has been given by de Luca and Varricchio in [24].

In [19–21] the solution (in the affirmative) of the CE Problem for sparse
languages is given: Every bounded context-free language L1 is commutatively
equivalent to a regular language L2. Moreover the language L2 can be effectively
constructed starting from an effective presentation of L1. It is also shown that
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the CE Problem can be solved in the affermative for the wider class of bounded
semi-linear languages.

In view of the latter theorem and of the results mentioned above, the CE
Problem remains open for the class of context-free languages of exponential
growth. It should be pointed out that the techniques forged to solve the CE
Problem in the bounded case cannot be used in the exponential one. This is due
to the fact that such techniques are based upon the faithful representation of
bounded context-free languages by means of semi-linear sets of vectors (over N),
a result due to Ginsburg and Spanier [27, 28] that does not hold in the general
case.

A remark is relevant in this context: given a commutatively regular lan-
guage L, its characteristic series in commutative variables – that is, the formal
series L such that the coefficient of every word w is the number of words of L
commutatively equivalent to w – is rational.

This fact has two consequences. The first is that the answer to the CE
Problem is not in the affirmative in general. Indeed, the generating series of a
commutatively regular language L is always rational while there exist context-
free languages whose generating series are algebraic but not rational.

The most natural case corresponds to the family of Dyck languages which are
even deterministic and of exponential growth. Taking into account that by the
well-known representation theorem by Chomsky and Schützenberger [16] every
context-free language is the image of a Dyck language by a rational transduction,
these languages constitute a very general example.

Note also that, as a related result relevant in this setting, another well-known
theorem by Chomsky and Schützenberger [16] states that the generating series
of an unambiguous context-free language is algebraic.

It is worth noting that Flajolet even provided examples of linear inherently
ambiguous context-free languages with a transcendental generating series, such
as the language L = {anbv1a

nv2 | n ≥ 1, v1, v2 ∈ A∗} over the alphabet
A = {a, b} [26, Theorem 3].

In view of the previous results, solving the CE Problem seems to be highly
non trivial.

The second consequence is that the study of the CE Problem can be re-
duced to the family of languages whose characteristic series are rational. In this
context, the class of non-expansive grammars seems to play a relevant role. A
context-free grammar G is said to be expansive if one has X ⇒∗ α1Xα2Xα3

for some non-terminal X and suitable words α1, α2, α3. In the opposite case,
G is non-expansive. Non-expansive grammars have been widely studied (see [4]
and reference therein). The class of languages generated by these grammars
coincides with that of context-free languages of finite index.

A remarkable result by Baron and Kuich [2] provides a characterization
of non-expansive grammars. In particular, an unambiguous grammar is non-
expansive if and only if all non-terminals generate languages whose characteristic
series are rational.

It is worth noticing that in the quoted paper it has been conjectured that all
unambiguous context-free languages whose characteristic series in commutative
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variable is rational are generated by non-expansive grammars. If this conjec-
ture had been true, then all commutatively regular unambiguous context-free
languages would have been generated by non-expansive grammars. However,
we disprove the conjecture by exhibiting a deterministic context-free language
which is commutatively regular but cannot be generated by a non-expansive
grammar (see Example 1).

On the other side, it is natural to ask whether all languages generated by
non-expansive grammars or, at least, by unambiguous non-expansive grammars
are commutatively regular.

In the first part of this paper, we investigate the CE Problem for languages
generated by non-expansive grammars. The first result we prove, can be formu-
lated as follows (Theorem 2): the language generated by an unambiguous and
non-expansive grammar G is commutatively regular if for every non-terminal
X, there exists a bijection f : PX →WX between the set PX of the productions
of X in G and a prefix code WX such that for any production p : X → α, the
word obtained deleting all non-terminals in α is commutatively equivalent to
f(p).

This condition is verified, in particular, if the number of terminals occur-
ring in the right side of each production is sufficiently large (with respect to
the number of productions) and they are not all equal to the same letter (see
Theorem 3).

One of the key ingredients of our technique is the notion of commutative
equivalence of grammars. Two context free grammars G and G′ are commuta-
tively equivalent if there exists a bijection f : P → P ′ between the sets P and
P ′ of productions of G and G′, respectively, such that, for every production
p ∈ P , the right side components of p and of f(p) are commutatively equiva-
lent, and the left sides are equal. One can show that the characteristic series in
commutative variables of two commutatively equivalent (cycle-free) grammars
are equal. As a straightforward consequence of this fact, one has that commu-
tatively equivalent unambiguous cycle-free grammars generate commutatively
equivalent languages. Therefore, in order to show that a context-free language
is commutatively regular, it is enough to find an unambiguous grammar gener-
ating the language which is commutatively equivalent to an unambiguous right
linear one. These facts together with the use of codes allow us to develop a
technique to deal with the problem.

This method also allows to get an alternative proof of the ‘if’ part of the
theorem of Baron and Kuich. In our opinion, this proof could be of inter-
est in itself since it furnishes a method for the construction, starting from a
non-expansive grammar, of a right linear grammar with the same character-
istic series in commutative variables. Thus the CE Problem for unambiguous
non-expansive grammars is related to the general problem of finding a regular
language with a prescribed characteristic series in commutative variables.

In the second part of the paper, we investigate the CE Problem with respect
to the first non-trivial family of non-expansive grammars: the minimal linear
grammars. A linear grammar is called minimal if it has only one non-terminal
symbol. This notion, first introduced in [16] (see also [30]), is relevant in our
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study since, in the unambiguous case, the derivation process of words in such a
grammar, is algebraically close to the process of message encoding by variable
length codes [12].

We first prove that the language generated by an unambiguous minimal
linear grammar G is commutatively regular if the language of words generated
by G in k steps, for some given k ≥ 1, is a commutatively prefix set (Theorem
4 and Corollary 3). This result shows a connection between the CE Problem
for unambiguous minimal linear grammars and the study of conditions that
guarantee for a finite set of words to be commutatively equivalent to a code.

In view of this problem, it becomes natural to study the property of unambi-
guity of these grammars. By using the notion of Bernoulli distribution, we prove
two results for an unambiguous minimal linear grammar which are analogous to
fundamental properties of codes. The first is a “Kraft-McMillan like” inequality:
in an arbitrary unambiguous minimal linear grammar, for every Bernoulli dis-
tribution µ, one has

∑
µ(uv) ≤ 1, where the sum is extended to all productions

X → uXv of G (Proposition 6). The second result states, up to a technical
restriction, the very same characterization of codes in term of positive Bernoulli
distributions (Proposition 7 and Corollary 4). We finally refine our results for
minimal linear grammars on a binary alphabet of terminal symbols, showing a
relation with the Schützenberger conjecture of codes mentioned above.

In conclusion, we point out that the general question whether all languages
generated by non-expansive grammars are commutatively regular remains open,
and we hope that the techniques developed here will help to find an answer.

