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Abstract. We identify a subclass of the regular commutative languages
that is closed under the iterated shuffle, or shuffle closure. In particu-
lar, it is regularity-preserving on this subclass. This subclass contains
the commutative group languages and, for every alphabet Σ, the class
Com`pΣ˚q given by the ordered variety Com`. Then, we state a sim-
ple characterization when the iterated shuffle on finite commutative lan-
guages gives a regular language again and state partial results for ape-
riodic commutative languages. We also show that the aperiodic, or star-
free, commutative languages and the commutative group languages are
closed under projection.

Keywords: finite automata · commutative languages · closure proper-
ties · iterated shuffle · shuffle closure · regularity-preserving operations

1 Introduction

The shuffle and iterated shuffle have been introduced and studied to understand,
or specify, the semantics of parallel programs. This was undertaken, as it appears
to be, independently by Campbell and Habermann [3], by Mazurkiewicz [16]
and by Shaw [27]. They introduced flow expressions, which allow for sequential
operators (catenation and iterated catenation) as well as for parallel operators
(shuffle and iterated shuffle) to specify sequential and parallel execution traces.

For illustration, let us reproduce the following very simple Reader-Writer
Problem from [27], as an example involving the iterated shuffle. In this problem,
a set of cyclic processes may be in read-mode, but only one process at a time
is allowed to be in write-mode, and read and write operations may not proceed
concurrently. Additionally, we impose that the processes have to come to an end,
in [27] they are allowed to run indefinitely. This constraint could be specified,
using our notation, by

ppStartRead ¨ Read ¨ EndReadq�,˚ Y Writeq˚,

where “�, ˚” denotes the iterated shuffle and “˚” the Kleene star.
Let us note that in [27] additional lock and signal instructions were allowed.

Also in [24] similar expressions for process modeling were investigated, allowing
the binary shuffle operation, but without inclusion of the iterated shuffle.

http://arxiv.org/abs/2103.09587v2
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The shuffle operation as a binary operation, but not the iterated shuffle,
is regularity-preserving on all regular languages. However, already the iterated
shuffle of very simple languages can give non-regular languages. Hence, it is
interesting to know, and to identify, quite rich classes for which this operation is
regularity-preserving. Here, we give such a class which includes the commutative
group languages and the languages described by the positive variety Com`.
Additionally, we give a characterization for the regularity of the iterated shuffle
when applied to finite commutative languages and state some partial results for
aperiodic (or star-free) commutative languages.

We mention that subregular language classes closed under the binary shuffle
operation were investigated previously [1, 2, 4, 9, 19, 23].

We also show that the commutative star-free languages and the commutative
group languages are closed under projections. For further connections on regu-
larity conditions and closure properties, in particular for the star-free languages,
see the recent survey [22].

2 Preliminaries and Definitions

2.1 General Notions

Let Σ be a finite set of symbols called an alphabet. The set Σ˚ denotes the set
of all finite sequences, i.e., of all words. The finite sequence of length zero, or the
empty word, is denoted by ε. For a given word we denote by |w| its length, and
for a P Σ by |w|a the number of occurrences of the symbol a in w. A language
is a subset of Σ˚. If L Ď Σ˚ and u P Σ˚, then the quotients are the languages
u´1L “ tv P Σ˚ | uv P Lu and Lu´1 “ tv P Σ˚ | vu P Lu.

We assume the reader to have some basic knowledge in formal language the-
ory, as contained, e.g., in [12, 15]. For instance, we make use of regular expressions
to describe languages.

Let Γ Ď Σ. Then, we define projection homomorphisms πΓ : Σ˚ Ñ Γ˚ onto
Γ˚ by πΓ pxq “ x for x P Γ and πΓ pxq “ ε for x R Γ .

By N0 “ t0, 1, 2, . . .u, we denote the set of natural numbers, including zero.
We will also consider the ordered set N0 Y t8u with N0 having the usual order
and setting n ă 8 for any n P N0.

A quintuple A “ pΣ,Q, δ, q0, F q is a finite (incomplete) deterministic au-
tomaton, where δ : Q ˆ Σ Ñ S is a partial transition function, Q a finite
set of states, q0 P S the start state and F Ď Q the set of final states. The
automaton A is said to be complete if δ is a total function. The transition
function δ : Q ˆ Σ Ñ S could be extended to a transition function on words
δ˚ : Q ˆ Σ˚ Ñ S by setting δ˚pq, εq “ q and δ˚pq, waq :“ δpδ˚pq, wq, aq for
q P Q, a P Σ and w P Σ˚. In the remainder, we drop the distinction between
both functions and will also denote this extension by δ. The language recognized
by an automaton A “ pΣ,Q, δ, q0, F q is LpAq “ tw P Σ˚ | δpq0, wq P F u. A
language L Ď Σ˚ is called regular if L “ LpAq for some finite automaton A.

The following classic result will also be needed later.
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Theorem 1 (Generalized Chinese Remainder Theorem [25]). The sys-
tem of linear congruences

x ” ri pmod miq pi “ 1, 2, . . . , kq

has integral solutions x if and only if gcdpmi,mjq divides pri ´ rjq for all pairs
i ‰ j and all solutions are congruent modulo lcmpm1, . . . ,mkq.

2.2 Commutative Languages and the Shuffle Operation

For a given word w P Σ˚, we define permpwq :“ tu P Σ˚ | @a P Σ : |u|a “
|w|au. If L Ď Σ˚, then we set permpLq :“

Ť

wPL permpwq. A language is called
commutative, if permpLq “ L. Let Σ “ ta1, . . . , aku. The Parikh mapping is
ψ : Σ˚ Ñ Nk

0 given by ψpuq “ p|u|a1
, . . . , |u|ak

q for u P Σ˚. We have permpLq “
ψ´1pψpLqq.

The shuffle operation, denoted by �, is defined by

u� v “ tw P Σ˚ | w “ x1y1x2y2 ¨ ¨ ¨xnyn for some words

x1, . . . , xn, y1, . . . , yn P Σ˚ such that u “ x1x2 ¨ ¨ ¨xn and v “ y1y2 ¨ ¨ ¨ ynu,

for u, v P Σ˚ and L1� L2 :“
Ť

xPL1,yPL2
px� yq for L1, L2 Ď Σ˚.

