
Shortest journeys in directed temporal graphs

Cheng, Siu Wing

Nil

Preprint

Nil

Nil

© The Author

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

Shortest Journeys in Directed Temporal Graphs∗

Siu-Wing Cheng

Department of Computer Science and Engineering, HKUST,

Hong Kong, China

scheng@cse.ust.hk

Received (Day Month Year)

Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Consider a directed temporal graph G = (V,E) with time ranges on the edges. There can

be more than one range on an edge, and each range carries a positive traversal time. Let

n = |V | and let Δ be the total number of time ranges in G. We assume that Δ = Ω(n).

We study the problem of computing shortest journeys that start from a fixed source

vertex s within a given time interval [tb, te), where the cost of a journey is equal to the

sum of traversal times of the edges on it at the times of crossing those edges. We can

construct in O(Δ2 logΔ) time a data structure of size O(nΔ) such that for any vertex

v and any time t, we can report in O(logΔ) time the cost of the shortest journey that

starts from s within [tb, te) and arrives at v no later than t. The journey achieving the

reported cost can be produced in time linear in its complexity.

Keywords: Temporal graphs; journey; continuous Dijkstra; priority search tree.

1. Introduction

The relations among a set of entities such as people, organisms, or cities may evolve

over time. There is a natural interest in finding a path in such a network of entities

that respect the time constraints. For example, in finding a sequence of connecting

flights from a city A to another city B, one may optimize the total flight time

or the elapsed time. A temporal graph is a construction that has been proposed

to model connections that may change dynamically [6, 8, 9, 10, 14, 15]. The term

evolving graph is used by some authors, but the term temporal graph is more

popular.

Two representations of a temporal graph are proposed in [15]. The first one is

a directed or undirected graph G = (V,E) such that each edge e ∈ E has a set

R(e) of interior-disjoint closed time intervals. We call these time intervals ranges. It

signifies that an edge e ∈ E is present during every range τ ∈ R(e), but e is absent

at any time outside
⋃

τ∈R(e) τ . The second representation assumes that there is a

discrete universe of time instances of size U , which can be assumed without loss

of generality to be integers in the range [1, U]. The temporal graph is specified

∗Research supported by Research Grants Council, Hong Kong , China (project no. 16203718).

1

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

2

as a sequence of subgraphs G1, G2, . . . , GU of G. It signifies that the vertices and

edges in Gi are present at time step i. In this paper, we assume as in many other

previous works (e.g. [6, 9, 10, 14]) that the vertices of G are always present, but its

edges may appear and disappear. Both temporal graph representations require the

full knowledge of the changes of the graph over time; for example, such a situation

arises in inter-satellite communication as described in [15] and the flight example

in the previous paragraph.

The first representation does not require the time instances to come from a dis-

crete universe; the ranges can be continuous closed intervals or intervals of discrete

time instances depending on the context; there is no a priori upper bound on the

largest time instance in the input. We use the RAM model in this paper in which

any real number can be stored in a computer word and it takes O(1) time to per-

form an arithmetic operation. We call the first representation a compact temporal

graph and the second representation a discrete temporal graph. In a discrete tem-

poral graph, one can save storage by keeping a single vertex set and an array of U

edge sets indexed by the time step. There is no difference in the asymptotical space

complexity if there are Ω(n) edges in each subgraph Gi.

A journey in a temporal graph is a path that traverses edges in chronological

order at times when those edges are available. It may be necessary to wait at an

intermediate vertex for the appearance of the outgoing edge that one wants to take.

Each edge carries a set of traversal times and a set of weights, which denote the

duration required for crossing that edge and the cost of doing so at different times.

The cost of a journey is the sum of the weights of edges on it at the times of

crossing those edges. The elapsed time of a journey is the arrival time at the last

vertex minus the start time at the first vertex. Let s be a fixed source vertex of G.

The single-source shortest journeys problem is to compute journeys of minimum

costs from s to all other vertices; the single-source fastest journeys problem is to

compute journeys of minimum elapsed times from s to all other vertices. There are

practical applications. For example, the reliable path problem in temporal graphs

considered in [5] can be recast as a shortest journey problem. As another example,

the fastest journeys problem finds application in efficient broadcast trees in time-

varying networks [1].