The paper is organized as follows. In Section 2 preliminaries on context-free
languages and formal power series are presented. In Section 3, we introduce
and discuss the notion of commutative equivalence for grammars. Section 4
is devoted to the study of the characteristic series in commutative variables
of languages generated by non-expansive grammars and the theorem by Baron
and Kuich. Section 5 is devoted to the proof of our statements on the com-
mutative equivalence of languages generated by non-expansive grammars and
regular languages (Theorem 2 and Theorem 3). In Section 6, we investigate the
CE Problem for the class of linear minimal grammars. Section 7 contains some
concluding remarks and open problems.

Some results of this paper have been presented at DLT 2018 [10].

2 Preliminaries

We now recall some useful terms and basic properties concerning formal lan-
guages, context-free grammars, and formal power series [4, 5, 9, 27,31,44].

2.1 Words and languages

Let A be a finite non-empty alphabet and A∗ be the free monoid generated by
A. The identity of A∗ is called the empty word and is denoted by ε. The set
A∗ \ {ε} is denoted by A+. The length of a word w ∈ A∗ is the integer |w|
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inductively defined by |ε| = 0, |wa| = |w| + 1, w ∈ A∗, a ∈ A. If n ∈ N, then
A≤n denotes the set of all the words of A∗ of length not larger than n. For
every a ∈ A, |w|a denotes the number of occurrences of the letter a in w.

One can introduce in A∗ the equivalence relation ∼, called commutative
equivalence, defined as follows: for all u, v ∈ A∗, one has u ∼ v if |u|a = |v|a for
every letter a ∈ A. Thus, one has u ∼ v if the word v is obtained rearranging
the letters of u in a different order. Two languages L and L′ are said to be
commutatively equivalent, and one writes L ∼ L′, if there exists a bijection
f : L→ L′ such that, for every u ∈ L, u ∼ f(u).

A set X over the alphabet A is said to be a prefix set if XA+ ∩X = ∅, that
is, if, for every u, v ∈ L, u is not a proper prefix of v. A set X of words over
an alphabet A is said to be commutatively prefix if there exists a prefix set X ′

such that X is commutively equivalent to X ′.
A subset X of A+ is a code (over A) if every word of X+ has a unique

factorization as a product of words of X.
Let B and A be alphabets with B ⊆ A. The projection of A∗ onto B∗ is the

morphism π̂B : A∗ → B∗ generated by the function πB : A→ B∪{ε} such that,
for every a ∈ A, πB(a) = a, if a ∈ B, and πB(a) = ε, otherwise. In the sequel,
the morphism π̂B will be simply denoted πB .

Let A and B be two alphabets and let P(B∗) denote the power set of B∗.
A map φ : A∗ → P(B∗) is a substitution if for any u, v ∈ A∗ one has φ(uv) =
φ(u)φ(v). The substitution φ is regular if for all a ∈ A, φ(a) is a regular
language. As is well-known (see, e.g., [44]), if L ⊆ A∗ is a regular language and
φ is a regular substitution, then φ(L) =

⋃
w∈L φ(w) is a regular language.

2.2 Formal series

We assume the reader to be familiar with the theory of formal power series.
Just in order to facilitate the lecture of the paper, we recall here some notions.
A comprehensive presentation of the subject can be found, for instance, in [45].

Let A be an alphabet and N̂ be the semiring N̂ = N ∪ {+∞}. The semiring
of formal power series in non-commutative and commutative variables with co-
efficients in N̂ and variables in A will be denoted, respectively, by N̂〈〈A〉〉 and

N̂[[A]]. A formal power series with coefficients in N̂ is said to be unambiguous
(resp., non-singular) if all its coefficients belong to the set {0, 1} (resp., to N).
As usual, the sub-semirings of non-singular series in non-commutative and com-
mutative variables will be denoted, respectively, by N〈〈A〉〉 and N[[A]] and the
sub-semirings of non-singular polynomials by N〈A〉 and N[A]. The coefficient of
a monomial w in the series s is denoted by (s, w).

Let A and B be two alphabets. Any non-erasing morphism φ : A∗ → B∗ can
be extended to a semiring morphism of N̂〈〈A〉〉 into N̂〈〈B〉〉 by

φ

( ∑
w∈A∗

kww

)
=
∑
w∈A∗

kwφ(w),

kw ∈ N, w ∈ A∗. In a similar way, the natural projection cA : A∗ → A∗/ ∼
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is extended to a morphism of N̂〈〈A〉〉 onto N̂[[A]]. Moreover, there exists a

semiring morphism φ̃ : N̂[[A]] → N̂[[B]] such that the following diagram, where
cA and cB denote the natural projections, commutes:

N̂〈〈A〉〉 φ−−−−→ N̂〈〈B〉〉

cA

y ycB
N̂[[A]] −−−−→

φ̃
N̂[[B]]

For any element s of N̂〈〈A〉〉 or of N̂[[A]], we denote by s∗ the formal power se-
ries whose coefficients, for any monomial w, are given by (s, w) =

∑∞
n=0(sn, w).

A formal power series is rational if it belongs to the minimal subsemiring of
N̂〈〈A〉〉 (resp., N̂[[A]]) containing all monomials and closed for the ∗-operation.

With any language L on an alphabet A, we associate the characteristic se-
ries of L in non-commutative variables L =

∑
w∈L w. The natural projection

of L in the commutative semiring N̂[[A]] will be called the characteristic series
of L in commutative variables and will be denoted by L. Thus, for any mono-
mial an1

1 · · · a
nt
t , (L, an1

1 · · · a
nt
t ) gives the number of the words of L which are

commutatively equivalent to an1
1 · · · a

nt
t .

2.3 Context-free grammars

LetG = (V, T, P, S) be a context-free grammar, where V denotes the vocabulary,
T denotes the set of terminals, N = V \ T denotes the set of non-terminals,
P denotes the set of productions, and S ∈ V denotes the axiom. For every
α, β ∈ V ∗, we write α⇒G β if α directly derives β in G. As usual, the transitive
(resp., transitive and reflexive) closure of the relation ⇒G will be denoted by
⇒+
G (resp.,⇒∗G). If no ambiguity arises⇒G (resp.,⇒+

G,⇒∗G) is simply denoted
⇒ (resp., ⇒+, ⇒∗).

Let δ = p1p2 · · · pk be a finite sequence of productions of G and

α0 ⇒ α1 ⇒ · · · ⇒ αk

be a derivation where any αi is obtained from αi−1 replacing an occurrence of
the left side of pi by the corresponding right side, 1 ≤ i ≤ k. In such a case
we write α0 ⇒δ αk. Moreover, the integer k is said to be the length of the
derivation. For any non-terminal X and any α ∈ V ∗, we write X ⇒k α if there
exists a derivation X ⇒δ α of length k.

We denote by L(G) the language {u ∈ T ∗ | S ⇒∗G u} of all the words of
T ∗ generated by G. A grammar G is said to be unambiguous if every u ∈
L(G) is generated by exactly one leftmost derivation; otherwise G is said to be
ambiguous.

With any non-terminal X of the grammar G one can associate the series GX
of N̂〈〈T 〉〉, whose coefficients

(
GX , w

)
count the number of leftmost derivations

X ⇒∗ w. The natural projection of GX in the commutative semiring N̂[[T ]]
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will be denoted by G
X

. Thus, the coefficients
(
G
X
, w
)

count the number of
leftmost derivations of words which are commutatively equivalent to w. The
series G = G

S
is called the characteristic series (in commutative variables) of

the grammar G. In particular, if G is unambiguous, then G is the characteristic
series (in commutative variables) of the language generated by G.

