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Abstract: The processor failures in a multiprocessor system have a negative impact on its distributed
computing efficiency. Because of the rapid expansion of multiprocessor systems, the importance of
fault diagnosis is becoming increasingly prominent. The h-component diagnosability of G, denoted by
cth(G), is the maximum number of nodes of the faulty set F that is correctly identified in a system, and
the number of components in G− F is at least h. In this paper, we determine the (h+ 1)-component
diagnosability of general networks under the PMC model and MM∗ model. As applications, the com-
ponent diagnosability is explored for some well-known networks, including complete cubic networks,
hierarchical cubic networks, generalized exchanged hypercubes, dual-cube-like networks, hierarchical
hypercubes, Cayley graphs generated by transposition trees (except star graphs), and DQcube as well.
Furthermore, we provide some comparison results between the component diagnosability and other
fault diagnosabilities.
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1 Introduction

Multiprocessor systems have high-performance distributed computing capability, which makes them
be able to carry out some coherent tasks. With the scale of the system continuously extends, the
probability of processor failures increases dramatically so that we can’t ignore such a phenomenon.
How to sustain the performance and dependability of large-scale multiprocessor systems has been
brought to the fore in the existence of processor failures [31]. Thus, fault diagnosis is the most
essential step in constructing and maintaining multiprocessor systems [16, 18, 30]. Using a topological
structure of the interconnection network, a multiprocessor system can be taken as an undirected graph
which consists of many nodes acting as processors and many edges acting as communication links.
In the following, we do not distinguish among multiprocessor systems, interconnection networks, and
graphs.

The process of identifying all faulty processors was referred to as system-level diagnosis. There are
several diagnosis models for system-level diagnosis. The PMC model, presented by Preparate, Metze,
and Chien [38], is a test-based model. Under the PMC model, the processor sends test messages to
adjacent processors for performing fault diagnosis. As a tester, a processor x can diagnose its neighbor
y which is a testee. We call such a test as the ordered pair 〈x, y〉. Under the condition that the tester
x is fault-free, if the result of 〈x, y〉 is 0 (resp. 1), then the testee y is fault-free (resp. faulty). When
the tester x is faulty, the result of 〈x, y〉 is unreliable. In [35], Maeng and Malek suggested another
diagnosis model, the MM model, which is a comparison-based model. In this model, a processor z
which we called as a comparator sends the same test to its two neighbours x and y, then compares
their responses. We denote such a comparison as (x, y)z. (x, y)z = 0 (resp. 1) indicates that the test
results for x and y are identical (resp. distinct). Assume that the comparator z is fault-free. Then
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(x, y)z = 0 implies that both x and y are fault-free, while (x, y)z = 1 implies that there is at least one
faulty processor between x and y. When the comparator z is faulty, the result of (x, y)z is unreliable.
Based on the MM model, Sengupta and Dahbura [40] proposed a special model, the MM∗ model. This
model supposes that every processor must test each pair of its adjacent processors.

A system G is defined as t-diagnosable if |F | ≤ t and all nodes in F can be detected, where F is the
faulty node set of G. On the premise that all nodes of F can be identified, the maximum number of
nodes in F is defined as the diagnosability of the system. The diagnosability of many interconnection
networks under the PMC model and MM∗ model have been studied [4, 6, 26]. Moreover, many
innovative concepts of fault diagnosability have emerged recently. Considering the actual situation,
Lai et al. [24] proposed a more realistic measure of diagnosability, conditional diagnosability, which
restricts that all adjacent nodes of every node can’t fail simultaneously. Lin et al. [32] evaluated the
conditional diagnosability of alternating group networks under the PMC model. As a generalization of
conditional diagnosability, h-extra conditional diagnosability was defined by Zhang et al. [45] which is
the diagnosability under the condition that every component of G−F has at least h+1 nodes where F
is the faulty node set of G. Li et al. [25] [27] studied the h-extra conditional diagnosability of the data
center network DCell under the PMC model and MM∗ model. Zhang et al. [43] determined the h-
extra conditional diagnosability of twisted hypercubes under the MM∗ model. Peng et al. [37] proposed
the h-good-neighbor conditional diagnosability, which is the diagnosability under the assumption that
every fault-free processor has at least h fault-free neighbors. Zhao et al. [46] established the h-good-
neighbor conditional diagnosability of the hierarchical hypercube network under the PMC model and
MM∗ model. Hu et al. [22] investigated the equal relation between h-good-neighbor diagnosability
under the PMC model and h-good-neighbor diagnosability under the MM∗ model of a graph.

If the faulty node set is large-scale, then there will be many components after deleting it from the
multiprocessor system [12, 13, 15, 17]. In this case, the diagnosability is closely related to the number
of components. Given this, Zhang et al. [44] proposed a new fault diagnosability, called h-component
diagnosability. The h-component diagnosability cth(G) of G is the maximum number of nodes of the
faulty set F that are correctly identified in a system, and the number of components in G − F is at
least h. Our contributions are mainly as follows:

• We determine the (h+ 1)-component diagnosability of the general network G is (h+ 1)(r− 1)−
h(h+1)

2 + 1 with r ≥ 4 and 1 ≤ h ≤ r − 3 under the PMC model and MM∗ model, where the
definition of r is given in Theorem 1.

• Using the results obtained, we establish the (h + 1)-component diagnosability of some famous
networks, including complete cubic networks, hierarchical cubic networks, generalized exchanged
hypercubes, dual-cube-like networks, hierarchical hypercubes, Cayley graphs generated by trans-
position trees (except star graphs), and DQcube. Moreover, we make some comparisons to show
the advantages of component diagnosability.

The remaining sections of this paper are organized as follows. Section 2 lists the terms and
notations used throughout the paper. Section 3 aims to determine the (h+1)-component diagnosability
cth+1(G) of general networks under the PMC model and MM∗ model. Section 4 applies the results
in Section 3 to some famous networks. Section 5 provides some comparison results between the
component diagnosability and other fault diagnosabilities. Finally, we conclude this paper in Section
6.

2



2 Preliminaries

In Section 2.1, we will introduce some terminologies and notations used in this paper. And then, in
Section 2.2, we will present the concept of h-component diagnosability of a system G under the PMC
model and MM∗ model.

