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Abstract 

Polynomial-time positive reductions, as introduced by Selman, are by definition globally 

robust - they are positive with respect to all oracles. This paper studies the extent to which 

the theory of positive reductions remains intact when their global robustness assumption is 

removed. 

We note that two-sided locally robust positive reductions - reductions that are positive 

with respect to the oracle to which the reduction is made - are sufficient to retain all 

crucial properties of globally robust positive reductions. In contrast, we prove absolute and 

relativized results showing that one-sided local robustness fails to preserve fundamental 

properties of positive reductions, such as the downward closure of NP. 
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1 Introduction 

In this paper we study the relative powers of different positive reducibilities. Informally a 

reduction is positive if converting some NO answers to YES does not cause a previously 

accepted string to be rejected. 

Selman, in his seminal paper [SeI82b], defines and considers the properties of polynomial­

time positive reductions. His positive reductions are by definition globally robust in the 

positivity. 

An oracle machine, or a set of oracle machines, is said to robustly have a property P 

if it has property P for all oracles. Recent work on the power of robustness [Sch85, BI87. 

HH87, K087, Tar87] suggests that global robustness is a strong restriction. For example, it 

is known that if two nondeterministic machines NI and N2 are robustly complementary ­

that is, complementary for every oracle - then for all oracles A, L(Nj') E pAtJjNP [HH87]. 

This, and the desire to broaden the domain of application of Selman's techniques, motivate 

us to relax the global robustness restriction. 

Accordingly, we introduce three notions of locally robust polynomial-time positive re­

ductions. We show that the Turing versions of these reducibilities differ. However, our 

ability to distinguish among the truth-table versions of these reducibilities depends on the 

structure of NP. In particular, we show that if P=NP then these polynomial-time locallv 

robust truth-table reducibilities are the same. However, if there exist uniformly log- -sparse 

tally sets in NP-P, then the reducibilities differ. 

We study the extent to which the theory of positive reductions, as studied by Sel­

man, remains intact for locally robust reductions. We prove results identifying the crucial 

properties of positive reductions required to obtain the results of [SeI82b]. One reason for 

introducing new reducibilities is that it is more likely that a set A reduces to B by locally 

positive reductions than by globally positive reductions. Our results thus enrich the domain 

in which Selman's techniques can be applied. 

2 Notations 

Let N denote the set of natural numbers. 1:; is an alphabet set, usually {O,l}. A lan­

guage is a subset of 1:;-. 0 denotes the empty set. Mo, M I , ... denotes some standard 

enumeration of polynomial-time deterministic Turing machines. NI, N 2 , ••• denotes some 

standard enumeration of polynomial-time nondeterministic Turing machines. We assume 

that the running times of machine M; (Nd is bounded by deterministic (nondeterministic) 
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time ni + i. P denotes the class of all languages accepted by some polynomial-time de­

terministic Turing machine [HU79]. NP denotes the class of languages accepted by some 

polynomial-time nondeterministic Turing machine and coNP denotes the class of languages 

whose complement is in NP [HU79]. L(M) denotes the language accepted by the machine 

M. E and N E denote respectively the class of languages accepted by exponential time 

deterministic and nondeterministic Turing machines; that is, E = Uc>o DT1ME[2 cn 
] and 

N E = Uc>o NT1ME[2 cn ]. L(M A) denotes the language accepted by the oracle machine 

M with the oracle A [HU79]. 

A ST B means there exists a machine M such that A = L(MB). S~ denotes polynomial­

time Turing reduction. Stt and Sm similarly denote truth-table and many-one reductions. 

Pr(A) denotes the class of languages r-reducible to A in polynomial time (see [BK88]). A 

tally language is a subset of 1". A denotes the complement of A, i.e., ~* - A. XA denotes 

the characteristic function of A. We sometimes denote a string x oflength n by XlX2 ••• x n , 

where Xi is the ith character of x. [z] denotes the length of x. A~n denotes the set of strings 

in A with length at most n. 

Polynomial-time positive reducibilities 

In this section, we review Selman's notion of positive reducibility, which by definition is 

globally robust, and we introduce new notions of locally robust positive reducibility. 

Positive reducibility was first studied for polynomial-time truth-table reductions lTI 

[LLS75]. Selman, in [SeI82b], extended the definition to Turing reductions. We first give 

the definition of globally positive reducibility due to Selman.! 

Definition 3.1 [SeI82b, Sel82a] A query machine M is globally positive if(V'x)(V'A.B)[.T E 

L(MB ) => :r E L(MAUB ) ] . 

Intuitively, a machine M is positive if converting some "no" answers to "yes" answers 

does not make the machine reject a previously accepted string. Moreover, this property 

holds for all oracles given to the machine (hence the term globally positive). Positive re­

ducibility can now be defined using these globally positive machines. 

Definition 3.2 [Sel82b, Sel82a] A S:03 C if A ST C by some polynomial-time, globally 

positive Turing machine M. 

lThis reducibility is simply referred to as "positive" in [SeI82b]. However, we'll refer to it throughout 

this paper as "globally positive" in order to distinguish it from the locally positive reducibilities we define. 
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The conditions placed here on positive Turing reductions are analogous to those in 

the definition of positive truth-table reductions in [LL575], which defined globally positive 

truth-table reductions. 

