
Banishing Robust Turing Completeness*

Lane A. Hernachandrat
Department of Computer Science

University of Rochester
Rochester, New York 14627

Sanjay Jain'
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716

Nikolai K. Vereshchagin
Department of Mathematical Logic

Moscow State University
Moscow, USSR 119899

December 21, 1991

Abstract

This paper proves that "promise classes" are so fragilely structured that they do
not robustly possess Turing-hard sets even in classes far larger than themselves. In

particular, this paper shows that FewP does not robustly possess Turing-hard sets for
upncoup and 1PncoIP does not robustly possess Turing-hard sets for ZPP. It follows
that ZPP, R, coR, UP ncoUP, UP, FewP ncoFewP, FewP, and IP ncoIP do not
robustly possess Turing complete sets. This both resolves open questions of whether
promise classes lacking robust downward closure under Turing reductions (e.g., R) UP,

FewP) might robustly have Turing complete sets, and extends the range of classes known
not to robustly contain many-one complete sets.

"Some of these results were reported at the Symposium on Mathematical Foundations of Computer
Science, Carlsbad, Czechoslovakia., September, 1988. This report revises and extends TR-297.

"Supported in part by a. Hewlett-Packard Corporation equipment grant and the National Scien.ce Foun
dation under grant CCR-8809174/CCR-8996198 and Presidential Young Investigator Award CCR-S957604.

tSupported by National Science Foundation grant CCR-8320136 to the University of Rochester.

1

1 Introduction

Complete languages have long been a useful tool in complexity theory. Much of our knowl

edge about NP comes from studying the NP-complete set SAT (see, e.g., [Mah88]). Most

common complexity c1asses-NP, cDNP, PSPACE, etc.-have many-one complete sets I that

help us study them. Sipser noted, however, that some classes may lack complete sets (Sip82].

His paper sparked much research into which classes robustly (i.e., with respect to all ora

cles [BGS75,Sch85]) possess complete languages, and what strengths of completeness results

(e.g., many-one Dr Turing) can be obtained. The crucial property of classes such as NP and

PSPACE that causes them to robustly possess many-one complete sets is the existence Df

a recursive enumeration of mach.ines covering the languages in the class.! However several

natural classes, such as UP, R, and BPP, do not have any obvious recursive enumeration of

machines covering the class. This raises the possibility that these classes may not robustly

possess complete sets.

Sipser showed that Rand NP n cDNP do not robustly possess many-one complete lan

guages [Sip82]. Hartmanis and Hemachandra showed that UP-unambiguous polynomial

time (Section 2)-does not robustly possess many-one complete languages, and noted that

if UP does have complete languages then UP has complete languages with an unusually sim

pIe form-e-the intersection of SAT with a set in P [HH88J. In related work, Regan (Reg89J

proved that a class C that is closed downward under ::.:\;, and admits padding has a CDn

structively valid programming system [QkJ%':.1 over a sufficiently strong logic F if and only

if C has a complete set under ::':1:.. It is also known that these classes tend to have different

positive relativization [HR] and hierarchy [FS89] results than classes that robustly possess

complete sets.

One way of strengthening the above theorems would be to show that these classes do

not robustly possess complete sets even with respect to reducibilities more flexible than

many-one reductions, e.g., k-truth-table, positive truth-table, truth-table, and ultimately

Turing reductions [LLS75). This would show that the structure of these classes differs

markedly from that of P, NP, PSPACE, and so on. Gurevich showed that NP n coNP has

many-one complete languages if and only if it has Turing complete languages ([Gur83], see

also [HI85]). Ambos-Spies's elegant generalization of this states that for any class C closed

under Turing reductions, C has Turing complete sets if and only if C has many-one complete

sets [AS86J. In particular, it follows, from the result of Sipser [Sip82J, that NP n coNP does

"Throughout this paper, we are concerned only with polynomial-time reducibilities.
2That is : Jet {TI} be any standard na.m.ing of Turing machines; there exists a. recursively enumerable set

A such that (1) PSPACE ~ {L(Ti) : i E A} and (2) each To, i E A, rues in polynomial space.

2

not robustly possess Turing complete sets [Gur83]. Similarly, since pBPP = BPP [Zac86]'

from [HH88]'s proof that BPP does not robustly possess many-one complete sets it follows

that BPP does not robustly possess Turing complete sets.

Since UP n coUP and ZPP are closed downward under Turing reductions ([Zac86] for

the ZPP case), Ambos-Spies's result mentioned yields: UP n coUP and ZPP have Turing

complete sets if and only if tbey have m-complete sets.

However, Ambos-Spies's result does not apply to R, UP, FewP, FewP n coFewP, or to

other classes not known to be closed under Turing reductions.

Furthermore, the technique used to show that R and UP do not robustly possess many

one complete languages was an indirect proof [Sip82,HH88], that does not seem to generalize

to Turing completeness.