2.1 Terminologies and notations

For terminologies and notations not defined in this paper, we follow the reference [21]. We represent
a multiprocessor system by a simple undirected graph G = (V (G), E(G)), where V (G) is a node set
consisting of all processors in G and E(G) = {(u, v)|(u, v) is an unordered pair of V (G)} is an edge set.
If two nodes u and v are adjacent, then (u, v) ∈ E(G). The set NG(u) = {v ∈ V (G)|(u, v) ∈ E(G)}
contains all the neighbors of node u. Let X ⊆ V (G), we use G[X] to represent the subgraph of
G induced by the node subset X. We denote G − X as G[V (G)\X]. And we set NG(X) = {v ∈
V (G) \ X|(u, v) ∈ E(G) and u ∈ X} =

⋃
u∈X

NG(u) \ X and NG[X] = NG(X) ∪ X. Given two

distinct node subsets M,N ⊆ V (G), E[M,N ] is the set of all edges between M and N in G. A
maximally connected subgraph of a graph is called component. A component is odd if and only if the
number of its nodes is odd, and is even otherwise. The number of odd components of G is denoted
by o(G). The degree of u in G is denoted by degG(u) = |NG(u)|. Let δ(G) = min{degG(u)|u ∈ V (G)},
∆(G) = max{degG(u)|u ∈ V (G)}. We use Gi

∼= Gj with i 6= j to represent the graph Gi is isomorphic
to the graph Gj .

The n-dimensional hypercube Qn(n ≥ 2) is a graph consisting of 2n nodes, each of which has the
form u = un−1un−2 · · ·u0, where ui ∈ {1, 0} for 0 ≤ i ≤ n − 1. Two nodes u = un−1un−2 · · ·u0 and
v = vn−1vn−2 · · · v0 are adjacent if and only if there exists an integer j ∈ {0, 1, · · · , n − 1} such that
uj 6= vj and ui = vi, for each i ∈ {0, 1, · · · , n − 1}\{j}. Such an edge (u, v) is called a j-dimensional
edge. There exist V0, V1 ⊆ V (Qn) such that the following two conditions hold:

• V (Qn) = V0 ∪ V1, V0 6= ∅, V1 6= ∅, V0 ∩ V1 = ∅, and Qn[V0], Qn[V1] ⊆ Qn;

• E(V0, V1) is a perfect matching M between V0 and V1 in Qn.

We use Q0
n−1, Q1

n−1 to denote the induced subgraph Qn[V0], Qn[V1], respectively. Clearly, they
are both (n − 1)-dimensional hypercubes, and E(Q0

n−1), E(Q1
n−1), M is a decomposition of E(Qn).

We define the decomposition as: Qn = G(Q0
n−1, Q

1
n−1;M).

Definition 1. [20] A set of nodes S ⊆ V (G) is an h-component node cut if G − S is disconnected
and it has at least h components.

Lemma 1. [2] A graph G has a perfect matching if and only if o(G−A) ≤ |A| for all A ⊆ V (G).

Lemma 2. [47] For any integer n ≥ 2, any two nodes in V (Qn) have exactly two common neighbors
if they have.

2.2 The component diagnosability

The set of test (comparison) outcomes under the PMC model and MM∗ model was referred to as the
syndrome. We use the notation Ω to represent the syndrome of the multiprocessor system. Let Ω(F̂ )
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represent the set of test (comparison) outcomes produced by the faulty set F̂ . Define two different

faulty sets of V (G), F̂1 and F̂2. If Ω(F̂1) ∩ Ω(F̂2) = ∅, F̂1 and F̂2 are called to be distinguishable,

that is, (F̂1, F̂2) is a distinguishable pair ; otherwise, F̂1 and F̂2 are called to be indistinguishable and

(F̂1, F̂2) is an indistinguishable pair. The symmetric difference (F̂1\F̂2) ∪ (F̂2\F̂1) between F̂1 and

F̂2 is denoted by F̂1 4 F̂2. The sufficient and necessary condition for two faulty sets F̂1 and F̂2 are
distinguishable under the PMC model and MM∗ model was proposed by Dahbura and Masson [11]
and Sengupta and Dahbura [40], respectively.

v uv

w w

w w

u u

v v

F F

u u

v v

F F

u

Figure 1: (a) An illustration for Lemma 3; (b) An illustration for Lemma 4.

Lemma 3. [11] Let G = (V (G), E(G)) be a multiprocessor system. For any two distinct sets F̂1, F̂2 ⊆
V (G), F̂1 and F̂2 are distinguishable under the PMC model if and only if there exists at least one test

from V (G)\(F̂1 ∪ F̂2) to F̂1 4 F̂2 (see Fig. 1 (a)).

Lemma 4. [40] Let G = (V (G), E(G)) be a multiprocessor system. For any two distinct sets

F̂1, F̂2 ⊆ V (G), F̂1 and F̂2 are distinguishable under the MM∗ model if and only if there is a node

w ∈ V (G)\(F̂1 ∪ F̂2) such that one of the following conditions holds (see Fig. 1 (b)):

(1) |NG(w)− (F̂1 ∪ F̂2)| ≥ 1 and |NG(w) ∩ (F̂1∆F̂2)| ≥ 1;

(2) |NG(w) ∩ (F̂1 − F̂2)| ≥ 2;

(3) |NG(w) ∩ (F̂2 − F̂1)| ≥ 2.

The concept of h-component diagnosability of a system is presented as follows.

Definition 2. [44] (1) Let F̂ ⊆ V (G) and F̂ be a fault-set. If V (G)− F̂ has at least h components,
then F̂ is called an h-component fault-set.

(2) A system G is h-component t-diagnosable if each distinct pair of h-component cuts F̂1 and F̂2

of V (G) with |F̂1| ≤ t and |F̂2| ≤ t are distinguishable.

(3) The h-component diagnosability, denoted by cth(G), is defined as the maximum value of t such
that G is h-component t-diagnosable.

3 Main results

In this section, we will determine the (h+ 1)-component diagnosability of general networks.

4



Theorem 1. Let r ≥ 4 and 1 ≤ h ≤ r−3. Let G = (V (G), E(G)) be a graph with a perfect matching
and |V (G)| ≥ 22r−2. Assume that G satisfies the following two conditions:

(a): there exist a node v and a set A = {v1, v2, . . . , vh, vh+1} ⊆ NG(v) with degG(x) = r for any node
x ∈ A∪{v}, such that |NG(vi1)∩NG(vi2)| = 2 (1 ≤ i1 < i2 ≤ h+1), |NG(vi1)∩NG(vi2)∩· · ·∩NG(vik)| =
1 (1 ≤ i1 < i2 < · · · < ik ≤ h+ 1 and k ≥ 3), and |NG(v) ∩NG(vi)| = 0;

(b): for any subset S ⊆ V (G) with |S| ≤ hr− (h−1)(h+2)
2 − 1, G− S is either connected or it has a

component containing at least |V (G)| − |S| − (h− 1) nodes.

Then cth+1(G) = (h+ 1)(r − 1)− h(h+1)
2 + 1 under the PMC model and MM∗ model.