Definition 3.3 [LLS75} A ~~t C if A ~T C by some polynomial-time, globally positive 

machine M, and there is a polynomial-time computable function f : {O,l}* ---+ {c, 0, l,}­

such that M on input x makes queries only from the list I( x) (here c acts as a separator 

of elements of the list). M above can be equivalently represented by a polynomial time 

evaluator e such that for all oracles C, e(x, xC(yd, Xc(Y2) ...) = M C(x), where Yl, Y2, ~ .. 

are the elements in the list f (x). 2 

Definition 3.4 [LLS75} A ~~tt C if A ~T C by some polynomial-time, globally pos­

itive machine M, and a polynomial-time computable function I : {O,l}* ---+ {c,O,I,}­

such that M on input x makes queries only from the list f(x). Moreover the number of 

elements in the list I( x) is bounded by some constant independent of x. M aboi:e can 

be equivalently represented by a polynomial time evaluator e such that for all oracles C. 

e(x,xC(yd,Xc(Y2),"') = MC(x), where Yl,Y2, ... are the elements in the list f(x). 

The above definitions require global robustness; given any oracle A, L(M·4) must never 

decrease when A is increased in any way. Note that all ~~ reductions are globally posi­

tive. However. global robustness is a strong restriction on Turing transducers. Machines 

exhibiting global robustness are known, in other contexts, to be weak [BI8i, HH87, Tar8i]. 

A more moderate definition of "positive" might require a reduction to be robust only 

with respect to the particular set to which the reduction is being made. We introduce three 

notions of locally robust positive reductions. In these definitions we require the machine to 

be robust only with respect to the oracle to which the reduction is made. 

Definition 3.5 A query machine M is locally right positive with respect to B if(Vx)(VA)[x E 

L(MB) =? x E L(MAUB)]. 

Intuitively, M is locally right robust with respect to B if converting some "no" answers 

from the oracle B to "yes" answers does not make the machine reject a previously accepted 

string. Left robustness is just the other side of the above definition. 

Definition 3.6 A query machine M is locally left positive with respect to B if (Vx )(VA)[x E 

L(MB-A) ~ x E L(MB)] (or equivalently ('v'x)('v'A)[x ¢ L(MB) ~ x ¢ L(MB-A)]). 

21n [LLSiS] the first argument of e is a(x), however without loss of generality we can take this to be x 

and let e do the (polynomial time) computations required to obtain a. 
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Definition 3.7 A query machine M is locally right-left positive with respect to B if M IS 

both right and left positive with respect to B. 

Locally robust reductions can now be defined with respect to reductions involving locally 

robust machines. 

Definition 3.8 A ;:;fp08 B if A ;:;T B by some polynomial-time machine that IS locally 

right positive with respect to B. 

Definition 3.9 A ;:;~os B if A ;:;T B by some polynomial-time machine that is locally left 

positive with respect to B. 

Definition 3.10 A ;:;~pos B if A ;:;T B by some polynomial-time machine that is locally 

right-left positive with respect to B. 

;:;~Ptt' ;:;fptt, ;:;~tt' ;:;~pbtt' ;:;;pbtt and ;:;~btt reductions can be defined similarly. 

Relationships between different polynomial-time positive 

reducibilities 

In this section, we compare the relative power of different polynomial-time positive re­

ducibilities. Clearly: 

Proposition 4.1 A ;:;~ B ~ A ;:;~8 B ~ [A ;:;~ B I\A ;:;fs B], where s is in {pos,ptt,pbt!}. 

We first consider the elementary properties of the reductions. The following proposition is 

easy to prove. 

Proposition 4.2 

1. A ;:;:os Band B ;:;:08 c ~ A ;:;:08 C. 

2. A ;:;~os Band B ;:;;P08 C ~ A ;:;fpos C. 

3. A ;:;~os Band B ;:;~os C ~ A ;:;~os C.
 

4· A ;:;~pos Band B ;:;~pos C ~ A ;:;~P08 C.
 

Results similar to those of Proposition 4.2 can also be proved for bounded truth-table
 

and truth-table reductions.
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Proposition 4.3 A <P B ....... A <P B
-lpos »-r: -rpos . 

Proof: Le~ A 5:~os B via M. Let lYh be such that Mf(x) = 1 iff MC(x) = O. Clearlv 

x E L(Mf') <=> x rt L(MB). Thus M} reduces A to B. If C 2 B and x E A (and thus 

C ~ B and x rt A) then x rt L(MC), since M is locally left positive, and thus x E L(Mf). 
So M} is locally right positive. I 

A similar proof can be used for 5::os, 5:!;,08' 5:~P08' 5:~t, 5:~tt, 5:!;,tt, 5:~Pttl yielding the 
following result. 

Proposition 4.4 

P - P ­
1) A 5:rpos B ~ A 5:lpos B. 

p - p ­
2) A 5:rlpos B ~ A 5:rlpos B. 

