Neural Cost Functions and Search Strategies
for the Generation of Block Designs:
an Experimental Evaluation

Pau Bofill

Departament d’Arquitectura de Computadors (UPC), Campus Nord- Modul-D6,
¢/ Gran Capita s/n, 08071 Barcelona, pau@ac.upc.es

Carme Torras

Institut de Robotica i Informatica Industrial (CSIC-UPC), Edifici Nezus,
¢/ Gran Capita 2-4, 08034 Barcelona, ctorras@iri.upc.es

Abstract

A constraint satisfaction problem, namely the generation of Balanced Incomplete
Block Designs (v, b, 7, k, \)-BIBDs, is casted in terms of function optimization. A
family of cost functions that both suit the problem and admit a neural implementa-
tion is defined. An experimental comparison spanning this repertoire of cost func-
tions and three neural relaxation strategies (Down-Hill search, Simulated Annealing
and a new Parallel Mean Search procedure), as applied to all BIBDs of up to 1000
entries, has been undertaken. The experiments were performed on a Connection Ma-
chine CM-200 and their analysis required a careful study of performace measures.
The simplest cost function standed out as the best one for the three strategies.
Parallel Mean Search, with several processors searching cooperatively in parallel,
could solve a larger number of problems than the same number of processors work-
ing independently, but Simulated Annealing yielded overall the best results. Other
conclusions, as detailed in the paper, could be drawn from the comparison, BIBDs
remaining a challenging problem for neural optimization algorithms.

Keywords: block designs, neural cost functions, simulated annealing, parallel mean
search, performance measures, experimental evaluation

1 Introduction

The work described in this paper originates in [6], where the generation of
block designs was used as a benchmark for comparing the performance of
several related optimizing search strategies, based on neural networks. Such

strategies were approached as general purpose techniques. Therefore, no at-
tempt was made to build any problem knowledge (i.e, design properties) into
the search strategies. This paper summarizes the results obtained.

1.1 The problem: Block Designs

Balanced Incomplete Block Designs (BIBDs) have their origins in the field
of Experimental Design, and their properties and generation are studied by
Combinatorial Analysis [12,28]. Taking (v,b,u) as independent parameters,
and in terms of its incidence matrix, a Balanced Incomplete Block Design
(v,b,u)-BIBD can be defined as follows. Let A = [z;;] be a given configuration
in the space A — v x b of binary configurations with v rows and b columns. Let
z;; € {0,1}, the state variables, represent the incidence of treatment 7 in block
jof A, and let 0o =327, 22:1 z;; be the number of ones in A (the number of
plots), r; = 22:1 x;; the number of ones in row ¢ (the replicate number for
treatment ¢), k; = Y7, z;; the number of ones in column j (the size of block
7), and Ay = 22:1 x;;x1; the correlation or dot product between rows i and [
(the number of times that treatments ¢ and [occur together in a block).

Definition 1 For fized r, k and A\, with k < v and X > 0, we say that A is the
incidence matriz of a BIBD with parameters (v,b,u) and descriptors [r,k, \]
if and only if the following properties are fulfilled:

i) Right number of ones: o = u.

ii) Strictly uniform rows: r;,=r, i=1,...,v.

iii) Strictly uniform columns: k; =%, j=1,...,b.

iv) Strict balance: \; =), i=1,...,.0—-1,l=i+1,...,v.

Parameters and descriptors are related by the following multiplicity conditions,

r=u/v
k=u/b
Cr(k—=1) u(u—0b)
A= v—1 bv(v—-1)

with r, k and A\ integers, therefore restricting the range of admissible parameter
sets.

The admissibility of its parameters is a necessary but not sufficient condition
for the existence of a block design. The situation is summarized in [18], that
lists all non-trivial admissible parameter sets with r» < 41, together with the
currently known bounds on the number N, of non-isomorphic solutions. In
particular, whenever it has been established that a particular design does not
exist Ny, = 0, and N, =7 denotes an unsettled case. For our use here all

cases with vb < 1000 are listed in Appendix A. Some (infinite) families of
block designs (designs whose parameters satisfy particular properties) can be
constructed analytically, by direct or recursive methods [12, Chapter 15], and
the state of the art in computational methods for design generation is described
in [9]. The smallest unsettled case is (22, 33,264) [20], with vb = 726 entries,
showing that exhaustive search is still intractable for designs of this size. In
the general case, as with other combinatorial configurations, the algorithmic
generation of block designs is an NP problem [8].