For every edge e ∈ E in a compact temporal graph, different traversal times

and weights may be associated with different ranges in R(e). These traversal times

and weights can be any non-negative real number. For a discrete temporal graph,

different traversal times and weights may be associated with the same edge in

different subgraphs. All traversal times are integers in the range [1, U] because if we

start traversing an edge at an instance in [1, U], we need to finish at a later instance

in [1, U]. The weights can be any non-negative real number. An undirected compact

temporal graph can be modeled by a directed compact temporal graph with each

undirected edge represented by two parallel, oppositely oriented directed edges.

In [15], for a compact temporal graph (directed or undirected), the single-source

shortest journeys problem is solved in O(mD) time when the traversal time and

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

3

weight of every edge are both equal to 1, where m = |E| and D is the diameter of G.

For an undirected discrete temporal graph in which the traversal time of every edge

is 1, an algorithm for the single-source fastest journeys problem is proposed in [15]

that runs in O
(
nU log(nU) +

∑U
i=1 mi

)
time, where mi is the number of edges in

Gi.
a Later, algorithms for the single-source shortest and fastest journeys problems

are proposed in [14] for a directed discrete temporal graph in which the weight of

every edge is equal to its traversal time. The shortest and fastest journeys can be

found in O
((∑U

i=1 mi

) · log(∑U
i=1 mi

))
and O

((∑U
i=1 mi

)
logU

)
time, respectively.

The above results in [14, 15] also hold when the journeys are required to start

from s within a given time interval. In [10], for a discrete temporal graph in which

the traversal time of every edge is 1, algorithms for the single-source fastest and

shortest journeys problems are proposed. The algorithm for fastest journeys runs

in O
(
nU +

∑U
i=1 mi

)
time. The algorithm for shortest journeys works with in the

special case that each graph edge appears in exactly one time step, but the weight

associated with an edge can be any positive number. The running time of the

algorithm is O(n3).

A key feature, or difficulty depending on the viewpoint, is that given a shortest or

fastest journey from s to v, a prefix of it from s to a vertex umay not be a shortest or

fastest journey to u. Therefore, one cannot solve the problem by running Dijkstra’s

algorithm without paying attention to the arrival time at the destination.

In this paper, we study the problem of computing single-source shortest journeys

in a directed compact temporal graph G = (V,E) in which the weight and traversal

time associated with a range are equal and positive. Let n = |V | and let Δ be the

total number of ranges in G. We assume that Δ = Ω(n). Let s be a fixed source,

and let [tb, te) be a given time interval. We can construct in O(Δ2 logΔ) time a

data structure of size O(nΔ) such that for any vertex v and any time t, we can

report in O(logΔ) time the cost of the shortest journey that starts from s within

[tb, te) and arrives at v no later than t. The journey achieving the reported cost

can be produced in time linear in its complexity. It is interesting to note that we

borrow the continuous Dijkstra paradigm for computing shortest paths in geometric

settings [2, 3, 4, 7, 11, 12] to solve this shortest journey problem.

The assumption of Δ = Ω(n) is mild. If we ignore the edge directions in G and

take the connected component containing s, the subgraph H ⊆ G that spans the

vertices of this connected component satisfies the assumption. Moreover, there is

no journey from s to any vertex that does not belong to H.

Other related problems on temporal graphs have also been studied. In [6], the

authors study the question of exploring a discrete temporal graph. If there are n

vertices and the traversal time of every edge is equal to 1, it is easy to traverse the

entire temporal graph in O(n2) time steps, which is also known to be necessary in

the worst case. It is shown in [6] that if the temporal graph has vertex degree at

aAlthough an O(nU log(nU)) running time is reported in [15], an O
(∑U

i=1 mi

)
term must have

been omitted because a graph search is conducted to find the connected components of every Gi.

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

4

most d every time step, O(d log d · n2/ log n) time steps suffice; the result can be

improved to O(n2/ log n) if d is a constant. In [9], it is shown that Menger’s Theorem

in its original formulation fails for temporal graphs and that finding disjoint s-

t journeys in a temporal graph is NP-complete. On the other hand, a temporal

analog of Menger’s Theorem is proved in [10]. Optimization problems on enforcing

connectivity in discrete temporal graphs are also studied in [10]. In particular,the

authors study the problems of converting a directed graph to a discrete temporal

graph so as to preserve all paths or all pairwise reachability in the underlying

directed graph with the minimum U or
∑U

i=1 mi.