Proof. By condition (a), for r ≥ 4 and 1 ≤ h ≤ r − 3, there exist a node v and a set A =

{v1, v2, . . . , vh, vh+1} ⊆ NG(v) with degG(x) = r for any node x ∈ A ∪ {v}. Let F̂1 = NG(A) and

F̂2 = F̂1 ∪ {vh+1} (see Fig. 2).

A

vh+1

v1

vh

vh-1

v

2F

1F

Figure 2: F̂1 and F̂2.

By condition (a), we have

|F̂1| = (h+ 1)(r − 1)−
(
h+ 1

2

)
+ 1

= (h+ 1)(r − 1)− h(h+ 1)

2
+ 1.

Then |F̂2| = (h + 1)(r − 1) − h(h+1)
2 + 2. Since F̂1 consists of all neighbors of every node in A,

G− F̂1 has at least |A| = h+ 1 isolated nodes. Similarly, G− F̂2 has at least h isolated nodes. When

r ≥ 4 and 1 ≤ h ≤ r− 3, |V (G)| − |F̂2| − h ≥ 22r−2− ((h+ 1)(r− 1)− h(h+1)
2 + 2)− h > 0. Then both

G − F̂1 and G − F̂2 have at least h + 1 components. Therefore, by Definition 1, both F̂1 and F̂2 are
(h + 1)-component cuts. Since F̂14F̂2 = {vh+1} and NG(vh+1) ⊆ F̂1, there exists no edge between

F̂14F̂2 and F̂1 ∪ F̂2. By Lemma 3 and Lemma 4, F̂1 and F̂2 are indistinguishable under the PMC
model and MM∗ model. By Definition 2, cth+1(G) ≤ (h+ 1)(r − 1)− h(h+1)

2 + 1.

Now, we prove that cth+1(G) ≥ (h+ 1)(r− 1)− h(h+1)
2 + 1 holds. On the contrary, we assume that

cth+1(G) ≤ (h + 1)(r − 1) − h(h+1)
2 . That is, there exist two distinct (h + 1)-component cuts F̂1 and

F̂2 such that |F̂1|, |F̂2| ≤ (h+ 1)(r − 1)− h(h+1)
2 + 1 where F̂1 and F̂2 are indistinguishable. Without

loss of generality, let F̂2\F̂1 6= ∅.

Note that |F̂1|, |F̂2| ≤ (h + 1)(r − 1) − h(h+1)
2 + 1 ≤ (h + 2)r − (h+1)(h+4)

2 − 1 with r ≥ 4 and

1 ≤ h ≤ r − 3. Thus, by condition (b), G − F̂2 has one large component M plus a number of small
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components with at most (h + 2) − 1 = h + 1 nodes. Let W = V (G − F̂2 −M), then |W | ≤ h + 1.
Then we have

|V (M)| = |V (G)| − |F̂2| − |W |

≥ 22r−2 − ((h+ 1)(r − 1)− h(h+ 1)

2
+ 1)− (h+ 1).

Let fr(h) = 22r−2 − ((h + 1)(r − 1) − h(h+1)
2 + 1) − (h + 1) with r ≥ 4 and 1 ≤ h ≤ r − 3. We

can obtain that dfr(h)
dh = −r + h + 1/2. Then fr(h) is an decreasing function when h ≤ r − 3. Thus

fr(h) ≥ fr(r − 3) = 22r−2 − r2/2− r/2 + 2. Then |V (M)| ≥ 22r−2 − r2/2− r/2 + 2.

When r ≥ 4 and 1 ≤ h ≤ r − 3, the following inequality holds

|V (M)| − |F̂1| ≥ 22r−2 − 2((h+ 1)(r − 1)− h(h+ 1)

2
+ 1)− (h+ 1) > 0.

Claim1. V (M) ∩ (F̂1\F̂2) = ∅.

Since |V (M)| − |F̂1| > 0, we have V (M)\(F̂1\F̂2) 6= ∅. On the contrary, we assume that V (M) ∩
(F̂1\F̂2) 6= ∅. Let L = V (M) ∩ (F̂1\F̂2) and P = V (M)\(F̂1\F̂2). Since M is a connected component,
there exist edges between L and P. Let U = {w ∈ P : w has a neighbor in L} and O = P\U (see Fig.
3).

Firstly, we prove that Claim 1 holds under the PMC model. As L ⊆ F̂1\F̂2 ⊆ F̂14F̂2 and P ⊆
F̂1 ∪ F̂2, there exist edges between F̂14F̂2 and F̂1 ∪ F̂2. By Definition 2, F̂1 and F̂2 are distinguishable
under the PMC model, a contradiction.

Next we prove that Claim 1 holds under the MM∗ model. We assume that O 6= ∅. Since M is
a connected component, there exists a node w ∈ U such that w has a neighbor w′ ∈ O. It’s easy
to see that w ∈ U also has a neighbor in w′′ ∈ L (see Fig. 3(a)). By Definition 2, F̂1 and F̂2 are
distinguishable under the MM∗ model, a contradiction. Thus, we have O = ∅ and U = P .

w
C

D

M

B

（a） （b）

M

w C=B

2F 1F
2F

1F

w' 

Figure 3: An illustration for the proof of Claim 1.

Suppose that w ∈ P has a neighbor u ∈ P. By Definition 2, F̂1 and F̂2 are distinguishable under
the MM∗ model, a contradiction. Then P is an independent set of G− (F̂1 ∪ F̂2) (see Fig. 3(b)). By

Lemma 1, |P | ≤ o(G− (F̂1 ∪ F̂2)) ≤ |F̂1 ∪ F̂2| ≤ |F̂1|+ |F̂2|. Hence, we have that

|V (M)| ≤ |F̂1\F̂2|+ |P | ≤ 2|F̂1|+ |F̂2| ≤ 3(h+ 1)(r − 1)− 3h(h+ 1)

2
+ 3.
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Then, we have

22r−2 − r2/2− r/2 + 2 ≤ |V (M)| ≤ 3(h+ 1)(r − 1)− 3h(h+ 1)

2
+ 3.

This is a contradiction when r ≥ 4 and 1 ≤ h ≤ r − 3. Then the claim holds.

By Claim 1, we can obtain that F̂1\F̂2 ⊆ W and |F̂1\F̂2| ≤ |W | ≤ h + 1. Note that there exists

no edge between W and V (M). Therefore, there exists no edge between F̂1\F̂2 and V (M). By the

symmetry between F̂1 and F̂2, we can also obtain that |F̂2\F̂1| ≤ h + 1 and there exists no edge

between F̂2\F̂1 and V (M). Observe that V (G− (F̂1∩ F̂2)) consists of three parts W, F̂2\F̂1 and V (M).