Several alternative combinatorial configurations have been defined in the lit-
erature for the experimental settings where the desired parameters are not
admissible (i.e, (v, b, u) leading to non-integer [r, k, A]), the most usual being
Pairwise Balanced Designs [24], (r, \)-designs [17], Partially Balanced Incom-
plete Block Designs [28,29] and Regular Graph Designs [16]. In [6,5] a new
family of similar combinatorial configurations, Mazimally Balanced Mazimally
Uniform Designs (v,b,u)-MBMUDEs, arises as the natural generalization of
BIBDs implied by our study of neural cost functions. MBMUDs allow for
at most two consecutive values for its row, column and balance descriptors
[r, 7+ 1; k, k4 1; and A, A+ 1].

1.2 The tool: Optimizing Neural Networks

The generation of block designs is a constraint satisfaction problem. In order
to use optimizing neural networks we must first reformulate it as a combina-
torial optimization problem and then map it onto a standard neural network
architecture. The set of cost functions that are described in this work are based
on the number of pairs (the number of active connections) as a distribution
measure for each of the properties of a BIBD [5], therefore mapping straight-
forwardly onto an optimizing network which, because of the balance property,
uses connections of arity four.

Three search strategies are considered. Two standard ones, Down-Hill search
DH [14] and Simulated Annealing SA [3], plus a novel strategy, Parallel Mean
Search PMS [4], which is described in Section 3.2.

The application of neural networks to combinatorial optimization problems
(Hopfield networks) was first proposed in [15] and is deeply analyzed in [1].
Networks with higher arity connections are considered in [27]. Simulated An-
nealing (or Boltzmann machines) and its deterministic version, Mean Field
Annealing MFA [25], are based on statistical mechanics models and, therefore,
they have a strong theoretical background [2,13]. Some variants and applica-
tions of the MFA model can be found in [26,11]. The dynamics of optimizing
neural networks are studied in [10], among others. A most general framework

for Hopfield networks is defined in [30].

1.3 Paper Overview

In Section 2 a family of cost functions for BIBD generation is defined. Section 3
describes the three search strategies, with special emphasis on the new Par-
allel Mean Search procedure. Section 4 describes the experimental setting for
algorithm comparison, together with the results. Finally, Section 5 is devoted
to conclusions.

2 Neural Cost Functions for the Generation of Block Designs,
based on Distribution Measures

Let A — v x b be the set of all A = [x;;] binary configurations with v rows
and b columns. We say that F': A — R is a cost function for the generation
of block designs if there exists a lower bound F* such that F(A*) = F* if and
only if there exists a (v, b, u)-BD with incidence matrix A*.

The cost functions considered in this work [5] are defined as the linear combi-
nation of a set of distribution measures for each of the properties of a block
design.

F(A) = pU(A) + pPi(A) + pnPr(A) + po Po(A) + pgQ(A) + pgQ(A), (1)

with U, P, P, P,,Q and Q defined next, and (py, pi, pn, pos Pg» Pq), the coeffi-
cients of the linear combination, defining the composition of a particular cost
function.

Number of ones: U(A) =o

0
Total pairs of ones: Py(A) =
2
T
Horizontal pairs of ones: Pn(A)=Y_
i\ 2
. . k;
Vertical pairs of ones: Py(A)=_
i\ 2

v—1 v)\z
Quadruples of ones: Q(A) =Y Y l

i=11=i+1 \ 2

B v—1 v 5\2
Quadruples of zeros: Q(A) = Z Z l

i=11=i+1 \ 2

with Q(A) = Q(A4), A = [z;] the bit-wise complementary configuration of A,
and \; = b+ \; — r; — 17, the correlation between rows i and [in A.

The measures U and P, are a linear and a quadratic function, respectively, of
the number o of ones in A. Since P, is quadratic on the 7;’s, it is a measure
of the distribution of ones over rows. For fixed o, P}, is minimum when rows
are mazimally or uniformly distributed, that is, when the r;’s are as even as
possible. In this case, for arbitrary o, the r;’s take at most two consecutive
values (|o/v] and |o/v] + 1), and when o|v (multiplicity) all rows have ex-
actly |o/v] ones. Likewise, minimizing P, for a fixed number of ones leads to
mazimally uniform columns. Measure () takes into account the distribution
of vertical pairs of ones over pairs of rows and, for a fixed o, it is minimum
when columns are maximally uniform and correlations of ones are maximally
balanced. That is, when the);;’s take at most two distinct consecutive values.
Finally,) measures balance in A.

The local increments of a generic measure M are defined as follows. We
say that configurations A and A’ are neighbours if they differ in only one
component, namely component (7,7). Let x;; denote its value in A, and let
T;j = 1 — x;; be its value in A’. Then,

M(A) — M(A"), when z;; =1
M(AI) — M(A), when Tij = 0.