In fact, classes such as R, UP, and FewP, have a chaotic structure. Machines for these

classes must incorporate a promise (e.g., never having more than one accepting computation

path), and thus these classes have been referred to as "promise classes" [HR]. This paper

shows that this promise structure precludes such promise classes as R, UP, and FewP

from robustly possessing even Turing complete sets; our proofs exploit the promise-induced

limited combinatorial control of probabilistic and nondeterministic machines to corrupt

candidates for Turing completeness. Indeed, the promises are so exacting that quite large

classes do not robustly contain sets that are hard for these classes (or even for subclasses

of these classes).

Section 3 proves that FewP does not robustly possess Turing hard sets for UP n coUP.

Section 4 proves that IPncoIP does not robustly possess Turing hard sets for ZPP.3 It imme

diately follows from the above results that ZPP, R, coR, UP ncoUP, UP, FewP ncoFewP,

FewP, and IP n coIP do not robustly possess Turing complete sets.

2 Preliminaries

Let N denote the set of natural numbers. E is an alphabet set, usually {D, I}. A language

is a subset of E'. For two sets LI and L2, LI 6 L2 denotes the set (L I - L2) U (L2 - Ld.

odenotes the empty set. M o, M I , ... denotes some standard enumeration of polynomial-

'Re<:ently, Shamir [Sh&90,LFKN90] h.. shown 1h&1 IP=PSPACE. Thus in the real world IP = colP =
IP n coIP = PSPACE. It follows that Theorem 4.1 does not hold (or A = I, Le., IP n cofP, does have
Turing hard languages {or ZPP, R, coR and BPP. However, IP is net robustly equal 10 PSPACE (FS88].
Shamir's non-relativizing technique is not known to apply to classes other tha.n those having to do with
interactive proofs (though ecmetimes the connection to interactive proofs is somewhat disguised (eRgl]),
and in particular is not known to apply to BPP. Thus one ma.y take Theorem 4.1 as evidence that, in the
real world, BPP does not have Turing hard sets {or ZPP. R, and coR.

3

time deterministic Turing machines. Nv, N" ... denotes some standard enumeration of

polynomial-time nondeterministic Turing machines. B h B" ... denotes some standard enu

meration of polynomial-time probabilistic Turing machines [Gil77]. We assume that the

running time of machine M; (N;) «(Bi» is bounded by deterministic (nondeterministic)

«probabilistic» time ri(n) = n; +i. P denotes the class of all languages accepted by some

polynomial-time deterministic Turing machine [HU79]. NP denotes the class of languages

accepted by polynomial-time nondeterministic Turing machines and coNP denotes the class

oflanguages whose complements are in NP [HU79J. L(M) denotes the language accepted

by the machine M. L(MA) denotes the language accepted by the oracle machine M with

the oracle A [BGS75,HU79].

A denotes the complement of A, i.a., E" - A. XA denotes the characteristic function

of A. Ixl denotes the length of z, A~n denotes the set of strings in A with length at

most n. (".) denotes a standard one-to-one, polynomial time computable and polynomial

time invertible pairing of natural numbers (see [BDG88,Reg88J). Similarly, ("".) denotes a

standard one-to-one, polynomial time computable and polynomial time invertible encoding

of triples of natural numbers.

We now review the definitions of various complexity classes discussed in this paper.

Implicitly, the relativized version of each of these complexity classes Is defined by allowing

the nondeterministic (probabilistic) machine(s) of the definition access to some oracle.

Definition 2.1 [Va176}

1. (Unambiguous Polynomial Time) UP = {L : there is a nondeterministic polynomial

time Turing machine N such that L = L(N), and for all x, the computation of N(x)

has at most one accepting path}. We say that a machine N is categorical if it has at

most one accepting path for every input.

2. coUP = {L : L E UP}.

UP captures the power of unambiguous computation; UP is the class of problems that

have (for some NP machine) unique witnesses. That is, if there is an NP machine N

accepting L and for every input x the computation of N(x) has at most one accepting path

(Le., N is a categorical machine), then we say L E UP.

Recently, UP has come to playa crucial role in both cryptography and structural com

plexity theory. In cryptography, Ko and Grollmann and Selman have shown that one-way

4

functions" exist if and only if Pi-UP [K085,GS88], and one-way functions whose range" is

in P exist if and only if Pi-UP n coUP [GS88J. Thus, we suspect that Pi-UP because

we suspect that one-way functions exist.

Curiously-in light of the results in this paper and [HH88]-Ko has shown that the

operator version of UP does have complete sets [K085].

The following definition is a generalization of the class UP where we allow the nonde

terministic machine to have at most polynomially many accepting paths.

Definition 2.2 [ARBS]
FewP '" {L : there is a nondeterministic polynomial-time Turing machine N and a j

such that L '" L(N), and for a/l z, the computation of N(x) has at most Ixli + j accepting

paths}.

coFewP '" {L : Y; E FewP}.

Proposition 2.3 There exists an enumeration N6, N;, . . . of nondeterministic Turing mao

chines such that, for a/l i, run time of Ni is bounded by ni + i and

FewP '" {LI(3i)[L '" L(NI) and (Vx)[number of accepting paths of N[on x is ::; n i + i]]}.