Then M is a component of G− (F̂1 ∩ F̂2) as well. When r ≥ 4 and 1 ≤ h ≤ r − 3, we have that

|V (M)| − |W | − |F̂2\F̂1| ≥ (22r−2 − r2/2− r/2 + 2)− 2(h+ 1)

≥ (22r−2 − r2/2− r/2 + 2)− 2(r − 2)

= 22r−2 − r2

2
− 5r

2
+ 6 > 0.

Therefore, M is the largest component of G− (F̂1 ∩ F̂2). Recall that W = V (G− F̂2 −M). Since

F̂2 is a (h+ 1)-component cut and M is a connected component, the subgraph G[W ] contains at least

h + 1 − 1 = h components. Then |W | ≥ h and so |W ∪ (F̂2\F̂1)| ≥ h + 1. Then G − (F̂1 ∩ F̂2) has a
large component M and small components containing at least h+ 1 nodes.

Since |F̂2\F̂1| ≥ 1, |F̂1 ∩ F̂2| ≤ |F̂2| − 1 ≤ (h+ 1)(r − 1)− h(h+1)
2 . Let g = h+ 1, then |F̂1 ∩ F̂2| ≤

gr− (g−1)(g+2)
2 − 1. By condition (b), G− (F̂1 ∩ F̂2) has a large component M and a number of small

components with at most g − 1 = h nodes, a contradiction.

4 Applications to some well-known networks

In Section 3, we show that the (h+1)-component diagnosability of general networks is (h+1)(r−1)−
h(h+1)

2 +1 under the PMC model and MM∗ model, where the definition of r is given in Theorem 1, i.e.,
r is defined as the degree for each node of the node set satisfying the condition (a) in Theorem 1, the
network is r-regular for the special case. In this section, we will apply the Theorem 1 to evaluate the
(h + 1)-component diagnosability of some well-known networks, including complete cubic networks,
hierarchical cubic networks, generalized exchanged hypercubes, dual-cube-like networks, hierarchical
hypercubes, Cayley graphs generated by transposition trees (except star graphs), and DQcube as well.

4.1 The complete cubic network

The complete cubic network is a famous network which generalizes the hierarchical cubic network.
Therefore, we first review the definition and some available properties of the hierarchical cubic network
as follows.

Definition 3. [3] An n-dimensional hierarchical cubic network HCNn, consists of 2n n-dimensional
hypercubes Qn, named clusters. Each node u of HCNn is uniquely associated with a pair of two n-
bit sequences, where the first n-bit sequence identifies the cluster of u and the second n-bit sequence
identifies the position of u inside its cluster. For one node u = (c, p) ∈ HCNn, let Cc be the cluster,
which is an n-dimensional hypercube identified by c. Two nodes (c, p) and (d, q) are adjacent in HCNn

7



if and only if one of the following conditions is satisfied (where x is the binary complement of a bit
sequence x).

(1) if c = d, then H(p, q) = 1;

(2) if c 6= d and c = p, then d = q = c;

(3) if c 6= d and c 6= p, then c = q and p = d, where H(p, q) denotes the Hamming distance between
two nodes p and q.

An n-dimensional hierarchical cubic network HCNn is (n + 1)-regular with 22n nodes and (n +
1)22n−1 edges. The edges of type (1) are referred to as cube edges, and the edges of types (2) and (3)
are referred to as cross edges. For one pair of clusters Cc and Cd, if c = d, then there exist two cross
edges between them; otherwise, there exists one cross edge. Clearly, there exists a perfect matching
between clusters in HCNn (see HCN2 in Fig. 4(a)).

The complete cubic network was introduced by Cheng et al. [8]. In the following, we present the
definition and some basic properties of complete cubic networks.

Definition 4. [8] The n-dimensional complete cubic network CCN(n, f) for n ≥ 2 is a collection of
2n hypercubes Qn, called clusters, where the bijection function f specifies a perfect matching on the
nodes such that for any node u in a cluster, f(u) maps to another node in a different cluster. Besides
the normal cube edges that connect all the nodes in each and every cluster, we refer to such an edge
(u, f(u)) as a cross edge. Moreover, the matching f needs to satisfy the following property that there
exists a pairing P of the clusters such that

• there are exactly two cross edges between two clusters Cc and Cd if they form a pair in P , and

• there is exactly one cross edge between Cc and Cd if they do not form a pair in P .

An n-dimensional complete cubic network CCNn is triangle-free and (n+1)-regular with 22n nodes
and (n+ 1)22n−1 edges. Fig. 4(b) shows the 2-dimensional complete cubic network CCN2.

(a) (b)

Figure 4: (a)The illustration of HCN2; (b)The illustration of CCN2.
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Lemma 5. [7] For any integers n ≥ 2 and 1 ≤ h ≤ n, for any S ⊆ V (CCNn) with |S| ≤ (n+ 1)h−
(h−1)(h+2)

2 −1, CCNn−S is either connected or it has a component containing at least 22n−|S|−(h−1)
nodes.

Theorem 2. Let n ≥ 3 and 1 ≤ h ≤ n − 2, then the (h + 1)-component diagnosability of CCNn is

cth+1(CCNn) = (h+ 1)n− h(h+1)
2 + 1 under the PMC model and MM∗ model.

Proof. By the definition of CCNn, there exists a perfect matching between clusters in CCNn and
|V (CCNn)| = 22n. CCNn consists of 2n clusters, denoted as C1, C2, . . . , C2n , and each cluster is isomor-
phic to Qn. Since C1

∼= Qn, let C1 = G(X1, Y1;M) with X1
∼= Q0

n−1 and Y1
∼= Q1

n−1. Choosing an arbi-
trary node v inX1 and a node set A = {v1, v2, . . . , vh, vh+1} ⊆ NX1(v), we have that degCCNn(x) = n+1
for any node x ∈ A∪{v}. Note that |V (CCNn)| is exactly equal to 22n. Since C1

∼= Qn, by Lemma 2, for
any two nodes of C1, if they have common neighbors, then they have exactly two common neighbors in
C1. We have |NC1(vi1)∩NC1(vi2)| = 2 (1 ≤ i1 < i2 ≤ h+1) and |NC1(vi1)∩NC1(vi2)∩· · ·∩NC1(vik)| = 1
(1 ≤ i1 < i2 < · · · < ik ≤ h + 1 and k ≥ 3). By the definition of CCNn, there are two cross
edges between one pair of clusters Cc and Cd if and only if c = d; otherwise, there is only one
cross edge, and cross edges have no common node. Then |NCCNn−C1(vi1) ∩ NCCNn−C1(vi2)| = 0
(1 ≤ i1 < i2 ≤ h + 1). Thus, |NCCNn(vi1) ∩ NCCNn(vi2)| = 2 (1 ≤ i1 < i2 ≤ h + 1) and
|NCCNn(vi1) ∩NCCNn(vi2) ∩ · · · ∩NCCNn(vik)| = 1 (1 ≤ i1 < i2 < · · · < ik ≤ h + 1 and k ≥ 3). Then
CCNn satisfies the condition (a) of Theorem 1. Moreover, by Lemma 5, CCNn satisfies the condition

(b) of Theorem 1. Thus, by Theorem 1, cth+1(CCNn) = (h+1)(r−1)− h(h+1)
2 +1 = (h+1)n− h(h+1)

2 +1
under the PMC model and MM∗ model.