ATM(A) =M

Tij=1 7 M

zij=0 —

Therefore, local increments of measure I’ are defined as
ATF(A) = p, AU (A) + p AV P(A) + pnAY P, (A) +
P ATP,(A) + p, ATQ(A) + p ATQ(A). 2)

For further reference, local increments are related to transition increments by
A‘ga.ns]\/[(‘A) = (1 - Qxl])A”M(A)7
with

Ai{ansM(A) = M|iij - M

v, = M(A") = M(A),

When the parameter set (v, b, u) is admissible the optimal values of the pre-
vious measures are derived by assuming that properties i) to iv) in defini-
tion 1 hold (optimality assumption), even if the corresponding design does not
exist. Furthermore, under the same assumption and for all measures above,

Table 1

Given a set (v,b,u) of ad_missible parameters, optimal values and local increments
for U, P, Py, Py, Q and @Q, expressed in terms of the descriptors of the design (with
k=v—kand AXS=0b+X—2r).

M M* A'M* AT+
U n 1 1
n
P; u—1 U
2
r
B, v r—1 r
2
k
P, b k-1 k
2
) A
Q (k—1)(A—1) kX
2 2
_ v A __ _ B
Q —kX —(k-1)(\-1)
2 2

optimal local increments can be shown to take only two distinct values, de-
pending only on the state (0 or 1) of the corresponding component [5]. These
optimal local increments are generically denoted A'M* = AYM*|, _; and
A'M* = AYM*|,, o, and, together with optimal values, they are listed in
Table 1.

The composition coefficients of measure F in (1) must satisfy some constraints
in order to get a valid cost function:

Theorem 2 Given a set (v,b,u) of admissible parameters, the measure F in
equation (1) is a cost function for the generation of BIBDs if

pg >0
Pty Phs Pvy Pg > 0

and

A'F* <0
AYF* > 0.

Its global minimum is
F*=pU* + pe P} + pnPy + po Py + pg@Q* + pgQ”, (3)

with the optimal values in Table 1.

The proof can be found in [5].
We say that a cost function is symmetric when
AYF* = —AYF,

In order to restrict the number of possibilities, only symmetric cost functions
were considered in the experimental comparison.

Of particular interest is cost function F,, = F(ay,0,0,0,1,0), with

AIQ*—FAOQ*
O{u — —7
2

the symmetric case setting for p,. This function includes the minimum subset
of distribution measures strictly required by theorem 2 (i.e, the U and @
terms) and, therefore, it represents the core or simplest cost function for BIBD
generation [5].

The above cost functions are isomorphic to an optimizing neural network if a
neural unit is defined for each z;; state variable, and all connections (explicit
interactions) of the same type are weighted by the corresponding coefficient
in F'. Thus, function F' corresponds to the energy E of the network and local
increments AY F' correspond to local fields ¢;;. Notice that quadruples describe
arity four interactions, leading to higher (4th) order networks. In the following,
the terms energy and function cost will be used indistinctly.

3 Search Strategies

Given a set (v, b,u) of admissible parameters, the search space A — v x b has
20 possible configurations. The x;; variables represent the current state of
the search, and the weighted sum of the connections evaluates the current
energy F/(A) of configuration A. Connection weights codify the composition
coefficients of the cost function chosen. Therefore, optimal energy values, cur-
rent energy values and local fields are given by equations (3), (1), and (2),
respectively.

For optimizing networks, the basic exploration principle is local search, which
allows transitions only between neighbour states. In this framework, a search
strategy is a set of criteria for selecting an initial state, a unit updating or-
der, a decision rule (either to accept or to refuse transitions), and a stopping
condition. And the result of the search is either failure or success. Depending
on the strategy, some of these criteria are parametric. In this work, the initial
state will always be selected at random, and units will be updated in a fixed

sequential order (by rows), thus confining all randomness in the selection of
the initial state. The remaining operations depend on each particular strategy.

We say that a descent is a whole run of the search algorithm. An iteration is
one update of each unit. An update is the evaluation of the local field and the
application of the decision rule. And, whenever the decision rule accepts it, a
transition is the commutation of a unit and the corresponding energy update.

3.1 Down-Hill Search (DH) and Simulated Annealing (SA)

The basic idea of Down-Hill search is to accept all energy-decreasing transi-
tions, until an optimum is found or the algorithm converges to a minimum.
The decision rule

Tij < l_'ij iff AgansE < 0,
depends only on the sign of AganSE. Down-Hill search is the basic explo-

ration strategy upon which the other strategies are constructed, and it is not
parametric.

The goal of Simulated Annealing is to avoid undesired local minima by means
of thermal noise. If the Metropolis decision rule is used [22], the probability of
accepting a transition at computational temperature T is given by

] L, Alans B <0
Plog = aub =y g,

e~ 1 , otherwise.

The efficacy of Simulated Annealing depends on a good temperature schedule.
In practice (see, for instance [11]), results are good with a smooth decrement
law such as

Ty = /1T,

where k represents the number of updated units, and 7 is the decay constant
corresponding to a complete iteration. The underlying assumption is that, in
that way, perturbations on thermal equilibrium will be small.