In writing formulas without brackets, we suppose that the shuffle operation
binds stronger than the set operations, and the concatenation operator has the
strongest binding.

If L1, . . . , Ln Ď Σ˚, we set
�

n
i“1 Li “ L1 � . . .� Ln. The iterated shuffle

of L Ď Σ˚ is L�,˚ “
Ť

ně0�
n
i“1 L. We also set L�,` “

Ť

ně1�
n
i“1 L.

Theorem 2 (Fernau et al. [6]). Let U, V,W Ď Σ˚. Then,

1. U � V “ V � U (commutative law);
2. pU � V q�W “ U � pV �W q (associative law);
3. U � pV YW q “ pU � V q Y pU �W q (distributive over union);
4. pU�,˚q�,˚ “ U�,˚;
5. pU Y V q�,˚ “ U�,˚

� V �,˚;
6. pU � V �,˚q�,˚ “ pU � pU Y V q�,˚q Y tεu.

The next result is taken from [6] and gives equations like permpUV q “
permpUq � permpV q or permpU˚q “ permpUq�,˚ for U, V Ď Σ˚. A semiring
is an algebraic structure pS,`, ¨, 0, 1q such that pS,`, 0q forms a commutative
monoid, pS, ¨, 1q is a monoid and we have a¨pb`cq “ a¨b`a¨c, pb`cq¨a “ b¨a`c¨a
and 0 ¨ a “ a ¨ 0 “ 0.

Theorem 3 (Fernau et al. [6]). perm : PpΣ˚q Ñ PpΣ˚q is a semiring mor-
phism from the semiring pPpΣ˚q,Y, ¨,H, tεuq, that also respects the iterated cate-
nation resp. iterated shuffle operation, to the semiring pPpΣ˚q,Y,�,H, tεuq.

The class of commutative languages obeys the following closure properties.

Theorem 4 ([10, 11, 20, 21]). The class of commutative languages is closed
under union, intersection, complement, projections, the shuffle operation and the
iterated shuffle.
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2.3 Aperiodic and Group Languages

The class of aperiodic languages was introduced in [18] and admits a wealth of
other characterizations.

Definition 5. An automaton A “ pΣ,Q, δ, q0, F q is aperiodic, if there exists
n ě 0 such that, for all states q P Q and any word w P Σ˚, we have δpq, wnq “
δpq, wn`1q.

We define the class of aperiodic languages.

Definition 6. A regular language is called aperiodic if there exists an aperiodic
automaton recognizing it.

The class of star-free regular languages is the smallest class containing tεu, Σ˚

and tau for any a P Σ and closed under the boolean operations and concatena-
tion. Let us state the following, due to [26].

Theorem 7 (Schützenberger [18, 26]). The class of star-free languages equals
the class of aperiodic languages.

Next, we introduce the group languages.

Definition 8 (McNaughton [17]). A (pure-)group language1 is a language
recognized by an automaton A “ pΣ,Q, δ, q0, F q where every letter acts as a
permutation on the state set2, i.e., if a P Σ, then the map δa : Q Ñ Q given by
δapqq “ δpa, qq for q P Q is total and a permutation of Q. Such an automaton is
called a permutation automaton.

Observe that a permutation automaton, as defined here, is always complete3.

Remark 1. Note some ambiguity here in the sense that if Σ “ ta, bu, then paaq˚

is not a group language over this alphabet, but it is over the unary alphabet tau.
Hence we mean the existence of an alphabet such that the language is recognized
by a permutation automaton over this alphabet. By definition, tεu is considered
to be a group language4. Also, group languages are closed under the boolean
operations if viewed over a common alphabet, but not over different alphabets.
For instance, L “ paaq˚ Y pbbbq˚ is not a group language.

1 These were introduced in [17] under the name of pure-group events.
2 Such automata are also called permutation automata, and the name stems from the
fact that the transformation monoid of such an automaton forms a group.

3 Another way would be, to allow incomplete automata, to insist that every letter
either gives a permutation or labels no transition.

4 It is not possible to give such an automaton for |Σ| ě 1, but allowing Σ “ H the
single-state automaton will do, or similarly as Σ˚ “ tεu in this case.
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2.4 Commutative Aperiodic and Group Languages

The next definitions and results are taken from [20, 21]. For a P Σ and n, r ě 0
set

F pa, r, nq “ tu P Σ˚ | |u|a ” r pmod nqu,

and, for a P Σ and t ě 0,

F pa, tq “ tu P Σ` | |u|a ě tu.

Note that these sets are defined relative to an alphabet Σ.

Example 1. Let Σ be a non-empty alphabet, a P Σ and Γ Ď Σ.

1. F pa, 0, 1q “ Σ˚.
2. F pa, 0, 2q X F pa, 3, 4q “ H.
3. F pa, 1q “ Σ˚aΣ˚.

4. Γ˚ “ Σ˚z
´

Ť

bPΣzΓ F pb, 1q
¯

.

Theorem 9 ([20, 21]). Let Σ be an non-empty5 alphabet.

1. The class of commutative group languages over Σ is the boolean algebra
generated by the languages of the form F pa, r, nq, where a P Σ and 0 ď r ă n.

2. The class of commutative aperiodic languages over Σ is the boolean algebra
generated by the languages of the form F pa, tq, where a P Σ and t ě 0.

3. The class of all commutative regular languages over Σ is the boolean algebra
generated by the languages of the form F pa, tq or F pa, r, nq, where t ě 0,
0 ď r ă n and a P Σ.

A positive boolean algebra is a class of sets closed under union and inter-
section. In [21], the positive variety Com` was introduced. A positive vari-
ety [20, 21] V of languages maps any alphabet Σ to a subclass VpΣ˚q of lan-
guages over this alphabet that is closed under union, intersection, quotients and
inverse homomorphisms. I only mention in passing that there is a rich theory
between positive varieties of languages and so called pseudovarieties of finite or-
dered semigroups [20]. Originally, Com` was defined in terms of certain ordered
semigroups, but here, as we do not introduce these notions, we introduce it with
an equivalent characterization from [21].