Corollary 1. Let n ≥ 3 and 1 ≤ h ≤ n − 2, then the (h + 1)-component diagnosability of HCNn is

cth+1(HCNn) = (h+ 1)n− h(h+1)
2 + 1 under the PMC model and MM∗ model.

4.2 The generalized exchanged hypercube

The exchanged hypercube is a link-diluted variation of the hypercube Qs+t+1, proposed by Loh et
al. [33]. For a given positive integer n, let In = {1, 2, · · · , n}. The string xnxn−1 · · ·x1 is called a
binary string of length n if xj ∈ {0, 1} for each j ∈ In. The definition of exchanged hypercubes are
introduced as follows.

Definition 5. [33] Let s, t ≥ 1, the exchanged hypercube EH(s, t) consists of the node set V (EH(s, t))
and the edge set E(EH(s, t)), two nodes u = us+t · · ·ut+1ut · · ·u1u0 and v = vs+t · · · vt+1vt · · · v1v0

are linked by an edge, called j-dimensional edge, if and only if the following conditions are satisfied

• u and v differ exactly in one bit on the j-th bit or on the last bit,

• if j ∈ It, then u0 = v0 = 1,

• j ∈ Is+t − It, then u0 = v0 = 0.

Fig. 5(a) shows the regular exchanged hypercube EH(1, 1).

The generalized exchange hypercube, proposed by Cheng et al. [10]. Let s, t ≥ 1, the gener-
alized exchanged hypercube GEH(s, t, f) consists of the node set V (GEH(s, t, f)) and the edge set
E(GEH(s, t, f)), where |V (GEH(s, t, f))| = 2s+t+1, E(GEH(s, t, f)) = Eh ∪ Ec, and f is a one-to-one
correspondence defined on V (GEH(s, t, f)).
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GEH(s, t, f) consists of two classes of hypercubes: one class contains 2t Qs’s, referred to as the
Class-0 clusters; and the other contains 2s Qt’s, referred to as the Class-1 clusters. Class-0 and Class-1
clusters will be referred to as clusters of opposite class of each other, same class otherwise. The edges
in the same cluster are referred to as cube edges, denoted by Eh, and the edges in different clusters
are referred to as cross edges, denoted by Ec. There is exactly one cross edge between the clusters
of opposite classes, and there is no edge between the clusters of same classes. Each node in Class-0
clusters has a unique neighbor in Class-1 clusters and vice versa. The function f is a bijection between
nodes of Class-0 clusters and those of Class-1 clusters, for two nodes u, v in the same cluster, f(u)
and f(v) are in two different clusters, the edge (u, f(u)) is a cross edge. The bijection f ensures the
existence of a perfect matching between nodes of Class-0 clusters and those in the Class-1 clusters,
but ignores the specifics of the perfect matching. The generalized exchange hypercube GEH(s, t) is
triangle-free. Fig. 5(b) shows the irregular generalized exchanged hypercube GEH(1, 2).

In the special case when s = t, the exchanged hypercubes coincide with the so-called dual-cubes.
The dual-cube Dn was proposed by Li and Peng [29], which mitigates the problem of increasing
number of links in the large-scale hypercube network. The dual-cube-like network DCn [1], which is
a generalization of dual-cubes, is isomorphic to EH(n− 1, n− 1), a special case of GEH(n− 1, n− 1)
(see DC3 in Fig. 6).

Figure 5: (a)EH(1, 1); (b)GEH(1, 2).

Lemma 6. [9] For any integers 1 ≤ s ≤ t and 1 ≤ h ≤ s, let S ⊆ V (GEH(s, t)) with |S| ≤
(s+ 1)h− (h−1)(h+2)

2 − 1, then GEH(s, t)− S is either connected or it has a component containing at
least 2s+t+1 − |S| − (h− 1) nodes.

Theorem 3. Let 3 ≤ s ≤ t and 1 ≤ h ≤ s−2, then the (h+ 1)-component diagnosability of GEH(s, t)

is cth+1(GEH(s, t)) = (h+ 1)s− h(h+1)
2 + 1 under the PMC model and MM∗ model.

Proof. By Definition 5, there exists a perfect matching between Class-0 clusters and Class-1 clus-
ters in GEH(s, t) and |V (GEH(s, t))| = 2s+t+1. GEH(s, t) contains of 2s + 2t clusters C1, . . . , C2t ,
C2t+1, . . . , C2s+2t such that for i ∈ [1, 2t], Ci, a Class-0 cluster, is isomorphic to Qs, and for i ∈
[2t + 1, 2s + 2t], Ci, a Class-1 cluster, is isomorphic to Qt.
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Figure 6: The dual-cube-like network DC3.

Let C1 = G(X1, Y1;M), a Class-0 cluster, that is isomorphic to Qs with X1
∼= Q0

s−1 and Y1
∼= Q1

s−1.
Choosing an arbitrary node v in X1 and a node set A = {v1, v2, . . . , vh, vh+1} ⊆ NX1(v), we have that
degGEH(s,t)(x) = s+ 1 for any node x ∈ A ∪ {v}. For 3 ≤ s ≤ t, |V (GEH(s, t))| = 2s+t+1 > 22s. Since
C1
∼= Qn, by Lemma 2, for any two nodes of C1, if they have common neighbors at all, then they

have exactly two common neighbors in C1. We have |NC1(vi1) ∩NC1(vi2)| = 2 (1 ≤ i1 < i2 ≤ h + 1)
and |NC1(vi1) ∩ NC1(vi2) ∩ · · · ∩ NC1(vik)| = 1 (1 ≤ i1 < i2 < · · · < ik ≤ h + 1 and k ≥ 3). By the
definition of GEH(s, t), there is exactly one cross edge between the clusters of opposite classes, each
node in Class-0 clusters has a unique neighbor in Class-1 clusters and vice versa, and cross edges have
no common neighbor. Then |NGEH(s,t)−C1

(vi1) ∩NGEH(s,t)−C1
(vi2)| = 0 (1 ≤ i1 < i2 ≤ h + 1). Thus,

|NGEH(s,t)(vi1) ∩ NGEH(s,t)(vi2)| = 2 (1 ≤ i1 < i2 ≤ h + 1) and |NGEH(s,t)(vi1) ∩ NGEH(s,t)(vi2) ∩ · · · ∩
NGEH(s,t)(vik)| = 1 (1 ≤ i1 < i2 < · · · < ik ≤ h+ 1 and k ≥ 3). Then GEH(s, t) satisfies the condition
(a) of Theorem 1. Moreover, by Lemma 6, GEH(s, t) satisfies the condition (b) of Theorem 1. Thus,

by Theorem 1, cth+1(GEH(s, t)) = (h+ 1)(r− 1)− h(h+1)
2 + 1 = (h+ 1)s− h(h+1)

2 + 1 under the PMC
model and MM∗ model.