A context-free grammar G is said to be cycle-free if there is no non-terminal
X such that X ⇒+ X. This condition ensures that any word w ∈ L(G) has
finitely many leftmost derivations in G, so that the series G and G are non-
singular.

A context-free grammar is said to be reduced if, for any non-terminal X,
there are words u1, u2, u3 ∈ T ∗ such that S ⇒∗ u1Xu2 ⇒∗ u3.

3 Commutatively Equivalent Grammars

We say that two productions of context-free grammars are commutatively equiv-
alent if their left sides are equal and their right sides are commutatively equiva-
lent over the alphabet V . Two context free grammars G = (V,N, P, S) and G′ =
(V,N, P ′, S) are commutatively equivalent if there exists a bijection f : P → P ′

such that every production p ∈ P is commutatively equivalent to f(p).
We will establish the following

Proposition 1 The characteristic series in commutative variables of two com-
mutatively equivalent cycle-free grammars are equal.

As a straightforward consequence of Proposition 1, one has the following

Corollary 1 Commutatively equivalent unambiguous (cycle-free) grammars gen-
erate commutatively equivalent languages.

Remark 1 In the previous corollary the hypothesis that the grammars are
cycle-free may be eliminated. Indeed, if G and G′ are two commutatively equiv-
alent unambiguous grammars, then the corresponding reduced grammars are
commutatively equivalent and unambiguous, too. Since unambiguous reduced
grammars are necessarily cycle-free, by the previous corollary we conclude that
the generated languages are commutatively equivalent.

We mention that also Proposition 1 remains true without the hypothesis
that the considered grammars are cycle-free. However, the proof of the general
case would require some very complex combinatorial argument and is omitted,
as it would be outside the scope of the paper.

In order to give a simple proof of Proposition 1, we recall some basic proper-
ties of algebraic systems of equations. For a comprehensive presentation of the
subject the reader is referred to [45].

Let T be an alphabet. An algebraic system of equations on N〈T 〉 in the
unknowns X1, X2, . . . , Xk is a set of equations

Xi = αi, 1 ≤ i ≤ k, (1)
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with αi ∈ N〈T ∪ {X1, X2, . . . , Xk}〉, 1 ≤ i ≤ k.
The approximating solutions of the algebraic system (1) are the k-tuples

(X
(n)
1 , X

(n)
2 , . . . , X

(n)
k ) of elements of N〈T 〉 defined as follows:

X
(0)
1 = X

(0)
2 = · · · = X

(0)
k = 0,

and for n > 0, X
(n)
i is the polynomial obtained from αi, replacing all occurrences

of the unknowns Xj by X
(n−1)
j , 1 ≤ i, j ≤ k. A k-tuple (s1, s2, . . . , sk) of

elements of N〈〈T 〉〉 is the proper solution of the algebraic system (1) if for all
w ∈ T ∗ there exists an integer nw such that

(si, w) = (X
(n)
i , w), 1 ≤ i ≤ k, n ≥ nw.

As is well-known, the proper solution of an algebraic system, if existing, is a
solution of the system, that is replacing in αi all occurrences of the unknowns
X1, . . . , Xk by s1, . . . , sk, respectively, one obtains the series si, 1 ≤ i ≤ k.

Algebraic systems of equations on N[T ] and their approximated and proper
solutions are defined similarly. Let c denote the natural projection

c : N〈〈T ∪ {X1, X2, . . . , Xk}〉〉 → N[[T ∪ {X1, X2, . . . , Xk}]].

By induction on n, one easily verifies that if (X
(n)
1 , . . . , X

(n)
k ) is n-th approxi-

mating solution of the algebraic system (1), then (c(X
(n)
1 ), . . . , c(X

(n)
k )) is the

n-th approximating solution of the algebraic system

Xi = c(αi), 1 ≤ i ≤ k, (2)

on N[T ]. Consequently, if (s1, . . . , sk) is a proper solution of the algebraic sys-
tem (1), then (c(s1), . . . , c(sk)) is a proper solution of the algebraic system (2).
In the sequel, we shall refer to the system (2) as the commutative variant of the
algebraic system (1).

Let G = (V, T, P,X1) be a context-free grammar with non-terminal symbols
X1, X2, . . . , Xk and productions

Xi → αij , 1 ≤ i ≤ k, 1 ≤ j ≤ mi.

With the grammar G, we associate the algebraic system

Xi =

mi∑
j=1

αij , 1 ≤ i ≤ k,

in the unknowns X1, X2, . . . , Xk.
As proved in [39], if the grammar G is cycle-free, then the algebraic system

has a proper solution. Such a solution is given by the tuple (GX1
, GX2

, . . . , GXk
).

Consequently, the commutative variant of the algebraic system has the proper
solution (G

X1
, G

X2
, . . . , G

Xk
).

Now, the proof of Proposition 1 is straightforward: the commutative variants
of the algebraic systems associated with two commutatively equivalent cycle-free
grammars G and G′ are equal, so that they have the same proper solution. Thus,
for all variables Xi, GXi

= G′
Xi

. In particular, G = G′.
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4 Non-expansive Grammars and Rational Series

In the sequel, we consider a context-free grammar G = (V, T, P, S). As already
observed, the characteristic series (in commutative variables) and the generating
series of a commutatively regular language must be rational. Rational series are
well-known and their structure has been thoroughly investigated. A result of
Baron and Kuich [2] provides the characterization of the context-free grammars
G such that, for every non-terminal X, the series G

X
is rational. This charac-

terization is based upon the notion of non-expansive grammar. A grammar G
is said to be expansive if there is a non-terminal X such that X ⇒∗ α1Xα2Xα3

for some α1, α2, α3 ∈ V ∗. In the opposite case, G is non-expansive.

Theorem 1 [2] A cycle-free reduced context-free grammar is non-expansive if
and only if for all non-terminals X, the series G

X
is rational.

The following is a straightforward consequence of the theorem above.

Corollary 2 The characteristic series in commutative variables of the language
generated by an unambiguous non-expansive grammar is rational.

Remark 2 Theorem 1 does not imply that an unambiguous context-free lan-
guage whose characteristic series in commutative variables is rational, is gener-
ated by a non-expansive grammar. In fact, in [2] the following two conjectures
were formulated:

1. a (reduced) context-free grammarG such thatG is rational is non-expansive;

2. an unambiguous context-free grammar G is non-expansive if and only if
L(G) is rational.

However, the following example shows that both conjectures are false.

Example 1 Let D1 be the Dyck language on the alphabet A = {a, a} and
D1 = A∗ \D1. Then

L = bD1 ∪D1b

is a deterministic context-free language. It is commutatively equivalent to the
rational language A∗b and therefore its characteristic series in commutative
variables is rational.

Let us verify that a context-free grammar G generating L is necessarily
expansive.