3) (implicit in [5el82b}) A 5::os B ~ A 5::08 B.
 
p - p ­4) A 5: lptt B ~ A 5: rptt B.
 
p - p ­

~5) A 5:rptt B A 5: lptt B.
 
p - p ­

6) A 5:rlptt B ~ A 5:rlptt B. 
p - p­

7) (LL575j, Proposition 3.1 (v)) A 5: ptt B ~f A 5: ptt B. 

We now consider the relative power of different locally robust positive reductions. Sel­

man showed that globally robust positive Turing reductions are more powerful than globally 

robust positive truth-table reductions. 

Theorem 4.5 [5el82b) There exist recursive sets A and B such that A 5::os B but A t:ft B. 

Also, it is easy to see as a corollary of previous work on disjunctive reductions that (i) 

there exist recursive sets A and B such that A 5:~t B but A t:btt B, and (ii) there exist 

recursive sets A and B such that A 5::btt B but A t:~ B [LLS75]. 

Though locally robust positive reductions are in general more flexible than globally 

robust positive reductions, the following theorem shows that local robustness does not add 

extra power for the special case of positive bounded truth-table reductions. 

Theorem 4.6 For all A, Ppbtt(A) = Prpbtt(A) = Plpbtt(A). 

Proof: Let B 5:~pbtt A via M. Let f(x) be the polynomial time computable list such that 

M, on input z , makes queries only from the list f(x). Let e be the evaluator equivalent to 
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M (as in the definition of S:btt reduction). Recall that this means that the size of list f( z ) is 

bounded by some constant c and e is positive with respect to A. Thus if f(x) = Xl, X2,'" Xc, 

AA (Xi) = bj and e( x, bl , ... be) = 1, then converting some of b, from 0 to 1 does not make l 

evaluate to O. To make a globally robust reduction from B to A we need to convert this e 

to e' that is positive with respect to all oracles. We do this by converting some evaluation 

of e from 1 to 0. 

Let e'(x, bl , ... , bc) = 1 iff (Vdl , ... , d., bj = 1 ~ dj = 1) [e(x, dl , ... , dc) = 1] ( Example: 

if c = 2,e(x,O,O) = 1, e(x,O,l) = 1, e(x,l,O) = °and e(x,l,l) = 1 then we replace t­

bye', where e'(x,O,O) = 0, e'(O, 1) = 1, e'(x, 1,0) =°and e'(x, 1, 1) = 1). This makes e' 

globally positive, and does not effect the reduction from B to A (since e was right positive 

with repect to A). Thus, f and e' form a positive bounded truth-table reduction from B to 

A. A similar proof can be used to show that Plpbtt(A) =Ppbtt(A). I 
For unbounded truth-table reductions, the distinction between different positive re­

ducibilities depends on the structure of NP, as shown by the following two theorems. 

Theorem 4.7 IfP=NP, then for all A,Pptt(A) = Prlptt(A) =Prptt(A) =Plptt(A). 

Theorem 4.8 Let g(O) = 1, g(n + 1) = 29 (n ) , n > 0. If there exist tally sets in 

Uc>o NT1ME[gC( n)] - Uc>o DTI M E[gC( n)] then there is a recursive set A such that 

Prptt(A) - Plptt(A) :f. 0 and Plptt(A) - Prptt(A) :f. 0. 

Proof (of Theorem 4.7): We prove that Prptt(A) = Pptt(A). Proof for Plptt(A) = Pptt(A) is 

similar. Prlptt(A) = Pptt(A) follows from Proposition 4.1. 

Let B S!';'tt A via M. Let f(x) be the polynomial time computable list such that 

M, on input x, makes queries only from the list f( z ), Let e be the evaluator equivalent 

to M (as in the definition of S~t reduction). We now proceed as in Theorem 4.6. Let 

e'(x,b1,b2 , ... ,bp(n)) = 1 iff [(Vd1 .... ,dp(n),bj = 1 ~ dj = 1)[e(x,d1, ... ,dp(n)) = 1]]. 

Note that e' can be calculated in polynomial time if NP=P. Clearly, f and e' witness that 

B S~t A. I 

Proof (of Theorem 4.8): We only prove that (3A)[Prptt(A) - Plptt(A) :f. 0]. The proof can 

be easily modified to show that [(3A)[Prptt(A) - Plptt(A) :f. 0/\ Plptt(A) - Prptt(A) :f. 0]]. 

Let N be a polynomial-time nondeterministic machine accepting a tally language L ~ 

{19(k) : kEN} which is not in P (the existence of such a machine follows from the 
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assumption that there exist tally sets in Uc>oNTIME[gC(n)] - Uc>oDTIME[gC(n)], by 
the techniques of [HIS85j3). 