Corollary 2. Let n ≥ 4 and 1 ≤ h ≤ n − 3, then the (h + 1)-component diagnosability of DCn is

cth+1(DCn) = (h+ 1)(n− 1)− h(h+1)
2 + 1 under the PMC model and MM∗ model.

4.3 The hierarchical hypercube

The hierarchical hypercube was proposed by Malluhi and Bayoumi [36], which is a modification of
an n-dimensional cube-connected-cycle CCCn [39], and the cycle is replaced with a hypercube. The
definition and some available properties of hierarchical hypercubes are introduced as follows.

Definition 6. [36] The n-dimensional hierarchical hypercube, HHCn, is defined to be a graph with
node set {(X,Y )|X = an−1an−2 . . . am, Y = am−1am−2 . . . a0, and ai ∈ {0, 1} for all 0 ≤ i ≤ n − 1},
where n = 2m +m and m ≥ 1. Node adjacency of HHCn is defined as follows: (A,B) is adjacent to

(1)(A,Bl) for all 0 ≤ l ≤ m− 1, and

(2)(Am+dec(B), B), where dec(B) is the decimal value of B.
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An n-dimensional hierarchical hypercube HHCn is a (m+ 1)-regular bipartite graph of 2n nodes,
where n = 2m + m. Clearly, HHCn is triangle-free and consists of 22m clusters, and each cluster
is isomorphic to the m-dimensional hypercube Qm. The cross edges between the clusters have the
property that every node is incident to exactly one of them (i.e. a perfect matching), any two clusters
of different classes have exactly one cross edge between them. An example is shown in Fig. 7 (where
m = 2 and n = 6).

Q2

Figure 7: The illustration of HHC6.

Lemma 7. [28] For any integers m ≥ 5, n = 2m + m, and 1 ≤ h ≤ m, let S ⊆ V (HHCn) with

|S| ≤ (m+ 1)h− (h−1)(h+2)
2 − 1. If HHCn − S is disconnected, then HHCn − S has a large connected

component containing at least 2n − |S| − (h− 1) nodes.

Theorem 4. Let m ≥ 5, n = 2m +m and 1 ≤ h ≤ m− 2, then the (h+ 1)-component diagnosability

of HHCn is cth+1(HHCn) = (h+ 1)m− h(h+1)
2 + 1 under the PMC model and MM∗ model.

Proof. By the definition of HHCn, there exists a perfect matching between clusters in HHCn and
|V (HHCn)| = 2n. HHCn consists of 22m clusters, denoted as C1, C2, . . . , C22m , and each cluster is
isomorphic to Qm. Since C1

∼= Qm, let C1 = G(X1, Y1;M) with X1
∼= Q0

m−1 and Y1
∼= Q1

m−1.
Choosing an arbitrary node v in X1 and a node set A = {v1, v2, . . . , vh, vh+1} ⊆ NX1(v), we can
obtain that degHHCn(x) = m+ 1 for any node x ∈ A∪{v}. For m ≥ 5, |V (HHCn)| = 2n > 22m. Since
C1
∼= Qm, by Lemma 2, for any two nodes of C1, if they have common neighbors at all, then they

have exactly two common neighbors in C1. We have |NC1(vi1) ∩NC1(vi2)| = 2 (1 ≤ i1 < i2 ≤ h + 1)
and |NC1(vi1) ∩ NC1(vi2) ∩ · · · ∩ NC1(vik)| = 1 (1 ≤ i1 < i2 < · · · < ik ≤ h + 1 and k ≥ 3). By the
definition of HHCn, the external neighbours of any pair vertices are in the different clusters. Then
|NHHCn−C1(vi1) ∩ NHHCn−C1(vi2)| = 0 (1 ≤ i1 < i2 ≤ h + 1). Thus, |NHHCn(vi1) ∩ NHHCn(vi2)| = 2
(1 ≤ i1 < i2 ≤ h + 1) and |NHHCn(vi1) ∩ NHHCn(vi2) ∩ · · · ∩ NHHCn(vik)| = 1 (1 ≤ i1 < i2 <
· · · < ik ≤ h + 1 and k ≥ 3). Then HHCn satisfies the condition (a) of Theorem 1. Moreover, by
Lemma 7, the structure of HHCn satisfies the condition (b) of Theorem 1. Thus, by Theorem 1,
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cth+1(HHCn) = (h+ 1)(r− 1)− h(h+1)
2 + 1 = (h+ 1)m− h(h+1)

2 + 1 under the PMC model and MM∗

model.

4.4 Cayley graphs generated by transposition trees (except star graphs)

There are some studies on Cayley graphs generated by transposition trees [5, 41]. The definition and
some available properties of Cayley graphs generated by transposition trees are presented as follows.

Definition 7. [41] Let Γ be a finite group, and let ∆ be a subset of Γ such that ∆ has no identity
element. The directed Cayley graph Γ(∆) is defined as follows: node set Γ and arc set {(u, uv)|u ∈
Γ, v ∈ ∆}. If for each v ∈ ∆, we also have its inverse u−1 ∈ ∆, then we say that this Cayley
graph is an undirected Cayley graph, and every undirected Cayley graph is node-transitive. Denote
by Sym(n) the group of all permutations on {1, 2, . . . , n}. Let (l1l2 · · · ln) be a permutation, which
is called a transposition, denotes the permutation that swaps the objects at position i and j, that is
(l1 · · · li · · · lj · · · ln)(ij) = (l1 · · · lj · · · li · · · ln). Let H be a set of transpositions, we call G(H) the trans-
position generating graph, where the node set of G(H) is the set of all n! permutations on {1, 2, . . . , n}
and edge set E(G(H)) = {(ij)|(i, j) ∈ H}.

Figure 8: The illustration of B2, B3 and B4.

When G(H) is a tree, we call the corresponding transposition generating graph a transposition
tree. If the transposition tree is a path, then Cayley graphs are also called bubble-sort graphs. Let
Γn(H) be a Cayley graph generated by a transposition tree G(H), where G(H) is not isomorphic to
K1,n−1. It is easy to see from the definition that Γn(H) is triangle-free and is an (n−1)-regular graph
with n! nodes. Fig. 8 shows bubble-sort graphs B2, B3 and B4.