If no solution is found before, the stochastic phase is stopped after N, iterations

and the algorithm continues with Down-Hill search, until a minimum is found.

Thus, control variables for SA are N, the current number of iterations, and T,

the current temperature. In terms of the initial 7y and final 7 temperatures,

the strategy parameters are defined to be the lf(;ll;);ving: the maximum number
_ InTy/Ty

of iterations of the stochastic phase Ny = ==, the central temperature

T. = \/ToTy, and the temperature range p = %’ Such a parameter formulation
allows us to define a priori the desired invested effort on the stochastic phase,
and it should also be helpful in experimentally finding a 7, value near to
the critical temperature T,,; where global minima are formed. A particular
instance of Simulated Annealing is then denoted SA(T.,p,N;).

3.2 The New Strategy: Parallel Mean Search (PMS)

Parallel Mean Search [4,6], like Simulated Annealing, is based on the assump-
tion that global optima are located in regions of low average energy. Instead
of thermal exploration, though, Parallel Mean Search looks for these regions
by sampling the search space in parallel, using several instances of the net-
work moving together as a cluster in the direction of decreasing average en-
ergy, like a big sliding ball. The gradual reduction of the radius (maximum
Hamming distance to the center of the cluster), leads the search into deeper
and deeper mean energy basins. Parallel Mean Search (also called Cooperative
Search in [6]) is especially suitable for SIMD architectures because, having
a reasonably low communication cost, it effectively exploits the cooperation
between the cluster members.

The energy of the cluster £ is defined as the sum of the energies of its members
S
£=% P,
p=1

with S the size of the cluster and EP the energy of member p, thus simultane-
ously sampling S points in search space. At each unit update, the next unit
(1,7) is selected (the same unit for all members), and a transition is accepted
for each of them if the cluster’s energy decreases. If the transition energy of
the cluster with respect to (4, j) is defined as

S
ij — ij P
Atransg - Z A‘cra.nsE)
p=1

then a transition is accepted or not according to the decision rule

ol b iff A€ <0, forp=1,...,8S.
Thus, the cluster as a whole performs Down-Hill search and, at every tran-
sition, although the energy of some of its members may increase, the overall
cluster energy decreases. Since all members update exactly the same unit (they
all move in the same direction), the topology of the cluster remains unchanged.

The size of the sampled region is governed by the radius R of the cluster, de-

fined as the maximum Hamming distance between any of its members and the
center of the cluster. At each radius decrement, the cluster contracts towards
the center. The efficacy of the search, then, will depend on a good choice of the
initial Ry and final R; radii, and on a good reduction schedule. If no optimum
has been found before, the maximum number of iterations of the cooperative
phase is fixed to NV;. After that, the cluster is released and each member re-
laxes independently using Down-Hill search until it reaches a local minimum.
The cluster is defined to succeed if any of its members finds a solution. The
choice of the size S of the cluster will also be relevant. In this work we have
chosen to keep it fixed along the search process. Thus, the sampling density
increases as R is reduced.

The topology of the cluster and the contraction mechanism offer several alter-
natives. The first topology considered here consists of initializing all cluster
members to the same initial random state (the center of the cluster), selecting
R units at random (the same R units for all members), and setting them at a
random value, independently for each cluster member. In this way, all mem-
bers share the value of vb — R units, and with the remaining R (the variable
units), the cluster uniformly samples a subspace of cardinality 2%. We call this
a focused topology, since all members focus on the same subspace, and the
resulting strategy will be denoted PMSf.

The other proposed choice, which will be called spread topology (denoted
PMSs), is constructed in the same way except that the R variable units are
selected independently for each cluster member. Thus, there is not a fixed set
of common units and, around the central point, the members spread uniformly
in any of the vb dimensions, sampling the search space within a distance R
from the center.

When the radius is reduced, the contraction mechanism consists of selecting
one of the variable units in each member, and set it to a common value. For
the focused clusters, the selected unit (7, j) is the same for all members, chosen
at random out of R. But the value it is assigned can be selected in two ways.
The first, which we call least energy contraction, consists of choosing the value
(0 or 1) that minimizes the energy of the cluster, according to

1 if AYE <0
Ty forp=1,...,S,
0 otherwise

with

S
AYE = g|mfj:1 — 8|$€j:0 - Z AijEp,

p=1

the local energy increment of the cluster with respect to (i,7). Notice that,

10

although the least energy setting is selected for z;;, the cluster as a whole may
increase its energy. This variant will be denoted PMSAl.

The second choice, which we call central contraction (denoted PMSfc), consists
of actually keeping a central member ¢, which acts as a reference, and copying
its value to the remaining members. That is, with (7, j) the selected unit,

ay = al, forp=1,...,8.
In both cases, the energy of the cluster must be updated taking into account

the members that have actually changed their values. If y denotes the new
assigned value, then

S
E« & + Z(xf] @ y)AgansEpa
p=1

with (2f; @ y) the exclusive-or between each of the old values, and the new
common value.

