
-- --

Vertex Splitting In Dags And Applications
To Partial Scan Designs And Lossy Circuits

Doowon Paik+ Sudhakar Reddy++ Sartaj Sahni+
University of Florida University of Iowa University of Florida

Abstract

Directed acyclic graphs (dags) are often used to model circuits. Path lengths in such dags

represent circuit delays. In the vertex splitting problem, the objective is to determine a minimum

number of vertices to split so that the resulting dag has no path of length δ. This problem has

application to the placement of flip-flops in partial scan designs, placement of latches in pipe-

lined circuits, placement of signal boosters in lossy circuits and networks, etc. Several simplified

versions of this problem are shown to be NP-hard. A linear time algorithm is obtained for the

case when the dag is a tree. A backtracking algorithm and heuristics are developed for general

dags and experimental results using dags obtained from ISCAS benchmark circuits are obtained.

KEYWORDS and PHRASES

Partial-scan designs, flip-flop selection, sequential circuits, lossy circuits and networks, pipelined

circuits, NP-hard

+ Research supported, in part, by the National Science Foundation under grants DCR-84-20935 and MIPS-86-17374.
++ Research supported, in part, by the SDIO/IST Contract No. N00014-90-J-1793 managed by US Office of Naval
Research.

1

-- --

2

1 Introduction

In order to achieve high fault coverage in sequential circuits they are often designed to be easily

testable. The current method of choice is the scan-design. In test mode all flip-flops in a sequen-

tial circuit, using scan-design, are connected into one or more shift registers. This allows one to

set the contents of the flip-flops to the desired state as well as to observe the states of the flip-

flops. As the complexity of logic circuits grows, the overhead for full scan-designs may become

unacceptable. For such situations, partial-scan designs have been proposed. In partial-scan

designs only a selected subset of the flip-flops in a sequential circuit are included in the scan-

path. Several methods to choose the flip-flops to be included in the scan-path have been proposed

[CHEN90], [GUPT90], [LEE90]. One of these proposals gives a method to use the structural

information in a sequential circuit to determine the flip-flops to be placed in a scan-path

[CHEN90]. We briefly discuss this method.

A sequential circuit is represented by a directed graph (digraph) called S-graph. Each flip-

flop in a sequential circuit is represented by a node in the S-graph. A directed edge exists in the

S-graph from node i to node j if the state of the flip-flop represented by node j depends on the

state of the flip-flop represented by node i (that is ,there is a path, through combinational logic, in

the circuit from the output of flip-flip i to the input of flip-flop j). Figure 1 is an example of a S-

graph. Empirical evidence suggests that the existence of cycles and the maximum path length

between nodes of the S-graph increase the complexity of deriving tests for sequential circuits. It

was therefore suggested in [CHEN90] to include a minimum subset of flip-flops into a scan-path

such that the resulting S-graph is cycle-free and the maximum distance between a pair of nodes is

small.

6 5

4

32

1

Figure 1: An example S-graph.

There are several cycles in the S-graph of Figure 1. If the flip-flop corresponding to node 2 is

-- --

3

included in the scan-path then one replaces node 2 with a sink node 2i and a source node 2o as

shown in Figure 2. This transformation corresponds to the fact that the contents of flip-flops in a

scan path can be set and observed in test mode. Notice that the S-graph of Figure 2 is cycle free.

2o
2i

6 5

4

3

1

Figure 2: An acyclic S-graph for Figure 1.

The maximum distance between node 2o and 2i is six. If a flip-flop corresponding to node 5

is also included in the scan-path then the S-graph of Figure 3 is obtained. In this the maximum

distance between any pair of nodes is less than or equal to 3.

5i
5o

2o
2i

6

4

3

1

Figure 3: An S-graph with maximum distance 3.

Two step methods to select the flip-flops to be scanned were proposed in [CHEN90],

[GUPT90], and [LEE90]. In the first step a minimal subset of flip-flops is selected to be included

in the scan-path such that the resulting S-graph is acyclic. In the second step additional flip-flops

are selected to be included in the scan path such that in the resulting S-graph the maximum

-- --

4

distance between any pair of nodes is less than or equal to a specified number δ. This second

step can be modeled as a vertx splitting problem on directed acyclic graphs (dags).

In this paper we study solutions to the problem of finding a minimum number of nodes, in a

dag, to be split such that the maximum distance between any two nodes in the resulting digraph

is less than or equal to a pre-specified value δ. The dags we consider are more general than the

ones that arise from S-graphs. We permit each edge in the dag to have a positive integral weight

instead of requiring all edges to have unit weight. This generalization can be shown to have

application in the placement of latches in pipelined circuits and in the placement of signal boost-

ers in lossy circuits.

In Section 2, we introduce the terminology we shall use in the remainder of this paper. The

NP-hard results are developed in Section 3 and the linear time algorithm for tree dags is given in

Section 4. A backtracking algorithm and heuristics for the dag vertex splitting problem are pro-

posed in Section 5 and 6, respectively. Section 7 reports on experiments with the ISCAS bench-

mark circuits. It should be noted that a linear time algorithm for series-parallel dags is easily

derived from the linear time dag vertex deletion algorithm of [PAIK90].