2. Preliminaries

We use G = (V,E) to denote the directed compact temporal graph that we work

with. Let n = |V |. For every edge e ∈ E, R(e) denotes the set of ranges associated

with e, which are interior-disjoint closed time intervals. For every range τ ∈ R(e),

e is present during τ ; on the other hand, e is absent at any time outside
⋃

τ∈R(e) τ .

Without loss of generality, we assume that R(e) is non-empty for all e ∈ E. We

define Δ =
∑

e∈E |R(e)|.
For every edge e ∈ E, every range τ ∈ R(e) is associated with a traversal time

ατ (e) ∈ R≥0 and a real-valued weight. The interpretation is that it takes ατ (e)

time to cross e during the range τ , and the cost of doing so is the weight associated

with τ . In this paper, we study the special case in which ατ (e) is positive and the

weight associated with τ is equal to ατ (e). Note that e may have different traversal

times in different ranges in R(e).

Given any time interval or range τ , we use start(τ) and end(τ) to denote the

start and end times of τ , respectively, and we use |τ | to denote end(τ) − start(τ).

For consistency, we assume that for every edge e ∈ E and every range τ ∈ R(e),

ατ (e) ≤ |τ | so that the edge e can be traversed completely within τ .

A journey from a vertex v1 to another vertex vk is a sequence of ordered pairs

(v1, t1), (v2, t2), . . . , (vk, tk) signifying that the trip starts from v1 at time t1 and

visits vi at time ti for all i ∈ [2, k], subject to the constraint that for every i ∈ [k−1],

there exists a range τi ∈ R(vivi+1) such that:

• [ti+1 − ατi(vivi+1), ti+1] ⊆ τi. In other words, the edge vivi+1 must be

present during the traversal of vivi+1. Note that this makes τi unique.

• ti ≤ ti+1 − ατi(vivi+1). In other words, we must arrive at vi early enough

so that we can cross vivi+1 to arrive at vi+1 at time ti+1.

The cost of the journey is the sum of the traversal times
∑k−1

i=1 ατi(vivi+1). The

shortest journey from v1 to vk is the journey with the minimum cost.

We use s to denote the specific source vertex from which we want to find shortest

journeys to all other vertices. We use [tb, te) to denote the user requirement that the

shortest journeys from s to other vertices must start at some time within [tb, te).

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

5

3. Continuous Dijkstra paradigm

We employ the continuous Dijkstra paradigm which has been used in finding short-

est paths in geometric settings [2, 3, 4, 7, 11, 12]. The idea is to associate a semi-open

time line [tb,∞) with every vertex v other than s; the source s is associated with the

interval [tb, te). For every vertex v other than s, we maintain a partition of [tb,∞)

into disjoint intervals denoted by I(v); all intervals in I(v) are closed at their start

times and open at their end times; the rightmost interval in I(v) is [t,∞) for some

t ≥ tb. The sequence I(s) is equal to {[tb, te)} at all times.

For every vertex v, every interval ξ ∈ I(v) carries a cost Cv(ξ), which is the

cost of the shortest journey J we have found so far from s to v that arrives at time

start(ξ). Moreover, J is also the shortest journey discovered so far from s to v that

arrives within the time interval ξ. The intervals ξ ∈ I(v) for all v ∈ V are stored in

a priority queue Q in non-decreasing lexicographical order of (Cv(ξ), start(ξ)).

Initially, I(s) = {[tb, te)} and Cs([tb, te)) = 0, and for all v ∈ V \ {s}, I(v) =

{[tb,∞)} and Cv([tb,∞)) = ∞.

As long as Q is non-empty, we remove the interval ξ ∈ Q with the minimum

(Cv(ξ), start(ξ)). It follows that the first interval removed from Q is [tb, te) for s. In

general, assume that the interval ξ removed from Q belongs to I(v). The continuous

Dijkstra paradigm ensures that Cv(ξ) is the cost of the shortest journey J from s

to v that arrives at time start(ξ), and J is also the shortest journey from s to v

that arrives within the time interval ξ. Therefore, ξ and Cv(ξ) will not be changed

in the future.

The update after the removal of ξ from Q works as follows. We first mark ξ in

I(v); only intervals removed from Q will be marked. Take any outgoing edge vw of

v and any range σ ∈ R(vw). If end(σ)− start(σ∩ ξ) < ασ(vw), we cannot extend J

to visit w during σ and no update is triggered by σ. Otherwise, we can extend J by

leaving from v at time start(σ ∩ ξ) and arriving at w at time start(σ ∩ ξ)+ασ(vw).

