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Abstract

A constraint satisfaction problem� namely the generation of Balanced Incomplete
Block Designs �v� b� r� k� ���BIBDs� is casted in terms of function optimization� A
family of cost functions that both suit the problem and admit a neural implementa�
tion is de�ned� An experimental comparison spanning this repertoire of cost func�
tions and three neural relaxation strategies �Down�Hill search� Simulated Annealing
and a new Parallel Mean Search procedure�� as applied to all BIBDs of up to ����
entries� has been undertaken� The experiments were performed on a Connection Ma�
chine CM�	�� and their analysis required a careful study of performace measures�
The simplest cost function standed out as the best one for the three strategies�
Parallel Mean Search� with several processors searching cooperatively in parallel�
could solve a larger number of problems than the same number of processors work�
ing independently� but Simulated Annealing yielded overall the best results� Other
conclusions� as detailed in the paper� could be drawn from the comparison� BIBDs
remaining a challenging problem for neural optimization algorithms�

Keywords� block designs� neural cost functions� simulated annealing� parallel mean
search� performance measures� experimental evaluation

� Introduction

The work described in this paper originates in ���� where the generation of
block designs was used as a benchmark for comparing the performance of
several related optimizing search strategies� based on neural networks� Such
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strategies were approached as general purpose techniques� Therefore� no at�
tempt was made to build any problem knowledge �i�e� design properties� into
the search strategies� This paper summarizes the results obtained�

��� The problem� Block Designs

Balanced Incomplete Block Designs �BIBDs� have their origins in the 	eld
of Experimental Design� and their properties and generation are studied by
Combinatorial Analysis �
������ Taking �v� b� u� as independent parameters�
and in terms of its incidence matrix� a Balanced Incomplete Block Design
�v� b� u��BIBD can be de	ned as follows� Let A � �xij� be a given con	guration
in the space A�v� b of binary con	gurations with v rows and b columns� Let
xij � f
� 
g� the state variables� represent the incidence of treatment i in block
j of A� and let o �

Pv
i��

Pb
j�� xij be the number of ones in A �the number of

plots�� ri �
Pb

j�� xij the number of ones in row i �the replicate number for
treatment i�� kj �

Pv
i�� xij the number of ones in column j �the size of block

j�� and �il �
Pb

j�� xijxlj the correlation or dot product between rows i and l
�the number of times that treatments i and l occur together in a block��

De�nition � For �xed r� k and �� with k � v and � � 
� we say that A is the
incidence matrix of a BIBD with parameters �v� b� u� and descriptors �r� k� �	
if and only if the following properties are ful�lled�

i� Right number of ones� o � u�
ii� Strictly uniform rows� ri � r� i � 
� � � � � v�
iii� Strictly uniform columns� kj � k� j � 
� � � � � b�
iv� Strict balance� �il � �� i � 
� � � � � v � 
� l � i� 
� � � � � v�

Parameters and descriptors are related by the followingmultiplicity conditions�

r�u�v

k�u�b

��
r�k � 
�

v � 

�

u�u� b�

bv�v � 
�
�

with r� k and � integers� therefore restricting the range of admissible parameter
sets�

The admissibility of its parameters is a necessary but not su�cient condition
for the existence of a block design� The situation is summarized in �
��� that
lists all non�trivial admissible parameter sets with r � �
� together with the
currently known bounds on the number Ns of non
isomorphic solutions� In
particular� whenever it has been established that a particular design does not
exist Ns � 
� and Ns �� denotes an unsettled case� For our use here all
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cases with vb � 



 are listed in Appendix A� Some �in	nite� families of
block designs �designs whose parameters satisfy particular properties� can be
constructed analytically� by direct or recursive methods �
�� Chapter 
��� and
the state of the art in computational methods for design generation is described
in ���� The smallest unsettled case is ���� ��� ���� ��
�� with vb � ��� entries�
showing that exhaustive search is still intractable for designs of this size� In
the general case� as with other combinatorial con	gurations� the algorithmic
generation of block designs is an NP problem ����

Several alternative combinatorial con	gurations have been de	ned in the lit�
erature for the experimental settings where the desired parameters are not
admissible �i�e� �v� b� u� leading to non�integer �r� k� ���� the most usual being
Pairwise Balanced Designs ����� �r� ���designs �
��� Partially Balanced Incom

plete Block Designs ������� and Regular Graph Designs �
��� In ����� a new
family of similar combinatorial con	gurations�Maximally Balanced Maximally
Uniform Designs �v� b� u��MBMUDs� arises as the natural generalization of
BIBDs implied by our study of neural cost functions� MBMUDs allow for
at most two consecutive values for its row� column and balance descriptors
�r� r � 
� k� k � 
� and �� �� 
��

��� The tool� Optimizing Neural Networks

The generation of block designs is a constraint satisfaction problem� In order
to use optimizing neural networks we must 	rst reformulate it as a combina�
torial optimization problem and then map it onto a standard neural network
architecture� The set of cost functions that are described in this work are based
on the number of pairs �the number of active connections� as a distribution
measure for each of the properties of a BIBD ���� therefore mapping straight�
forwardly onto an optimizing network which� because of the balance property�
uses connections of arity four�

Three search strategies are considered� Two standard ones� Down�Hill search
DH �
�� and Simulated Annealing SA ���� plus a novel strategy� Parallel Mean
Search PMS ���� which is described in Section ����

The application of neural networks to combinatorial optimization problems
�Hop	eld networks� was 	rst proposed in �
�� and is deeply analyzed in �
��
Networks with higher arity connections are considered in ����� Simulated An�
nealing �or Boltzmann machines� and its deterministic version� Mean Field
Annealing MFA ����� are based on statistical mechanics models and� therefore�
they have a strong theoretical background ���
��� Some variants and applica�
tions of the MFA model can be found in ����

�� The dynamics of optimizing
neural networks are studied in �

�� among others� A most general framework
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for Hop	eld networks is de	ned in ��
��

��� Paper Overview

In Section � a family of cost functions for BIBD generation is de	ned� Section �
describes the three search strategies� with special emphasis on the new Par�
allel Mean Search procedure� Section � describes the experimental setting for
algorithm comparison� together with the results� Finally� Section � is devoted
to conclusions�

� Neural Cost Functions for the Generation of Block Designs�
based on Distribution Measures

Let A � v � b be the set of all A � �xij� binary con�gurations with v rows
and b columns� We say that F � A � R is a cost function for the generation
of block designs if there exists a lower bound F � such that F �A�� � F � if and
only if there exists a �v� b� u��BD with incidence matrix A��

The cost functions considered in this work ��� are de	ned as the linear combi�
nation of a set of distribution measures for each of the properties of a block
design�

F �A� � �uU�A� � �tPt�A� � �hPh�A� � �vPv�A� � �qQ�A� � ��q �Q�A�� �
�

with U� Pt� Ph� Pv� Q and �Q de	ned next� and ��u� �t� �h� �v� �q� ��q�� the coe��
cients of the linear combination� de	ning the composition of a particular cost
function�

Number of ones� U�A� � o

Total pairs of ones� Pt�A� �

�
B� o
�

�
CA

Horizontal pairs of ones� Ph�A��
X
i

�
B� ri

�

�
CA

Vertical pairs of ones� Pv�A� �
X
j

�
B� kj

�

�
CA

Quadruples of ones� Q�A� �
v��X
i��

vX
l�i��

�
B��il

�

�
CA

�



Quadruples of zeros� �Q�A� �
v��X
i��

vX
l�i��

�
B�
��il

�

�
CA

with �Q�A� � Q� �A�� �A � ��xij � the bit�wise complementary con	guration of A�
and ��il � b� �il � ri � rl� the correlation between rows i and l in �A�

The measures U and Pt are a linear and a quadratic function� respectively� of
the number o of ones in A� Since Ph is quadratic on the ri�s� it is a measure
of the distribution of ones over rows� For 	xed o� Ph is minimum when rows
are maximally or uniformly distributed� that is� when the ri�s are as even as
possible� In this case� for arbitrary o� the ri�s take at most two consecutive
values �bo�vc and bo�vc � 
�� and when ojv �multiplicity� all rows have ex�
actly bo�vc ones� Likewise� minimizing Pv for a 	xed number of ones leads to
maximally uniform columns� Measure Q takes into account the distribution
of vertical pairs of ones over pairs of rows and� for a 	xed o� it is minimum
when columns are maximally uniform and correlations of ones are maximally
balanced� That is� when the �il�s take at most two distinct consecutive values�
Finally� �Q measures balance in �A�

The local increments of a generic measure M are de	ned as follows� We
say that con	gurations A and A� are neighbours if they di�er in only one
component� namely component �i� j�� Let xij denote its value in A� and let
�xij � 
� xij be its value in A�� Then�

�ijM�A� � M jxij�� �M jxij�� �

���
��
M�A��M�A��� when xij � 


M�A���M�A�� when xij � 
�

Therefore� local increments of measure F are de	ned as

�ijF �A�� �u�
ijU�A� � �t�

ijPt�A� � �h�
ijPh�A� �

��v�
ijPv�A� � �q�

ijQ�A� � ��q�
ij �Q�A�� ���

For further reference� local increments are related to transition increments by

�ij
transM�A� � �
� �xij��

ijM�A��

with

�ij
transM�A� � M j�xij �M jxij � M�A���M�A��

When the parameter set �v� b� u� is admissible the optimal values of the pre�
vious measures are derived by assuming that properties i� to iv� in de	ni�
tion 
 hold �optimality assumption�� even if the corresponding design does not
exist� Furthermore� under the same assumption and for all measures above�
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Table �
Given a set �v� b� u� of admissible parameters� optimal values and local increments
for U � Pt� Ph� Pv� Q and 
Q� expressed in terms of the descriptors of the design �with

k � v � k and 
�XS � b� �� 	r��

M M� 
�M� 
�M�

U u � �

Pt

�
B� u

	

�
CA u� � u

Ph v

�
B� r

	

�
CA r � � r

Pv b

�
B� k

	

�
CA k � � k

Q

�
B� v

	

�
CA
�
B� �

	

�
CA �k � ���� � �� k�


Q

�
B� v

	

�
CA
�
B� 
�

	

�
CA �
k
� ��
k � ���
�� ��

optimal local increments can be shown to take only two distinct values� de�
pending only on the state �
 or 
� of the corresponding component ���� These
optimal local increments are generically denoted ��M� � �ijM�jxij�� and
��M� � �ijM�jxij��� and� together with optimal values� they are listed in
Table 
�

The composition coe�cients of measure F in �
� must satisfy some constraints
in order to get a valid cost function�

Theorem � Given a set �v� b� u� of admissible parameters� the measure F in
equation ��� is a cost function for the generation of BIBDs if

�q � 


�t� �h� �v� ��q � 


and

��F �� 


��F �� 
�

Its global minimum is

F �� �uU
� � �tP

�

t � �hP
�

h � �vP
�

v � �qQ
� � ��q �Q

�� ���

with the optimal values in Table ��
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The proof can be found in ����

We say that a cost function is symmetric when

��F � � ���F ��

In order to restrict the number of possibilities� only symmetric cost functions
were considered in the experimental comparison�

Of particular interest is cost function Fuq � F ��u� 
� 
� 
� 
� 
�� with

�u �
��Q� ���Q�

�
�

the symmetric case setting for �u� This function includes the minimum subset
of distribution measures strictly required by theorem � �i�e� the U and Q
terms� and� therefore� it represents the core or simplest cost function for BIBD
generation ����

The above cost functions are isomorphic to an optimizing neural network if a
neural unit is de	ned for each xij state variable� and all connections �explicit
interactions� of the same type are weighted by the corresponding coe�cient
in F � Thus� function F corresponds to the energy E of the network and local
increments �ijF correspond to local 	elds 	ij� Notice that quadruples describe
arity four interactions� leading to higher ��th� order networks� In the following�
the terms energy and function cost will be used indistinctly�

� Search Strategies

Given a set �v� b� u� of admissible parameters� the search space A� v � b has
�vb possible con	gurations� The xij variables represent the current state of
the search� and the weighted sum of the connections evaluates the current
energy E�A� of con	guration A� Connection weights codify the composition
coe�cients of the cost function chosen� Therefore� optimal energy values� cur�
rent energy values and local 	elds are given by equations ���� �
�� and ����
respectively�

For optimizing networks� the basic exploration principle is local search� which
allows transitions only between neighbour states� In this framework� a search
strategy is a set of criteria for selecting an initial state� a unit updating or�
der� a decision rule �either to accept or to refuse transitions�� and a stopping
condition� And the result of the search is either failure or success� Depending
on the strategy� some of these criteria are parametric� In this work� the initial
state will always be selected at random� and units will be updated in a 	xed
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sequential order �by rows�� thus con	ning all randomness in the selection of
the initial state� The remaining operations depend on each particular strategy�

We say that a descent is a whole run of the search algorithm� An iteration is
one update of each unit� An update is the evaluation of the local 	eld and the
application of the decision rule� And� whenever the decision rule accepts it� a
transition is the commutation of a unit and the corresponding energy update�

��� Down
Hill Search �DH� and Simulated Annealing �SA�

The basic idea of Down�Hill search is to accept all energy�decreasing transi�
tions� until an optimum is found or the algorithm converges to a minimum�
The decision rule

xij � �xij i� �ij
transE � 
�

depends only on the sign of �ij
transE� Down�Hill search is the basic explo�

ration strategy upon which the other strategies are constructed� and it is not
parametric�

The goal of Simulated Annealing is to avoid undesired local minima by means
of thermal noise� If the Metropolis decision rule is used ����� the probability of
accepting a transition at computational temperature T is given by

Pfxij � �xijg �
���
��

� �ij

transE � 


e�
�
ij
trans

E

T � otherwise�

The e�cacy of Simulated Annealing depends on a good temperature schedule�
In practice �see� for instance �

��� results are good with a smooth decrement
law such as

Tk � vb
p

Tk���

where k represents the number of updated units� and 
 is the decay constant
corresponding to a complete iteration� The underlying assumption is that� in
that way� perturbations on thermal equilibrium will be small�

If no solution is found before� the stochastic phase is stopped afterNt iterations
and the algorithm continues with Down�Hill search� until a minimum is found�
Thus� control variables for SA are N � the current number of iterations� and T �
the current temperature� In terms of the initial T� and 	nal Tf temperatures�
the strategy parameters are de	ned to be the following� the maximum number

of iterations of the stochastic phase Nt �
lnTf�T�

ln �
� the central temperature

�



Tc �
q
T�Tf � and the temperature range � � T�

Tf
� Such a parameter formulation

allows us to de	ne a priori the desired invested e�ort on the stochastic phase�
and it should also be helpful in experimentally 	nding a Tc value near to
the critical temperature Tcri where global minima are formed� A particular
instance of Simulated Annealing is then denoted SA�Tc���Nt��

��� The New Strategy� Parallel Mean Search �PMS�

Parallel Mean Search ������ like Simulated Annealing� is based on the assump�
tion that global optima are located in regions of low average energy� Instead
of thermal exploration� though� Parallel Mean Search looks for these regions
by sampling the search space in parallel� using several instances of the net�
work moving together as a cluster in the direction of decreasing average en�
ergy� like a big sliding ball� The gradual reduction of the radius �maximum
Hamming distance to the center of the cluster�� leads the search into deeper
and deeper mean energy basins� Parallel Mean Search �also called Cooperative
Search in ���� is especially suitable for SIMD architectures because� having
a reasonably low communication cost� it e�ectively exploits the cooperation
between the cluster members�

The energy of the cluster E is de	ned as the sum of the energies of its members

E �
SX

p��

Ep�

with S the size of the cluster and Ep the energy of member p� thus simultane�
ously sampling S points in search space� At each unit update� the next unit
�i� j� is selected �the same unit for all members�� and a transition is accepted
for each of them if the cluster
s energy decreases� If the transition energy of
the cluster with respect to �i� j� is de	ned as

�ij
transE �

SX
p��

�ij
transE

p�

then a transition is accepted or not according to the decision rule

xpij � �xpij i� �ij
transE � 
� for p � 
� � � � � S�

Thus� the cluster as a whole performs Down�Hill search and� at every tran�
sition� although the energy of some of its members may increase� the overall
cluster energy decreases� Since all members update exactly the same unit �they
all move in the same direction�� the topology of the cluster remains unchanged�

The size of the sampled region is governed by the radius R of the cluster� de�
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	ned as the maximum Hamming distance between any of its members and the
center of the cluster� At each radius decrement� the cluster contracts towards
the center� The e�cacy of the search� then� will depend on a good choice of the
initial R� and 	nal Rf radii� and on a good reduction schedule� If no optimum
has been found before� the maximum number of iterations of the cooperative
phase is 	xed to Nt� After that� the cluster is released and each member re�
laxes independently using Down�Hill search until it reaches a local minimum�
The cluster is de	ned to succeed if any of its members �nds a solution� The
choice of the size S of the cluster will also be relevant� In this work we have
chosen to keep it 	xed along the search process� Thus� the sampling density
increases as R is reduced�

The topology of the cluster and the contraction mechanism o�er several alter�
natives� The 	rst topology considered here consists of initializing all cluster
members to the same initial random state �the center of the cluster�� selecting
R units at random �the same R units for all members�� and setting them at a
random value� independently for each cluster member� In this way� all mem�
bers share the value of vb� R units� and with the remaining R �the variable
units�� the cluster uniformly samples a subspace of cardinality �R� We call this
a focused topology� since all members focus on the same subspace� and the
resulting strategy will be denoted PMSf�

The other proposed choice� which will be called spread topology �denoted
PMSs�� is constructed in the same way except that the R variable units are
selected independently for each cluster member� Thus� there is not a 	xed set
of common units and� around the central point� the members spread uniformly
in any of the vb dimensions� sampling the search space within a distance R
from the center�

When the radius is reduced� the contraction mechanism consists of selecting
one of the variable units in each member� and set it to a common value� For
the focused clusters� the selected unit �i� j� is the same for all members� chosen
at random out of R� But the value it is assigned can be selected in two ways�
The 	rst� which we call least energy contraction� consists of choosing the value
�
 or 
� that minimizes the energy of the cluster� according to

xpij �
���
��

 if �ijE � 



 otherwise
for p � 
� � � � � S�

with

�ijE � Ejxp
ij
�� � Ejxp

ij
�� �

SX
p��

�ijEp�

the local energy increment of the cluster with respect to �i� j�� Notice that�







although the least energy setting is selected for xij� the cluster as a whole may
increase its energy� This variant will be denoted PMS��

The second choice� which we call central contraction �denoted PMSfc�� consists
of actually keeping a central member q� which acts as a reference� and copying
its value to the remaining members� That is� with �i� j� the selected unit�

xpij � xqij� for p � 
� � � � � S�

In both cases� the energy of the cluster must be updated taking into account
the members that have actually changed their values� If y denotes the new
assigned value� then

E � E �
SX

p��

�xpij 	 y��ij
transE

p�

with �xpij 	 y� the exclusive�or between each of the old values� and the new
common value�

For spread clusters� the unit selected for contraction is di�erent for each mem�
ber p� and it is chosen at random out of its own R variable units� Let �ip� jp� de�
note the selected unit at p� Least energy contraction then is no longer possible
and� with q the reference member� central contraction is performed according
to

xpipjp � xqipjp for p � 
� � � � � S�

with energy updated as

E � E �
SX

p��

�xpipjp 	 xqipjp��
ipjp
transE

p�

For the radius decrement schedule� a linear law with smooth temporal gran�
ularity has been selected� Since R must be an integer� we use an auxiliary
continuous control variable r � R� and we update the radius according to its
integer part� Thus�

rk � rk�� � �r

vb
�

with k the number of updated units� and �r the step corresponding to a
complete iteration� and we take Rk � brkc� After each update� the cluster
must contract Rk�� � Rk times� which may be none or several� Like before�
given the initial R� and the 	nal Rf radii� the step is actually determined by
the maximum number of allowed iterations of the cooperative phase�

Nt �
R� � Rf

�r
�







Parallel Mean Search is thus presented in three variants PMS�� PMSfc and
PMSs� and it is parametric on PMS�S�R�� Rf � Nt�� Its control variables are N �
r and R� In the case of Parallel Mean Search� the local search basic procedure
is executed by each cluster member in parallel� and cluster energy operations
involve some �although little� communication�

� Experiments and Results

This section describes the experimental comparison of the proposed search al

gorithms �functions plus strategies� as applied to the problem of block design
generation� In terms of experimental analysis� the experimental search space is
de	ned by the three main experimental factors� problem� function and strat�
egy� Each particular set of admissible design parameters constitutes a level
of the problem factor� yielding in	nitely many problem instances� Function
levels are de	ned by the composition coe�cients �again� in	nite choices�� Fi�
nally� strategies are organized as subfactors �namely DH� SA� and the three
variants of PMS�� with their corresponding levels de	ned by their �in	nitely
many� parameter settings�

Considering all this� an exhaustive analysis is obviously intractable� and the
experimentation is planned in three stages� A training stage� for function selec�
tion and parameter tuning� A comparison stage between the proposed strate�
gies� and a third stage� where the best performing algorithm in the previous
stage is applied to problems of increasing size�

��� De�nition of the Response Variable of an Experiment

The expected number of runs to the �rst solution is a measure of the e�cacy of
a search algorithm �or� reciprocally� of the di�culty of a problem�� But it does
not take into account the resources invested by di�erent algorithms� Thus�
for an objective comparison� the expected cost to the �rst solution must be
used� as a measure of the e�ciency of the search� In this work� since all three
strategies are based in local search� the computational complexity of an iter�
ation is the same for all of them �the quadruple term of the local increments
dominates� yielding O�v�b�� ����� Thus� in order to avoid implementation is�
sues� computational cost can be compared in terms of the number of invested
iterations� Deciding the outcome of the search needs no further computation�
since BIBDs are identi	ed by their optimal energy value �notice that� since
isomorphism is not considered� any solution is as good as another��

For a given experimental case �a particular problem� function and strategy��
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the elementary experiment is de	ned as a single run or descent of the algo�
rithm� with outcome x � � � f
� 
g � ffailure� successg� and computational
cost c �in iterations�� Since �at least� the choice of the initial state is random�
x is a Bernoully variable� with success probability p and failure probability
q � 
� p� and c is a random variable of unknown distribution� with expected
value E�c� and variance V ar�c��

Next� we de	ne a sequential experiment as the replication of the elementary
experiment until the 	rst solution is found� Since replications are independent
from each other�

y � f Number of descents to the 	rst solution g

is a geometric random variable with parameter p and

E�y�� 
�p

V ar�y�� q�p��

Thus� y is a direct measure of the e�cacy of the search�

In order to take cost into account� we de	ne

z � f Computational cost to the 	rst solution g�

which� with cj the cost of descent j� can be expressed as

z �
yX

j��

cj�

This variable� thus� is a direct measure of the e�ciency of the search�

The actual cost c of a descent �as was veri	ed experimentally� depends on the
corresponding outcome x� So we de	ne b � cjx�� as the cost of the successful
descents� and d � cjx�� the cost of the unsuccessful ones� Although the cj�s
above are independent from each other� they are not independent from y �only
the last descent is successful�� Then� under these assumptions� the expected
value and variance of z can be written as

E�z�� �E�y�� 
�E�d� � E�b�

V ar�z��V ar�y�E��d� � �E�y�� 
�V ar�d� � V ar�b��

Finally� we de	ne a parallel experiment as the simultaneous execution of N
elementary experiments� Since the N descents of the algorithm are now per�
formed at the same time� although the outcome and cost of each elementary
experiment are available� it is not possible to tell how many of the unsuccess�
ful outcomes are associated with each of the successful ones� In other words�
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the random variables y and z are not directly observable� In this context� the
random variable

X � f Number of successes in N descents g�

which may be expressed as

X �
NX
i��

xi�

is binomial with

E�X��Np

V ar�X��Npq�

The best estimator of the success probability p is� therefore�

�p �
X

N
�

with expected value E��p� � p and variance V ar��p� � pq�N � The statistics of
y can then be estimated by the estimates of its parameters as

�E�y�� 
��p
dV ar�y�� �q��p��

with �q � 
� �p� and the statistics of z are estimated by

�E�z�� �



�p
� 
��d� � �b� ���

dV ar�z�� �q

�p�
�d�� � �




�p
� 
��s�d� � �s�b��

with b and S�
b the sample mean and variance of the X successful descents� and

d and S�
d the sample mean and variance of the N �X unsuccessful ones�

With C �
PN

i�� ci the total cost of the parallel experiment� equation ��� is
equivalent to �E�z� � C

X
� Then� the random variable

w �
C

X

veri	es that� for N �
�

E�w�� E�z��

and it is therefore an asymptotically consistent estimator of E�z�� Since E�z�
is the desired measure of e�ciency� we de	ne w as the response variable of


�



the parallel experiment� Its variance V ar�w� determines the precision of the
estimate� and it will be evaluated experimentally�

A pathological case of the parallel experiment occurs when none of the N
descents is succesful �i�e� when X � 
�� This circumstance is termed hereafter
a nil result and it prevents the computation of w�

All experiments in this work have been performed on a Connection Machine
CM��

 ���� with �
�� bit serial processors �which 	t well the binary state
variables�� and simulations have been arranged so that each processor performs
a single descent of the algorithm� Thus� in all� each execution corresponds to
a parallel experiment with N � �
�� descents�

The above experimental measures also apply to Parallel Mean Search if the
elementary experiment is de	ned as a descent of the whole cluster �S non�
independent member descents�� The descent is de	ned to be successful if any
of the cluster members 	nds a solution� and the cost of the descent is the
sum of the costs of the cluster members� In that way� the expected cost to
the 	rst solution e�ectively takes into account all the invested resources� For
comparison purposes� parallel experiments with PMS where performed with
N � �
�� independent clusters�

��� First Stage� Training

In a set of preliminary experiments ���� the response variable w was found
to be an accurate enough estimator of E�z�� but it had the following draw�
backs� it sometimes had a non�normal distribution� it had di�erent variances
on di�erent cases and� as mentioned� it could not quantitatively deal with nil
results� Therefore� objective comparison methods such as ANOVA ���� could
not be used� In the following� several replications of the parallel experiment
were taken for each experimental case in order to measure the mean and de

viation of w in each case� and comparisons were made in terms of the means�
For a given comparison� whenever the number of nil results was equal� a di�er�
ence in means was considered to be  signi�cant! when its absolute value was
larger than the sum of the corresponding deviations� Otherwise� the setting
with less nil results was considered to perform better�

The goal of the training stage was to reduce the size of the experimental search
space� A test problem set was chosen with the �� smallest problems in Ap�
pendix A� and a ��problem training set was selected at random among them�
namely fd��d��d��d

�d
��d
��d�
g� Fuq� being the core for BIBD generation�
was selected as the reference cost function� taking further advantage of the
fact that it required no coe�cient tuning� And DH �again� without parame�
ters� was used as the basic reference strategy that would best represent the


�



inherent properties of the target space�

First� using DH over the training problem set� several cost function composi�
tions were compared in an attempt to analyze the e�ects of each of the dis�
tribution measures� A strong interaction was observed between cost functions
and problems �some functions performed best on particular problems� while
other functions performed best on di�erent problems� regardless of which dis�
tribution measures were involved�� Yet� after trying about �
 di�erent function
compositions on each of the � problems� Fuq was found to perfom better overall�
it was the one that yielded the smallest number of unsolved designs� and the
largest number of signi	cantly best scores �see ��� for details�� Although not
so clearly� second�best results were obtained with F ��u� 
� �� �� �� 
�� termed
hereafter Futhvq� which was of particular interest for MBMUD generation ����

Strategy parameters for SA and PMS were then tuned using Fuq over the
training problem set �the choice of Fuq as the reference strategy had by then
been reinforced by its good experimental results�� For each strategy� experi�
mental optimization was performed on each individual problem� leading to the
optimal parameter setting for that problem� and the resulting values were then
generalized �over problems and cost functions� to get a standard parameter
setting for each strategy�

In the case of SA�Tc� �� Nt�� a compromise temperature range was set to � � �
�a wider range would mean a waste of relaxation e�ort� whereas a narrower
range would make results too critical on the proper tuning of Tc� and opti�
mization was perfomed over �Tc ��Tc� Nt ��Nt�� until the response at the
central point was signi	cantly best� After a case per case optimization� a good
generalization criterion was found for Tc by normalizing temperatures with
respect to optimal local increments� and the average optimal value for Nt was
used� The standard parameter setting was thus selected to be

SAstd � SA�
�


��F �� �� 


��

and it let to a small standardization loss�

The parameters for PMS�S�R�� Rf � Nt� were tuned in a similar way� PMS��
PMSfc and PMSs were treated independently� and results were best for PMS�
in a case per case basis� Therefore the other two variants were discarded� Being
a new strategy� no process knowledge was available in the case of PMS� and
optimization was more di�cult� Four �instead of two� parameters were tuned�
and results were often poor �including several occurrences of nil results�� thus
yielding larger deviations and making sometimes optimization ine�ective� Op�
timal ranges were wider and imprecise and� for several problems� little sensi�
tivity was found with respect to the radii R� and Rf � Since optimization was
based on cost w� the cluster size S and the number of iterations Nt showed a
marked tendency to optimize on small values� Problem d� was also discarded


�



from the training set� since it optimized on S � 
 and Nt � 
 �i�e� a simple de�
scent with DH�� A good generalization of the optimal parameters could not be
found� and the most�often best perfoming setting was chosen as a compromise
for the standard PMS parameters�

PMSstd � PMSfl��� vb� �� 
���

Actually� this was not the optimal setting for most of the training problems�
and the standardization loss was large�

Finally� the performance of the selected cost functions and parameters was
validated over di�erent experimental settings� The comparison between Fuq

and Futhvq was extended to the two remaining strategies �using their standard
parameters� and over the whole problem set� Although interaction was still
present� Fuq consistenly performed best for each strategy� and therefore Fuq

was selected for the comparison stage described in the next section� In the case
of SA� the optimality of the standard parameters could also be veri	ed over
the whole test problem set� both for Fuq and Futhvq� The standard parameters
for PMS needed no furhter checking� since they were already known to be
non�optimal�

��� Second Stage� Comparisons

During the comparison stage� the three standardized strategies DH� SAstd and
PMSstd were compared over the test problem set using the best performing
cost function Fuq� Results are shown in Table ��

Except for problem d�� SA performed best in a case per case basis� and could
solve the largest number of problems �all but d���� The comparison between
DH and PMS is also particularly interesting� because it shows how the co�
operative search e�ectively improved the results of independent Down�Hill
search� In terms of the number of solved problems PMS� with only � cases
unsolved �d
�� d�� and d���� was clearly superior to DH� which failed on 
�
occasions� But on the 
� cases solved by both� the score was � to � signi�cant
di�erences against PMS� Even tough PMS greatly improved e�cacy� its e��
ciency was strongly penalized by its much larger descent cost� Yet� as shown in
the previous section� PMS was actually handicapped by the standardization
process� and might potentially yield much better performance if a better gen�
eralization could be found for its parameters� This assertion is supported by
the results in Table �� where both SA and PMS were run using their respective
case�by�case optimal settings� Although SA is still best� PMS manages to get
a star �on d
��� and the score against DH turns � to 
 on its favor� over the �
problems solved by both �notice that the di�erence on d

 is not signi	cant��
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Table 	
Response w for the three standard strategies with Fuq over the � problems in the
training set �above� and the remaining �� problems in the test set �below�� Entries
show means and deviations �within parenthesis� over � replications of the parallel
experiment� For each problem� the entries signaled �� � show signi�cantly best
marks� and those signaled �� � second best marks� When any of the replications is
a nil result it is excluded from the mean� and the number in square brackets shows
the actual number of replications averaged� Hyphens signal unsolved problems�

DH SA PMS

d	 � ��� ����� � ��� ���	� ���� �����

d� �	��� ���	��� � ���� ����� � ����� ������

d� � � ���� ����� � ������ ��������

d�� � ������ ������� � ��	�� ������ ������ ���	���

d�� ����� �	���� � ���� ���	� ����� �����

d�� � � ������ ������� � 	����� �������

d	� ��� ������ � �	��� ��	��� � ��� ���		�� �	���	���

d� � ���	 ����� � ��� ����� ���� �����

d� � ���� ����� � ���� ����� ���� �����

d� � ����� ������ � ��	�� ����� ��	�	 ����	�

d� � � �		�� ����� � ����	 ��	�	�

d� � 	���� ��	��� � ���	 ����� ��	�� ������

d� � ����� ������� � 	���� ����� 	�	��� �������

d�� � ���	 ����� � 		�� ����� ���� �	���

d�	 � ��� ��	��� ������ � 	�����	 ���	���� ��� �������

d�� � � ����� �	���� � ������ �������

d�� � � ����� ������ � �����	 ��	���	�

d�� � � ������ �������� � ��� �������

d�� � � ������ ���	��� � ��� ����	��

d�� � � ��� 	������� �

d	� � � ����� ������ � 	������ ��������

d		 � � �

d	� � � ������ ���	�	� � �	����� �	��	����

d	� � � ��	���� �	�	����� �

d	� ��	�� ������� � ���� �	��� ����� ��	���
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Table �
Comparison between the three strategies using optimal parameters� using Fuq over
the training problem set ��� replications�� The optimal setting for d	 with PMS
reduced to DH and it is thus excluded�

DH SA PMS

d	 � ��	 ����� � ��� ���	�

d� ����� �	����� � ���� �	�	� � ����� ������

d� � � ���� ����� � ������ �	�����

d�� �	���� ������� � ����� ��	��� �����	 �	�����

d�� ��	�� �	���� � ���� ����� � ���� �����

d�� � � ������ ������ � ����� ������

d	� ��� ������� �������� � ����� ����� � ���� ������� ���������

Results were then analyzed as a function of problem size� both in terms of
e�cacy y and e�ciency z� For the former� the estimated expected value �E�y�
varied considerably with problems and strategies� and the estimated deviations
followed closely the expected values �as would be expected from a geometric
distribution with a relatively low success probability�� The precision of the
estimates improved when the expected values were small� The evolution of
the e�cacy with problem size is shown in Figure 
 a�� where the inverse
estimator �the estimated frequency of success �p� is used for the sake of clarity�
Comparing the three strategies� the qualitative shape of the curves is quite
similar� showing that� although interaction is important� the di�culty of each
individual problem has an intrinsic component� Although the evolution of the
	gure is erratic �the dependence on vb is not direct�� the general tendency is
quite clear� larger problems are more di�cult� The superiority of SA is evident
from the 	gure and� although the margin is not so wide� PMS outperforms
DH in every case�

The cost z to the 	rst solution is the main result of the analysis� and it
measures the e�ciency of the search� Deviations follow again expected values�
and precision improves with good results� Since single descent cost deviations
are small� the statistical behavior of z is dominated by the distribution of
y� The evolution of �E�z� with problem size �Figure 
 b�� is again shown
in terms of its inverse 




�w� which can roughly be interpreted as the
number of solutions that would be found within 




 iterations� As before� the
qualitative evolution of e�ciency curves is similar for the three strategies but�
now� the relative descent costs alter the relative scores among the strategies�
DH shortens the distance to SA� and it outperforms PMS on all problems
solved by both�


�



�

��

��

��

���

�� ��� ��� ��� ��� ���

�p� 




a�

DH �

�

�

�

�
�� � �

�

�
�

� �

SA �

� � �

�

��

�
�

�

�

�

�

�
�

�

��
�
�

�

�

��

�
PMS �

�
�

�

��
�
�

�� �

�

�� �

�

�� �� � �

�

�

���

	��

����

�� ��� ��� ��� ��� ���

�����

w

b�

DH �

�

�

�

�
�� � �

�

�
�

� �

SA �

�
�

�

���
� �

� �

�

�� �

�

�� ��� � ��
�

PMS �

� �
�

���� �� �
�
�� �

�
�� �� � ��

Fig� �� For each of the standard strategies� with Fuq� a� probability of success
�p � �� �E�y�� and b� the inverse of the estimated cost to the �rst solution ������w�
as a function of problem size vb�

��� Third Stage� Problems of Growing Size

The last group of experiments were performed using the best algorithm of the
previous stage �Fuq with SAstd�� First� the search was applied to problems up to
vb � �

 �d�� to d�� in Appendix A� excluding d�� and d��� which are known
not to exist�� and the estimated expected costs� after a single replication� are
listed in Table �� Out of �
 problems� 
� were unsolved� and the remaining 
�
show very high cost values�

Finally� the remaining �
 problems with vb up to 



 �d�� to d
�� in
Appendix A� excluding d�
 and d

� as before�� were attempted on a

�




Table �
Estimated cost to the �rst solution for problems of size up to vb � ���� with the
best algorithm of the comparison stage� Fuq with SAstd �� replication��

vb �E�z� vb �E�z�

d	� ��� �	���� d�	 ��	 	������

d	� �	� ������ d�� ��� 	�������

d	� �	� ����� d�� �	� �������

d�� �	� 	������� d�� ��	 ����	��

d�� ��� � d�� ��� ����

d�	 ��� ������� d�� ��� 	�������

d�� ��� � d�� ��� ����	��

d�� ��� ��	��� d�� ��� �

d�� ��� ��	���� d�� ��� �

d�� ��� � d�� ��� �

d�� ��� ������	 d�	 ��� �

d�� ��� � d�� ��� 	�������

d�� ��� � d�� ��� �

d�� ��� � d�� ��� �

d�� ��� � d�� ��� �

solved"unsolved basis only� As listed in Table �� only � problems could be
solved� the largest being d
��� with vb � ��
� A curious remark is that the
two largest solved problems �d�� and d
��� are the only ones in their group
that are known to have exactly one non�isomorphic solution �see Appendix
A��

From these results� although no regular behaviour can be found with respect to
problem size� it is again made clear that larger problems are really much more
di�cult� as expected from an NP problem� Notice� as discussed in Section 
�
�
that problems as large as these �like the unsettled d�� testi	es� are already
too large for exhaustive exploration�

	 Conclusions

In this work� the application of optimizing neural networks to the generation
of block designs has been studied� leading to a theoretical characterization
of the suitable cost functions� followed by an experimental comparison be�

�




Table �
Solved�unsolved problems with vb up to ���� entries�

vb Solved� vb Solved� vb Solved�

d�� ��� � d�� ��� � d��� ��� �

d�� ��� � d�� ��� � d��� ��� �

d�� ��	 � d�� ��� � d��� ��� �

d�� �	� yes d�� ��� � d��� ��	 �

d�	 �	� � d�� ��� � d��	 ��	 �

d�� �	� yes d�� ��� yes d��� ��	 �

d�� �	� � d�� ��� � d��� ��� �

d�� �	� � d�� ��� � d��� ��� �

d�� ��� � d�� �	� � d��� ��� �

d�� ��� � d�	 �		 � d��� ��� �

d�� ��� yes d�� �	� � d��� ��� �

d�� ��� � d�� �	� � d��� �	� �

d�� ��� � d�� �	� � d�	� ��� �

d�	 ��� yes d�� �	� � d�	� ��� �

d�� ��� � d�� ��� � d�		 ��� �

d�� ��� � d�� ��� � d�	� ��� yes

d�� ��� yes d�� ��� yes d�	� ��� �

d�� ��� � d��� ��� � d�	� ��� �

d�� ��� � d��� ��� � d�	� ��� �

d�� ��	 � d��	 ��� � d�	� ��� �

d�� �	� � d��� ��� � d�	� ��	 �

d�� ��� � d��� ��	 � d�	� ���� �

d�� ��� � d��� ��	 �

d�	 ��� � d��� ��� �

tween networks implementing these functions together with di�erent search
strategies�

Using the cost to the 	rst solution as the performance measure allowed for an
objective comparison in terms of e�ciency� and its estimation by means of the
response of the parallel experiment ��
�� simultaneous runs on a Connection
Machine CM��

� was accurate enough� in spite of its statistical drawbacks

��



�occasional non�normality� unequal variances and nil results�� that prevented
the use of standard tests such as ANOVA� Problems� functions and strategies
were the experimental factors that de	ned an experimental search space with
in	nitely many levels� Thus� a training stage for function selection and pa�
rameter tuning was required� on the basis of the basic strategy �Down�Hill�
and the core cost function �Fuq�� respectively� A high interaction between the
experimental factors was observed and� although some choices were actually
validated� a good parameter generalization could not always be found� In all�
although results were consistent� experimental conclusions should not be ex�
trapolated lightly�

Although individual problems were intrinsically hard or easy� the general trend
was that larger problems were more di�cult� Actually� most of the largest ones
remained unsolved� Results could not be compared with other techniques in
the literature� because most work in the combinatorics 	eld is devoted to the
unsettled cases� and no systematic result listings could be found in terms of
generation cost�

The simplest cost function Fuq performed best for all search strategies� empha�
sizing the descriptive capabilities of quadruples� and the de	nition of BIBDs
in terms of the measure Q� Yet� the generalized function de	nition proposed
in this work� in terms of all the distribution measures� allows for di�erent en�
hancements of the desired design properties� This could prove useful in cases
where pseudo�optima with a particular structure might be of interest� The
experimental analysis in terms of pseudo�optima �i�e� minimizing the average
energy of local minima� is a line for further research�

The best quality of DH was its low descent cost� leading to a fairly good
e�ciency for the problems that it could solve� Yet� its e�cacy was� as expected�
the lowest �only 
� solved out of �� problems in the test set�� Nevertheless�
DH was very useful as a reference� since the other two strategies were based
on it�

Results with SA were the most e�cient on a problem by problem basis� and
only one problem �out of ��� remained unsolved� Process knowledge was useful
in parameter optimization and standardization� and SA�s experimental behav�
ior was  friendly!� good performance �leading to small deviations and good
precision�� few cases of nil results� and a very good generalization capacity�
that could be validated against other cost functions and problems� Descent
cost was e�ectively minimized� and the use of a smooth temperature schedule
proved helpful� Using SA� most minima were already found by the end of the
stochastic phase of the search�

Results with PMS were promising ��� out of �� solved problems�� showing the
bene	ts of the parallel search� but its high descent cost penalized its e�ciency�

��



Better results might be obtained� if only a way could be found of standardising
its parameters� but the lack of process knowledge didn�t help� and its experi�
mental behaviour was less friendly� nil results were more frequent� deviations
were larger �higher imprecision�� and parameter sensitivity was lower� The
variant PMS� proved best� Since parameters were optimized on cost� the very
smallest cluster size S � � yielded the best results� For PMS� minima didn�t
appear during the cooperative phase of the search� but formed on the �subse�
quent� independent down�hill relaxation� Thus� PMS can be interpreted as an
e�ective way of improving the initial state for Down�Hill search� Notice 	nally
that PMS and SA are not mutually exclusive� Since they are both based on
the same principle yet they act on di�erent mechanisms� Parallel Mean An

nealing� the combination of the two� might be another interesting approach
for further study�

The above comparison was done with general�purpose strategies� Building
problem knowledge into the search might lead to better�performing� problem�
speci	c algorithms� A possible approach along this line would be to do some
sort of isomorphism reduction� in order to reduce search space� Analysis of the
search space itself �ratio of local"optimal minima� attraction basins� structure
of local minima� neighbourhood of optimal solutions� etc�� might provide use�
ful hints for designing better strategies� and the characterization of problem
hardness and optimal strategy parameters with respect to design parameters
would also be interesting� A natural extension of Simulated Annealing is the
deterministic Mean Field Annealing strategy� Even if no further reduction of
the computational cost were obtained� the mean 	eld model might allow for
new and di�erent ways to explore the extended continuous search space�

Summarizing� the comparison of algorithms has proven an intrinsically di�cult
task in itself� and BIBDs have proven a challenging problem for optimizing
neural networks to solve� Yet� BIBDs constitute a rich and coherent collec�
tion of samples which permit making 	ne discriminations� Using them as a
benchmark to test other optimizing techniques is one of our current research
lines ��
��
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Appendix A Admissible parameter sets for BIBDs

Admissible parameter sets �v� b� u� with vb � 



 �extracted from �
�� and
reordered by size�� Problem number di� original numbering mi� design pa�
rameters �v� b� u� and descriptors �r� k� ��� problem size vb� and bounds on the
number Ns of non�isomorphic solutions �Ns � 
� a design does not exist�
Ns ��� unsettled case��
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