For spread clusters, the unit selected for contraction is different for each mem-
ber p, and it is chosen at random out of its own R variable units. Let (i, j,) de-
note the selected unit at p. Least energy contraction then is no longer possible
and, with ¢ the reference member, central contraction is performed according
to

p

q _
Ty 5, @ forp=1,...,5,

Jp

with energy updated as

s o
E—E+) (af; @l JATNE?.
p=1

For the radius decrement schedule, a linear law with smooth temporal gran-
ularity has been selected. Since R must be an integer, we use an auxiliary
continuous control variable r € R, and we update the radius according to its
integer part. Thus,

B Ar
Tk = Tk—1 b)
with £ the number of updated wnits, and Ar the step corresponding to a
complete iteration, and we take Ry = |ry|. After each update, the cluster
must contract Rj_; — Rj times, which may be none or several. Like before,
given the initial Ry and the final Ry radii, the step is actually determined by
the maximum number of allowed iterations of the cooperative phase,

_ - 1y

N,
! Ar

11

Parallel Mean Search is thus presented in three variants PMSfl, PMSfc and
PMSs, and it is parametric on PMS(S, Ry, Rf, ;). Its control variables are N,
r and R. In the case of Parallel Mean Search, the local search basic procedure
is executed by each cluster member in parallel, and cluster energy operations
involve some (although little) communication.

4 Experiments and Results

This section describes the experimental comparison of the proposed search al-
gorithms (functions plus strategies) as applied to the problem of block design
generation. In terms of experimental analysis, the experimental search space is
defined by the three main experimental factors: problem, function and strat-
egy. Each particular set of admissible design parameters constitutes a level
of the problem factor, yielding infinitely many problem instances. Function
levels are defined by the composition coefficients (again, infinite choices). Fi-
nally, strategies are organized as subfactors (namely DH, SA, and the three
variants of PMS), with their corresponding levels defined by their (infinitely
many) parameter settings.

Considering all this, an exhaustive analysis is obviously intractable, and the
experimentation is planned in three stages: A training stage, for function selec-
tion and parameter tuning. A comparison stage between the proposed strate-
gies, and a third stage, where the best performing algorithm in the previous
stage is applied to problems of increasing size.

4.1 Definition of the Response Variable of an Experiment

The expected number of runs to the first solution is a measure of the efficacy of
a search algorithm (or, reciprocally, of the difficulty of a problem). But it does
not take into account the resources invested by different algorithms. Thus,
for an objective comparison, the expected cost to the first solution must be
used, as a measure of the efficiency of the search. In this work, since all three
strategies are based in local search, the computational complexity of an iter-
ation is the same for all of them (the quadruple term of the local increments
dominates, yielding O(v?b*) [6]). Thus, in order to avoid implementation is-
sues, computational cost can be compared in terms of the number of invested
iterations. Deciding the outcome of the search needs no further computation,
since BIBDs are identified by their optimal energy value (notice that, since
isomorphism is not considered, any solution is as good as another).

For a given experimental case (a particular problem, function and strategy),

12

the elementary experiment is defined as a single run or descent of the algo-
rithm, with outcome x € Q = {0,1} = {failure, success}, and computational
cost ¢ (in iterations). Since (at least) the choice of the initial state is random,
x is a Bernoully variable, with success probability p and failure probability
g = 1—p, and c is a random variable of unknown distribution, with expected
value F(c) and variance Var(c).

Next, we define a sequential experiment as the replication of the elementary
experiment until the first solution is found. Since replications are independent
from each other,

y = { Number of descents to the first solution }

is a geometric random variable with parameter p and

E(y)=1/p
Var(y)=q/p’.

Thus, y is a direct measure of the efficacy of the search.
In order to take cost into account, we define
z = { Computational cost to the first solution },

which, with c; the cost of descent j, can be expressed as

y
zZ = ZC]‘.
j=1

This variable, thus, is a direct measure of the efficiency of the search.

The actual cost ¢ of a descent (as was verified experimentally) depends on the
corresponding outcome z. So we define b = ¢|,—; as the cost of the successful
descents, and d = c|,—(the cost of the unsuccessful ones. Although the c;’s
above are independent from each other, they are not independent from y (only
the last descent is successful). Then, under these assumptions, the expected
value and variance of z can be written as

E(z)=(E(y) —1)E(d) + E(b)
Var(z)=Var(y)E*(d) + (E(y) — 1)Var(d) + Var(b).