W.l.o.g .. let all certificates of x E L be of length Ixl j + j and w.l.o.g., Olxl)+j is never 

such a certificate. Let r be the polynomial-time predicate associated with Nand L, i.e .. 

r(x,y) = 1 iff y is a certificate for x. Let e(x,Yl, ... Ynj+j) = 1 - r(x,y), where Y = 
Yl···Ynj+i· Let plus(a,j) be the stringj greater thana in standard lexicographical order; 

e.g., plus(1010, 3) = 1101. Let c be the separation character from the definition of I (see 

Definitions 3.3 and 3.4). Let I(x) = plus(x, 1) cplus(x, 2) c ... cplus(x, Ixl j + j). Clearly. 

functions I and e are computable in polynomial time. 

A will be defined so that e is locally right positive. Also all strings not of the form 

x,plus(x, 1), plus(x, 2) , .. . ,plus(x, Ixl j + j), where x E {19(k) : kEN}, are not in A. 

XA(plus(x, 1» . .. XA(plus(x, Ixl i + j» will be OlxlJ+j if x ¢ L, and otherwise will be a 

certificate of the fact that x E L. Let R; be the requirement that M, : L ~~tt A, that is, M, 

does not ~~tt reduce L to A. Below As denotes the strings of A determined before stage s. 

Go to stage O. 

Stage s 

1. Let x be the least element in {19(k) : kEN} not considered until this stage. 

2. Let i be the least requirement not satisfied until now. 

3. Let e., Ii be the evaluator and set calculator (as in the definition of
 

positive truth-table reducibility) for the truth-table reducer M,
 

4. If x ¢ L then let A S +1 = As. 

5. Else If (3z)[z is a certificate for x and ei(x, XD(z)(qd, XD(z)(q2)"") = 1], 

where Ii(x) = qlcq2 ... and D(z) = As U{plus(x, i) : Zi = I}, 

then let Ybe least such certificate z. Set As+! = As U{plus( x, i) : Yi = I}. 

(Note that here R; is satisfied) 

6. Else
 

Let Y be the least certificate for x.
 

Let AS+1 = As U{plus(x, i) : Yi = 1}.
 

end stage s. 

It is clear that L <P tt A via the functions I and e. x E L, then_rp This is because when 

e(x, y) = 1 for any length Ixl i + i string Y; so even if A has some strings added-and the 

3Though recent work by Allender [All] has corrected parts of [HIS8S], the techniques of [HIS8S] as used 

here are correct. 
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"address" XA(plus(x, 1))··· XA(plus(x, Ixl i + i) = Olxl'+i thus has some zeros corrupted to 

ones-e( x, corrupted address) will nonetheless accept. 

Now consider the following cases: 

case 1: All requirements are satisfied. 

- pClearly, L ~Iptt A.
 

case 2: R; is the least requirement not satisfied.
 

In this case we show that L E P. Let n be so large that 2n ! l O > ni + i, and all
 

the smaller requirements have been satisfied before stage 5, n > g(5). Clearly, when 

m E {g(k) : k EAr}, then A~m-l can be determined in time polynomial in m (by 

just going through all possible certificates). Now for x E {l g (k ) : k E N},lx\ > n. 

we have x ~ L => ei(x, XA:5!Z!-l (qd, XA:5lz !- l (q2), ...) = 1 (since A~lxl-l = A~I;rIJ+J 

due to step 4 of the construction, and M, reduces L to A). And similarly, we have 

x E L => ei(x, XA:5lz!-l (qd, XA:5ls\-l (Q2), ...) = 0 (since A:5lxl-1 ~ A~lxl'+i and L ~~tt A 

via Mi). This gives us a polynomial-time decision procedure for L contrary to the assump­

tion. 

Thus all requirements are satisfied. I 
Note that the above proof can also be used to distinguish between ~fptt and ~r;05 

reductions, under the same assumption. 

We now consider the relationship between various positive Turing reducibilities. 

Theorem 4.9 (3A)[Prpos(A) - Plpos(A) i= 0APlpos(A) - Prpos(A) i= 0]. 

Corollary 4.10 (3A)[Prpos(A) - Prlpos i= 0AP1pos(A) - Pripos(A) i= 0]. 

Proof: Let g(O) = l,g(n +1) = 2g (n ) . Consider the following languages: 

LA = {In : n = g(k) for some even k AInbob1b2 ••• bn- 1 E A where bj = XA(on+j)}. 

LA = {In: n = g(k) for some odd k AInbob1b2 ••• bn-1 E A where bj = XA(on+j)}. 

To ensure that LA ~fpos A it suffices to construct A so that for all n or"form g(2k). 

for bj = XA(on+j), we have [[lnbob1 ••• bn-1 E A] /\[bj = 1 => dj = 1]] => [lndod1 ••• dn-1 E 

Al Thus an oracle machine MB which accepts In iff n = g(k) for some even k and 

1naOal ... an-l E B, where ai = XB(on+i) witnesses that LA ~fpos A. 

Similarly, LA ~~os A is ensured if for all n of form g(2k + 1), for bj XA(on+j), 

[[lnbob1 •.• bn-1 ~ A] A[bj = 0 => dj = 0]] => pndod1 •. • dn- 1 ~ A]. 
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We now construct A in stages. A will satisfy the conditions above so that LA <P A 
-rpos 

and	 L~ ~~os A. 