Thus we assume, without loss of generality, that our standard enumeration is one such

enumeration. We say that a machine NiA is FewpA.like jff (Vx)[the number of accepting

paths of Nt' on input x is at most Ixli +i]. Note that we are not claiming that it is easy to

determine whether a machine is FewP-like. Rather, Proposition 2.3 merely reflects the fact

that in many natural enumerations each machine in the enumeration essentiaJIy appears

infinitely often, give or take vacuously padding the machine with unreachable states. Note

that Proposition 2.3 holds robustly. In our relativizations, this wiJI allow us to, for each

possible oracle machine, instantly discard a machine if we notice that it is not FewP-like in

the relativized world we construct (rather than having to explicitly pair each machine with

every fewness bound).

Definition 2.4 [Gil77]

(Random Polynomial Time) R = {L : there is a probabilistic polynomial-time Turing

machine B such that L '" L(B), and for all z , either B(x) has no accepting paths, or B(x)

accepts with probability> 1/2}.

coR", {L : L E R}.

• A function I is honest if (31)('11.)[1/(')1' +1 ~ 1.ll. A one-way function is a. total, single-valued, one
to-one, honest, polynomial time computable function f such that /-1 (which will be a partial function if
rangefj") ,< J:;') is nor computable in polynomial time [GS88].

• Range(/) = U'EJ:;' I(i).

5

Without loss of generality we can assume that the computation tree of a machine ac

cepting a language in R is a full binary tree with paths through the tree corresponding to

sequences of coin tosses [BDG88].

R, random polynomial time, is the complexity class that captures the power of proba

bilistic computation with one-sided error. When an R macbine accepts, it is always correct;

however, when it rejects it may be incorrect. In relativized worlds, the computational pow

ers of random polynomial time and of unambiguous polynomial time are incomparable, and

have both been studied in detail [Rac82,GG86,BR88,EHTY89]. We say that a probabilistic

machine Bf is RA-like, iff (Itx)[either Bf on x has no accepting paths or the probability

that Bf accepts x is at least 1/2].

Definition 2.5 tcum ZPP = R n coR.

The class of languages that are in ZPP are exactly those languages which can be solved

in expected polynomial time [Gil77].

Definition 2.6 [Giln}
(Bounded Probabilistic Polynomial Time) BPP = {L : there is a probabilistic polynomial

time Turing machine B such that, [x E L =? B(x) accepts with probability> 2/3] and

[x ¢ L * B(x) accepts with probability < 1/3]}.

BPP is a complexity class that captures the power of probabilistic computation with

bounded two sided error.

We now discuss interactive proofs [GMR89]. Consider a language L and an input z .

Suppose a prover, P, is trying to convince a polynomial.time, probabilistic, verifier V, that

x indeed belongs to L. During this process, the verifier may ask certain questions to the

prover. We assume that the prover P is determlnistic in the sense that the answer provided

by the prover, on any question, depends only on z , tbe question asked, andthe set of earlier

questions asked. However we do not place any resource bound on the prover. Indeed P

itself may be a recursive procedure. After the interaction, the verifier may accept or reject

the input. For the verifier to accept the language L, we would like that in cases when x

belongs to L, the prover should be able to convince the verifier, with high probability, that

z belongs to L. However, if z does not belong to L, then no prover should be able to

convince the verifier, with high probability, that x E L.

Definition 2.7 We say that a verifier V accepts L iff:

(Itx ¢ L)(ltP)[Prob(V with prover P accepts x) ::; 1/3]' and

(3P)(ltx E L)[Prob(r with prover P accepts x) ~ 2/3].

6

Note that for a particular verifier V, there can be at most one L that V accepts. We denote

by L(V) the language, if any, that the verifier V accepts.

Definition 2.8 [GMR89}

IP = {L : (3V)[V accepts Ln.

colP = {L : L E IP}.

We say that a verifier V/ is IPt-like iff there exists a language L such that ViA accepts

L. Note that a machine may be FewP-like (R-Iike, IP-Iike) with respect to one oracle but

not with respect to another.

We let Vo, Vl, _.. be a standard enumeration of all polynomial time verifiers. We assume

that the runtime of verifier Vi, on inputs of length n, is bounded by n i + i.

It follows immediately from the definitions that (\lA)[RA ~ BPpA ~ IpA n colp A
] .

For background, we first define Turing reductions and completeness in the real (unrela

tivized) world.

Definition 2.9 (see [LLS75,BDG88}J

1. L1 ";!f. L 2 if L 1 E p L
2 .

2. L is ";~-hard for C if every set in C Turing reduces to L [i.e., (\IS E C)[S ";!f. L]). In

addition if L E C then we say that L is .,;;'.complete for C.

If we wish to discuss Turing completeness in relativized worlds, we must address the

key question: are the Turing reductions allowed access to the oracle? Definitions 2.10.2

and 2.10.3 answer this question "yes" and "no," respectively. For the following definition C

stands for R or UP.

Definition 2.10

1. i, .,;!fA L 2 if t.; E p£,EIlA.

2. L is .,;~A.hardforCA if (\IS E CAllS .,;~A L]. In addition if L E CA then we say that

L is ";!fA -complete for CA.