In other words, we obtain a journey J ′ by appending (w, start(σ ∩ ξ) + ασ(vw)) to

J . The cost of J ′ is Cv(ξ) + ασ(vw).

Find the interval ζ ∈ I(w) that contains the instance start(σ ∩ ξ) + ασ(vw).

If Cv(ξ) + ασ(vw) ≥ Cw(ζ), we do not update I(w) because J ′ does not lead

to a shorter journey to w. Suppose that Cv(ξ) + ασ(vw) < Cw(ζ). Note that ζ

must be unmarked as there cannot be any shorter journey to w that arrives at any

time within a marked interval. In this case, J ′ is the shortest journey from s to w

discovered so far that arrives during [start(σ ∩ ξ) + ασ(vw), start(ζ
′′)), where ζ ′′ is

the first interval in I(w) after ζ such that Cw(ζ
′′) ≤ Cv(ξ) + ασ(vw). Therefore,

every interval that lies strictly between ζ and ζ ′′ must be unmarked. The updating

of I(w) proceeds as follows. We introduce a field pred(·) to every interval in I(w)

to record some information of the last stop in the shortest journey before w.

• Case 1: start(ζ) = start(σ ∩ ξ) + ασ(vw).

– Create an interval ζ1 = [start(ζ), start(ζ ′′)). Set Cw(ζ1) = Cv(ξ) +

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

6

ασ(vw). Set pred(ζ1) = (v, ξ).

– Delete the intervals between ζ and ζ ′′, including ζ but excluding ζ ′′, from
Q and I(w).

– Insert ζ1 into Q and I(w).

• Case 2: start(ζ) < start(σ ∩ ξ) + ασ(vw).

– Create an interval ζ0 = [start(ζ), start(σ ∩ ξ) + ασ(vw)). Set Cw(ζ0) to

be Cw(ζ). Set pred(ζ0) = pred(ζ).

– Create an interval ζ1 = [start(σ ∩ ξ) + ασ(vw), start(ζ
′′)). Set Cw(ζ1) =

Cv(ξ) + ασ(vw). Set pred(ζ1) = (v, ξ).

– Delete the intervals between ζ and ζ ′′, including ζ but excluding ζ ′′, from
Q and I(w).

– Insert ζ0 and ζ1 into both Q and I(w).

Lemma 1 below proves some properties of I(v) throughout the course of the

algorithm. In particular, the proof of Lemma 1(iii) makes use of the fact that the

weight and traversal time associated with a range are equal and positive.

Lemma 1. The following properties hold throughout the course of the algorithm.

(i) For every v ∈ V and every ξ ∈ I(v), the journey that arrives at v at time

start(ξ) does not visit any vertex twice.

(ii) For every v ∈ V and every pair ζ, ξ ∈ I(v), if ζ precedes ξ in I(v), then

Cv(ζ) > Cv(ξ).

(iii) For every v ∈ V , |I(v)| ≤ Δ+ 1.

Proof. Consider (i). Let Jξ be the journey from s to v that arrives at time start(ξ).

Assume to the contrary that Jξ visits a vertex u twice. This happens only if the

algorithm created an interval ζ in I(u) and then another interval ζ ′ in I(u) later

when constructing Jξ. By the removal order of intervals from Q, we know that

Cu(ζ) ≤ Cu(ζ
′). As Jξ uses ζ before ζ ′, we have start(ζ) ≤ start(ζ ′). In fact,

start(ζ) < start(ζ ′) because the algorithm would not have created ζ ′ if start(ζ) =
start(ζ ′) given that Cu(ζ) ≤ Cu(ζ

′). By the working of the algorithm, after the

creation of ζ, every interval in I(u) that follows ζ has cost no more than Cu(ζ) ≤
Cu(ζ

′). But then the algorithm could not have created ζ ′ because no part of ζ or

any interval in I(u) that follows ζ can be subsumed by the journey from s to u that

arrives at time start(ζ ′). This is a contradiction.

Consider (ii). Suppose that ζ precedes ξ in I(v), i.e., start(ζ) < start(ξ). By the

working of the algorithm, we know that Cv(ζ) ≥ Cv(ξ). If Cv(ζ) = Cv(ξ), by the

removal order of intervals from Q, ζ must be created before ξ. But then we can

reason as in the previous paragraph that the algorithm would not have created ξ,

a contradiction.