Finally, we define a parallel experiment as the simultaneous execution of N
elementary experiments. Since the N descents of the algorithm are now per-
formed at the same time, although the outcome and cost of each elementary
experiment are available, it is not possible to tell how many of the unsuccess-
ful outcomes are associated with each of the successful ones. In other words,

13

the random variables y and z are not directly observable. In this context, the
random variable

X = { Number of successes in N descents },

which may be expressed as

Var(X)=Npq.
The best estimator of the success probability p is, therefore,

. X
p_Na

with expected value E(p) = p and variance Var(p) = pg/N. The statistics of
y can then be estimated by the estimates of its parameters as

A

E(Y) =1/p
Var(y)=q/p’,

with ¢ =1 — p, and the statistics of z are estimated by

|
—_
~
—
Sy
~
+
—~
=
~
—~
H~
~

— 1)(sa) + (s5),

with b and S2 the sample mean and variance of the X successful descents, and
d and S3 the sample mean and variance of the N — X unsuccessful ones.

With C = Eﬁ;l c; the total cost of the parallel experiment, equation (4) is
equivalent to F(z) = <. Then, the random variable

W = —

X

verifies that, for N — oo,
E(w) — E(z),

and it is therefore an asymptotically consistent estimator of E(z). Since E(z)
is the desired measure of efficiency, we define w as the response variable of

14

the parallel experiment. Its variance Var(w) determines the precision of the
estimate, and it will be evaluated experimentally.

A pathological case of the parallel experiment occurs when none of the N
descents is succesful (i.e, when X = 0). This circumstance is termed hereafter
a nil result and it prevents the computation of w.

All experiments in this work have been performed on a Connection Machine
CM-200 [7], with 2048 bit serial processors (which fit well the binary state
variables), and simulations have been arranged so that each processor performs
a single descent of the algorithm. Thus, in all, each execution corresponds to
a parallel experiment with N = 2048 descents.

The above experimental measures also apply to Parallel Mean Search if the
elementary experiment is defined as a descent of the whole cluster (S non-
independent member descents). The descent is defined to be successful if any
of the cluster members finds a solution, and the cost of the descent is the
sum of the costs of the cluster members. In that way, the expected cost to
the first solution effectively takes into account all the invested resources. For
comparison purposes, parallel experiments with PMS where performed with
N = 2048 independent clusters.

4.2 First Stage: Training

In a set of preliminary experiments [6], the response variable w was found
to be an accurate enough estimator of E(z), but it had the following draw-
backs: it sometimes had a non-normal distribution, it had different variances
on different cases and, as mentioned, it could not quantitatively deal with nil
results. Therefore, objective comparison methods such as ANOVA [23] could
not be used. In the following, several replications of the parallel experiment
were taken for each experimental case in order to measure the mean and de-
viation of w in each case, and comparisons were made in terms of the means.
For a given comparison, whenever the number of nil results was equal, a differ-
ence in means was considered to be “significant” when its absolute value was
larger than the sum of the corresponding deviations. Otherwise, the setting
with less nil results was considered to perform better.

The goal of the training stage was to reduce the size of the experimental search
space. A test problem set was chosen with the 25 smallest problems in Ap-
pendix A, and a 7-problem training set was selected at random among them,
namely {d2,d4,d8,d10,d15,d18,d21}. F,,, being the core for BIBD generation,
was selected as the reference cost function, taking further advantage of the
fact that it required no coefficient tuning. And DH (again, without parame-
ters) was used as the basic reference strategy that would best represent the

15

inherent properties of the target space.

First, using DH over the training problem set, several cost function composi-
tions were compared in an attempt to analyze the effects of each of the dis-
tribution measures. A strong interaction was observed between cost functions
and problems (some functions performed best on particular problems, while
other functions performed best on different problems, regardless of which dis-
tribution measures were involved). Yet, after trying about 60 different function
compositions on each of the 7 problems, F,,, was found to perfom better overall:
it was the one that yielded the smallest number of unsolved designs, and the
largest number of significantly best scores (see [6] for details). Although not
so clearly, second-best results were obtained with F'(c,,1,9,3,7,0), termed
hereafter Fi,q, which was of particular interest for MBMUD generation [5].

Strategy parameters for SA and PMS were then tuned using F,, over the
training problem set (the choice of F,, as the reference strategy had by then
been reinforced by its good experimental results). For each strategy, experi-
mental optimization was performed on each individual problem, leading to the
optimal parameter setting for that problem, and the resulting values were then
generalized (over problems and cost functions) to get a standard parameter
setting for each strategy.

In the case of SA(T., p, N;), a compromise temperature range was set to p = 2
(a wider range would mean a waste of relaxation effort, whereas a narrower
range would make results too critical on the proper tuning of T,) and opti-
mization was perfomed over (T, £ AT,, N; = AN;), until the response at the
central point was significantly best. After a case per case optimization, a good
generalization criterion was found for 7. by normalizing temperatures with
respect to optimal local increments, and the average optimal value for N, was
used. The standard parameter setting was thus selected to be

SA% = SA(0.110A°F*,2,100),
and it let to a small standardization loss.