We can assume without loss of generality that the grammar G has no ε-rules
and no unit rules. Indeed, as is well-known, one can effectively construct a
context-free grammar G1 = (V, T, P1, S) with no ε-rule and no unit rule such
that L(G1) = L(G) and, moreover, for any derivation X ⇒∗G1

α, one has
X ⇒∗G α. Hence, if G1 is expansive, then G is expansive, too.

Thus, let us assume that G has no ε-rule and no unit rule. Let us verify that
if S → α is a production of G such that α⇒∗ vb for some v ∈ D1, then such a
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production cannot occur in a derivation of any word bu, with u ∈ D1. Indeed,
if it was not the case, one would have

S
∗⇒ β1αβ2

∗⇒ bu,

for some β1, β2 ∈ V ∗. Since G has no unit rule, one has α = Xα1, with X ∈ V
and α1 ∈ V +. Taking into account that Xα1 ⇒∗ vb, β1Xα1β2 ⇒∗ bu and G
has no ε-rule, one derives

v = v1v2, X
∗⇒ v1, α1

∗⇒ v2b,

u = u1u2u3, β1X
∗⇒ bu1, α1

∗⇒ u2, β2
∗⇒ u3,

with u1, u2, u3, v1, v2 ∈ A∗. Consequently,

S ⇒ Xα1
∗⇒ v1u2 ∈ A∗.

This yields a contradiction, since the letter b does not occur in the word v1u2

and, therefore, v1u2 /∈ L.
Let G2 be the grammar obtained by G by deleting all productions S → α

such that α⇒∗ vb for some v ∈ D1. By the result established above, one easily
verifies that L(G2) = bD1. Now, let G3 be the grammar obtained by G2 by
deleting all occurrences of b in the right sides of the productions. Clearly, one
has L(G3) = D1.

As is well-known [43], the language D1 cannot be generated by a non-
expansive grammar. Thus, in G3 there is a nonterminal X and a derivation
X ⇒∗ α1Xα2Xα3, with α1, α2, α3 ∈ V ∗. By the construction of G3, one de-
rives that there is a derivation X ⇒∗ β1Xβ2Xβ3, with β1, β2, β3 ∈ V ∗ in G2

and, consequently, in G. Hence, also G is expansive.
By the way, this example is derived from a very similar one in [2]. It is also

worth noticing that the class of languages generated by non-expansive gram-
mars coincides with that of context-free languages of finite index (see, e.g., [4,
sec. VII.5]).

Clearly, the characteristic series in commutative variables of a commutatively
regular language L is rational. For this reason, in view of Theorem 1, the study
of the CE Problem for languages generated by non-expansive grammars is of
particular interest.

Indeed, if a language L is generated by an unambiguous non-expansive gram-
mar, then its characteristic series L is a rational series and therefore it is a com-
ponent of the proper solution of a proper linear system in commutative variables
S (see, e.g., [45]). Thus, in order to investigate the commutative regularity of
the language L, one is reduced to ask whether the components of the proper
solution of S are the characteristic series in commutative variables of regular
languages. In other terms, one is reduced to search for a proper linear system
in non-commutative variables whose commutative version is equal to S or to
a system equivalent to it and with a proper solution whose components are
unambiguous series. This problem will be studied in the following section.
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5 The CE Problem for Non-expansive Gram-
mars

Let G = (V, T, P, S) be a context-free grammar. One may consider the relation
≤ on the set N of non-terminal symbols of G defined as follows: for any X,Y ∈
N , one has X ≤ Y if there is a derivation X ⇒∗ α1Y α2 in G with α1, α2 ∈ V ∗.
As one easily verifies, the relation ≤ is a quasi-order on N . As usual, if X,Y are
non-terminals such that X ≤ Y and Y ≤ X, then we shall write X ≡ Y , while
if one has X ≤ Y but Y ≤ X does not hold true, then we shall write X < Y .
The relations < and ≡ are respectively a partial order and an equivalence on
the set N of non-terminals. With any non-terminal X ∈ N , we associate the
sets

N≡X = {Y ∈ N | Y ≡ X} and N<X = {Y ∈ N | Y < X}
As proved in [9], a grammar G is non-expansive if and only if all its productions
have the form

X → uY v or X → u,

with X ∈ N , Y ∈ N≡X , u, v ∈ (T ∪N<X)∗. Grammars satisfying the condition
above were called superlinear in [9]. We say that a context-free grammar G is
right superlinear if all its productions have the form

X → uY or X → u,

with X ∈ N , Y ∈ N≡X , u ∈ (T ∪N<X)∗. From the result of [9] quoted above
one derives

Proposition 2 Any right superlinear grammar is non-expansive.

Now we shall prove that right superlinear grammars generate regular lan-
guages.

Proposition 3 Let G = (V, T, P, S) be a right superlinear grammar. Then
L(G) is a regular language.

Proof We proceed by induction on Card(V ). Clearly, if Card(V ) = 1 and,
more generally, if N<S = ∅, then G is a right linear grammar and the statement
is trivially verified. Thus, we assume N<S 6= ∅.

Let G′ = (V, T ′, P ′, S) be the grammar with

T ′ = T ∪N<S , P ′ = {X → α ∈ P | X ∈ N≡S}.

and φ : T ′∗ → T ∗ be the substitution defined by

φ(α) = {w ∈ T ∗ | α ∗⇒
G
w},

for all α ∈ T ′∗. Since G is right superlinear, the grammar G′ is right linear and
therefore it generates a regular language R = L(G′) ⊆ T ′∗. Let us verify that

L(G) = φ(R).

12



Indeed, let w ∈ L(G), S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ αn = w be a rightmost derivation
of w in G and i be the maximal index such that S ⇒∗ αi in G′. Since G′ is right
linear, either αi ∈ R or αi has the form αi = uX, with u ∈ T ′∗ and X ∈ N≡S .
However, in the latter case, αi+1 would be a direct consequence of αi in the
grammar G′, contradicting the maximality of i. We conclude that αi ∈ R and
w ∈ φ(R). This proves the inclusion L(G) ⊆ φ(R).

Conversely, if w ∈ φ(R), then one has w ∈ φ(α) for some α ∈ R. Thus,
S ⇒∗ α in G′ and α⇒∗ w in G. Taking into account that all productions of G′

are also productions of G, one derives S ⇒∗ w in G, so that w ∈ L(G). This
proves the inclusion φ(R) ⊆ L(G).

Now we show that φ is a regular substitution. Indeed, one easily verifies
that for any X ∈ N<S , φ(X) is the language generated by the grammar GX =
(T ′, T, P ′′, X) with

P ′′ = {Y → α ∈ P | Y ∈ N<S}.

Since such a grammar is right superlinear and Card(T ′) < Card(V ), we may
assume, by the induction hypothesis, that φ(X) is a regular language. Moreover,
for any a ∈ T , φ(a) = {a} is regular, as well. Thus, φ is a regular substitution.

In conclusion, we have proved that L(G) = φ(R), where R is a regular
language and φ is a regular substitution. Hence L(G) is regular.

The following proposition is a consequence of Corollary 1 and Proposition 3.

Proposition 4 An unambiguous grammar which is commutatively equivalent
to a right superlinear unambiguous grammar generates a commutatively regular
language.