Definition 10 ([21]). For every alphabet Σ, the class Com`pΣ˚q is the posi-
tive boolean algebra generated by the languages of the form F pa, tq and F pa, r, nq,
where a P Σ and t ě 0, 0 ď r ă n.

Lemma 11. Let Σ be a non-empty set6 and Γ Ď Σ be a proper subset. Then,
tΓ˚, Γ`u X Com`pΣ˚q “ H.

Note that the previous lemma, by choosing Γ “ H, implies for Σ ‰ H
that tεu R Com`pΣ˚q. The sets F pa, tq were defined as subsets of Σ` [21],
not Σ˚. However, this makes no difference as Σ` “ F pa, 0q “

Ť

bPΣ F pa, 1q and
F pa, 0, 1q “ Σ˚ and so tΣ`, Σ˚u Ď Com`pΣ˚q.

5 For Σ “ H, we set all these classes to equal tH, tεuu.
6 For Σ “ H, we set Com`pΣ˚q “ tH, tεuu.
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3 Commutative Aperiodic and Group Languages under
Projection

First, we strengthen Theorem 9 for commutative group languages.

Theorem 12. A commutative language L Ď Σ˚ is a group language if and only
if it could be written as a finite union of languages of the form

m
č

i“1

F pai, ki, niq,

where ai P Σ and 0 ď ki ă ni for i P t1, . . . ,mu with m ě 0.

A similar statement holds for the star-free languages. But we cannot use the
languages F pa, tq introduced earlier. Set, for a P Σ and k1, k2 P N0 Y t8u,

Ipa, k1, k2q “ tu P Σ˚ | k1 ď |u|a ă k2u.

Theorem 13. A commutative language L Ď Σ˚ is aperiodic if and only if it
could be written as a finite union of sets of the form

n
č

i“1

Ipai, ri, siq,

where 0 ď ri ă si and ai P Σ for i P t1, . . . , nu with n ě 0.

Next, we state how these languages behave under projection.

Lemma 14. Let Γ Ď Σ, n ě 0, ai P Σ and 0 ď ri ă si for i P t1, . . . , nu. Then,

πΓ

˜

n
č

i“1

Ipai, ri, siq

¸

“

¨

˚

˚

˝

č

iPt1,...,nu
aiPΓ

Ipai, ri, siq

˛

‹

‹

‚

X Γ˚.

With Lemma 14, we can prove that the star-free commutative languages are
closed under projections.

Proposition 15. Let L Ď Σ˚ be commutative and star-free. Then, for any
Γ Ď Σ, the language πΓ pLq is commutative star-free.

In general, for homomorphic mappings, this is not true, as a˚ could be
mapped homomorphically onto paaq˚, and paaq˚ is not star-free [18]. Also, more
specifically, there exist non-commutative star-free languages with a non-star-free
projection language. For example, the language L “ pabaq˚ is star-free, as

L “ tεu Y pabaΣ˚ XΣ˚abaqzpΣ˚ ¨ taaa, bba, bab, abbu ¨ Σ˚q,

but πtaupLq “ paaq˚. Similarly, with Theorem 12, we can show the next result.
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Proposition 16. Let L Ď Σ˚ be a commutative group language. Then, for any
Γ Ď Σ, the language πΓ pLq is a commutative group language.

However, also here, this is false for general group languages. The language
paaq˚ could be mapped homomorphically onto L “ pababq˚, which is not a
group language. Also, for projections, consider the group language given by the
permutation automaton A “ pta, bu, t0, 1, 2u, δ, 0, t2uq with δp0, aq “ 1, δp1, aq “
0, δp2, aq “ 2 and δp0, bq “ 1, δp1, bq “ 2, δp2, bq “ 0. Then, πtbupLpAqq “ bb˚,
which is not a group language. For example, b is the projection of ab P LpAq, or
bbb the projection of abbab P LpAq.

4 A Class of Regular Languages Closed under Iterated
Shuffle

Here, we introduce a subclass of commutative regular languages, which contains
the commutative group languages, that is closed under iterated shuffle. In Defi-
nition 17, we introduce the diagonal periodic languages, and first establish that
the iterated shuffle of such a language gives a language that is a union of diagonal
periodic languages. We then use this result to show closure under this operation
of our subclass, which either could be described as the positive boolean algebra
generated by languages of the form F pa, n, kq, F pa, kq, Γ˚ and Γ` for Γ Ď Σ,
a P Σ, 0 ď k ă n, or as finite unions of diagonal periodic languages.

Note that, for already very simple languages, the iterated shuffle can give
non-regular languages, for example pa � bq�,˚ “ tab, bau�,˚ “ tu P ta, bu˚ |
|u|a “ |u|bu, or pa� tb, bbuq�,˚ “ tu P ta, bu˚ | |u|b ď |u|a ď 2|u|bu.

Definition 17. A diagonal periodic language over Γ Ď Σ is a language of the
form

�

aPΓ
akapapaq˚,

where ka ě 0 and pa ą 0 for a P Γ when Γ ‰ H, or the language tεu.

Remark 2. Let Σ “ ta1, . . . , aku In [5] a sequence of vectors ρ “ v0, v1, . . . , vk
from Nk

0
was called a base if vipjq “ 0 for7 i, j P t1, . . . , ku such that i ‰ j. The ρ-

set was defined as Θpρq “ tv P Nk : v “ v0 ` l1v1 ` . . .` lkvk for some l1, . . . , lk P
N0u. Then, in [5], a language L Ď Σ˚ was called periodic if, for some fixed order
Σ “ ta1, . . . , aku, there exists a base ρ such that L “ ψ´1pΘpρqq. With this
geometric view, the diagonal periodic languages are those periodic languages
such that, for i, j P t1, . . . , ku, either

vipjq ‰ 0 or vipjq “ v0pjq “ 0.

Intuitively, and very roughly, the vector
ř

aiPΓ vi points diagonally in the sub-
space corresponding to the letters in Γ , or more precisely, the dimension of
the subspace spanned by v1, . . . , vk is precisely |Γ |. Hence, the name diagonal
periodic.