3. L is ";;'.hard for CA if (\IS E CA)[S .,;;. L]. In addition if L E CA then we say that L

is .,;;.-complete for CA.

We suggest that Definition 2.10.2 above is the natural notion of relativized Turing com

pleteness. Adopting it, we prove that there exist oracles A and B such that ZppA , RA,

7

IpA n coIpA have no ::;~A-complete sets and UpB, FewpB have no $~B-complete sets.

However. for purposes of completeness results, the different notions of relativized Turing
reductions stand Or fall together. .. ,-

Lemma 2.11

1. For any oracle A. and class C: [FewpA has $~A_hard sets for C if and only it has

::;J;,-hard sets for C].
2. For any oracle A, and class C: [UpA has ::;~ A-hard sets for C if and only it has

::;J;, -hard sets for C].
3. For any oracle A, and class C: [RA has ::;!f A-hard sets for C if and only it has

$J;,-hard sets for C].
4. For any oracle A, and class C: [IpA n coIpA has $~A_hard sets for C if and only it

has $J;,-hard sets for C].

This is true since if B is $!fA-hard for C then B Ell A is $J;,-hard for C.
The difference between Definitions 2.10.2 and 2.10.3 is essentially the difference be

tween "full" (2.10.2) and "partial" (2.10.3) relativization discussed in [KMR88] and [Rog67,

Section 9.3]. [KMR88] describes how this distinction has had a crucial effect on recent

research asking whether all NP-complete sets are polynomially isomorphic [Kur83,GJ86,

HH91J. However, Lemma 2.11 indicates that in our study of Turing completeness, We need

not be concerned with this distinction.

3 Robust Completeness and Classes of Limited Ambiguity

This section shows that FewP does not robustly possess Turing hard sets for UP n coUP.

It follows immediately that there is an oracle A such that UpA and FewpA lack complete

sets with respect to ::;!jA, as well as with respect to all reductions less lIexible than ::;!j A,
such as truth-table reductions [LLS75J, bounded truth-table reductions [LLS75], etc.

Theorem 3.1 There is a recursive oracle A such that FewpA contains no $!fA -hard lan

guages for UpA n coUpA.

Corollary 3.2 There is a recursive oracle A such that UpA n coUpA, UpA, FewpA n coFewpA,

and FewpA contain no $!fA -complete languages.

Proof of Theorem 3.1 We wish to show that for no L E FewpA is UpA I:; pL, which

suffices by Lemma 2.11. Each L in FewpA is, by definition, accepted by a nondeterministic

8

machine N;A, which has its number of accepting paths on any input bounded by n; + i (see

Proposition 2.3). Our goal is to show that for each i, either:

1. N;A has more than Ix I; + i accepting paths on some input z, or

2. (3Li)[L i E UpA n coUpA and L, 1. pL(Nt)j.

The second condition says that some UpA n coUpA language does not Turing reduce to

L(NiA).

Let L, 0= {In: (3k)[(n 0= (p;)k) A (3y)[lyl 0= n A 1y E AJ]}, where Pi is the ith prime.

Let requirement R(;.j) be
• L(NA)

R(i,j): (3x)[x E L;~ x E L(Mj ')].

In the construction below we will ensure that for each i either:

(.) N;A has more than Ixl; + i accepting paths on some input x, or

(..) (Ifk)[card({y : yEA A Iyl 0= (Pi)k + I}) = 1] A(Ifi)[requirement RU,j) is satisfied].

Note that this is sufficient to ensure that A satisfies the required properties.

For each (i, i), we will seek to find a way of extending the oracle so as to make NiA

non-Fewf'<-like. Failing this, we will argue that we can choose our oracle in such a way

as to determine the answers to all oracle queries made by M], and still have the flexibility

to diagonalize against L; This step is a combinatorial argument that machines with few

accepting paths that do not trivially accept must reject on an overwhelming number of

oracle extensions.

In stage (i,i), we either make NiA non-FewpA-like by adding strings oflength (p;)k+1,

for some k, to A or without violating ("), satisfy requirement R(i,j)'

Let A(;,j) denote the set of strings determined to be in A constructed before stage (i,i).
n(i,;) denotes the length, such that for each string of length at most n(;,j), membership

question (in A) has been decided before stage (i,j).
Let Ao 0= 0 and no 0= 0 (we let f 1. A). We will have A = U(i,j) A(i,j)' Go to stage O.

Stage (i,j):

1. If NiA has already been made non-Fewf'<l-like, then set

A(;,j)+I = A(;,j) & n(i,j)+l =n(i,j),

and go to stage (i, j) + 1.

2. Let n = (Pi)k be so large that:

(i) n > nU,;)' and
(ii) 2n > p(n), where p(n) 0= [rj(n)]· [r,(r;(n))]' [ri(rj(n)) + 1]. [r,(rj(n)) + 2]/2.

9

3. Let B ={om: n(i,j) < m $ T,(Tj(n» /I m # n +1}.

4. If there exists a set S ~ {O, 1}n+l such that NiAlo.,lUSUB is non-Fewf'<-like on some

string of length at most Ti(n) then

let A("j)+l =A(;,j) U SuB & n(,,i)+l =Ti(Tj(n»,

and go to stage (i,j) + 1.