Consider (iii). Take any interval ξ ∈ I(v). There is at most one interval in I(v)

with start time equal to tb. Suppose that start(ξ) > tb. The interval ξ must be

created when we update I(v) using a range σ on some incoming edge uv of v. If

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

7

start(ξ) = start(σ) + ασ(uv), we set up an active charging link directed from ξ to

σ. At most one interval in I(v) can have an active charging link to σ. The other

possibility is that start(ξ) = start(ζ)+ασ(uv) for some ζ ∈ I(u). In this case, we set

up a passive charging link directed from ξ to ζ. For us to set up a passive charging

link directed from ξ to ζ, we must have [start(ζ), start(ζ) + ασ(uv)] ⊆ σ, which

makes the choice of σ unique. It follows that there is at most one passive charging

link from the intervals in I(v) to ζ.

We set up active and passive charging links for all I(v)’s in G as described above.

Fix a vertex v ∈ V . We count each interval ξ ∈ I(v) as follows. Suppose that

ξ has a passive charging link to another interval ξ′. We send a unit charge from ξ

to ξ′. If ξ′ has a passive charging link to another interval ξ′′, we forward that unit

charge to ξ′′ and so on. Eventually, by (i), the unit charge must reach an interval ζ

in some I(w) such that ζ has an active charging link to some range σ ∈ R(uw) for

some incoming edge uw of w. In the extreme case, we can have ξ = ζ and v = w,

meaning that ξ has an active charging link to σ, and there is no charge forwarding.

Fix some range σ ∈ R(e) for some outgoing edge e of a vertex x. Consider the

path(s) traversed by the charge(s) that go from interval(s) in I(v) to σ. We claim

that no two such paths can bifurcate at any vertex y. Assume to the contrary that

there are two such paths that do. Let J1 and J2 be the two corresponding journeys

that start from s, cross the edge e at time start(σ), and eventually arrive at y. Both

J1 and J2 use the same interval ξ ∈ I(x) such that ξ contains start(σ). It implies

that J1 and J2 share a common prefix from s to x which defines the interval ξ.

Therefore, it costs the same for J1 and J2 to go from s to x. Let C denote this

common cost. The arrival times of J1 and J2 at y are equal to start(σ) + γ1 and

start(σ) + γ2, respectively, where γi is the total traversal time taken by Ji from x

to y. The cost of the portion of Ji from s to y is equal to C + γi. If γ1 < γ2, J1
reaches y at an earlier time than J2, but then our algorithm would not create an

interval in I(y) when J2 reaches y because J2 does not lead to a shorter journey

to y. This is a contradiction. We get a contradiction in a similar way if γ2 < γ1.

If γ1 = γ2, the algorithm would let J1 or J2 reach y first, and then our algorithm

would not allow the other journey to create an interval in I(y) later, a contradiction

again. This proves our claim.

By our claim, there is at most one path from a single interval in I(v) to σ. We

conclude that σ receives at most one unit of charge. The total number of charges

generated by the intervals in I(v) is thus at most Δ. Hence, |I(v)| ≤ Δ+1, including

the possibility that there is an interval in I(v) with start time equal to tb.

Corollary 2. The algorithm inserts at most nΔ+ n intervals into Q.

Proof. After removing an interval ξ from Q, where ξ ∈ I(v) for some v ∈ V , Cv(ξ)

is already the minimum possible for ξ ∈ I(v), so no future update of I(v) will affect

the existence of ξ as an interval in I(v). Then, by Lemma 1(iii), at most nΔ + n

intervals can be removed from Q, meaning that at most nΔ + n intervals can be

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

8

inserted into Q.

4. Data structures

Corollary 2 tells us that there are O(nΔ) intervals to be inserted and deleted fromQ.

The running time of these insertions and deletions is O(nΔ log(nΔ)) = O(nΔ logΔ)

as Δ is assumed to be Ω(n).

Suppose that we delete an interval ξ ∈ I(v) from Q. If we update I(w) for every

outgoing edge vw of v in a straightforward manner as described in Section 3, it

will take O
(|R(vw)|Δ log(nΔ)

)
= O

(|R(vw)|Δ logΔ
)
time for every edge vw. By

Lemma 1(iii), the total time spent in updating I(w) for every edge vw throughout

the algorithm is O
(|I(v)|∑vw∈E |R(vw)|Δ logΔ

)
= O

(
Δ2 logΔ

∑
vw∈E |R(vw)|).