2 Terminology

Let G = (V,E,w) be a weighted directed acyclic graph (wdag) with vertex set V, edge set E, and

edge weighting funtion w. w (i, j) is the weight of the edge < i, j > ∈ E. w (i, j) is a positive integer

for < i, j > ∈ E and w (i, j) is undefined if < i, j > ∉ E. A source vetex is a vertex with zero in-

degree while a sink vetex is a vertex with zero out-degree. The delay, d (P), of the path P is the

sum of the weights of the edges on that path. The delay, d (G), of the graph G is the maximum

path delay in the graph, i.e.,

d (G) =
P in G
max { d (P) }

Let G /X be the wdag that results when each vertex v in X is split into two v i and v o such that

all edges < v, j > ∈ E are replaced by edges of the form < v o , j > and all edges < i,v> ∈ E are

replaced by edges of the form < i,v i> . I.e., outbound edges of v now leave vertex v o while the

inbound edges of v now enter vertex v i. Figure 3 shows the result, G /X, of splitting the vertex 5 of

the dag of Figure 2. The dag vertex splitting problem (DVSP) is to find a least cardinality vertex

set X such that d (G /X) ≤ δ , where δ is a prespecified delay. For the dag of Figure 2 and δ = 3, X =

{5} is a solution to the DVSP problem.

Lemma 1: Let G = (V,E,w) be a weighted dag and let δ be a prespecified delay value. Let Max-

EdgeDelay =
< i, j> ∈ E

max { w (i, j) }. Then the DVSP has a solution iff δ ≥ MaxEdgeDelay.

-- --

5

Proof: Vertex splitting does not eliminate any edges. So, there is no X such that d (G /X) < Max-

EdgeDelay. Further, d (G /V) = MaxEdgeDelay. So, for every δ ≥ MaxEdgeDelay, there is a least

cardinality set X such that d (G /X) ≤ δ.

3 Complexity Results

If w (i, j) = 1 for every edge in the wdag, then the edge weighting function w is said to be a unit

weighting function and we say that G has unit weights. In this section we show that the following

problems are NP-hard.

1. DVSP for unit weight graphs with δ ≥ 2.

2. DVSP for unit weight multistage graphs with δ ≥ 4. (in a multistage graph the vertices are

divided into an ordered set of stages and each edge goes from a vertex in one stage to one

in the next stage).

Since unit weight wdags are just a special case of general wdags, the results obtained imply

the NP-hardness of the corresponding problems with the unit weight constraint removed.

3.1 Unit Weight DVSP

We shall show that the known NP-complete problem 3SAT can be solved in polynomial

time if the unit weight DVSP with δ ≥ 2 can.

3SAT Problem[GARE79]

Input: A boolean function F = C1 C2
 . . . Cn in n variables x 1, x 2 , ... , xn. Each clause Ci is

the disjunction of exactly three literals.

Output: "Yes" if there is a binary assignment for the n variables such that F = 1. "No" other-

wise.

For each instance F of 3SAT, we construct an instance GF of the unit weight DVSP such

that from the size of the solution to GF we can determine, in polynomial time, the answer to the

3SAT problem for F. This construction employs two unit weight dag subassemblies: variable

subassembly and clause subassembly.

Variable Subassembly

Figure 4(a) shows a chain with δ − 1 vertices. This chain is represented by the schematic of

Figure 4(b). The variable subassembly, VS (i), for variable xi is given in Figure 4(c). This is

obtained by combining together three copies of the chain Hδ−1 with another chain that has three

vertices. Thus, the total number of vertices in the variable subassembly VS (i) is 3δ. Note that

d (VS (i)) = δ + 1. Also, note that if d (VS (i)/X) ≤ δ, then
�
X

�
≥ 1. The only X for which

�
X

�
= 1 and

-- --

6

Schematic

SchematicChain with δ - 1 vertices

. . . Hδ−1

(a) (b)

Hδ−1

Hδ−1

Hδ−1

xi

x
_

i

(c) VS (i) (d)

xi

x
_

i

xi

Figure 4: Variable subassembly for DVSP.

d (VS (i)/X) ≤ δ are X = { xi } and X = { x
_

i }. Figure 4(d) shows the schematic for VS (i).

Clause Subassembly

The clause subassembly CS (j) is obtained by connecting together four δ − 1 vertex chains

with another three vertex subgraph as shown in Figure 5(a). The schematic for CS (j) is given in

Figure 5(b). The number of vertices in CS (j) is 4δ − 1 and d (CS (j)) = 2δ. One may easily verify

that if � X � = 1, then d (CS (j)/X) > δ . So, if d (CS (j)/X) ≤ δ ,then � X � > 1. Since δ ≥ 2, the only X

with � X � = 2 for which d (CS (j)/X) ≤ δ are such that X ⊆ {l j1 , lj 2 , lj 3}. Furthermore, every X ⊆

{lj 1 , lj 2 , l j 3} with � X � = 2 results in d (CS (j)/X) ≤ δ.

To construct GF from F, we use n VS (i)’s, one for each variable xi in F and m CS (j)’s, one for

each clause Cj in F. There is a directed edge from vertex xi (x
_

i) of VS (i) to vertex ljk of CS (j) iff xi

(x
_

i) is the k’th literal of Cj (we assume the three literals in Cj are ordered). For the case F =

(x 1+x
_

2+x
_

4) (x
_

1+x
_

3+x
_

4) (x 1+x 2+x 3), the GF of Figure 6 is obtained.

Since the total number of vertices in GF is 3δn + (4δ − 1)m, the construction of GF can be

done in polynomial time for any fixed δ.