Lemma 8. [5] For any integers n ≥ 4 and 1 ≤ h ≤ 3, let S ⊆ V (Γn(H)) with |S| ≤ (n − 1)h −
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(h−1)(h+2)
2 − 1. If Γn(H) − S is disconnected, then Γn(H) − S consists of one large component, and

remaining small components with at most h− 1 nodes in total.

Theorem 5. Let n ≥ 6, the 3-component diagnosability of Γn(H) is ct3(Γn(H)) = 3n − 8 under the
PMC model and MM∗ model.

Proof. Let v = l1l2 · · · ln and vi =
(
l1l2 · · · ln

)(
(n− 2i+ 1)(n− 2i+ 2)

)
with 1 ≤ i ≤ 3. Moreover, let

A = {v1, v2, v3}. By the definition of Γn(H), we have that NΓn(H)(vi1) ∩ NΓn(H)(vi2) = {v, vi1
(
(n −

2i2 + 1)(n − 2i2 + 2)
)
} with 1 ≤ i1 < i2 ≤ 3, NΓn(H)(v1) ∩ NΓn(H)(v2) ∩ NΓn(H)(v3) = {v}, and

NΓn(H)(v) ∩ NΓn(H)(vi) = ∅. Then Γn(H) satisfies the condition (a) of Theorem 1. Moreover, by
Lemma 8, the structure of Γn(H) satisfies the condition (b) of Theorem 1. Thus, by Theorem 1,
ct3(Γn(H)) = 3n− 8 under the PMC model and MM∗ model.

Theorem 6. Let n ≥ 8, the 4-component diagnosability of Γn(H) is ct4(Γn(H)) = 4n− 13 under the
PMC model and MM∗ model.

Proof. Let v = l1l2 · · · ln and vi =
(
l1l2 · · · ln

)(
(n− 2i+ 1)(n− 2i+ 2)

)
with 1 ≤ i ≤ 4. Moreover, let

A = {v1, v2, v3, v4}. By the definition of Γn(H), we have that NΓn(H)(vi1)∩NΓn(H)(vi2) = {v, vi1
(
(n−

2i2 + 1)(n− 2i2 + 2)
)
} with 1 ≤ i1 < i2 ≤ 4, NΓn(H)(vi1)∩NΓn(H)(vi2)∩ · · · ∩NΓn(H)(vik) = {v} with

1 ≤ i1 < i2 < · · · < ik ≤ 4 and k ≥ 3, and NΓn(H)(v) ∩ NΓn(H)(vi) = ∅. Then Γn(H) satisfies the
condition (a) of Theorem 1. Moreover, by Lemma 8, the structure of Γn(H) satisfies the condition
(b) of Theorem 1. Thus, by Theorem 1, ct4(Γn(H)) = 4n − 13 under the PMC model and MM∗

model.

4.5 DQcube

DQcube, introduced by Hung [23], is a novel compound graph, which uses the hypercube as a unit
cluster and connects many such clusters by means of a disc-ring graph at the cost that only one
additional link is added to any node in each hypercube. In the following, we first present the concept
of compound graph.

Definition 8. [14] Given two regular graphs G and H, the compound graph G(H) is constructed
by replacing each node of G by a copy of H and replacing each link of G by a link that connects
corresponding two copies of H.

Next, we introduce the disc-ring graph.

Definition 9. [23] The disc-ring graph, represented by D(m, d) (see Fig. 9 (a)), consists of outer
and inner rings, where each ring contains m nodes and 1 ≤ d ≤ m. The node set of D(m, d) is
{z1z2 | z1 ∈ {0, 1} and z2 ∈ {0, 1, · · · ,m− 1}}, when z1z2 is a sequence of two integers and is a label
of a node. Node 0z2 is in the outer ring while node 1z2 is in the inner one. For integer z and positive
integer m, we define that z(mod m) denotes the remainder of the division of z by m. For any node
z1z2, there is a link connecting it to node z1x for x ∈ {(z2 + 1)(mod m), (z2 − 1)(mod m)}. For any
node 0z2, 0 ≤ z2 ≤ m− 1, there is a link connecting it to node 1y for y ∈ {z2, (z2 + 1)(mod m), (z2 +
2)(mod m), · · · , (z2 + d− 1)(mod m)}. For any node 1z2, 0 ≤ z2 ≤ m− 1, there is a link connecting
it to node 0y for y ∈ {z2, (z2 − 1)(mod m), (z2 − 2)(mod m), · · · , (z2 − d+ 1)(mod m)}.

Sort all nodes of hypercube cluster in the ascending order of the node labels. Then the smallest,
the second smallest and the largest nodes will be α1 = 00 · · · 00, α2 = 00 · · · 01 and β = 11 · · · 11,
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respectively. Let γi be the ith smallest node excluding any one of {α1, α2, β} for 1 ≤ i ≤ 2n − 3.
According to the construction methodology of DQ(m, d, n) proposed by Hung [23], Zhang et al. [42]
give the definition as follows.

Definition 10. [42] The DQcube is characterized by DQ(m, d, n) (see Fig.9 (b)) where 1 ≤ d ≤ m and
d+ 2 = 2n. The node-set V is represented as {(z1z2, bn−1bn−2 · · · b0)} where z1z2 is the label of cluster
in D(m, d) and bn−1bn−2 · · · b0 is the label of the node in Qn. Two nodes u = (z1z2, bn−1bn−2 · · · b0)
and v = (z′1z

′
2, b
′
n−1b

′
n−2 · · · b′0) are linked if and only if one of the following conditions is satisfied :

(1) z1z2 = z′1z
′
2 and

∑n−1
i=0 |bi − b′i| = 1;

(2) z1 = z′1, z
′
2 = z2 + 1, bn−1bn−2 · · · b0 = α1 and b′n−1b

′
n−2 · · · b′0 = α2;

(3) z1 − z′1 = 1, z2 = z′2 and bn−1bn−2 · · · b0 = b′n−1b
′
n−2 · · · b′0 = β;

(4) z1 = 0, z′1 = 1, z′2 = z2 + i and bn−1bn−2 · · · b0 = b′n−1b
′
n−2 · · · b′0 = γi.

DQ(m, d, n) is a (n + 1)-regular bipartite graph of m2n+1 nodes and (n + 1)m2n edges. Clearly,
DQ(m, d, n) is triangle-free and consists of 2m disjoint clusters. Each node in DQ(m, d, n) is associated
with an intercluster edge and has exactly one external-neighbor.
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Figure 9: (a)The disc-ring graphs D(4, 2); (b)The topology of DQ(4, 2, 2).