At stage s we decide the mem bership in A of strings of length g( s), ... ,g( s + 1) - 1. We 

always assume that strings not of the form Og(k)+i,i < g(k) or 19 (k ) { O, 1}g(k l , are not in A 

(without explicitly mentioning it below). 

Let R2i be the requirement that u. :LA ~~OIJ A, that is, u, does not ~~os reduce LA 

to A. Let R2i +1 be the requirement that M, : LA ~f;,OIJ A, that is, M, does not :;~os reduce 

L~ to A. Note that if all the requirements are satisfied then LA st: A and L~ ~~os A. 

Below As denotes the strings of A determined before stage s. Go to stage 0. 

Stage 2s 

1. Let R2i be the least unsatisfied even requirement. 

2. Let n =g(2s). 
10 3. If 2n 

/ ~ nj + i then exclude from A all strings of length 1,
 

g(2s) ~ I < g(2s + 1).
 

M

4. Else If
 

jA{1 n) rejects when all new questions x [i.e., those not decided in A2s )
 

are answered as :
 

If x	 is ofform In {a, I]" then YES. 

If x	 is of form on+i then NO. 

then let A2s+1 be such that all strings of form U'{Il. L]" E A 2s+1 and all 

other strings of length 1,g(2s) ~ I < g(2s +1) not in A 2s+1 ' 

(Note that in this case R 2j is satisfied.) 

5. Else 

Let S be the set of questions ofform 1"{D, I}" asked in the 

computation by M, in step 4 above. 

For all xES, let x E A. 

If x is of form 1n{O, l ]" and x tt S then let x tt A. 

Let y be a question of form 1n{O, L]" not asked by M; (there exists such a y). 

Let on+i E A¢:} Yn+i+l = 1 for i < n. 

(Note that on this A, M, either accepts incorrectly or rejects. 

In the latter case, since A 2 A21J US 

on which M, accepts, M, is not a ~~os reduction. 

Either way, R2i is satisfied.) 

end	 stage 2s 

Stage 2s +1 is similar: 
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Stage 28 + 1 

6. Let R2i+l be the least unsatisfied odd requirement. 

7. Let 11 = g(28 + 1). 

8. If 2n / 10 ~ n i + i then exclude from A all strings of length 1, 

g(28 + 1) ~ l < g(28 + 2). 

9. Else If 

Mt(1n) accepts when all new questions x (i.e., those not decided in A 2s) 

are answered as : 

If x is of form 1n{0, I}" then NO. 

If x is of form on+i then YES. 

then let A2s+1 be such that all strings of form 1"{O, l ]" ~ A 2s+2 and all 

strings of form on+i, i < n in A 2s+2' 

(Note that in this case R2i+l is satisfied.) 

10. Else 

Let S be the set of questions of form In{o, 1Y asked in the above
 

computation by Mi.
 

For all xES, let x ~ A.
 

If x is of form In{o, l }" and x ~ S then let x E A.
 

Let y be a question of form 1n{0, l ]" not asked by M; (there exists such a V)·
 

Let on+i E A ¢} Yn+i+l = 1 for i < n.
 

(Note that on this A, either M; rejects incorrectly, or M, accepts.
 

In the latter case, since
 

A ~ A2su{on+i: i < n}U{lnz: [z] = n,z ~ S}
 

on which M, rejects, M, is not a ~~os reduction. In either case,
 

R2i+1 is satisfied.)
 

end stage 28 + 1 

Let MB(1n) = 1 iff n = g(2k) for some k and 1nbob1 ... bn-1 E B, where bj = 1 iff 

on+j E B. Clearly, LA ~~os A via M (since In is placed in LA only in step 4 in which case 

all strings of form 1"z, Izi = n are also placed in A). Similarly LA ~~os A. We claim that 

LA ~~os A. Suppose by way of contradiction that LA ~~os A via Mi. Also let M, be the 

least such machine. Then for sufficiently large 8 in stage 28, 2n / 10 > n' +i and all smaller 

even requirements have been satisfied. Thus at this stage by construction M, will be fooled. 

Thus no such machine can exist. It can be similarly shown that LA ~fpos A. This proves 

the theorem. I 
Whether ~:os and ~~pos are different is at present an open problem. 
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5 Basic properties of reductions 

In this section we consider some of the basic properties of positive reduction in SP. Sel­

man, in [SeI82b], showed that NP is closed downward under globally robust positive Turing 

reductions. We show that, though Selman's techniques suffice to prove that N P is closed 

downwards under two of the locally robust reductions, the remaining locally robust reduc­

tion fails to leave N P closed downwards in some relativized worlds. As a corollary, we note 

that rpos and lpos reductions do not share the complementation property of globally robust 

positive reductions (Proposition 4.4, part 3). 

Theorem 5.1 NP is closed downward under </p reductions. 
- pos 

Corollary 5.2 

1. coNP is closed downward under ~rpos reductions. 

2. NP and coNP are closed downward under ~~pos reductions. 

3. [Sel82bj NP and coNP are closed downward under ~:os reductions. 