The total running time is thus

O
(
nΔ logΔ +Δ2 logΔ

∑
v∈V

∑
vw∈E

|R(vw)|
)
= O

(
nΔ logΔ +Δ3 logΔ

)

= O(Δ3 logΔ).

In this section, we reduce the update time of every I(w) to O
(|R(vw)| logΔ)

. The

total running time will be improved to O(Δ2 logΔ).

When processing an range in R(vw), the bottleneck are the potential deletions

of O(Δ) intervals from Q and I(w) This is too costly. Since we are only interested

in the interval in Q with the minimum cost, it suffices to store the interval in I(w)

with the minimum cost in Q. By Lemma 1(ii), there is exactly one such interval.

This strategy immediately eliminates the need to delete a lot of intervals from Q.

We still have to deal with the deletions of O(Δ) intervals from I(w). Since these

intervals are consecutive in I(w), we can delete them efficiently in a batch with the

right data structure. We store the intervals in I(w) in a red-black tree Tw ordered by

their costs. By Lemma 1(ii), the order of the intervals in decreasing costs coincides

with their left-to-right order. The red-black tree Tw supports insertion, deletion,

join, and split in O(log |I(w)|) = O(logΔ) time [13]. Insertion and deletion are

standard. We use the definitions of join and split from [13] adapted to our context:

• join(T1, ζ, T2): Let T1 and T2 be two trees that store two subsets of I(w),

each consisting of contiguous intervals, and the intervals in T1 are to the

left of those in T2. Let ζ be an interval that lies between those in T1 and

T2. This function returns a tree that contains the intervals in T1, ζ, and the

intervals in T2 in this order.

• split(ζ, T): Let T be a tree that store a subset of contiguous intervals in I(w)

that includes ζ. This function returns a pair of trees (T1, T2); T1 consists

of all intervals in T to the left of ζ; T2 consists of all intervals in T to the

right of ζ.

We revisit the update process after removing an interval ξ from Q. Assume that

ξ comes from Tv. We mark ξ in Tv, find the rightmost unmarked interval ξ′ in Tv,

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

9

and insert ξ′ into Q. To allow a fast search for the rightmost unmarked interval in

Tv, we stored a bit at each node of Tv which is 1 if and only if there is an unmarked

interval in the subtree rooted at that node. Then, we use this bit to go down Tv to

find ξ′ in O(logΔ) time. The insertion of ξ′ into Q also takes O(logΔ) time.

Next, we go over every outgoing edge vw of v and every range σ ∈ R(vw).

Suppose that end(σ) − start(σ ∩ ξ) ≥ ασ(vw). We search in Tw in O(logΔ) time

to find the interval ζ that contains the instance start(σ ∩ ξ) + ασ(vw). If Cv(ξ) +

ασ(vw) ≥ Cw(ζ), we do not update Tw. Suppose that Cv(ξ) + ασ(vw) < Cw(ζ). In

this case, we call split(ζ, Tw) and let (T1, T2) be the ordered pair of trees returned.

We search for the leftmost interval ζ ′′ ∈ T2 such that Cw(ζ
′′) ≤ Cv(ξ) + ασ(vw).

Then, we call split(ζ ′′, T2) and let (T3, T4) be the ordered pair of trees returned.

This takes O(logΔ) time. The creation of the new Tw proceeds as follows.

• Case 1: start(ζ) = start(σ ∩ ξ) + ασ(vw).

– Create an interval ζ1 = [start(ζ), start(ζ ′′)). Set Cw(ζ1) = Cv(ξ) +

ασ(vw). Set pred(ζ1) = (v, ξ).

– Insert ζ ′′ into T4 to form a new tree T5.

– Set the new Tw to be join(T1, ζ1, T5).

• Case 2: start(ζ) < start(σ ∩ ξ) + ασ(vw).

– Create an interval ζ0 = [start(ζ), start(σ ∩ ξ) + ασ(vw)). Set Cw(ζ0) to

be Cw(ζ). Set pred(ζ0) = pred(ζ).

– Create an interval ζ1 = [start(σ ∩ ξ) + ασ(vw), start(ζ
′′)). Set Cw(ζ1) =

Cv(ξ) + ασ(vw). Set pred(ζ1) = (v, ξ).