7 Note that the entries of v P Nk
0 are numbered by 1 to k, i.e., v “ pvp1q, . . . , vpkqq.
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As the languages akapapaq˚, a P Γ , are regular and the binary shuffle opera-
tion is regularity-preserving [14], we get the next result. But it was also estab-
lished in [5, 10, 11] for the more general class of periodic languages.

Proposition 18. The diagonal periodic languages are regular and commutative.

Remark 3. Suppose, for each a P Σ, we have a unary language La Ď a˚ and
Γ Ď Σ. Then, πΓ p

�aPΣ Laq “
�aPΓ La and π´1

Σ p
�aPΓ Laq “

�aPΓ La �

pΣzΓ q˚. This could be worked out to give a different proofs for the results from
Subsection 3.

Remark 4. The reason a subalphabet Γ Ď Σ is included in Definition 17, and
later in the statements, is due to Lemma 11, i.e., to have a larger class as given
by Com`.

Next, we investigate what languages we get if we apply the iterated shuffle
to diagonal periodic languages.

Proposition 19. The iterated shuffle of a diagonal periodic language L Ď Σ˚

over Γ Ď Σ˚ is a finite union of diagonal periodic languages. In particular, it is
regular.

The next lemma is the link between the languages F pa, tq, t ě 0, and
F pa, r, nq, 0 ď r ă n, and the diagonal periodic languages.

Lemma 20. Let Σ1, Σ2 Ď Σ. Suppose we have numbers ta for a P Σ1 and
0 ď ra ă na for a P Σ2. Then,

č

aPΣ1

F pa, taq X
č

aPΣ2

F pa, ra, naq “
�

aPΣ
akapapaq˚,

where8

ka “

$

’

’

’

’

&

’

’

’

’

%

ta ` pna ´ ppta ´ raq mod naqq if a P Σ1 XΣ2, ta ą ra;
ra if a P Σ1 XΣ2, ta ď ra;
ra if a P Σ2zΣ1;
ta if a P Σ1zΣ2;
0 if a R Σ1 YΣ2.

and pa “

"

na if a P Σ2;
1 if a R Σ2.

Now, we have everything together to prove our main theorem of this subsec-
tion.

Theorem 21. Let L Ď Σ˚ be in the positive boolean algebra generated by lan-
guages of the form F pa, kq, F pa, k, nq, Γ` and Γ˚ for Γ Ď Σ. Then, the iterated
shuffle of L is contained in this positive boolean algebra. In particular, the iterated
shuffle is regular.
8 For x, n P N, by x mod n we denote the unique number r P t0, . . . , n ´ 1u such that
r ” x pmod nq.



Regularity of Iterated Shuffle on Commutative Regular Languages 9

Proof (sketch). As intersection distributes over union, L could be written as an
intersection over the generating languages. Now,

F pa, k1q X F pa, k2q “ F pa,maxtk1, k2uq

and, by the generalized Chinese Remainder Theorem, Theorem 1, every intersec-
tion

Şm

i“1
F pa, ri, niq is either the empty set, or also a set of the form F pa, r, nq.

So, every such intersection could be written in the form
˜

č

aPΣ1

F pa, taq

¸

X

˜

č

aPΣ2

F pa, ra, naq

¸

X L

where L P tΓ`, Γ˚u for some Γ Ď Σ and Σ1, Σ2 Ď Σ. By Lemma 20, these
language are diagonal periodic over Γ . By Theorem 2, the iterated shuffle of L is
a finite shuffle product of iterated shuffles of these languages, which are regular
by Proposition 19. Hence, they are a finite shuffle product of regular languages
and as the binary shuffle product is a regularity-preserving operation [14], the
language L is regular. More precisely, as the iterated shuffles are finite unions
of diagonal periodic languages, the result could be written as a finite union of
diagonal periodic languages, which, by Lemma 20, are contained in this class.

The method of proof of Theorem 21 also gives the next result.

Proposition 22. The positive boolean algebra generated by languages of the
form F pa, kq, F pa, k, nq, 0 ď k ă n, Γ` and Γ˚, Γ Ď Σ, is precisely the
language class of finite unions of the diagonal periodic languages.

Corollary 23. The iterated shuffle of a commutative group language is regular.

Proof. By Theorem 12, the class introduced in Theorem 21 contains the group
languages.

Corollary 24. The variety Com
` is closed under iterated shuffle.

Also, as, for Ua, Va Ď tau˚, a P Σ, we have p
�aPΣ Uaq � p

�aPΣ Vaq “
p
�aPΣpUa ¨ Vaqq, and with Theorem 2, we can deduce, by Proposition 22, the
next result. This extends an old result by J.F. Perrot [19] stating that the star-
free commutative language are closed under binary shuffle.

Proposition 25. The positive boolean algebra generated by the languages F pa, kq,
F pa, k, nq, 0 ď k ă n, Γ` and Γ˚ for Γ Ď Σ is closed under binary shuffle.

5 Characterizing Regularity of the Iterated Shuffle

First, in Subsection 5.1, we will give a necessary and sufficient condition when
the iterated shuffle of a commutative finite language is regular. Then, in Sub-
section 2.3, we will present partial results for aperiodic commutative language.
Lastly, in Subsection 5.3, we discuss decision procedures related to regularity,
the commutative closure and the iterated shuffle.
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5.1 Finite Commutative Languages

Here, we investigate finite commutative languages.

Theorem 26. Let L Ď Σ˚ be a finite language. Then, permpLq�,˚ is regular if
and only if for any a P Σ with Σ˚aΣ˚ X L ‰ H we have a` X L ‰ H.

By the next corollary, we find that we can characterize regularity of expres-
sions, for instance, of the form

permpu`
1

q� . . .� permpu`
n q “ permpu1 ¨ ¨ ¨unq� permpu˚

1
q� permpu˚

nq

“ permpu1 ¨ ¨ ¨unq� permptu1, . . . , unuq�,˚

with Theorem 26, where the above equalities are implied by Theorem 2 and
Theorem 3.

Corollary 27. Let u P Σ and L Ď Σ˚ be a finite language. Then, permpuq�
permpLq�,˚ is regular if and only if for any a P Σ with Σ˚aΣ˚ X L ‰ H, we
have a` X L ‰ H.