Proof: Let A ~~os B, B E NP. We give an NP algorithm for A. Let A ~~os B via At. 

On input x 

Simulate M, guessing answers for each questions asked. 

Verify the answers guessed YES. 

Accept iff M accepts. 

Now if x E A, then there exists a sequence of right guesses by which the above algorithm 

accepts. 

Now we consider the case in which x ~ A. Clearly the guessed oracle for which the 

above algorithm simulates M is a subset of B. Since x ~ M B , X ~ Me for all C ~ B (since 

M is locally left positive with respect to B). Thus the above algorithm does not accept 
. Ix. 

However the proof does not work for right positive reductions. We give a relativized 

world in which NP is not closed downward under locally right robust positive reductions. 

Theorem 5.3 There is a recursive oracle B such that NpB is not closed downward under 

~rpos reductions. That is, there are recursive sets A, Band C such that C ~;;'os A, A E 

Np B , and C ~ Np B . 
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Proof: This proof is similar to the proof of Theorem 4.9 . Let g(O) = 1,g(n + 1) = 29 (r<) . 

We will define sets A and B. Let A = {x : (3y)lyl = [z], xy E B}. Clearly A E NpB. Let 

LA = {In: n = g(k) for some k and 1nbobI ... bn-I E A where bj = 1 ¢;> on+) E A}. If 

[lnbob1 .. . bn- I E Al\bj = 1 ~ dj = I]:::} [l ndod1 .•• dn- 1 E A], where bj = 1 ¢;> on+j EA. 

then LA sfpos A (via machine M which with oracle B accepts In iff n = g(k) for some k 

and 1naOal .. . an-I E B, where ai = XB(on+i)). We will construct B so that A satisfies the 

above property. In addition we will ensure that LA ¢ NpB. Taking C = LA proves the 

theorem. 

Let R; be the requirement that L(NiB) 1: LA. A will contain strings of form 1nz, Izi = n 

and on+i, i < n where n = g( k) for some k (this thus restricts some elements to be out of 

B. We assume that such elements are not in B without explicitly mentioning so). At stage 

S we decide the membership of strings of length I, g(s) S I < g(s + 1) in A (and strings of 

length I, 2g(s) ~ 1< 2g(s + 1) in B). Below B, denotes the strings of B determined before 

stage s. Go to stage O. 

Stage s 

1. Let R; be the least unsatisfied requirement. 

2. Let	 n = g(s).
 
I O S n
3. If 2n

/ 
i + i then exclude from A all strings of length I, n S I < 2n . 

B. U{o2\n+i) :i>n/2} U{I nzo2n :jzl=n,z>on/21n/2} .
4. Else If N i - - (1n) rejects then let 

B S +I = s, u{02(n+i) : i ~ n/2} U{l nz02n : Izi = n, z ~ on/21n/2}. 

(Note that in this case we have already fooled Ni' since In E LA - L(S?)). 

5. Else
 
. B. U{o2(n+'):i>n/2} U{I"z02n :lzl=n z>on/2I n/2}
P. 

IX an accepting path of N i - , - (1n ) 

Let S be the set of questions asked by N, which are in 

{o(n+i)w: Iwl = n + i} U{lnz02n : Izl = n, z ~ on/21n/2}. 

Let y, Iyl = n,y E {a, 1y/21n/2 be such that 1nyo2n ¢ S (clearly, such a y exists). 

Let Sn+i be a string of length n + i such that O( n+i) Sn+i ¢ S. 

Let Ba+I = s, U{ w : w E {02(n+i)li ~ n/2} 

U{lnz02n : Izi = n,z ~ on/21n/2 and 1nz02n E s}}u{o(n+i)sn+i': Yi = I}. 

(Note that in this case In E L(NiB) - LA). 

end stage s. 

Clearly, LA S~pos A. If all requirements are satisfied then clearly LA ¢ NpB. So assume 

that R; is the least requirement not satisfied. But then let s be so large that 2n / I O > ni + i. 
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and all requirements less that i are satisfied by stage s. Then by construction R; will be 

satisfied at stage s. Thus all the requirements are satisfied. I 
P - P -

Though .4 :5:pos B => A :5:pos B (Proposition 4.4), the analog of this result fails for rpos 

and lpos reductions, as an immediate corollary of Theorems 5.1 and 5.3 and Corollary 5.2. 

Corollary 5.4 

1. There exist recursive oracles A and B such that .4 <P B but .4 <I P B -rpos ,t:;rpos' 

2. There exist recursive oracles.4 and B such that .4 <PI B but .4 <l P B. - pos ,t:; Ipos 

6 P-selectivity and positive reductions 

Selman, in [SeI79], introduced the notion of P-selectivity. Intuitively,.4 is P-selective if 

given two strings x and y, a polynomial-time function can determine which of x or y is 

more "likely" to be an element of .4. 

Definition 6.1 [SeI79} .4 is P-selective if there exists a polynomial-time computable f117)(­

tion f such that: 

1. (Vx,y)f(x,y) E {x,y}, and 

2. x E.4 Vy E.4 => f(x,y) EA. 