5. Else

Run machine M; on I" using oracle set L(NiAI;"IUB).

6, If Mi accepts in step 5 above then let z,lzl = n be such that M j on input 1n using
oracle set L(N:li,JlUBU{Oz}) still accepts. (We will argue below that such a z indeed

exists.) Let

A(i,i}+l = A(i,j) U SUB U {Oz} & n(i,j)+l =Ti(Tj(n»,

and go to stage (i,j) + 1.

(Note that here 1n ¢ i.; thus R(i,j) is satisfied).

7. Else (the computation in step 4 rejects)

Let z ; Iz[= n be a string such that Mi on input 1n using oracle set L(Ni
A 1i,,)UBU{lz})

still rejects. (We will argue below that such a z indeed exists.)

Let

A(i,j)+l = A(i,i) U SuB U {1z} & n(i,i)+! = Ti(Ti(n» and

go to stage (i,j) + 1.
- L(NA)

(Note that here l " ELi - L(Mj '). Thus requirement R(iJ) has been satisfied).

We must argue that such a z (for steps 6 and 7) can indeed be selected. In fact,

there is a string z, Izi = n, such that the computation of Mi on input 1n using

oracle set, L(NiAli,ilUB) queries exactly the Same strings, getting exactly the Same

answers, as does the computation of Mi on input 1n using oracle set, L(N,A(i,ilUBU{OZ})

(L(NiA(O,j)UBU{Iz}». To see that this is the case, suppose that the computation of Mj

on input 1n using oracle set L(N,A1i,J)UB) queries strings Xl, X2, ... , Xh that are in

L(N
A(; j)UB) d .. h' L(NA(;J)UB) L'
i' ,an queries strings Yl, Y2,"" Urn t at are not In i . cor

1 $ T $ k, reserve all strings, of length n + 1, which are queried by the accepting

path of Nt<o,j)UB, on input x., for A (there are at most k· [Ti(Tj(n»] such strings).
AC ')UBU{z}

For 1 $ T $ m define Sy, = {z : N, ',1 accepts V. /I Izi = n + 1}. We

reserve all strings in Sy" 1 $ T $ m for A (by Corollary 3.4 Card(Ul~.~m Sy,) $

m- [Ti(Ti(n))] '[Ti(Tj(n) +1)'[Ti(Ti(n »+2]/2). Since 2n > Ti(n)· [Tih(n))]. [T,h(n»+

1]· [Ti(Tj(n» +2]/2, not all strings of form O{O, I]" and 1{0, 1}n are reserved for A.

Thus appropriate z exists.

10

End stage (i, j)

Note that if we never find a way of making NiA non-FewpA-like, then L. E UpA ncoupA

(because the above procedure puts at most one string, z, at each length important to til
and (ltj)[requirement R(',j) is satisfied]. Thus the requirement (**) is satisfied. On the

other hand, if we do find a way of making N.A non-Fewfvt-like, then (*) is satisfied (even

though we do not need L; to be in UpA n coUpA in this case, our construction leaves i;
finite in this case and thus in UpA n COUpA). Thus we have met requirements that are

sufficient to ensure that FewpA has no :$~ A -hard languages for UpA n coUpA. I
We have to argue that the size of SUe as defined in step 7 in the above construction does

not get too large. Let n,B be as defined in stage (i,j). For x such that \xl :$ rin) and
A(" ,uB A(" ",uBu{.}

N. >", rejects x let, S. = {z : Ni '", accepts x 1\ Iz[= n + I}. In Corollary 3.4

below we argue that size of Sx is bounded, if, Nt could not be made non-FewpA-like in

step 4 of the above construction. We need a combinatorial lemma to show that S. is not

too large. In the lemma think of C[kJ's as elements of S. and D[kJ's as the set of strings
. d i h . h f N A(, ,}U{C[kj}quene III t e accepting' pat 0 .' •

Lemma 3.3 Let r, r' be given. Let C[k], 1 :$ k :$ m, be an array of strings and D[k],1 :$

k :$ m, be an array of sets of strings. Then if C[k], D[k] satisfy a),b) and c) then m :$

(r' - 1)· r(r + 1)/2.

a) (\;Ik, l)[k i I =} C[k] i C[lJ],
b) (\;IT <;;; {l..m} : card(T) = r')[(3k',k" E T)[k ' i kIf 1\ C[k'] E D[k"]]].

c) (ltk)[Cardinality of D[k] is at most r - 1].

Proof of Lemma 3.3 Let P(r,r') = maxim : exists arrays C,D of size m as defined

above where the cardinality of D[k] is bounded by r - I}. We prove by induction on n

that Pen, n') :$ (n' - 1) . n(n + 1)/2. Clearly, P(l, n') = n' - 1. Suppose Pen, n') :$

(n' - 1) . n(n + 1)/2. We prove that P(n + 1, n') :$ (n' - l)(n + l)(n + 2)/2. Let C, D

be such that conditions of the lemma are satisfied with r = n + 1, r' = n'. Now consider

a maximal set T <;;; {l..m}, such that, [(\;Ik', kIf E T : k' i k")[C[k'] ~ D[k'11l. Clearly,

card(T) :$ n' - 1. Thus, for all but (at most) (n + 1) * card(T) of D[kl's there exists a

k' E T such that C[k'] E D[k], Thus Pen + 1, n') :$ (n + 1)(n' - 1) + P(n, n'l. Thus we have

Pen + 1,n') :$ (n' -l)(n + 1)(n + 2)/2. The lemma follows.•

As a corollary we obtain,

Corollary 3.4 card(S~):$ h(r;(n))] ' h(r;(n)) + 1]. [ri(r,(n)) + 2]/2.