5.2 Aperiodic Commutative Languages

Here, we investigate aperiodic commutative languages.

Proposition 28. Every aperiodic commutative language could be written as a
finite union of languages of the form permpuq� Γ˚ for u P Σ˚ and Γ Ď Σ.

Remark 5. By a result from [14, Page 9], it follows that a letter which permutes
with every other letter has to permute the states of every strongly connected
component. This could be used to prove that the minimal automaton of an
aperiodic commutative language cannot have non-trivial loops, i.e., every loop
must be a self-loop, which could also be used to give a proof of Proposition 28.

With Theorem 26 we get the next result.

Proposition 29. Let u P Σ˚ and Γ Ď Σ. The iterated shuffle of permpuq�Γ˚

is regular if and only if there exists a P Σ such that u Ď a` or when u P Γ˚.

Next, we give a simple sufficient criterion of regularity for a binary alphabet.

Lemma 30. Let Σ “ ta, bu and L Ď Σ˚ be regular. Then, if there exists u P Σ˚

such that permpuq�Σ˚ Ď permpLq, then permpLq is regular.

Lastly, a few examples of aperiodic commutative languages, some of them
yielding non-regular languages and some of them regular languages when apply-
ing the iterated shuffle.

Example 2. Let Σ “ ta, b, cu.

1. The iterated shuffle of tab, bau Y tcu� ta, bu˚ is not regular.
2. The iterated shuffle of tab, bau� tcu˚ Y tacu� ta, bu˚ is not regular.
3. The iterated shuffle of tab, bauYtcu�ta, bu˚Ypermpabbq�ta, bu˚ is regular.
4. The iterated shuffle of tab, bau Y tcu� ta, bu˚ Y permpabbq� tau˚ Y tbbu is

regular.
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5.3 Decision Procedures

In [7, 8] it was shown that for regular L Ď Σ˚, it is decidable if permpLq is reg-
ular. As permpLq�,˚ “ permpL˚q, also the regularity of the iterated shuffle on
commutative regular languages is decidable. This result was also shown directly,
without citing [7, 8], in [13, 14]. However, the precise computational complexity
was not clear, and by a statement given in [6, Theorem 45] it follows that for
a regular language given by a regular expression it is NP-hard to decide if the
commutative closure is regular. On the contrary, the conditions stated in The-
orem 26 could be tested in polynomial time for a finite commutative language
given by a deterministic, a non-deterministic or a regular expression as input.
This follows as non-emptiness of intersection with the fixed languages Σ˚aΣ˚

and a`, a P Σ, could be done in polynomial time by the product automaton
construction.

6 Conclusion

A general criterion as given for finite (commutative) languages in Theorem 26,
which gives a polynomial time decision procedure, for general commutative reg-
ular languages is an open problem. For the subclass closed under iterated shuffle
identified in Subsection 4, a sharp bound for the size of a recognizing automaton
of the iterated shuffle is unknown.

Acknowledgement. I thank the anonymous reviewers for careful reading, pointing
out typos and unclear formulations and providing additional references.
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A Proofs for Section 2 (Preliminaries and Definitions)

The Nerode right-congruence with respect to L Ď Σ˚ is defined, for u, v P Σ˚, by
u ”L v if and only if

@x P Σ˚ : ux P L Ø vx P L.

The equivalence class, for w P Σ˚, is denoted by rws”L
“ tx P Σ˚ | x ”L wu. A

language is regular if and only if the above right-congruence has finite index.

Theorem 4 ([10, 11, 20, 21]). The class of commutative languages is closed un-

der union, intersection, complement, projections, the shuffle operation and the iterated

shuffle.

Proof. In [20], closure under the boolean operations and shuffle is shown. For closure
under projections, note that for any L Ď Σ˚ and Γ Ď Σ, we have permpπΓ pLqq “
πΓ ppermpLqq. For iterated shuffle, if u P L�,˚, then u P L�,n for some n ě 0. Hence,
as L�,n is commutative, permpuq Ď L�,n. So, L�,˚ is also commutative.

Lemma 11. Let Σ be a non-empty set9 and Γ Ď Σ be a proper subset. Then,

tΓ˚, Γ`u X Com`pΣ˚q “ H.

Proof. Every language in Com`pΣ˚q could be written as a union over intersections
of languages of the form F pa, tq and F pa, r, nq, where a P Σ and t ě 0, 0 ď r ă n. Let
L Ď Σ˚ be such an intersection of these languages. If L ‰ H, by Theorem 1, we can
suppose for each a P Σ˚ at most one set of the form F pa, r, nq for 0 ď r ă n appears in
an expression for L as an intersection. Also, as F pa, t1q X F pa, t2q “ F pa,maxtk1, k2uq
for t1, t2 ě 0 we can also suppose for each letter at most one set of the form F pa, tq for
t ě 0 appears in an expression for L for any a P Σ.

Fix a P Σ. As, for b P Σ, F pb, tq “ pF pb, tq X b˚q � pΣztbuq˚ and F pb, r, nq “
pF pb, r, nq X b˚q� pΣztbuq˚, we can then deduce that a˚ X L is non-empty, actually
infinite. Hence, every union of such languages has this property, which gives the claim.
In particular, no non-empty language L Ď Γ˚ is in Com`pΣ˚q.

B Proofs for Section 3 (Commutative Aperiodic and
Group Languages under Projection)

Theorem 12. A commutative language L Ď Σ˚ is a group language if and only if it

could be written as a finite union of languages of the form

m
č

i“1

F pai, ki, niq,

where ai P Σ and 0 ď ki ă ni for i P t1, . . . ,mu with m ě 0.

Proof. Let L Ď Σ˚ be a commutative group language. Then, by Theorem 9, L is
in the boolean algebra generated by languages of the form F pa, n, kq. First, by using
DeMorgan’s laws, L is in the positive boolean closure of languages of the form F pa, k, nq
or F pa, k, nq. Now,

F pa, k, nq “
ď

iPt0,...,n´1uztku

F pa, i, nq.