Selman [SeI82b] showed that if A ~:os A and A is P-selective then A is in P. Selman's 

proof can be easily seen to generalize to the following: 

Theorem 6.2 A E P if and only if A :5:~pos A, and A is P-selective. 

We leave it as an open problem whether :5:fpos or :5:~os reducibility suffice to obtain the 

above theorem. Below, we show that weak P-selectivity does not suffice. 

Ko [Ko83] generalized Selman's notion of P-selectivity. 

Definition 6.3 [Ko83} 

A preorder R on 1: is partially polynomial-time computable if there is a polsmomial-time 

computable function f such that 

1. f(x, y) = f(y, x) = x if xRy but not yRx, 

2. f(x,y) = f(y,x) E {x,y} ifxRy and yRx, and 

3. f(x, y) = # otherwise. 
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Let xSy if and only if xRy and yRx. Let R' be an induced ordering on 1:*/5, i.e., xR'fj 

iff xRy, where x denotes the equivalence class of x under the relation S. 

Definition 6.4 [K083] A partial ordering R is p-linear if for all n, the set 1:n = {x : Ix\ ~ 

n} can be decomposed into at most p(n) many pairwise disjoint sets B1 , ••• Bm , m ~ p(n). 

for some polynomial p such that: 

1. If x and y are in the same set B, then xRy V yRx, and 

2. if x and yare in two different sets then neither xRy nor yRx. 

Definition 6.5 [K083] A is weakly P-seleetive if and only if there is a partially polynomial­

time computable preorder R with the induced equivalence relation S and partial ordering R' 

such that 

1. R' is p-linear, and 

2. for all n, An = {x E A: Ixl ::; n} is the union of initial segments of R' chains in 1:n · 

In contrast to Theorem 6.2 we show that: 

Theorem 6.6 There exists recursive oracle Q and a recursive set A such that A is weakly 

pQ -selectiue, A ::;:08 A but A r;. pQ. 

Proof: We will define A and Q in the following. Q will act as a weak P-selector for A. Thus 

A will be trivially weakly pQ -selective. 

Let g(O) = 1, g(n + 1) = sg(n). A and Q will be such that 

1) A ~ S where S = [{19(n) : n E N} U {lg(n)ok : n EN 1\ 0 < k ::; 2g(n)} U {14g(n)y: 

n EN 1\ jyj = 1 + g(n)}]. 

2) 19(n)o2k+l E A¢> 19(n)02k+ 2 r;. A, for k < g(n). 

g(n), 14g(n)y1 E A¢> 14g(n)yo r;. A.3) for Iyl =
4) 19(n) E A¢> 14g(n)y1 E A where y = XA(1g(n)02)XA(l g(n)04) ... XA(l g(n)o2g(n»). 

For partial ordering R we have 

5) Bn = {x: [z] = n} (for B, in the definition of p-linear partial ordering). 

6) (x, y) E Q if and only if Ixl = Iyl and xRy. 

Clearly, A ~:os A and A is weakly pQ -selective. 

Following construction diagonalizes to ensure that every pQ machine fails to accept A. 

Assume without loss of generality that M i
Q queries only strings of form (x, y) such that 
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[z] = IYI, xES and yES. At stage s we determine the membership in A for all strings of 

length l, 9( s) ~ l < 9( s +1). We also define Q on all pairs of strings of length between g( s) 

and g(s + 1). We explicitly give the membership in A only for strings in S. Also we define 

the relation R only for strings in S which are of same length. A and R on other values can 

be predetermined using (1) and (5) above. 

Let	 R, be the requirement that L(MiQ) =F A. Go to stage O. 

Stage s 

1. Let x = 19 (s). 

2. Let	 i be the least requirement not satisfied until now.
 

Let n = 9(s).
 

3. If n i + i 2: 8n/ I O then let In ¢ A, 1no2k E A, k ~ n,
 

and }4n y l ¢ A for all y, Iyl = n.
 

Define Q in some way consistent with A.
 

4. Else run Mi on In. Answering all questions (z, y) in the following way. 

If 59(s) + 1 = Izi = IYI, then let z = uc, y = wr; r, c E {O, I}.
 

Let uO, wO E A and ul, wI ¢ A.
 

Answer the question in a way consistent with the previous answers
 

and A determined until now.
 

5.	 Let y be such that neither 14nyO nor 14nyl has appeared
 

in any query until now. Let XA (1no2 )XA (1no4) .•• XA {1n02n) = y.
 

6. Let 14n y l E A if and only if M rejected in the' above simulation. 

(Note that M, has been fooled in this stage) 

end stage s. 

Clearly, A ~:os A. Also A is weak pQ-selective. Suppose by way of contradiction that 

M j
Q = A. Also let M; be the least such machine. Then for sufficiently large s in stage s . 
I O > n8n / i + i and all smaller requirements are satisfied. Thus at this stage by construction 

M; will be fooled. Thus no such machine can exist. I 
Selman [SeI82b] showed that if A ~:os B (B =F 0,B =F I:-) and B is P-selective, then 

there exists an algorithm that runs in time polynomial in the number of queries in the 

computation tree of the reducer and outputs a set I such that x E A ¢} I ~ B. We observe 

that Selman's proof holds even for ~~pos reductions. 