11

Proof: Let m '" card(S.) and T,T' '" Ti(Tj(n)) + 1. Also let C[1],C[2],... ,C[m] be

the m elements of S., and D[k] be the set of strings queried in the accepting path of
NiA",J)UBU{C[klJ . Clearly conditions (a) and (c) of tbe lemma are satisfied. (b) is satis

fied because NiA seems FewpA·like. Thus C, D satisfy the conditions of Lemma 3.3. Thus

card(Sx) :S [Ti(Tj(n))]' [r;(r;(n)) + 1]. [Ti(Tj(n)) + 2]/2.•

4 Robust Completeness and Probabilistic Classes

In this section we prove that IP n coIP does not robustly possess Turing hard sets for ZPP.

It immediately follows that there exist relativized worlds in which ZPP, R, IP n coIP and

BPP do not have Turing complete sets.

Theorem 4.1 There is a recursive oracle A such that IpA n calpA does not contain any

:$!fA -hord sets for ZPp A.

Corollary 4.2 There is a recursive oracle A such that ZppA, RA, coRA, and IpA n calpA

contain no :$!fA .complete languages.

Proof We wish to show that for no L E IpA n calpA is ZppA ~ pL (this suffices by

Lemma 2.11). For each L E IpA n colpA there exist VI and V, such that V/ is IpA.like,

V! is IpA·like, L = L(V1A) and Y; '" L(V,A), Our goal is to show that for each i,j, either:

1. [V,A is not IpA·like VV/ is not IpA.like V[L(v,A) i- L(V/)J] OR

2. (3£i E ZppA)[Li rf. pL(v,A)}.

Let i; '" {In: (3k)[(n'" (p;Jk) II (3y)[lyl '" n II 1y E AJ]}, where Pi is the ith prime.

Let requirement R(i,j, k) be
• L(vA)

R(i,j.k): (3:>:)[:>: E i, #:>: E L(Mk ')}.

For b E {a, 1} let ii denote 1 - b. In the construction below we will ensure that for each

i, j either:

(•••) [[ViA is not IpA.like] V [V/ is not IpA·like] V [L(ViA) i- L(V/)]] OR

(....)

[(V'k)(3b E {a, 1})[card({y : by E A IIlyl '" (Pin) '" 011card({y : by E A IIlyl '" (Pi)k}) >
2(p,)'-1] and

(V'k)[requirement R(i,j,k) is satisfied)).

12

Note that this is sufficient to ensure that A satisfies the required properties,

For each (i, i, k), we will seek to find a way of extending the oracle to make either ViA
non-IpA-like or V/ non-IpA·like or L(V;A) # L(V/), Failing this, we will argue that R(i,j,k)

can be satisfied. This step is a combinatorial argument exploiting the IpA-like properties

of ViA and V/,
In stage (i,j, k), we either:

satisfy (•••) by adding strings of length (Pi)k + 1, for some k, to A or

without violating (....), satisfy requirement R(i,i, k)'

Let A(;,i. k) denote the set A constructed before stage (i,j,k). Let n(i,i,k) denote the

length, such that for each string of length at most n(i,i.k), membership question (in A) has

been decided before stage (i,j,k).

Let A o = 0 and no = 0 (we let f ~ A). We will have A = U(i,j,k) A(i,i,k)' Go to stage O.

Stage (i,j, k):

1. If (•••) has already been satisfied, then let

A(i,j,k)+l = A(i,i.k) & n(;.i,k)+l = n(i,j,k),

and go to stage (i,j, k) + 1-

2. Otherwise, let n = (Pi)k be so large that:

(i) n > n(i,j.k), and
(ii) 2n > p(n), where p(n) =6· [rk(n)]· [ri(rk(n) + rj(rk(n»].

3. Let B = {O{O, l}m : n(i,j,k) ~ m < ri(rin» II m # n}.

4. If there exists a set S ~ {o,l}n+l such that [V/<',J,.)UBUS or V/("J,·)UBUS is non-IpA.

like on some string of length at most rk(n)], or [for some string of length at most
rk(n), x ~ (L(v,A("J,.)UBUS) ~ L(V/(;,j,·)UBUS))], then

let A(;,j,k)+l = A(i.i,k) uS U B, & n(i.i.k)+l = ri(rk(n» + ri(rk(n»,

and go to stage (i,j, k) + 1-
L(VA(i,},/<)UB)

5. Elseif M k • accepts 1n then let S be a maximal subset of O{O, I]" such that
L VA(i,},k)UBUS

M k (,) still accepts In.