-- --

7

Schematic(b)(a) CS (j)

Hδ−1

lj 3

lj 2

lj 1

Hδ−1

Hδ−1

Hδ−1

Hδ−1

lj 3

lj 2

lj 1

Figure 5: Clause assembly for DVSP.

Theorem 1: Let F be an instance of 3SAT and let GF be the instance of unit weight DVSP

obtained using the above construction. For δ ≥ 2, F is satisfiable iff there is a vertex set X such

that d (GF/X) ≤ δ and � X � = n + 2m.

Proof: If F is satisfiable then there is a binary assignment to the xi’s such that F has value 1. Let

b1,b2, ... bn be this ssignment. Construct a vertex set X in the following way:

1. xi is in X if bi = 1. If bi = 0, then x
_

i is in X.

2. >From each CS (j) add exactly two of the vertices l j 1 , l j2 , lj 3 to X. These are chosen

such that the literal corresponding to the vertex not chosen has value 1. Each clause

has at least one literal with value 1.

We readily see that � X � = n + 2m and that d (GF/X) ≤ δ.

Next, suppose that there is an X such that � X � = n + 2m and d (GF/X) ≤ δ. >From the con-

struction of the variable and clause assemblies and from the fact that � X � = n + 2m, it follows that

X must contain exactly one vertex from each of the sets {xi, x
_

i}, 1 ≤ i ≤ n and exactly 2 from each

of the sets {l j 1 , l j2 , lj 3}, 1 ≤ j ≤ m. Hence there is no i such that both xi ∈ X and x
_

i ∈ X and there is

no j for which l j 1 ∈ X and l j 2 ∈ X and l j 3 ∈ X. Consider the Boolean assignment bi = 1 iff xi ∈ X.

-- --

8

C1

C3

C2

x 4

x 3

x 2

x 1

Figure 6: GF for F = (x 1+x
_

2+x
_

4) (x
_

1+x
_

3+x
_

4) (x 1+x 2+x 3).

Suppose that l jk /∈ X and l jk = xi (x
_

i). Since d (GF/X) ≤ δ, vertex xi (x
_

i) must be split as otherwise

there is a source to sink path with delay greater than δ. So, xi (x
_

i) ∈ X and bi = 1 (0). As a result,

the k’th literal of clause Cj is true. Hence, b1, ... bn results in each clause having at least one true

literal and F has value 1.

When δ = 1, the unit weight DVSP is easily solved as now every vertex that is not a source

or sink has to be split.

3.2 DVSP For Unit Weight Multistage Graphs

A multistage graph is a dag in which the vertices are partitioned into stages and each edge

connects two vertices in adjacent stages. An example is given in Figure 7. In the construction of

Section 3.1, VS (i) is a multistage graph but CS (j) is not as the edges < l j 1 , l j 2 >, < lj 2 , l j 3 > require

l j1 and l j 3 to be two stages apart while the edge < lj 1 , lj 3 > requires them to be one stage apart.

To show that DVSP for multistage graphs is NP-hard, we use the problem 2-3SAT defined

as:

Input: A boolean function F = C1 C2
 . . . Cn in n variables x 1, x 2 , ... , xn . Each clause Ci is

the disjunction of either two or three literals. If � Ci � = 2, then both literals in Ci are

either negated or unnegated. If � Ci � = 3, then at least one literal of Ci is unnegated

and at least one is negated.

-- --

9

Figure 7: Example multistage graph.

Output: "Yes" iff there is a truth assignment for the n variables such that F = 1. "No" otherwise.

Theorem 2: 2-3SAT is NP-hard.

Proof: From any instance F of 3SAT we can obtain, in polynomial time, an instance H of 2-3SAT

such that H is satisfiable (i.e., has answer "yes") iff F is. Consider each clause of F. If Ci has only

unnegated literals (say Ci = (xi1
+ xi2

+ xi3
)) then replace Ci with (xi1

+ y 1 + y
_

2)(xi2
+ y

_
1 + y 2) (xi 3

+ y
_

1 + y
_

2) (y 1 + y 2), where y 1 and y 2 are new variables. If Ci has only negated literals (say Ci =

(x
_

i1
+ x

_
i2

+ x
_

i3
)) then replace Ci with (x

_
i 1

+ y 1 + y
_

2) (x
_

i 2
+ y

_
1 + y 2) (x

_
i3

+ y 1 + y 2) (y
_

1 + y
_

2).

In this way F is transformed into an instance H of 2-3SAT. One may verify that H is

satisfiable iff F is.

>From an istance F of 2-3SAT we can construct an istance GF of the multistage DVSP using

the variable and clause subassemblies of Figure 8.

One may verify that for δ ≥ 4 :

(1) If � X � = 1 and d (VS (i)/X) ≤ δ then X ⊂ {xi , x
_

i }.

(2) If � X � = 2 and d (CS 3(j)/X) ≤ δ then X ⊂ { l j 1 , l j 2 , l j3 }.

(3) If � X � = 1 and d (CS 2(j)/X) ≤ δ then X ⊂ { l j 1 , l j 2 }.