– Insert ζ1 and ζ ′′ into T4 to form a new tree T5.

– Set the new Tw to be join(T1, ζ0, T5).

Cases 1 and 2 run in O(logΔ) time. Finally, if the interval in Q that comes from

Tw is not the rightmost unmarked interval in the new Tw, delete that interval from

Q and insert the rightmost unmarked interval in the new Tw into Q. This takes

O(logΔ) time.

In summary, for every range in R(vw), we can update I(w) in O(logΔ) time;

therefore, it takes O(|R(vw)| logΔ) time to handle each outgoing edge vw of v.

Consequently, the total running time is improved to O(Δ2 logΔ).

The final red-black trees Tv for every v ∈ V \ {s} can be used to answer queries.

Needless to say, any query for journeys that arrive at s has zero cost. For any

v ∈ V \ {s} and any given time t, we search Tv to find the interval ξ that contains

t, and we return Cv(ξ) as the desired journey cost. This takes O(logΔ) time. If we

want to retrieve the journey from s that arrives at v no later than time t, we use

pred(ξ) = (u, ξ′) to get to ξ′ in I(u). We can thus continue this way to retrace the

journey from v to s in linear time.

Theorem 3. Let G = (V,E) be a directed compact temporal graph in which the

weight and traversal time of a range are equal and positive. Let n = |V | and let

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

10

Δ =
∑

e∈E |R(e)|. Assume that Δ = Ω(n). For any fixed source s ∈ V and any

interval [tb, te), we can construct in O(Δ2 logΔ) time a data structure of size O(nΔ)

such that for any vertex v and any time t, we can report in O(logΔ) time the cost

of the shortest journey that starts from s within the time interval [tb, te) and arrives

at v no later than time t. The journey achieving the reported cost can be produced

in time linear in its complexity.

5. Conclusion

We present an O(Δ2 logΔ)-time algorithm for finding single-source shortest jour-

neys in a directed compact temporal graph in which the weight and traversal time

of a range are equal and positive. The algorithm outputs a data structure that

answers shortest journey queries in O(logΔ) time. A research direction is to allow

the weight of a range to be different from the traversal time. On the other hand, it

seems challenging to allow the weights to be completely arbitrary. Another possible

research direction is to apply the continuous Dijkstra paradigm to the single-source

fastest journeys problem.

References

[1] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Measuring temporal lags in
delay-tolerant networks. IEEE Transactions on Computers, 63:397–410, 2014.

[2] J. Chen and Y. Han. Shortest paths on a polyhedron, part I: computing shortest
paths. International Journal of Computational Geometry and Applications, 6:127–
144, 1996.

[3] S.-W. Cheng and J. Jin. Approximate shortest descending paths. SIAM Journal on
Computing, 43:410–428, 2014.

[4] S.-W. Cheng and J. Jin. Shortest paths on polyhedral surfaces and terrains. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 373–
382, 2014.

[5] M. H. Eiza and Q. Ni. An evolving graph-based reliable routing scheme for vanets.
IEEE Transactions on Vehicular Technology, 63:1493–1504, 2013.

[6] T. Erlebach and J.T. Spooner. Faster exploration of degree-bounded temporal graphs.
In Proceedings of the 43rd International Symposium on Mathematical Foundations of
Computer Science, pages 36:1–36:13, 2018.

[7] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the
plane. SIAM Journal on Computing, 28:2215–2256, 1999.

[8] P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519:97–125, 2012.
[9] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for

temporal networks. Journal of Computer and System Sciences, 64:820–842, 2002.
[10] G.B. Mertzios, O. Michail, and P.G. Spirakis. Temporal network optimization subject

to connectivity constraints. Algorithmica, 81:1416–1449, 2019.
[11] J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou. The discrete geodesic problem.

SIAM Journal on Computing, 16:647–668, 1987.
[12] J.S.B. Mitchell and C.H. Papadimitriou. The weighted region problem: finding short-

est paths through a weighted planar subdivision. Journal of the ACM, 38:18–73,
1991.

May 1, 2023 14:42 WSPC/INSTRUCTION FILE paper

11

[13] R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1987.

[14] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for
temporal path computation. IEEE Transactions on Knowledge and Data Engineering,
28:2927–2942, 2016.

[15] B. Bui Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14:167–181, 2003.