Now, we will show some applications of the previous proposition. Let X =
(x1, · · · , xm) be a list of words (non necessarily distinct). We will say that X is
commutatively prefix if there exist pairwise distinct words y1, · · · , ym such that
xi ∼ yi, 1 ≤ i ≤ m and {y1, . . . , ym} is a prefix set.

Let G be a context-free grammar. For every non-terminal X, let α1, . . . , αm
be the list of the right sides of the productions of G with X on the left side.
We may consider the sequence of the projections of these words on the terminal
alphabet

TX =
(
πT (α1), . . . , πT (αm)

)
.

Notice that this list may contain repetions.

Theorem 2 Let G = (V, T, P, S) be a non-expansive unambiguous grammar.
If for every non-terminal X, the list TX is commutatively prefix, then L(G) is
commutatively regular.

Proof In view of Proposition 4, it is sufficient to verify that G is commutatively
equivalent to a right superlinear unambiguous grammar.

With no loss of generality we may assume that G has the non-terminal
symbols X1, X2, . . . , Xk, where S = X1, and the productions

Xi → αij , 1 ≤ i ≤ k, 1 ≤ j ≤ mi.
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By hypothesis, for every i = 1, . . . , k, there are pairwise distinct words yi1, . . . , yimi

such that πT (αij) ∼ yij , 1 ≤ j ≤ mi and Yi = {yi1, . . . , yimi
} is a prefix set.

Let G′ = (V, T, P ′, S) be the grammar with the following productions:

Xi → yijπN\{Y }(αij)Y if αij contains a non-terminal Y ≡ Xi,

Xi → yijπN (αij) otherwise,

1 ≤ i ≤ k, 1 ≤ j ≤ mi. One easily verifies that G and G′ are commutatively
equivalent. Let us verify that G′ is unambiguous.

Indeed, suppose that G′ is ambiguous. Then there are α, β1, β2 ∈ V ∗, w ∈ T ∗
and leftmost derivations in G′

α⇒ β1
∗⇒ w, α⇒ β2

∗⇒ w, β1 6= β2.

Taking into account the form of the productions of G′, one easily obtains

α = uXiα
′, β1 = uyij1γ1α

′, β2 = uyij2γ2α
′, w = uyij1w1 = uyij2w2,

with u,w1, w2 ∈ T ∗, γ1, γ2, α
′ ∈ V ∗, 1 ≤ i ≤ k, 1 ≤ j1, j2 ≤ mi and j1 6= j2.

This implies yij1w1 = yij2w2 which is impossible as Yi is a prefix set.
We conclude that G′ is an unambiguous right superlinear grammar and,

consequently, L(G) is commutatively regular.

In order to prove our next theorem, we need the following

Lemma 1 Let M = (v1, . . . , vm) be a list of words of T+ such that:

1. for i = 1, . . . ,m, |vi| ≥ m;

2. for every a ∈ T , there exists at most one word vi ∈ a+.

Then M is commutatively prefix.

Proof We proceed by induction on m.
If m = 1, the statement is trivially true. Thus, we assume m ≥ 2. With

no loss of generality, we suppose that |vm| = max1≤i≤m |vi|. By the inductive
hypothesis, (v1, . . . , vm−1) is commutatively prefix, so that there exists a prefix
code Y = {y1, . . . , ym−1} such that yi ∼ vi, i = 1, . . . ,m − 1. To prove the
statement, it is sufficient to find a word ym such that ym ∼ vm and no word of
Y is a prefix of ym.

Suppose that vm = an for some a ∈ T , n ≥ m. By Condition (2), no other
word ofM, and, consequently, no word of Y is a power of a. Thus, it is sufficient
to take ym = vm.

Now, let us consider the case that vm is not the power of a single letter.
Then, we can find a factor u of vm of length m containing at least two distinct
letters. The number of the words which are commutatively equivalent to u is
not smaller than m. Thus, among these words, at least one is different from all
the prefixes of length m of the words of Y. Let v be such a word. Since u is a
factor of vn and u ∼ v, one has vm ∼ us ∼ vs for some s ∈ T ∗ and no word
of Y can be a prefix of vs, since otherwise, v would be a prefix of such a word.
Thus, our goal is attained taking ym = vs.
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As a straightforward consequence of the last two results, we get

Theorem 3 Let G be a non-expansive unambiguous grammar. For every non-
terminal symbol X, let mX denote the number of the productions in P with X
on the left side. Suppose that the following conditions are verified:

1. For all production X → α, one has |πT (α)| ≥ mX .

2. For all X ∈ N and a ∈ T , there exists at most one production X → α
such that πT (α) ∈ a∗.

Then L(G) is commutatively regular.

Indeed, Lemma 1 ensures that if Conditions 1 and 2 are satisfied, then the
hypotheses of Theorem 2 are verified.

The following example shows that in some cases, by conveniently manip-
ulating the productions of an unambiguous grammar, one can reduce himself
to a grammar generating the same language which satisfy the hypotheses of
Theorems 2 or 3 .

Example 2 Let G = (V, T, P, S) be the grammar associated with the algebraic
system

S = XY

X = aXb+ bXa+ aa

Y = bbY a+ bba

One easily verifies that G is unambiguous and non-expansive. Here, we cannot
apply Theorem 2, because the list TS is given by (ε, ε) which is not commuta-
tively prefix. Replacing in the first equation of the system all occurrences of X
and Y by the expression in the right hand side of the second and third equation,
respectively, we obtain the equivalent system

S = aXbbbY a+ aXbbba+ bXabbY a+ bXabba+ aabbY a+ aabba

X = aXb+ bXa+ aa

Y = bbY a+ bba

In the corresponding grammar G′ = (V, T, P ′, S), the list TS is given by (abbba,
abbba, babba, babba, aabba, aabba), whose elements are commutatively equivalent,
respectively, to the words

a2b3, abab2, ab2ab, ab3a, a3b2, a2b2a,

which are distinct elements of a prefix set. Thus, the list TS is commutatively
prefix. Also the lists TX = (ab, ba, aa) and TY = (bba, bba) are commutatively
prefix. By Theorem 2, we conclude that the language generated by G and G′ is
commutatively prefix.
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Theorem 2 may also be used to verify that the characteristic series in com-
mutative variables of non-expansive cycle-free grammars are rational [2].

Proposition 5 Let G = (V, T, P, S) be a non-expansive cycle-free grammar.
Then the series G is rational.

Proof Let P = {p1, . . . , pn}. The annotated parenthesized grammar associated
with G is the grammar G′ = (V, T ′, P ′, S) obtained by replacing any production
pi : X → α by p′i : X → (iα)i, 1 ≤ i ≤ n, where (1, )1, . . . , (n, )n are new terminal
symbols. As is well-known, the grammar G′ is unambiguous and there is a 1-1
correspondence between the words of L(G′) and the leftmost derivations of G,
where any word w ∈ L(G′) corresponds to a leftmost derivation of πT (w). It
follows that G = πT (G′) and, consequently,

G = π̃T (G′).

where π̃T : N̂[[T ′]]→ N̂[[T ]] is obtained from πT as explained in Section 2.2.
Taking into account that any (i occurs in the right side of a single production

of G′, one easily verifies that G′ satisfies the hypotheses of Theorem 2. Thus,
G′ and, consequently, G are rational series. This completes the proof.