The parameters for PMS(S, Ry, Ry, N;) were tuned in a similar way. PMSfl,
PMSfc and PMSs were treated independently, and results were best for PMSfl
in a case per case basis. Therefore the other two variants were discarded. Being
a new strategy, no process knowledge was available in the case of PMS, and
optimization was more difficult. Four (instead of two) parameters were tuned,
and results were often poor (including several occurrences of nil results), thus
yielding larger deviations and making sometimes optimization ineffective. Op-
timal ranges were wider and imprecise and, for several problems, little sensi-
tivity was found with respect to the radii Ry and R¢. Since optimization was
based on cost w, the cluster size S and the number of iterations N; showed a
marked tendency to optimize on small values. Problem d2 was also discarded

16

from the training set, since it optimized on S = 1 and N; = 0 (i.e, a simple de-
scent with DH). A good generalization of the optimal parameters could not be
found, and the most-often best perfoming setting was chosen as a compromise
for the standard PMS parameters:

PMS*'" = PMSfI(2,uvb,4,15).

Actually, this was not the optimal setting for most of the training problems,
and the standardization loss was large.

Finally, the performance of the selected cost functions and parameters was
validated over different experimental settings. The comparison between £,
and Fyu,, was extended to the two remaining strategies (using their standard
parameters) and over the whole problem set. Although interaction was still
present, [, consistenly performed best for each strategy, and therefore F,,
was selected for the comparison stage described in the next section. In the case
of SA, the optimality of the standard parameters could also be verified over
the whole test problem set, both for F,,;, and Fyp.e. The standard parameters
for PMS needed no furhter checking, since they were already known to be
non-optimal.

4.3 Second Stage: Comparisons

During the comparison stage, the three standardized strategies DH, SA** and
PMS** were compared over the test problem set using the best performing
cost function F),,. Results are shown in Table 2.

Except for problem d2, SA performed best in a case per case basis, and could
solve the largest number of problems (all but d22). The comparison between
DH and PMS is also particularly interesting, because it shows how the co-
operative search effectively improved the results of independent Down-Hill
search. In terms of the number of solved problems PMS, with only 3 cases
unsolved (d19, d22 and d24), was clearly superior to DH, which failed on 12
occasions. But on the 13 cases solved by both, the score was 2 to 9 signifficant
differences against PMS. Even tough PMS greatly improved efficacy, its effi-
ciency was strongly penalized by its much larger descent cost. Yet, as shown in
the previous section, PMS was actually handicapped by the standardization
process, and might potentially yield much better performance if a better gen-
eralization could be found for its parameters. This assertion is supported by
the results in Table 3, where both SA and PMS were run using their respective
case-by-case optimal settings. Although SA is still best, PMS manages to get
a star (on d18), and the score against DH turns 3 to 1 on its favor, over the 5
problems solved by both (notice that the difference on d10 is not significant).

17

Table 2

Response w for the three standard strategies with F,, over the 7 problems in the
training set (above) and the remaining 18 problems in the test set (below). Entries
show means and deviations (within parenthesis) over 5 replications of the parallel
experiment. For each problem, the entries signaled “x ” show significantly best

marks, and those signaled “o

second best marks. When any of the replications is

a nil result it is excluded from the mean, and the number in square brackets shows
the actual number of replications averaged. Hyphens signal unsolved problems.

DH SA PMS

d2 *7.3 (0.1) 0 7.9 (0.2) 41.3 (0.5)
d4 926.6 (402.6) * 80.0 (1.7) o 407.8 (41.7)
ds - *61.9 (1.4) 03641.9 (1374.4)
d10 0 1095.5 (184.9) * 572.4 (37.5) 34974 (472.7)
d15 164.8 (24.4) *41.1 (0.2) 193.0 (4.8)
d18 - x1906.8 (175.0) 02988.4 (848.1)
d21 | [1] 6443.5 * 421.9 (32.6) | o [4] 43322.6 (21372.5)
d1 0132 (0.4) * 7.3 (0.1) 40.5 (0.7)
d3 0163 (0.6) * 13.0 (0.1) 59.8 (0.4)
d5 01494 (16.5) *112.3 (5.6) 482.2 (38.2)
d6 - * 122.1 (1.6) o 737.2 (42.2)
d7 02155 (12.7) * 48.2 (0.6) 502.5 (43.6)
d9 0 765.1 (137.8) * 233.9 (7.1) 2424.9 (403.5)
d11 0712 (5.6) * 22.9 (0.4) 95.8 (2.6)
d12 | o [3] 9328.0 (93.8) *29441.2 (5128.6) | [1] 70806.0

di3 - * 453.7 (21.7) 01630.3 (183.0)
d14 - * 596.0 (13.5) 0 9078.2 (5200.2)
d16 - *9381.1 (1507.9) | o [1] 34308.0

d17 - *3894.1 (512.9) | o [1] 73872.0

d19 - * [1] 206995.0 -

d20 - * 840.3 (34.9) o 25615.7 (8779.6)
d22 - - -

423 - *3550.3 (372.2) o 42187.6 (24720.7)
d24 - * 35200.7 (21245.0) -

d25 892.3 (418.6) * 79.9 (2.1) 4435 (32.8)