Proposition 6.7 [implicit from techniques of [Sel82b]] Let A ~~pos B via machine M. 

B '::f: 0,B '::f: E-. Let B be P-selective. Then there exists an algorithm that runs in time 
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polynomial in the length of the input x and the number of queries in the computation tree 

of M on x, that outputs a set I such that x E A ¢} I ~ B. 

Proof: We restate Selman's algorithm for completeness, modified for ~~pos reduction. Let 

f be a P-selector for B. Let f'(Xl' X2,' .. , X,.) = f(xl' (f(X2,' . .f(X,.-l, X,.) . . .)). Let a E B 

and b rt B. 

On input x. 

1. If M0(x) accepts let I = {a}. 

2. If MI:°(x) rejects then 1= {b}. 

3. Else
 

Let Q = T = 0
 
Repeat
 

I=T;
 

Simulate M on x with oracle I.
 

Q = set of all queries asked in the above computation.
 

If M rejects then
 

begin
 

u=f'(Q-I);
 

T=IU{u}
 

end
 

Until T = I
 

Clearly, the above algorithm on input x outputs a set I such that x E A ¢} I ~ B (by 

induction on the number of times the repeat loop is executed). Also since each time the 

repeat loop is executed cardinality of T increases at least by 1, we have that the number 

of times repeat loop is executed is at most the number of queries in the computation tree 

of M on input x. Also since each loop runs in time polynomial in the length of x and the 

number of queries in the computation tree of M on x, the whole algorithm runs in time 

polynomial in Ixl and the number of queries in computation tree of M on input x. I 

Corollary 6.8 If A ~~pos B, B =F 0,B =F 1:* and B is Pi-selective then for some polynomial 

p, A ~m B by a function 9 computable in time 2P(lx l) . 

Proof: Use the above algorithm to get I such that x E A ¢} I ~ B. Since B is P-selective. 

we select an element from I which is most likely to be in B (say y). Now x E A ¢} Y E B. I 
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It is easy to convert a ~fpos computation tree to a ~frpos computation tree in exponential 
time. Thus we also have: 

Corollary 6.9 If A ~~os B, B :f 0,B :f ~. and B is P-selective then for some polynomial 

p, A ~m B by a function g computable in time 2P(lx l) 

Corollary 6.10 If A ~f"os B, B :f 0,B :f ~. and B is P-selective then for some polyno­

mial p, A ~m B by a function g computable in time 2p(lxl) 

For rlptt reductions the number of queries in the computation tree is polynomial in the 

length of the input; thus we have: 

Corollary 6.11 If A ~~Ptt B, B:f 0,B:f~· and B is P-selective then A~!:. B. 

Corollary 6.12 If A is ~~Ptt self reducible and A is P-selective then A is in P. 

Proof: From corollary 6.11 we have A is ~!:. self reducible. Since any ~!:. self reducible set 

is in P, A E P. I 

Theorem 6.13 [Sel82b] For every tally language A there exist sets A and B such that: 

l)B~~tA~tB. 

2) C ~ft A ~~ C. 

3) B ~~t C ~Ft B. 

4) B is P-selective, and 

5) C Pi-selective => C E P. 

As a corollary we obtain: 

Corollary 6.14 Let A be a tally language not in P. Then there exist ~~ equivalent sets 
p p - p

B,C such that C ~tt B but C irlptt B. Also B irlpos B. 

Corollary 6.15 If E :f:. N E then there exists sets Band C such that: 

1. BE NP - P, 

2. B ~~t C, 

3. C ~ft B,
 

4· C ifrptt B, and
 
- ps. B irlpos B. 
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Proof: Follows from the above theorem since if E :f N E then there are tally sets in NP- P 

([Boo74, BWSD78], see also [HIS85]) I 

Corollary 6.16 If N E :f E then there exists a $ft degree in NP that does not consist of 

single $~pos degree. 

Corollary 6.17 If N E :f E then there exists a $~Ptt degree in NP which consists of a 

single $~ degree. 

Corollary 6.18 If N En coN E :f E then there exists sets Band C in NP such that 

B $:'tt C and C $ft B but C ~~Ptt B. 

7 Conclusions and Open Problems 

In this paper we defined locally positive reductions as more moderate versions of Selman's 

(globally) positive reductions. We compared the different locally positive polynomial-time 

Turing reductions and identified the properties required by positive reductions to obtain 

the results of Selman-thus enriching the domain in which his results are applicable and 

delimiting the boundaries of their application. 

Some open problems arise out of our work. It is open at present whether there exist 

relativized worlds in which $~pos and $:os are different. The construction of such worlds 

would show that rlpos reductions are indeed more flexible than pos reductions; in this paper, 

we proved that rpos and lpos reductions are mutually incomparable, and that each is more 

flexible than rlpos and pos reductions. Another open problem is whether Theorem 6.2 fails 

for $~os or $~os in some relativized world. 
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