Lemma 9. [42] For any integers 1 ≤ h ≤ n + 1, let S ⊆ V (DQ(m, d, n)) with |S| ≤ (n + 1)h −
(h−1)(h+2)

2 − 1, then DQ(m, d, n) − S is either connected or it has a component containing at least
m2n+1 − |S| − (h− 1) nodes.

Theorem 7. Let n ≥ 3 and 1 ≤ h ≤ n− 2, then the (h+ 1)-component diagnosability of DQ(m, d, n)

is cth+1(DQ(m, d, n)) = (h+ 1)n− h(h+1)
2 + 1 under the PMC model and MM∗ model.

Proof. By the definition ofDQ(m, d, n), there exists a perfect matching between clusters inDQ(m, d, n)
and |V (DQ(m, d, n))| = m2n+1. DQ(m, d, n) consists of 2m clusters, denoted as C1, C2, . . . , C2m,
and each cluster is isomorphic to Qn. Since C1

∼= Qn, let C1 = G(X1, Y1;M) with X1
∼= Q0

n−1

and Y1
∼= Q1

n−1. Choosing an arbitrary node v in X1 and a node set A = {v1, v2, . . . , vh, vh+1} ⊆
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NX1(v), we can obtain that degDQ(m,d,n)(x) = n + 1 for any node x ∈ A ∪ {v}. For n ≥ 3,
|V (DQ(m, d, n))| = m2n+1 > 22n. Since C1

∼= Qn, by Lemma 2, for any two nodes of C1, if
they have common neighbors at all, then they have exactly two common neighbors in C1. We have
|NC1(vi1) ∩ NC1(vi2)| = 2 (1 ≤ i1 < i2 ≤ h + 1) and |NC1(vi1) ∩ NC1(vi2) ∩ · · · ∩ NC1(vik)| = 1
(1 ≤ i1 < i2 < · · · < ik ≤ h+ 1 and k ≥ 3). By the definition of DQ(m, d, n), the external neighbours
of any pair nodes are in the different clusters. Then |NDQ(m,d,n)−C1

(vi1) ∩ NDQ(m,d,n)−C1
(vi2)| = 0

(1 ≤ i1 < i2 ≤ h + 1). Thus, |NDQ(m,d,n)(vi1) ∩ NDQ(m,d,n)(vi2)| = 2 (1 ≤ i1 < i2 ≤ h + 1) and
|NDQ(m,d,n)(vi1) ∩ NDQ(m,d,n)(vi2) ∩ · · · ∩ NDQ(m,d,n)(vik)| = 1 (1 ≤ i1 < i2 < · · · < ik ≤ h + 1
and k ≥ 3). Then DQ(m, d, n) satisfies the condition (a) of Theorem 1. Moreover, by Lemma 9,
DQ(m, d, n) satisfies the condition (b) of Theorem 1. Thus, by Theorem 1, cth+1(DQ(m, d, n)) =

(h+ 1)(r − 1)− h(h+1)
2 + 1 = (h+ 1)n− h(h+1)

2 + 1 under the PMC model and MM∗ model.

5 Comparison results

In this section, we will illustrate the advantages of the component diagnosability compared to other
famous fault diagnosabilities, including the traditional diagnosability, strong diagnosability, pessimistic
diagnosability, conditional diagnosability.

First, we present the definitions of the diagnosis strategies involved in this section. A graph is
called t-diagnosable if the faulty node set has no more than t nodes which can be detected without
replacement. Then the diagnosability of a graph is the largest t such that it is t-diagnosable. There
are several ways to extend the concept of diagnosability. For example, the strong diagnosability of a
graph is the largest number t such that it is strongly t-diagnosable, i.e., it is t-diagnosable and it will
be (t+1)-diagnosable when there is no node whose neighbors are all faulty. A system is t/t-diagnosable
if, provided that the number of faulty processors is bounded by t, all faulty processors can be isolated
within a set of size at most t with at most one fault-free processor mistaken as a faulty one. The
pessimistic diagnosability of a system G is the maximal number of faulty processors so that the system
G is t/t-diagnosable. Finally, the conditional diagnosability puts constraint on every faulty node set
such that they do not contain all neighbors of some nodes.

Given a general network G defined in Theorem 1, we denote the diagnosability by t(G). Then we
can obtain that t(G) ≤ δ(G) ≤ r [19], where r is defined in Theorem 1. Considering the worst situation,
suppose that δ(G) = r. Let h = 1, by Theorem 1 we have that the 2-component diagnosability of
G is 2r − 2. Fig. 10 compares the 2-component diagnosability of G with δ(G). No matter what the
value of r is, it can be seen that the 2-component diagnosability of G is always larger than δ(G).
Since t(G) ≤ δ(G) ≤ r, we can conclude that the component diagnosability significantly improves the
reliability of the interconnection network compared to the traditional diagnosability.

Several networks mentioned in this paper have similar properties, thus we choose DQcube as a
representative for comparison. Lv et al. [34] have showed that the traditional diagnosability, strong
diagnosability, pessimistic diagnosability and conditional diagnosability of DQcube under the PMC
model are n+ 1, n+ 1, 2n, and 4n− 3, respectively. Let h = 4, by Theorem 7 we can obtain that the
5-component diagnosability of DQcube is 5n− 9.

Fig. 11 compares the 5-component diagnosability with strong diagnosability, pessimistic diag-
nosability, conditional diagnosability in DQcube. When n is small, the 5-component diagnosability
is close to the conditional diagnosability, but far from other fault diagnosabilities. As n increases,
the 5-component diagnosability increases faster than the conditional diagnosability. If let h ≥ 5,
the distance between the (h+ 1)-component diagnosability and the conditional diagnosability will be
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Figure 10: The illustration of comparisons between the 2-component diagnosability and the minimum
degree in a general network G.

larger. Therefore, the (h+ 1)-component diagnosability can better evaluate the fault tolerance of the
interconnection network.
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Figure 11: The illustration of comparisons among the 5-component diagnosability, strong diagnosabil-
ity, pessimistic diagnosability and conditional diagnosability in DQcube.

6 Conclusion

In this paper, we determined the (h+1)-component diagnosability cth+1(G) of general networks under
the PMC model and MM∗ model. As applications, the component diagnosability was explored for
some well-known networks, including complete cubic networks, hierarchical cubic networks, generalized
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exchanged hypercubes, dual-cube-like networks, hierarchical hypercubes, Cayley graphs generated by
transposition trees (except star graphs), and DQcube as well. Finally, we made some comparisons
to show the advantages of component diagnosability. Future works include evaluating the (h + 1)-
component diagnosability of other interconnection networks and investigating the (h+ 1)-component
diagnosability of general networks for general integers h ≥ r − 2.
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