6 Minimal Linear Grammars

Minimal linear grammars, first introduced by Chomsky and Schützenberger
in [16], provide the first non-trivial example of grammars for which the CE
Problem can be investigated. A minimal linear grammar is a linear grammar
with only one non-terminal symbol X. Thus, the productions of a minimal
linear grammar can be written as

X → uiXvi, 1 ≤ i ≤ m, X → wj , 1 ≤ j ≤ n, (3)

with ui, vi, wj ∈ T ∗, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The productions X → wj will be
called terminal.

The derivation process of words in an unambiguous minimal linear grammar
is algebraically close to the process of message encoding by variable length codes
[12]. Indeed, let G be a minimal grammar with a unique terminal production
pT and f : A→ P ′ be a bijection of an alphabet A onto the set P ′ = P \{pT } of
non-terminal productions of G. Such a map naturally defines a correspondence
between A∗ and L(G), associating any word w ∈ A∗ to the word generated in
G by the sequence of the corresponding productions, followed by pT .

More formally, one can define the map cf : A∗ → L(G) as follows: if w =
a1a2 · · · an, ai ∈ A, 1 ≤ i ≤ n, then cf (w) is the word v such that

X ⇒
δ
v, where δ = f(a1)f(a2) · · · f(an)pT .

The map cf is a bijection if and only if the grammar G is unambiguous. In such
a case, ‘decoding’, that is the effective computation of the inverse mapping c−1

f ,
is obtained by parsing the coded sentences.
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The object of this section is to investigate the connections between minimal
linear grammars and codes with respect to the CE Problem. Clearly, minimal
linear grammars are non-expansive so that Theorem 2 and Theorem 3 apply to
them. However, by exploiting the connection between such grammars and codes,
new conditions ensuring that they generate a commutatively regular language
can be set up.

Theorem 4 Let G be an unambiguous minimal linear grammar with the pro-
ductions (3). If the list of words (uivi)i=1,...,m is commutatively prefix, then
L(G) is commutatively regular.

Proof By hypothesis, there exists a prefix set Y = {y1, . . . , ym} such that
yi ∼ uivi, 1 ≤ i ≤ m. We shall prove that there exist words z1, . . . , zn such that
|zj | = |wj |, 1 ≤ j ≤ n and L(G) is commutatively equivalent to the regular set
Y∗{z1, . . . , zn}.

The proof is by induction on n.
First suppose n = 1. In this case, in view of the unambiguity of G, any word

of L(G) can be uniquely written as

ui1ui2 · · ·uihw1vih · · · vi2vi1

with h ≥ 0, i1, . . . , ih ∈ {1, . . . ,m} and, conversely, any word of this form
belongs to L(G). Similarly, taking into account that Y is a code, any word of
Y∗w1 can be uniquely written as

yi1yi2 · · · yihw1

with h ≥ 0, i1, . . . , ih ∈ {1, . . . ,m} and, conversely, any word of this form
belongs to Y∗w1. Since

ui1ui2 · · ·uihw1vih · · · vi2vi1 ∼ yi1yi2 · · · yihw1,

we conclude that L(G) and Y∗w1 are commutatively equivalent. Thus, the
statement is verified taking z1 = w1.

Now suppose n ≥ 2. With no loss of generality, we may assume that |wn| =
max1≤j≤n |wj |. Let G′ be the grammar obtained by G deleting the production
X → wn. By the induction hypothesis, we assume that there are z1, . . . , zn−1

such that |zi| = |wi|, 1 ≤ i ≤ n − 1 and Y∗{z1, . . . , zn−1} is commutatively
equivalent to L(G′). Since wn /∈ L(G′), necessarily there exists a word

zn /∈ Y∗{z1, . . . , zn−1} (4)

such that zn ∼ wn. The language L(G) \ L(G′) is generated by the grammar
obtained by G deleting the productions X → wi, i = 1, . . . , n− 1. Thus, by an
argument similar to that used in the case n = 1, one can prove that L(G)\L(G′)
is commutatively equivalent to Y∗zn. Let us verify that

Y∗{z1, . . . , zn−1} ∩ Y∗zn = ∅.
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Indeed, if it was not the case, one would have yzn = y′zj for some y, y′ ∈ Y∗
1 ≤ j ≤ n−1. By our assumption on the maximality of |wn|, one has |zn| ≥ |zj |
so that y′ = yx, zn = xzj , for a suitable word x. Taking into account that Y is
a prefix code, one derives x ∈ Y∗ and therefore zn ∈ Y∗zj , contradicting (4).

In conclusion, Y∗{z1, . . . , zn−1} and Y∗zn are disjoint sets commutatively
equivalent to L(G′) and L(G) \ L(G′), respectively. Thus, Y∗{z1, . . . , zn} is
commutatively equivalent to L(G). This concludes the proof.

For any k ∈ N, denote by Lk the set of words {w ∈ T ∗ | X ⇒k+1 w}. If the
production X → ε is present in G, the previous theorem takes a simpler form.

Corollary 3 Let G be an unambiguous minimal linear grammar. Assume that
X → ε is a production of G and, for some k ∈ N, Lk is commutatively prefix.
Then L(G) is commutatively regular.

Proof Let G′ = (V, T, P ′, X) be the grammar with the following productions:

X → uXv if X ⇒k uXv in G,

X → w if there exists ` ≤ k such that X ⇒` w in G, w ∈ T ∗.

One easily checks that G′ is unambiguous and L(G′) = L(G). Indeed, as any
production of G′ corresponds to a derivation of G, one has L(G′) ⊆ L(G)
and, moreover, no word of L(G′) can have two distinct derivations in G′ since,
otherwise, it would have two derivations in G. Conversely, any derivation of a
word w ∈ L(G) in G can be decomposed as

X
k⇒ α1

k⇒ α2
k⇒ · · · k⇒ αq

r⇒ w

with q ≥ 0 and 0 < r ≤ k. Taking into account the linearity of G, one obtains
that in G′ there is the derivation X ⇒ α1 ⇒ · · · ⇒ αq ⇒ w. This proves the
inclusion L(G) ⊆ L(G′).

Moreover,
{uv | X → uXv ∈ P ′} ⊆ Lk

and for any word w ∈ Lk there is at most one production X → uXv of G′ such
that w = uv. Since Lk is commutatively prefix, this ensures that G′ satisfies
the hypotheses of Theorem 4. The conclusion follows.

Example 3 Let G be the linear minimal grammar whose set of productions is
P = {X → abXb, X → abXaa, X → baXb, X → ε}. One easily checks that G
is unambiguous. Moreover, L1 = {abb, abaa, bab} is a prefix set and, therefore,
L(G) is commutatively equivalent to L∗1.