The construction of GF is similar to that used in Section 3.1 except that the variable and

clause subassemblies of Figure 8 are used. In case � Cj � = 2, a modified CS 2(j), subassembly as

in Figure 9(a) is used. If � Cj � = 3, then a modified CS 3(j) is used. This modification is now

-- --

10

CS 2(j)
l j 2

l j 1

l j 2

l j 1

Hδ−2

Hδ−2

l j3

l j2

l j1

CS 3(j)

(c) CS 3(j) for � Cj � = 3(b) Schematic

Hδ−2

Hδ−2

Hδ−2

Hδ−2

l j 3

l j 2

l j 1

Hδ−2

Hδ−2

x
_

i

xi

(a) VS (i)

x
_

i

xi

Hδ−2

Hδ−2

Hδ−2

(e) CS 2(j) for � Cj � = 2(d) Schematic (f) Schematic

Figure 8: Subassemblies for DVSP multistage graph.

described. Suppose the literals in Cj are ordered so that the unnegated ones come first. If Cj has

two unnegated literals, use the clause subassembly of Figure 9(b). Otherwise, use that of Figure

9(c). Figure 10 gives the GF obtained for the case F = (x 1+x
_

2+x
_

4) (x 2+x 3+x
_

4) (x
_

1+x
_

3) (x 2+x 3).

Theorem 3: Let F be an instance of 3SAT and let GF be the instance of the unit weight multis-

tage graph DVSP obtained using the above construction. For δ ≥ 4, F is satisfiable iff there is a

vertex set X such that d (GF/X) ≤ δ and � X � = n + 2m − q, where m is the number of clauses in F and

q is the number of two literal clauses.

-- --

11

CS 3(j)

(c) One unnegated literal

CS 3(j)
CS 2(j)

(a) � Cj � = 2 (b) Two unnegated literal

lj 2

lj 1

l j3

l j2

l j1

l j3

l j2

l j1

Figure 9: Modified clause subassemblies.

CS 2(4)

CS 2(3)

CS 3(2)

CS 3(1)

x 4

x 3

x 2

x 1

Figure 10: GF for F = (x 1+x
_

2+x
_

4) (x 2+x 3+x
_

4) (x
_

1+x
_

3) (x 2+x 3).

-- --

12

Proof: Analogous to that of Theorem 1.

4 Tree DVSP

In this section we develop a linear time algorithm for the DVSP when the wdag G is a rooted tree.

The algorithm is a simple postorder [HORO90] traversal of the tree. During this traversal we

compute, for each node x, the maximum delay, D (x), from x to any other node in its subtree. If x

has a parent z and D (x) +w (z,x) exceeds δ, then the node x is split and D (z) is set to 0.

2212

2122

31

kjih

gfed

cb

a

Figure 11: An example tree.

Consider the example tree of Figure 11 and assume δ = 3. The delay, D (x), for x a leaf node

is 0. So, D (x) = 0 for x ∈ { h , i , e , j , k }. In postorder, a node is visited after its children have

been. When a node x is visited, its delay may be computed as:

D (x) =
y is a child of x

max { D (y) + w (x,y) }

So, D (d) = 2. Since D (d) + w (b,d) > δ = 3, we split node d to get the tree of Figure 12(a). Next,

D (b) = 2 and D (f) = 2 are computed and since D (b) + w (a,b) ≤ 3 and D (f) + w (c, f) ≤ 3, neither b

nor f is split. Then since D (g) = 2 and D (g) + w (c,g) > δ = 3, node g is split and we get the tree

of Figure 12(b). Next, node c is visited and split since D (c) + w (a,c) = 5 > 3 = δ. No more nodes

are split. The final tree after splitting the three nodes d, g, and c is given in Figure 13. The formal

algorithm is given in Figure 14. The algorithm assumes that X has been initialized to ∅ and that

-- --

13

(b)(a)

a

b c

di e f g

j k

1 3

2 2 1 2

2 2 2

2122

31

j

gifedi

cb

a

Figure 12: Splitting nodes in Figure 11

w (i, j) ≤ δ for every edge in T since otherwise, there is no solution. Its complexity is O (n) where n

is the number of vertices in T.

Theorem 4: Procedure DVSP_tree finds a minimum cardinality X such that d (T/X) ≤ δ.

Proof: The proof is by induction on the number, n, of nodes in the tree T. If n = 1, the theorem is

trivially valid. Assume this is so for n ≤ m where m is an arbitrary natural number. Let T be a tree

with n + 1 nodes. Let X be the set of vertices split by DVSP_tree and let W be a minimum cardi-

nality vertex set such that d (T/W) ≤ δ. We need to show that � X � = � W � . If � X � = 0, this is trivi-

ally true. If � X � > 0, then let z be the first vertex added to X by DVSP_tree. Let Tz be the subtree

of T rooted at z. As z is added to X by DVSP_tree, D (z) + w (parent (z),z) > δ. Hence, W must con-

tain at least one vertex u that is in Tz. If W contains more than one such u, then W cannot be of

minimum cardinality as Z = W − { all such u } + {z} is such that d (T/Z) ≤ δ. Hence, W contains

exactly one such u. Let W´ = W − {u}. Let T´ be the tree that results from the removal of Tz from

T except z. If there is a W ∗ such that � W∗ � < � W´ � and d (T´/W∗) ≤ δ, then since d (T/(W ∗+ {z})) ≤

δ, W is not a minimum cardinality deletion set for T. So, W´ is a minimum cardinality vertex set

-- --

14

2

3

g i

c i

ed i

2

1

b

a

do

f i

2 1

c o

f

j

1 2

2

2

k

go

Figure 13: DVSP solution for a tree in Figure 11.

such that d (T´/W´) ≤ δ. Also, X´ = X − {z} is such that d (T´/X´) ≤ δ and furthermore X´ is the

answer produced by DVSP-tree when started with T´. Since the number of vertices in T´ is less

than m + 1, � X´ � = � W´ � . Hence, � X � = � X´ � + 1 = � W´ � + 1 = � W � .