9 For Σ “ H, we set Com`pΣ˚q “ tH, tεuu.
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Hence, we can suppose L is in the positive boolean closure of languages of the form
F pa, k, nq. As intersection distributes over union, we can then write L as a union of
intersection of languages of the form F pa, k, nq, i.e, L is a union of languages of the
form

m
č

i“1

F pai, ki, niq.

Hence, we have shown the claim
Conversely, if L is written as a union over languages of the form as written, then,

by Theorem 9, it is a commutative group language.

Theorem 13. A commutative language L Ď Σ˚ is aperiodic if and only if it could be

written as a finite union of sets of the form

n
č

i“1

Ipai, ri, siq,

where 0 ď ri ă si and ai P Σ for i P t1, . . . , nu with n ě 0.

Proof. We use the characterization stated in Theorem 9. First, let L Ď Σ˚ be a com-
mutative and star-free language. We have

F pa, kq “ tεu Y tu P Σ˚ | |u|a ă ku “ Ipa, 0, kq,

F pa, kq “

"

Ipa, k,8q if k ą 0;
Ť

bPΣ Ipb, 1,8q if k “ 0.

Hence, L is in the positive boolean algebra generated by sets of the form Ipa, r, sq. As
intersection distributes over union, we can then write L as a union of intersections of
languages of the form Ipa, r, sq, i.e., L is a union of languages of the form

n
č

i“1

Ipai, ri, siq.

Conversely, suppose L has the form as written in the statement. Then,

Ipa, r, sq “

$

’

’

&

’

’

%

F pa, rq X F pa, sq if r ą 0, s ‰ 8;
F pa, rq if r ą 0, s “ 8;

F pa, sq if r “ 0, s ‰ 8;
Σ˚ if r “ 0, s “ 8.

As Σ˚ “ pF pa, 0q X F pa, 0qq, we find that L is in the boolean closure of languages of
the form F pa, kq. Hence, by Theorem 9, L is a commutative star-free language.

Lemma 14. Let Γ Ď Σ, n ě 0, ai P Σ and 0 ď ri ă si for i P t1, . . . , nu. Then,

πΓ

˜

n
č

i“1

Ipai, ri, siq

¸

“

¨

˚

˚

˝

č

iPt1,...,nu
aiPΓ

Ipai, ri, siq

˛

‹

‹

‚

X Γ
˚
.

Proof. Let a P Σ and 0 ď k1 ă k2. Then, for a P Γ we have k1 ď |πΓ puq|a ă k2 if and
only if k1 ď |u|a ă k2. The letters not in Γ are deleted and do not appear in the image
words, hence do not contribute to the result.
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Proposition 15. Let L Ď Σ˚ be commutative and star-free. Then, for any Γ Ď Σ,

the language πΓ pLq is commutative star-free.

Proof. By Theorem 4, the projected language is commutative. By Theorem 9 and as,
for U,V Ď Σ˚,

πΓ pU Y V q “ πΓ pV q Y πΓ pV q

and the star-free languages are closed under union and intersection, we only need
to show, by Theorem 13 and Lemma 14, that Γ˚ is star-free. But this is shown in
Example 1.

Proposition 16. Let L Ď Σ˚ be a commutative group language. Then, for any Γ Ď Σ,

the language πΓ pLq is a commutative group language.

Proof. The proof is similar to the proof of Proposition 15, but using Theorem 12, a
similar property for the intersection of sets of the form F pa, r, nq and the fact that Γ˚

is a group language when considering Γ as the whole alphabet in the image of πΓ (but
not when it is a proper subalphabet of Σ, compare Remark 1).

C Proofs for Section 4 (A Class of Regular Languages
Closed under Iterated Shuffle)

Proposition 19. The iterated shuffle of a diagonal periodic language L Ď Σ˚ over

Γ Ď Σ˚ is a finite union of diagonal periodic languages. In particular, it is regular.

Proof. Let L Ď Σ˚ be a diagonal periodic language over Γ Ď Σ. Write

L “
�

aPΓ
a
kapapaq˚

for numbers ka ě 0, pa ą 0 with a P Γ . Now, by Theorem 2 and as for unary language
concatenation and shuffle coincide, we find

�

m
i“1 L “

�aPΓ a
m¨kapapaq˚. So,

L
�,˚ “ tεu Y

ď

mą0

�

aPΓ
a
m¨kapapaq˚

.

Hence, u P L�,˚ if and only if there exists ra ě 0, a P Γ , such that u P
�aPΓ a

m¨ka`ra¨pa

for some m ą 0. Now, fix a P Γ and consider the sum m ¨ ka ` ra ¨ pa. We have, for any
t P Z,

m ¨ ka ` ra ¨ pa “ pm ´ tpaq ¨ ka ` pra ` tkaq ¨ pa.

In particular, we can choose t P Z such that 1 ď m´ tpa ď pa and ra ` tka ě 0. Hence,

ď

mą0

a
m¨kapapaq˚ “

pa
ď

i“1

a
i¨kapapaq˚

.

Let N be the least common multiple of the numbers pa, a P Γ . Suppose

u P
ď

mą0

�

aPΓ
a
m¨kapapaq˚

.

Then, there exist numbers ra ě 0, a P Γ , and m ą 0 such that

u “
�

aPΓ
a
m¨ka`ra¨pa .
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Similarly as above, for any a P Γ and t ě 0, we have

m ¨ ka ` ra ¨ pa “ pm ´ tNq ¨ ka `

ˆ

ra ` t
N

pa
ka

˙

¨ pa.

So, we can choose t ě 0 such that 1 ď m ´ tN ď N and

u “
�

aPΓ
a

pm´tNq¨ka`
´

ra`t N
pa

ka

¯

¨pa P
N
ď

i“1

�

aPΓ
a
i¨kapapaq˚

.

Hence, we have shown L�,˚ Ď tεu Y
ŤN

i“1�aPΓ a
i¨kapapaq˚. The other inclusion is

obvious, and we find

L
�,˚ “ tεu Y

N
ď

i“1

�

aPΓ
a
i¨kapapaq˚

.

So, as a finite union of diagonal periodic languages, hence regular languages by Propo-
sition 18, the language L�,˚ is itself regular.