A natural problem arising from the previous results is to figure out which
minimal linear grammars satisfy the hypotheses of Theorem 4 and Corollary 3.
In view of this problem, an essential element of the study of the CE Problem
is the property of unambiguity of the grammar. We thus investigate conditions
that force these grammars to satisfy that property. These conditions mimic for
minimal linear grammars well-known properties of codes.
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6.1 Measure of a minimal linear grammar

Let T be a finite alphabet and R+ be the set of non-negative real numbers. A
Bernoulli distribution µ on T is any map

µ : T → R+,

such that
∑
a∈T µ(a) = 1. A Bernoulli distribution is positive if, for all a ∈ T ,

µ(a) > 0. Any Bernoulli distribution µ over T is extended to a unique morphism
(still denoted µ) of T ∗ into the multiplicative monoid R+. One then extends µ
to the family of subsets of T ∗ by setting, for every X ⊆ T ∗, µ(X) =

∑
x∈X µ(x).

The following holds.

Proposition 6 Let G be an unambiguous minimal linear grammar with the pro-
ductions (3). One has

∑m
i=1 µ(uivi) ≤ 1 for all positive Bernoulli distributions

µ on T .

Proof Set p =
∑m
i=1 µ(uivi). Let k ≥ 1. As one easily verifies, a word w

belongs to Lk if and only if it can be factorized

w = uisvi with s ∈ Lk−1, 1 ≤ i ≤ m.

Moreover, such a factorization is unique by the unambiguity of G. One derives

µ(Lk) =

m∑
i=1

∑
s∈Lk−1

µ(uisvi) =

m∑
i=1

µ(uivi)
∑

s∈Lk−1

µ(s) = pµ(Lk−1).

From the equation above, one obtains

µ(Lk) = pkq, k ≥ 0, (5)

where q = µ(L0) > 0.
Now, let ` be the maximal length of the right sides of the productions of G.

One easily verifies that, for all k ≥ 0, the maximal length of the words of Lk is
smaller than or equal to (k + 1)`. Consequently,

µ(Lk) ≤
(k+1)`∑
i=0

µ(T i) = (k + 1)`+ 1, k ≥ 0. (6)

From Equations (5) and (6) one obtains pkq ≤ (k + 1)` + 1 for all k ≥ 0. This
necessarily implies p ≤ 1.

Remark 3 Taking into account that the sum
∑m
i=1 µ(uivi) is equal to the value

of the polynomial
∑m
i=1 uivi when each letter a ∈ T is replaced by its probability

µ(a), the statement of the proposition above may be extended, by continuity,
to all (not necessarily positive) Bernoulli distributions.

Now we give a characterization of unambiguous minimal linear grammars.
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Proposition 7 Let G be a minimal linear grammar and µ be a positive Ber-
noulli distribution on T . Then G is unambiguous if and only if the following
two conditions are satisfied:

1. no word of L(G) has two distinct derivations of length 2.

2. for all k ≥ 1, one has

µ

(
k⋃
i=0

Li

)
=

k∑
i=0

(
µ(L1)

µ(L0)

)i
µ(L0). (7)

Proof For any i ≥ 0, let ∆i be the set of all derivations of G of length i + 1
and for any δ ∈ ∆i, denote by wδ the word such that S ⇒∗δ wδ. Since Li =
{wδ | δ ∈ ∆i}, for all k ≥ 0 one has

µ

(
k⋃
i=0

Li

)
≤

k∑
i=0

∑
δ∈∆i

µ(wδ), (8)

where the = sign holds if and only if the words wδ occurring in the equation are
pairwise distinct.

Let us evaluate
∑
δ∈∆i

µ(wδ). Note that wδ = u1u2 · · ·uiwvi · · · v2v1, where
δ is the sequence of the productions X → u1Xv1, X → u2Xv2, . . . , X → uiXvi,
X → w. Since µ(wδ) = µ(u1v1)µ(u2v2) · · ·µ(uivi)µ(w), one easily derives

∑
δ∈∆i

µ(wδ) =

( ∑
X→uXv in P

µ(uv)

)i ∑
X→w in P

µ(w). (9)

As one easily verifies, the last factor in the right hand side of the equation above
is equal to µ(L0).

Suppose that G is unambiguous. Then Condition 1 is trivially verified.
Consequently, one has µ(L1) =

∑
δ∈∆1

µ(wδ). Thus, (9) for i = 1 becomes

µ(L1) =

( ∑
X→uXv in P

µ(uv)

)
µ(L0).

Solving with respect to the factor in parentheses and replacing in (9) one obtains∑
δ∈∆i

µ(wδ) =

(
µ(L1)

µ(L0)

)i
µ(L0). (10)

Taking into account that in this case (8) holds with the equal sign, one obtains
(7). This proves that if G is unambiguous, Condition 2 is satisfied.

Conversely, suppose that G is ambiguous but Condition 1 is satisfied. Then
one obtains again (10). In this case there is k for which (8) holds with the <
sign. Thus, one obtains

µ

(
k⋃
i=0

Li

)
<

k∑
i=0

(
µ(L1)

µ(L0)

)i
µ(L0),
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so that Condition 2 is not satisfied. This proves that if G is ambiguous, at least
one of Conditions 1 and 2 is not satisfied.

In the case where the only terminal production is X → ε, one has µ(L0) = 1
so that we obtain the following.

Corollary 4 Let G be a minimal linear grammar such that the only terminal
production is X → ε, and µ be a positive Bernoulli distribution on T . Then G
is unambiguous if and only if the following two conditions are satisfied:

1. no word of L(G) has two distinct derivations of length 2.

2. for all k ≥ 1, one has

µ

(
k⋃
i=0

Li

)
=

k∑
i=0

(µ(L1))
i
. (11)

We notice that, by Proposition 6, µ(L1) ≤ 1. If µ(L1) < 1, then Eq. (11) can
be written as:

µ

(
k⋃
i=0

Li

)
=

1− µ(L1)k+1

1− µ(L1)
.

This equation holds true also in the case µ(L1) = 1, assuming that, by continu-
ity, (1− xk+1)/(1− x) = k − 1, for x = 1.

6.2 Languages with k b’s

In the case of a binary alphabet, the previous propositions can be refined. For
this purpose, let us prove a statement which is a natural extension of [5, Example
6.3]. We recall that, given a language L, the growth function gL of L returns,
for any non-negative integer n, the number of the words of L whose length is at
most n.

Proposition 8 Let k > 0 be an integer. A subset L of (a∗b)ka∗ is commuta-
tively prefix if and only if its growth function gL satisfies the inequality

gL(n) ≤
(
n

k

)
, n ≥ k. (12)

Proof Let T = {a, b}. If L is a prefix subset of (a∗b)ka∗, then, for any n, the
words

xan−|x|, x ∈ L, |x| ≤ n

are pairwise distinct words of the set

Zn = {w ∈ T ∗ | |w|b = k, |w|a = n− k}.

One derives

gL(n) ≤ Card(Zn) =

(
n

k

)
.
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This proves that the condition is necessary.
In order to prove sufficiency, assuming that (12) is satisfied, we will construct

a chain of prefix sets Y0 ⊆ Y1 ⊆ · · · ⊆ Yn ⊆ · · · such that Yn is commutatively
equivalent to L ∩ T≤n, n ≥ 0. For n < k, it is sufficient to take Yn = ∅. Now,
let n ≥ k. Proceeding inductively, we assume that there is a prefix set Yn−1

commutatively equivalent to L ∩ T≤n−1. Since Card(Zn) =
(
n
k

)
and in view of

(12), one has

Card(L ∩ Tn) = gL(n)− gL(n− 1) ≤ Card(Zn)− Card(Yn−1).