(We will argue below that card(S) > 2n /2)

Let A(iJ.k)+1 = A(i.i,k) U SuB & n(iJ,k)+l = r;(rk(n» +rj(rk(n»,

and go to stage (i, j, k) + 1-

(Note that here requirement R(i,j,k) is satisfied.)
A(i,i,Ji:)UBUS

6. Else, let S be a maximal subset of l{O, I}" such that M:(V')(In) still rejects.

13

(We will argue below that card(S) > 2n/2)

Let A(i,j,k)+l =A("j,k) uS U B & n(i,j,k)+l =T,(Tk(n)) +Tj(Tk(n»,

and go to stage (i, j) +l.

(Note that here requirement R(i,i,k) is satisfied.}

We claim that for steps 5 and 6, card(S) :; 2n - 1 is not possible. We prove this for

step 5 (proof for step 6 is similar). Let T be the set of questions asked by Mk
with the oracle A(i.i.k) U BUS. Let Pi be the prover corresponding to V;A(i'J,»UBUS

and Pj be the prover corresponding to v,A(i.J.• }UBUS, which make the verifiers accept

their respective languages. Now for each strlng xo in O{O,I}n - S, there exists a
. A(' .)uBuS A(' ,.)uBuSu{w}

string '" E T such that '" E L(V ,"")--.L.. '" E L(V ',J.),q, ,q I ~ q I •

Th ' f L(VA(; J »UBUS) h VA(i; »UBUS • h D • hus, 1 W q E i' I t en i" wit prover £1 must query W WIt

probability ~ 1/3 (since probability of acceptance of "', by V; changes from? 2/3
to :; 1/3 when jo is added to the oracle). Similarly, if "', E L(V/(i,J,.}UBUS) then

V/(i,; .•)UBUS with prover Pi must query to with probability ~ 1/3 (since probability

of acceptance of "', by Vi changes from ~ 2/3 to :; 1/3 when w is added to the

oracle). There can be at most card(T) ·3· [T,(Tk(n» +Tj(Tk(n)] strings such as w.

Thus 2n
- card(S) :; 3· Tk(n). [T,(Tk(n» +Ti(Tk(n»], which along with the conditions

for n in step 2, implies card(S) > 2n /2.

End stage (i,j,k).

Note that if we never find a way of satisfying (•••) then i; E ZppA (because of the

number of strings placed into the oracle by the construction (at steps 5 and 6 and in B at

each stage) at each length important to 1;) and (\lj)[requirement R(;,j,k) is satisfied]. Thus

the requirement (* * **) is satisfied. Thus we have met requirements that are sufficient to

ensure the theorem. I

5 Conclusion

This paper showed that many promise classes do not robustly possess Turing complete sets,

and, indeed, even much bigger classes do not contain hard sets for promise classes. Our

proofs exploit the combinatorial limitations of machines that are FewP-like or IP-like. It

remains an open problem at present whether there exist relativized worlds in which R or

UP or FewP have Turing complete languages but not many-one complete languages; our

intuition is that such worlds exist. Relatedly, Watanabe and Tang [WT89] have shown

that if certain conditions hold then m-complete sets and T-complete sets differ in PSPACE.

14

Class (C) C does not robustly possess C does not robustly possess

many-one complete sets Turing complete sets

NP n coNP [Sip82] [Gur83]

IP n coIP Corollary 4.2 Corollary 4.2

BPP [HH88] [HH88] plus [AS86]

R [Sip82] Corollary 4.2

coR [Sip82] Corollary 4.2

ZPP Corollary 4.2 Corollary 4.2

FewP Corollary 3.2 Corollary 3.2

FewP n coFewP Corollary 3.2 Corollary 3.2
I

UP [HH88] Corollary 3.2

coUP [HH88] Corollary 3.2

UP n coUP Corollary 3.2 Corollary 3.2

Table 1: Results on Robust Completeness

Also, there is a relativized world in which the boolean hierarchy contains bounded truth

table complete sets but not k-truth-table complete sets [CGH+88]. Table 1 summarizes the

results of this and earlier papers on complete sets for promise classes.

6 Acknowledgments

We are very grateful to Osamu Watanabe for discussing with us his notion of "sup- U'P"

semi-completeness. We thank William Gasarch for helpful comments on the paper. We

thank Ken Regan and Joel Seiferas for enjoyable discussions.

References

[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing,
17(6):1193-1202, 1988.

[AS86] K. Ambos-Spies. A note on complete problems for complexity classes. Informa
tion Processing Letters, 23:227-230, 1986.

[BDG88] J. Balcazar, J. Dlaz, and J. Gabarro. Structum! Complexity 1. EATCS Mono
graphs in Theoretical Computer Science. Springer-Verlag, 1988.

15

[BGS75] T. Baker, J. Gill, and R. SoIovay. Relativizations of the P=?NP question. SIAM
Journal on Computing, 4(4):431-442, 1975.

[BR88] J. Balcazar and D. Russo. Immunity and simplicity in relativizations of proba
bilistic complexity classes. Theoretical Informatics and Applications (RAIRO),
22(2):227-244, 1988.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, 1. Hernachandra, V. Sewelson, K. Wag
ner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM
Journal on Computing, 17(6):1232-1252. December 1988.