Lemma 20. Let Σ1, Σ2 Ď Σ. Suppose we have numbers ta for a P Σ1 and 0 ď ra ă na

for a P Σ2. Then,

č

aPΣ1

F pa, taq X
č

aPΣ2

F pa, ra, naq “
�

aPΣ
a
kapapaq˚

,

where10

ka “

$

’

’

’

’

&

’

’

’

’

%

ta ` pna ´ ppta ´ raq mod naqq if a P Σ1 X Σ2, ta ą ra;
ra if a P Σ1 X Σ2, ta ď ra;
ra if a P Σ2zΣ1;
ta if a P Σ1zΣ2;
0 if a R Σ1 Y Σ2.

and pa “

"

na if a P Σ2;
1 if a R Σ2.

Proof. For the first case, let us first state an auxiliary claim. Let t, r, n ě 0 with t ą r

and 0 ď r ă n.

Claim: For the unique number m ě 0 with r ` m ¨ n ă t ď r ` pm ` 1q ¨ n we have
pm ` 1qn “ t ` pn´ ppt´ rq mod nqq.

Proof of the Claim: As mn ă t´r ď pm`1qn, we havemn`ppt´rq mod nq “
t ´ r. Hence,

pm ` 1qn “ mn ` ppt ´ rq mod nqq ` pn´ ppt ´ rq mod nqq

“ t ´ r ` pn´ ppt´ rq mod nqq,

which gives the claim. [End, Proof of the Claim]

10 For x, n P N, by x mod n we denote the unique number r P t0, . . . , n ´ 1u such that
r ” x pmod nq.
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We have, for any a P Σ,

F pa, tq X F pa, r, nq “ pata˚ X a
rpanq˚q� pΣztauq˚

.

And, by the above claim,

a
t
a

˚ X a
rpanq˚ “

"

arpanq˚ if t ď r;

at`pn´ppt´rq mod nqpanq˚ if t ą r.

Furthermore,

F pa, r, nq “ a
rpanq˚

� pΣztauq˚;

F pa, tq “ a
t
a

˚
.

And these formulas give the claim.

Corollary 24. The variety Com
` is closed under iterated shuffle.

Proof. By Definition 10, the class introduced in Theorem 21 contains Com`pΣ˚q for
any alphabet Σ. Furthermore, by the method of proof of Theorem 21 and as the iterated
shuffle does not introduce new letters, and does not remove old letters, we do not leave
the class Com`pΣ˚q.

D Proofs for Section 5 (Characterizing Regularity of the
Iterated Shuffle)

Theorem 26. Let L Ď Σ˚ be a finite language. Then, permpLq�,˚ is regular if and

only if for any a P Σ with Σ˚aΣ˚ X L ‰ H we have a` X L ‰ H.

Proof. Let L “ tu1, . . . , unu. Then, by Theorem 2 and Theorem 3,

permpLq�,˚ “ permpu˚
1 q� . . .� permpu˚

nq. (1)

Suppose that for a P Σ, we find u P L with |u|a ą 0 but a` XL “ H. Let b P Σztau

be such that |u|b ą 0. Set P “ πta,bupLq, m “ max
!

|u|a
|u|b

| v P P
)

P Q and choose

w P P with |w|bm “ |w|a. Let 0 ă s ă t, then, as tm

s
ą m and by the maximal choice

of m,
a
s|w|ab

|w|bs P P�,˚ and at|w|ab
|w|bs R P�,˚

.

So, the words as|w|a and at|w|a are not equivalent for the Nerode right-congruence.
Hence, the infinitely many words ta|w|ar | r ą 0u are pairwise non-equivalent for the
Nerode right-congruence of P�,˚ and so P�,˚ has infinitely many distinct Nerode
right-congruence classes and so is not regular. As P�,˚ “ πta,bupLq�,˚ “ πta,bupL�,˚q,
we find that L�,˚ is not regular.

Now, suppose the condition is true. By Equation (1), we have

v P ψppermpLq�,˚q ô Dc1, . . . , cn P N0 : v “ c1ψpu1q ` . . . ` cnψpunq. (2)

Next, we select k unary words from tu1, . . . , unu such that for every letter used in L

we have exactly one such non-empty word over this letter in this set of selected words.
We assume these to be the first k words among u1, . . . , un. More precisely, without loss
of generality, let 1 ď k ď n be such that for any ui, i P t1, . . . , ku, we have ui P a` for
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some a P Σ and for any a P Σ with Σ˚aΣ˚ X L ‰ H we have |tu1, . . . , uku X a`| “ 1.
Then, for any i P t1, . . . , ku, we can write ψpuiq “ mi ¨ ψpaq, where ui P a` and
mi ą 0. Also, denote by ai P Σ the letter such that ψpuiq “ mi ¨ ψpaiq. Then, for
i, j P t1, . . . , ku, by the assumptions, ui ‰ uj implies ai ‰ aj and L Ď ta1, . . . , aku˚. If,
for i P tk`1, . . . , nu, we have ci ě m1 ¨ ¨ ¨mk in Equation (2), then, if we select number
xa ě 0, a P Σ, such that ψpuiq “

ř

aPΣ xaψpaq “
řk

j“1
xaj

ψpajq, as

xa1

m1 ¨ ¨ ¨mk

m1

ψpu1q ` . . .` xak

m1 ¨ ¨ ¨mk

mk

ψpukq

“ xa1

m1 ¨ ¨ ¨mk

m1

m1ψpa1q ` . . . ` xak

m1 ¨ ¨ ¨mk

mk

mkψpakq

“ m1 ¨ ¨ ¨mkψpuiq

we have

ˆ

c1 ` xa1

m1 ¨ ¨ ¨mk

m1

˙

ψpu1q ` . . .`

ˆ

ck ` xak

m1 ¨ ¨ ¨mk

mk

˙

ψpukq ` . . .`

ci´1ψpui´1q ` pci ´ m1 ¨ ¨ ¨mkqψpuiq ` ci`1ψpui`1q ` . . . ` cnψpunq.

Hence, we can choose the coefficients in Equation (2) such that, for any i P tk `
1, . . . , nu,

ci ă m1 ¨ ¨ ¨mk.