Taking into account that any word of Yn−1 is a prefix of a unique word of Zn, one
can find Card(L∩Tn) distinct words of Zn with no prefix in Yn−1. These words
are commutatively equivalent to those of the set L ∩ Tn. Thus, adding these
words to Yn−1, one obtains a prefix set Yn commutatively equivalent to L∩T≤n.
We conclude that Y =

⋃
n≥0 Yn is a prefix set commutatively equivalent to L.

As an immediate consequence of Corollary 3 and Proposition 8, we get:

Corollary 5 Let G be an unambiguous minimal linear grammar with the ter-
minal production X → ε. Assume that, for some h, k ∈ N, Lh ⊆ (a∗b)ka∗. If
the growth function gLh

of Lh satisfies the inequality gLh
(n) ≤

(
n
k

)
, n ≥ k, then

L(G) is commutatively regular.

We recall that a set L of words is said to be a Bernoulli set if, for every
Bernoulli distribution µ, µ(L) = 1. In [25], a remarkable result of de Luca shows
that every Bernoulli set contained in a∗ ∪ a∗ba∗ ∪ a∗ba∗ba∗, is commutatively
prefix. As a consequence of this result, Corollary 3 and Corollary 4 we get the
following.

Corollary 6 Let G be a minimal linear grammar with the sole terminal pro-
duction X → ε. Assume that L1 ⊂ a∗ ∪ a∗ba∗ ∪ a∗ba∗ba∗ and no word of L(G)
has two distinct derivations of length 2. If for every Bernoulli distribution µ,
µ(
⋃k
i=0 Li) = k + 1, then L(G) is commutatively regular.

Proof By the hypothesis on G, one has that: 1) L1 is commutatively prefix,
by de Luca’s result [25]; 2) G is unambiguous by Corollary 4. Then the claim
follows by applying Corollary 3.

The interest of Corollary 6 lies on the fact that one does not need to suppose
that the grammar G is unambiguous in order to prove that L(G) is commuta-
tively regular. This is emphasized by the following example.

Example 4 Let G be the linear minimal grammar with terminal alphabet T =
{a, b} and with the productions

X → a2X, X → abXa, X → abXb, X → bXa, X → bXb, X → ε.
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One has L1 = {aa, ba, bb, aba, abb} ⊆ a∗ ∪ a∗ba∗ ∪ a∗ba∗ba∗ and no word of L1

has two derivations of length 2. Moreover, as one easily verifies,

k⋃
i=0

Li = {uv | u ∈ Z≤k, v ∈ T |u|b}, where Z = {a2, ab, b}

so that µ
(⋃k

i=0 Li
)

= k+1, for all Bernoulli distribution µ. Thus, by the above
corollary, L(G) is commutatively regular.

The problem whether every maximal finite code is commutatively prefix, is
still open. The conjecture was originally formulated by Schützenberger at the
end of 50’s for the case of finite codes (see [5, 25, 41]). The conjecture in this
formulation has been disproved by Shor [46]. Indeed, the set L defined as:

L = {b, ba, ba7, ba13, ba14, a3b, a3ba2, a3ba4, a3ba6,

a8b, a8ba2, a8ba4, a8ba6, a11b, a11ba, a11ba2}

is a code which is not commutatively prefix. However a simple computation
shows that the growth function gL2 of L2 satisfies the inequality gL2(n) ≤

(
n
2

)
for

all n ≥ 2 and, therefore, L2 is commutatively prefix. Thus one may ask whether
any finite code Y has a power Yn which is commutatively prefix. In [25], a
positive answer to the latter question has been conjectured in the case of finite
complete codes.

7 Concluding Remarks

In this paper, we have studied conditions ensuring that a language generated by
an unambiguous non-expansive context-free grammar is commutatively regular.
The choice of focusing on non-expansive grammars was motivated by the fact
that the characteristic series in commutative variables of their languages are
rational and this is a necessary condition for commutative regularity.

Actually, a language is commutatively regular if and only if its characteris-
tic series in commutative variables is also the characteristic series of a regular
language. Thus, one may consider the general problem of studying the charac-
teristic series of regular languages (in commutative variables). In other terms,
we would like some criterion to determine whether a rational series in commu-
tative variables is the natural projection of an unambiguous rational series in
non-commutative variables.

If s is the characteristic series in commutative variables of any language on
the alphabet A = {a1, . . . , ak}, then one has(

s, an1
1 · · · a

nk

k

)
≤ (n1 + · · ·+ nk)!

n1! · · ·nk!
. (13)

for all n1, . . . , nk ∈ N. Indeed, the multinomial coefficient in the right hand side
of (13) gives the number of the words of A∗ which are commutatively equivalent
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to an1
1 · · · a

nk

k . As far as we know, the question whether there exist rational
series satisfying (13) which are not the characteristic series of a regular set is
open. As already mentioned in the introduction, a related problem, namely
characterizing generating series of regular languages on a fixed alphabet, was
studied in [3].

In [29], it has been shown that the language L = {an1ban2b · · · ank−1bank |
n1 ≤ n2 ≤ · · · ≤ nk, k ≥ 1}, over the alphabet A = {a, b}, which is accepted
by a deterministic non-erasing stack automaton, is of intermediate growth, and
its generating series is transcendental. This language can be generated by a
grammar of a special type called indexed [1] (see also [31]). Recently, in [22,23], a
subclass of such grammars called uncontrolled finite-index has been investigated.
An indexed grammar is called uncontrolled finite-index if there is an integer
k such that in every successful derivation the number of occurrences of non-
terminals in each sentential form is bounded by k. These grammars, that extend
the context-free ones, inherit several properties of them and, in particular, the
fact that the corresponding family of languages is a semi-linear full trio. It
would be interesting to investigate the CE problem and the related issues for
these generating systems.

Incidentally, it is maybe of interest to note that the authors investigated
recently the Kleene closure of bounded semi-linear languages in connection with
the CE Problem. In [11, 13] the commutative regularity of these languages has
been established, in the case that the bounded semi-linear language is a code
satisfying some restriction on the number of letters of its words.

In Section 6, we have considered in particular minimal linear grammars.
We stressed some analogies between these grammars and variable-length codes.
Thus, it seems interesting to investigate what properties of variable-length codes
can be extended to minimal linear grammars. This study has been started
in [12].

Here, we limit ourselves to propose the following open question: a theorem
proven in [7] (see also [25]) states that, for every set L of words of A+, any two of
the following three conditions imply the remaining one: (i) L is a code; (ii) L is
a complete set, that is, for every w ∈ A∗, A∗wA∗∩L∗ 6= ∅; (iii) µ(L) = 1, where
µ is a positive Bernoulli distribution. This result provides a remarkable relation
among the properties of codicity, completeness and measure of the set. It would
be interesting to get a similar characterization of the property of unambiguity
for minimal linear grammars.
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