5 A Backtracking Algorithm For DVSP

Backtracking algorithms [HORO78] generally search a tree organization of the solution space

using bounding functions. The solution to our problem is a 0/1 vector X = (x 1 , x 2 , . . . , xn)

where n is the number of vertices and xi = 0 iff vertex i is not split. We use the binary tree organi-

zation used in [HORO78] for the 0/1-knapsack problem. In this organization, the nodes at level i

denote a decision on xi , 1 ≤ i ≤ n. If xi = 0 we move to the left subtree. Otherwise we move to

the right subtree of a level i node. Figure 15 shows the solution space tree for the case n = 3.

Each root to leaf path defines a vector X in the solution space.

The remaining features of our backtracking algorithm are :

1) The vertices of the dag are considered in topological order. Thus, xi (of Figure 15) denotes

a decision on whether or not the i’th vertex, in the topological order, of the dag is split.

-- --

15

procedure DVSP_tree(T);
{Find minimum cardinality X such that d (T/X) ≤ δ}
{Assume that w (i, j) ≤ δ for every edge in T and that}
{X is initialized to ∅}

begin
if T < > nil
then begin

D (T) = 0;
for each child Y of T do
begin

DVSP_tree(Y);
D (T):= max {D (T), D (Y)+w (T,Y)};

end;
if T is not the root
then if D (T) + w(parent (T),T) > δ

then begin
X:= X ∪ {T}; {split T}
D (T) = 0;

end;
end;

end; {of DVSP_tree}

Figure 14: DVSP algorithm for trees.

2) If the i’th vertex, in the topological order, is a source or sink vertex then the subtree with xi

= 1 is not considered (i.e., it is eliminated from the tree of Figure 15) as source and sink

vertices are not to be split.

3) Let Y be a node in the solution space tree. If Y is at level i (root is at level 1), then the path

from the root to Y determines values for x 1 , x 2 , . . . , xi −1. Let G //Y be the dag obtained from

the original dag by splitting the vertices with x j = 1, 1 ≤ j < i. Let f be the delay of the max-

imum delay path in G //Y that ends at the i’th vertex in the topological order and let g (G //Y)

be the delay of the maximum delay path in G //Y that begins at the i’th vertex. We use the

following rules to move to a child of node Y:

3a) If f + w (i, j) > δ for some < i, j > ∈ E, then set xi = 1 and eliminate the xi = 0 subtree.

3b) If f + g (G //Y) ≤ δ, then set xi = 0 and eliminate the xi = 1 subtree.

3c) If there is only one edge < i, j > that leaves vertex i, and f + w (i, j) ≤ δ, then set xi = 0

-- --

16

111110101100011010001000

x 3= 1x 3= 0x 3= 1x 3= 0x 3= 1x 3= 0x 3= 1x 3= 0

x 2= 1x 2= 0x 2= 1x 2= 0

x 1= 1x 1= 0

Figure 15: Solution space organization for n = 3.

and eliminate the subtree xi = 1.

3d) If none of 3a) − 3d) apply, then search the subtree of Y with xi = 0 first and later

search the one with xi = 1.

4) To bound a node Y , we do the following. Let opt be the number of nodes split in the best

solution found so far, and let r be the number of nodes split on the path from the root to Y.

And let l (G //Y) be the delay of the maximum delay path in G //Y. It is clear that at least �
l (G //Y)/δ � − 1 additional vertices need to be split. So, if opt ≤ r + � l (G //Y)/δ � − 1 then

node Y is bounded and the subtree with root Y is not to be searched.

6 Heuristics For DVSP

We formulate four simple and intuitively appealing constructive heuristics to obtain a set X such

that d (G /X) ≤ δ. All four split one vertex at a time until the remaining dag has delay ≤ δ. They

assume that the input dag has a feasible solution. I.e., no edge has delay > δ.

The first three heuristics have the form given in Figure 16 and differ only in the criteria used

to select the next vertex to split.

-- --

17

X := ∅ ; { X is the set of vertices to split }
while d (G /X) > δ do
begin

Select the next vertex, v , to split;
X := X ∪ {v};

end;

Figure 16: General form of heuristics 1 through 3.

6.1 Heuristic 1 (h1)

The selection criteria for the next vertex to split is :

a) v /∈ X and v is neither a source nor a sink vertex

b) v is on a path with delay > δ

c) Of all vertices that satisfy a) and b), v has the maximum number of incident edges that are

on paths of delay > δ. In case of a tie, let Z be the set of vertices that are tied. For each u ∈

Z determine l (u) and r (u) such that l (u) is the length of a longest path from a source of G /X

to u and r (u) is the length of a longest path from u to a sink of G /X. The vertex with the

maximum value of min {l (u) , r (u)} is selected. If there is still a tie, this is broken arbi-

trarily.

This heuristic is easily implemented to have run time O(k (n + e)) where k is the number of

vertices split, n is the number of vertices in the dag, and e is the number of edges in the dag.

6.2 Heuristic 2 (h2)

In this heuristic, the next vertex, v , to split satisfies criteria a) and b) of Heuristic 1. In

addition, the following criteria is employed:

c’) Of all the vertices that satisfy a) and b), v is a vertex whose splitting results in a dag that has

the fewest number of vertices that are on paths of delay > δ. Ties are broken as in h1.