[CH91] J. Cai and L. Hemachandra. A note on enumerative counting. Information
Processing Letters, 38(4):215-219, 1991.

[EHTY89] D. Eppstein, L. Hemachandra, J. Tisdall, and B. Yener. Probabilistic and un
ambiguous computation are incomparable. In Computing and Information: Pro
ceedings of the 1989 International Conference on Computing and Information
(ICCI 1989), pages 65-70. North-Holland, 1989.

[FS88] 1. Fortnow and M. Sipser. Are there interactive protocols for co-NP? Informa
tion Processing Letters, 28, 1988.

[FS89] 1. Fortnow and M. Sipser. Probabilistic computation and linear time. In Pro
ceedings of the 21st ACM Symposium on Theory of Computing, pages 148-156.
ACM Press, May 1989.

[GG86] J. Geske and J. Grollmann. Relativizations of unambiguous and random poly
nomial time classes. SIAM Journal on Computing, 16(2):511-519, 1986.

[GiI77] J. Gill. Computational complexity of probabilistic turing machines. Siam Jour
nal of Computing, 6:675-695, 1977.

[GJ86] J. Goldsmith and D. Joseph. Three results on the polynomial isomorphism of
complete sets. In Proceedings 27th IEEE Symposium on Foundations of Com
puter Science, pages 390-397, 1986.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoil'. The knowledge complexity of interac
tive proof systems. SIAM Journal on Computing, 18(1):186-208,1989.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosys
terns. SIAM Journal on Computing, 17:309-335, 1988.

[Gur83] Y. Gurevich. Algebras of feasible functions. In Proceedings of the 24th IEEE
Symposium on Foundations of Computer Science, pages 210-214. IEEE Com
puter Society Press, November 1983.

[HH88] J. Hartrnanis and L. Hemachandra, Complexity classes without machines: On
complete languages for UP. Theoretical Computer Science, 58:129-142, 1988.

16

[HR]

[HI85]

[HU79]

[HH91] J. Hartrnanis and L. Hemachandra, One-way functions and the non-isomorphism
of NP-complete sets. Theoretical Computer Science, 81(1):155-163, 1991.

J. Hartmanis and N. Immerman. On complete problems for NPncoNP. In Au
tomata, Languages, and Programming (ICALP 1985), pages 250-259. Springer-
Verlag Lecture Notes in Computer Science #194, 1985.

L. Hemachandra and R. Rubinstein. Separating complexity classes with tally
oracles. Theoretical Computer Science. In press.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[KMR88] S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. Journal of Computer
and System Sciences, 1988.

[K085] K. Ko, On some natural complete operators. Theoretical Computer Science,
37:1-30,1985.

[Kur83] S. Kurtz. A relativized failure of the Berrnan-Hartmanis conjecture. Techni
cal Report TR83-001, University of Chicago Department of Computer Science,
Chicago, IL, 1983.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive
proof systems. In Proceedings of the 31st IEEE Symposium on Foundations of
Computer Science, pages 2-10. IEEE Computer Society Press, October 1990.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time re
ducibilities. Theoretical Computer Science, 1(2):103-124, 1975.

[Mah88] S. R. Mahaney. The isomorphism conjecture and sparse sets. In Computational
Complexity Theory. Proceedings of Symposia in Applied Mathematics, Volume
38, American Mathematical Society, 1988.

[Rac82] C. Rackoff, Relativized questions involving probabilistic algorithms. Journal of
the Association of Computing Machinery, 29(1):261-268,1982.

[Reg88] K. Regan. Minimum-complexity pairing functions. Technical Report MSI TR
88-92, Cornell University, Ithaca, NY, September 1988.

[Reg89]

[Rog67]

[Sch85]

K. Regan. Provable complexity properties and constructive reasoning.
Manuscript, April 1989.

H. Rogers, Jr. The Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

U. Schoning. Robust algorithms: A different approach to oracles. Theoretical
Computer Science, 40:57-66, 1985.

17

[Sha90]

[Sip82]

[VaI76]

[WT89]

[Zac86]

A. Shamir. IP=PSPACE. In Proceedings of the st« IEEE Symposium on Foun.
dations of Computer Science, pages 11-15. IEEE Computer Society Press, Oc
tober 1990.

M. Sipser. On relativization and the existence of complete sets. In Automata,
Languages, and Programming (ICALP 1982). Springer-Verlag Lecture Notes in
Computer Science #140, 1982.

L. Valiant. The relative complexity of checking and evaluating. Information
Processing Letters, 5:20-23, 1976.

O. Watanabe and S. Tang. On polynomial time turing and many-one complete
ness in PSPACE. In Proceedings 4th Structure in Complexity Theory Conference,
pages 15-23. IEEE Computer Society Press, 1989.

S. Zachos, Probabilistic quantifiers, adversaries, and complexity classes: An
overview. In Proceedings 1st Structure in Complexity Theory Conference, pages
383-400. IEEE Computer Society Press, June 1986.

18