As, by Theorem 4, permpLq�,˚ is commutative, we have, for w P Σ˚,

w P permpLq�,˚ ô ψpwq P ψppermpLq�,˚

and, for c1, . . . , cn ě 0,

ψpwq “ c1ψpu1q ` . . . ` cnψpunq ô w P permpuc1
1

q� . . .� permpucn
n q.

By the previous reasoning, we conclude

permpu˚
1 q� . . .� permpu˚

nq “
ď

pck`1,...,cnq
0ďciăm1¨¨¨mk

permpu˚
1 q� . . .� permpu˚

k q� permpu
ck`1

k`1
q� . . .� permpucn

n q.

As, for i P t1, . . . , ku, we have ui P a`
i , permpu˚

i q “ u˚
i . So, as the binary shuffle

operation is regularity-preserving [14], every part of the union is regular and as the
union is finite we find that permpLq�,˚ is regular.

Corollary 27. Let u P Σ and L Ď Σ˚ be a finite language. Then, permpuq �
permpLq�,˚ is regular if and only if for any a P Σ with Σ˚aΣ˚ X L ‰ H, we have

a` X L ‰ H.

Proof. If U Ď Σ˚ is any commutative language and u P Σ˚, then permpuq�U is regular
if and only if U is regular. One implication is clear as the binary shuffle operation is
regularity-preserving [14].

For the other implication, first note that U Ď u´1ppermpuq � Uq. Now we argue
that U Ě u´1ppermpuq�Uq holds true. If x P Σ˚ is such that ux P permpuq�U , then
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there exists y P U such that ux P permpuyq. This implies x P permpyq and so, as U is
commutative, x P U . Hence, we find

U “ u
´1ppermpuq� Uq

and as the quotient by a word is a regularity-preserving operation, the other implication
follows.

Proposition 28. Every aperiodic commutative language could be written as a finite

union of languages of the form permpuq� Γ˚ for u P Σ˚ and Γ Ď Σ.

Proof. For the sets from Section 3 we have, with a P Σ and r1, s1, r2, s2 ě 0,

Ipa, r1, s1q X Ipa, r2, s2q “ Ipa,maxtr1, r2u,mints1, s2uq.

Hence, we can suppose in the intersections from Theorem 13 that all letters are different.
Then, with ai ‰ aj for i, j P t1, . . . , nu distinct, we have

n
č

i“1

Ipai, ri, siq “
�

iPt1,...,nu
si“8

a
ri
i � �

iPt1,...,nu
siă8

tarii , a
ri`1

i , . . . , a
si
i u� Γ

˚

with Γ “ Σzta1, . . . , anu Y tai : Di P t1, . . . , nu : si “ 8u. As, for u P Σ˚, we have
permpuq “

�aPΣ a
|u|a and, by Theorem 2, the shuffle operation distributes over union,

we can write the above set as a finite union of sets of the form permpuq� Γ˚. Then,
Theorem 13 gives the claim.

Proposition 29. Let u P Σ˚ and Γ Ď Σ. The iterated shuffle of permpuq � Γ˚ is

regular if and only if there exists a P Σ such that u Ď a` or when u P Γ˚.

Proof. By Theorem 2 and Theorem 3,

ppermpuq� Γ
˚q�,˚

“ tεu Y permpu`q�
�

aPΓ
a

˚ “ tεu Y permpuq� permptuu Y Γ q�,˚
.

Then, apply Corollary 27 and the simple fact that a language L Ď Σ˚ is regular if and
only if LY tεu is regular.

Lemma 30. Let Σ “ ta, bu and L Ď Σ˚ be regular. Then, if there exists u P Σ˚ such

that permpuq�Σ˚ Ď permpLq, then permpLq is regular.

Proof. Let u P Σ˚ such that permpuq� Σ˚ Ď permpLq. Note that permpuq � Σ˚ is
regular. It is well-known [6] that, if L Ď Σ˚ is regular, then ψppermpLqq “ ψpLq is a
finite union of linear sets, i.e., sets of the form

#

v0 `
n

ÿ

i“1

kivi | tk1, . . . , knu Ď N0

+

for vectors tv0, v1, . . . , vnu Ď N
|Σ|
0

. Hence, we show that if A Ď N
|Σ|
0

is a linear subset,
then ψ´1pAq Y permpuq� Σ˚ is regular, which, inductively, gives our claim. Write

A “

#

v0 `
n

ÿ

i“1

kivi | tk1, . . . , knu Ď N0

+
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for vectors tv0, v1, . . . , vnu Ď N
|Σ|
0

. Without loss of generality, we suppose none of the
vectors v1, . . . , vn is zero, the vectors v1, . . . , vm are axis-parallel, i.e., exactly one entry
is non-zero, and the vectors vm`1, . . . , vn are sloped, i.e., we have at least two non-zero
entries. Choosing words ui P Σ˚, i P t0, . . . , nu, with ψpuiq “ vi, we have

ψ
´1pAq “ permpu0q�

n

�

i“1

permpu˚
i q. (3)

If m “ n, then all the vectors are axis-parallel. Then, the words u1, . . . , un are unary
and if we write ui P a˚

i in this case, we find permpu˚
i q “ u˚

i and ψ´1pAq is regular.
Hence, ψ´1pAq Y permpuq�Σ˚ is regular. So, suppose m ă n. As Σ “ ta, bu, for any
i P tm ` 1, . . . , nu, in the the vector vi all entries are non-zero. Hence, for the fixed
u P Σ˚ chosen above, we can choose numbers Ni ě 0 such that

ψpuq ď v0 ` Nivi.

So, if v “ v0 ` k1v1 ` . . . ` knvn with ki ě Ni for i P t1, . . . , nu, then ψ´1pvq Ď
permpuq�Σ˚ and permpuq�Σ˚ Y ψ´1pAq equals

permpuq�Σ
˚Y

ψ
´1

˜#

v0 `
n

ÿ

i“1

kivi | tk1, . . . , knu Ď t0, . . . ,maxtN1, . . . , Nnu ´ 1u

+¸

.

Hence, it is a regular language.
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