Heuristic 2 may be implemented to have complexity O(kne).

-- --

18

6.3 Heuristic 3 (h3)

Heuristic 3 also uses criteria a) and b) used by Heuristic 1. However, criteria c) is replaced

by:

c’’) Of all the vertices that satisfy a) and b), v is such that its splitting results in a dag with least

delay. I.e., v is such that d(G /(X ∪ {v})) is minimum over all choices for v. Ties are bro-

ken as in h1.

The complexity of Heuristic 3 is O(kne).

6.4 Heuristic 4 (h4)

In this heuristic, the vertices of the dag are examined in two different orders: topological

and reverse topological. When the i’th vertex in the topological (reverse topological) order is

examined, it is split if the current dag contains a path comprised solely of vertices 1, ... , i and one

additional vertex that has delay > δ. The heuristic is specified in Figure 17. It can be imple-

mented to run in O(n + e) time. Note that the additional vertex j can be restricted to the set of

vertices adjacent to i.

X := ∅ ; { set of split vertices }
for i := 1 to n do { in topological order }

if G /X has a path comprised solely of vertices
1, 2, ... , i, and j (for any j) with delay > δ

then X := X ∪ { i };

Y := ∅ ; { set of split vertices }
for i := n down to 1 do { in reverse topological order }

if G /Y has a path comprised solely of vertices
n, n −1, ... , i, and j (for any j) with delay > δ

then Y := Y ∪ { i };

if � X � < � Y �
then split vertices in X

else split vertices in Y;

Figure 17: Heuristic 4.

-- --

19

7 Experimental Results

The backtracking algorithm of Section 5 and the four heuristics of Section 6 were programmed in

Pascal and run on an Apollo DN3500 workstation. We experimented with two sets of acyclic

directed graphs. The first set was obtained from the S-graphs of the ISCAS-89 benchmark

sequential circuits [BRGL89]. The S-graphs were first rendered cycle free by the procedure

given in [LEE90]. The characteristics of the resulting dags are given in Table 1. The other set of

graphs was derived from the ISCAS-85 benchmark combinational circuits [BRGL85]. Here the

nodes in the digraph model the gates in the circuit and the edges correspond to the connections

between gates. Associated with each edge is the propagation delay along the corresponding cir-

cuit gate input. The edge delay was set to the maximum of the rising and falling delays provided

in [BRGL85]. The characteristics of these circuits are given in Table 2. For each dag, G, we

experimented with the δ values { .9d (G), .8d (G), .7d (G), .6d (G), .5d (G), .4d (G) }. Table 3 gives

the results for the case G = s400. Note from Table 1 that d (s400) = 16. For δ close to d (s400)

(specifically, δ = 12 and 14), all four heuristics found optimal solutions. Heuristic 2 was the only

one that obtained optimal solutions for all tested δ values. Table 4 gives the performance of cir-

cuit s38584. The backtracking algorithm was able to complete only for the case δ = .9d (G) and δ

= .8d (G) in the time alloted for each run. Heuristic h2 consistently obtained better solutions than

obtained by the remaining heuristics. However, its run time, while quite acceptable, was greater

than that of heuristics 1 and 4.

Table 5 gives the results for the combinational circuit c432. For this circuit, heuristics 2

and 3 found the optimal solution for all tested δ values. The results for circuit c6288 are given in

Table 6. The backtracking algorithm successfully found the optimal solution only for the cases δ

= 287.89 = 0.9d (G) and δ = 255.90 = 0.8d (G). Of the four heuristics, h2 obtained the best solu-

tions for five of the six δ values tested and h4 was best for the remaining δ value.

Tables 7 and 8 give the total number of nodes split by each of the four heuristics for each of

the sequential and combinational circuits, respectively. For each circuit the six δ values {

.9d (G), .8d (G), .7d (G), .6d (G), .5d (G), .4d (G) } were used and the tables give the sum of the

number of vertices split for each of these δ values. Table 9 and 10 give the % of tests on which

each heuristic obtained the best solution. Heuristic 2, on average, was significantly better than

the others.

Tables 11 − 14 give the number of nodes split at the two extremes δ = 0.9d (G) and δ =

0.4d (G) of the range of δ values tested. Generally, for δ close to d (G) the four heuristics tended

to obtain solutions of comparable quality while for smaller δ the differences were more notice-

able. However, in all δ ranges tested, heuristic 2 tended to produce the best solutions. The aver-

age run time for each of the circuits and each δ value is given in Tables 15 and 16. As can be

seen heuristics 1 and 4 are very fast. While heuristic 2 is significantly faster than heuristic 3, it is

-- --

20

much slower than h1 and h4. Despite this, we recommend h2 because it produces relatively

better solutions and its run time is acceptable.

8 References

[BRGL85] F. Brglez and H. Fujiwara, "A Neutral Netlist of Ten Combinational Benchmark

Circuits and a Target Translator in FORTRAN,"

Proc. IEEE Symp. on Circuits & Systems, June 1985 pp. 663-666.

[BRGL89] F. Brglez, D. Bryan, and K. Kozminski, "Combinational Profiles of Sequential

Benchmark Circuits,"

Proc. of Intern. Symp. on Circuit & Systems, May 1989, pp. 1929-1934.

[CHEN90] K.T. Cheng and V. D. Agrawal, "A Partial Scan Method for Sequential Circuits

with Feedback," IEEE Transactions on Computers, Vol. 39, No. 4, pp. 544-548,

April 1990.

[GARE79] M. R. Garey, and D. S. Johnson, "Computers and Intractability", W. H. Freeman

and Company, San Francisco, 1979.

[GUPT90] R. Gupta, R. Gupta and M. A. Breuer, "BALLAST: A Methodology for Partial

Scan Design," IEEE Transactions on Computers, Vol. 39, No. 4, pp. 538-544,

April 1990.

[HORO78] E. Horowitz, and S. Sahni, "Fundamentals of Computer Algorithms", Computer

Science Press, Maryland, 1978.

[HORO90] E. Horowitz, and S. Sahni, "Fundamentals of Data Structures in Pascal", Computer

Science Press, Maryland, 1990.

[LEE90] D. H. Lee and S. M. Reddy, "On Determining Scan Flip-flops in Partial-scan

Designs," Proc. of International Conference on Computer Aided Design,

November 1990.

[PAIK90] D. Paik, S. Reddy, and S. Sahni, "Deleting Verticies To Bound Path Lengths",

University of Florida, Technical Report, 1990.

-- --

21

circuit # vertices # edges d (G)

s400 173 282 16
s420 37 130 17
s526 27 98 12
s526n 27 98 12
s838 69 266 33
s1423 74 917 26
s5378 233 1314 20
s9234 216 1633 32
s13207 762 3083 35
s15850 608 8562 61
s35932 1777 3380 36
s38417 1396 8754 29
s38584 1448 9471 129

Table 1: Circuit characteristics (unit delay) of modified sequential circuits

circuit # vertices # edges max delay

c432 250 426 57.40
c499 555 928 53.30
c880 443 729 53.00
c1355 587 1064 49.90
c1908 913 1498 76.59
c2670 1426 2076 86.87
c3540 1719 2939 98.69
c5315 2485 4386 99.30
c6288 2448 4800 319.88
c7552 3719 6144 85.30

Table 2: Circuit characteristics (with max of falling and rising delay) of ISCAS combinational
circuits.

nodes split run time (sec)
�
δ � h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

14 1 1 1 1 1 < 1 < 1 < 1 < 1 < 1
12 1 1 1 1 1 < 1 < 1 < 1 < 1 < 1
11 2 2 2 3 2 < 1 < 1 < 1 < 1 < 1
9 5 4 4 7 4 < 1 < 1 1 < 1 10
8 7 4 4 11 4 < 1 < 1 1 < 1 24
6 12 8 11 10 8 < 1 1 3 < 1 35980

Table 3: Results for s400

-- --

22

nodes split run time (sec)
�
δ � h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

116 21 2 2 5 2 3 61 61 < 1 222
103 15 2 4 24 2 2 64 127 < 1 17280

90 18 2 5 20 - 3 68 181 < 1 -
77 27 4 6 20 - 5 127 218 < 1 -
64 40 8 13 27 - 7 293 682 < 1 -
51 89 10 37 44 - 18 439 2126 < 1 -

Table 4: Results for s38584

nodes split run time (sec)

δ h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

51.66 1 1 1 1 1 < 1 1 1 < 1 < 1
45.92 2 1 1 9 1 < 1 1 1 < 1 < 1
40.18 2 2 2 10 2 < 1 2 2 < 1 < 1
34.44 3 2 2 19 2 < 1 2 2 < 1 < 1
28.70 4 3 3 10 3 < 1 3 3 < 1 1486
22.96 5 3 3 21 3 < 1 4 4 < 1 1007

Table 5: Results for c432

nodes split run time (sec)

δ h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

287.89 69 1 1 2 1 10 158 161 < 1 33
255.90 210 3 6 4 2 34 370 764 < 1 36
223.91 241 23 33 29 - 40 2634 4910 < 1 -
191.92 216 30 86 44 - 37 3603 16223 < 1 -
159.94 349 41 86 50 - 58 4886 18450 < 1 -
127.95 328 56 86 45 - 56 6971 20900 1 -

Table 6: Results for c6288

-- --

23

circuit h1 h2 h3 h4

s400 28 20 23 33
s420 31 31 31 31
s526 21 33 25 26
s526n 21 33 25 26
s838 60 36 36 36
s1423 58 63 57 62
s5378 24 9 10 18
s9234 64 27 33 50
s13207 139 48 99 87
s15850 194 59 121 217
s35932 174 128 147 147
s38417 414 133 246 406
s38584 210 28 67 140

Table 7: Total number of nodes split for modified sequential circuits

circuit h1 h2 h3 h4

c432 17 12 12 70
c499 48 72 108 120
c880 65 45 97 82
c1355 60 73 97 152
c1908 128 50 109 144
c2670 183 59 101 147
c3540 389 142 262 226
c5315 260 84 264 184
c6288 1413 154 298 174
c7552 564 249 709 635

Table 8: Total number of nodes split for combinational circuits

-- --

24

circuit h1 h2 h3 h4

s400 50 100 83 33
s420 83 83 83 83
s526 100 33 50 50
s526n 100 33 50 50
s838 33 83 83 83
s1423 83 17 100 33
s5378 17 100 83 67
s9234 0 100 50 0
s13207 0 100 17 17
s15850 0 100 33 17
s35932 33 100 67 67
s38417 17 83 0 17
s38584 0 100 17 0

average 39.7 79.5 55.2 39.8

Table 9: Percentage of best solutions for sequential circuits

nodes split run time (sec)

circuit h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

s400 1 1 1 1 1 < 1 < 1 < 1 < 1 < 1
s420 2 2 2 2 2 < 1 < 1 < 1 < 1 < 1
s526 2 2 2 2 2 < 1 < 1 < 1 < 1 < 1
s526n 2 2 2 2 2 < 1 < 1 < 1 < 1 < 1
s838 4 4 4 4 4 < 1 < 1 < 1 < 1 < 1

s1423 3 3 3 3 3 < 1 < 1 < 1 < 1 1
s5378 1 1 1 1 1 < 1 < 1 < 1 < 1 < 1
s9234 4 1 1 2 1 < 1 < 1 < 1 < 1 < 1

s13207 5 3 3 3 3 < 1 9 10 < 1 16
s15850 5 2 2 2 2 < 1 25 25 < 1 8
s35932 10 10 10 10 - < 1 127 157 < 1 -
s38417 5 3 3 2 2 < 1 47 56 < 1 10
s38584 21 2 2 5 2 3 61 61 < 1 222

Table 10: Sequential circuits, δ = 0.9d (G)

-- --

25

nodes split run time (sec)

circuit h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

c432 1 1 1 1 1 < 1 1 1 < 1 < 1
c499 2 2 6 8 2 < 1 9 35 < 1 < 1
c880 1 1 1 4 1 < 1 1 1 < 1 < 1

c1355 2 2 5 24 2 < 1 11 36 < 1 11
c1908 2 1 1 12 1 < 1 7 7 < 1 1
c2670 9 1 1 2 1 < 1 10 10 < 1 < 1
c3540 17 5 6 10 - 1 98 176 < 1 -
c5315 13 2 11 4 2 1 52 201 < 1 5
c6288 69 1 1 2 1 10 158 161 < 1 33
c7552 20 5 8 5 - 3 163 280 < 1 -

Table 11: Combinational circuits, δ = 0.9d (G)

nodes split run time (sec)

circuit h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

s400 12 8 11 10 8 < 1 1 3 < 1 35980
s420 7 7 7 7 7 < 1 < 1 < 1 < 1 < 1
s526 6 13 6 6 6 < 1 < 1 < 1 < 1 < 1
s526n 6 13 6 6 6 < 1 < 1 < 1 < 1 < 1
s838 8 8 8 8 8 < 1 < 1 < 1 < 1 42

s1423 17 18 16 17 - < 1 5 4 < 1 -
s5378 6 3 4 3 3 < 1 2 2 < 1 < 1
s9234 17 13 16 25 - < 1 13 17 < 1 -

s13207 40 16 35 24 - 2 85 247 < 1 -
s15850 68 23 49 78 - 11 513 1059 < 1 -
s35932 64 37 55 38 - 6 1064 2018 < 1 -
s38417 160 60 115 190 - 25 1924 8553 < 1 -
s38584 89 10 37 44 - 18 439 2126 < 1 -

Table 12: Sequential circuits, δ = 0.4d (G)

-- --

26

nodes split run time (sec)

circuit h1 h2 h3 h4 optimal h1 h2 h3 h4 optimal

c432 5 3 3 21 3 < 1 4 4 < 1 1007
c499 18 21 30 40 - < 1 99 187 < 1 -
c880 33 20 39 25 - < 1 41 112 < 1 -

c1355 18 21 25 56 - < 1 117 170 < 1 -
c1908 40 21 66 41 - 1 214 724 < 1 -
c2670 57 34 56 64 - 3 662 1339 < 1 -
c3540 113 48 86 68 - 10 1867 5100 < 1 -
c5315 95 40 105 91 - 12 2408 8612 < 1 -
c6288 328 56 86 45 - 56 6971 20900 1 -
c7552 189 129 372 330 - 40 23933 83417 < 1 -

Table 13: Combinational circuits, δ = 0.4d (G)

circuit h1 h2 h3 h4

c432 33 100 100 17
c499 100 33 0 17
c880 33 83 50 0
c1355 100 17 0 33
c1908 0 100 17 0
c2670 0 100 50 33
c3540 0 100 0 0
c5315 0 100 0 17
c6288 0 83 17 17
c7552 0 100 0 17

average 26.6 81.6 23.4 15.1

Table 14: Percentage of best solutions.

-- --

27

circuit h1 h2 h3 h4

s400 < 1 < 1 1 < 1
s420 < 1 < 1 < 1 < 1
s526 < 1 < 1 < 1 < 1
s526n < 1 < 1 < 1 < 1
s838 < 1 < 1 < 1 < 1
s1423 < 1 3 3 < 1
s5378 < 1 1 1 < 1
s9234 < 1 3 5 < 1
s13207 1 37 95 < 1
s15850 5 195 379 < 1
s35932 2 532 749 < 1
s38417 11 681 2671 < 1
s38584 6 175 558 < 1

Table 15: Average run time for sequential circuits.

circuit h1 h2 h3 h4

c432 < 1 2 2 < 1
c499 < 1 59 112 < 1
c880 < 1 14 36 < 1
c1355 < 1 70 101 < 1
c1908 1 84 194 < 1
c2670 1 168 320 < 1
c3540 6 875 2186 < 1
c5315 5 682 2607 < 1
c6288 39 3104 10235 < 1
c7552 18 6212 22632 < 1

Table 16: Average run time for combinational circuits.

-- --