18

Table 3

Comparison between the three strategies using optimal parameters, using F,, over
the training problem set (15 replications). The optimal setting for d2 with PMS
reduced to DH and it is thus excluded.

DH SA PMS

d2 * 7.2 (0.1) 076 (0.2)

d4 837.4 (254.9) | x79.0 (2.2) o 163.8 (18.4)
ds - *59.4 (0.9) 01793.6 (266.0)
d10 1241.9 (318.4) | *644.6 (52.0) 1496.2 (268.3)
d15 162.4 (24.4) | %395 (1.0 o 57.3 (4.0)
d18 - 0 1345.9 (63.0) * 646.6 (40.5)
d21 | [7] 11094.8 (3155.9) | *345.7 (9.6) | o [10] 30373.6 (13519.1)

Results were then analyzed as a function of problem size, both in terms of
efficacy y and efficiency z. For the former, the estimated expected value F (v)
varied considerably with problems and strategies, and the estimated deviations
followed closely the expected values (as would be expected from a geometric
distribution with a relatively low success probability). The precision of the
estimates improved when the expected values were small. The evolution of
the efficacy with problem size is shown in Figure 1 a), where the inverse
estimator (the estimated frequency of success p) is used for the sake of clarity.
Comparing the three strategies, the qualitative shape of the curves is quite
similar, showing that, although interaction is important, the difficulty of each
individual problem has an intrinsic component. Although the evolution of the
figure is erratic (the dependence on vb is not direct), the general tendency is
quite clear: larger problems are more difficult. The superiority of SA is evident
from the figure and, although the margin is not so wide, PMS outperforms
DH in every case.

The cost z to the first solution is the main result of the analysis, and it
measures the efficiency of the search. Deviations follow again expected values,
and precision improves with good results. Since single descent cost deviations
are small, the statistical behavior of z is dominated by the distribution of
y. The evolution of E(z) with problem size (Figure 1 b)) is again shown
in terms of its inverse 10000/w, which can roughly be interpreted as the
number of solutions that would be found within 10000 iterations. As before, the
qualitative evolution of efficiency curves is similar for the three strategies but,
now, the relative descent costs alter the relative scores among the strategies:
DH shortens the distance to SA, and it outperforms PMS on all problems
solved by both.

19

. + DH <—

Fig. 1. For each of the standard strategies, with F,,, a) probability of success
p=1/E(y), and b) the inverse of the estimated cost to the first solution 10000/w,
as a function of problem size vb.

4.4 Third Stage: Problems of Growing Size

The last group of experiments were performed using the best algorithm of the
previous stage (F,, with SA%!). First, the search was applied to problems up to
vb < 500 (d26 to d57 in Appendix A, excluding d27 and d55, which are known
not to exist), and the estimated expected costs, after a single replication, are
listed in Table 4. Out of 30 problems, 14 were unsolved, and the remaining 16
show very high cost values.

Finally, the remaining 70 problems with vb up to 1000 (d58 to d129 in
Appendix A, excluding d71 and d107 as before), were attempted on a

20

Table 4
Estimated cost to the first solution for problems of size up to vb = 500, with the
best algorithm of the comparison stage, F,,, with SA%*® (1 replication).

vb E(z) vb E(z)
d26 | 300 8213.8 || d42 | 392 | 25814.4
d28 | 320 7907.0 || d43 | 396 | 206975.0
d29 | 324 451.4 || d44 | 420 | 34409.3
d30 | 324 | 206807.0 || d45 | 432 | 68942.3

d31 | 336 - || d46 | 441 85.5
d32 | 338 | 69080.7 || d47 | 441 | 206799.0
d33 | 338 - || d48 | 448 | 68902.0

d34 | 338 1923.8 || d49 | 448 -
d35 | 343 | 10291.8 || d50 | 450 -

d36 | 360 - || d51 | 450 -
d37 | 360 | 17170.2 || d52 | 480 -
d38 | 361 - || d53 | 480 | 206783.0
d39 | 363 - || d54 | 484 -
d40 | 364 - || d56 | 486 -
d41 | 384 - || d57 | 490 -

solved/unsolved basis only. As listed in Table 5, only 8 problems could be
solved, the largest being d123, with vb = 961. A curious remark is that the
two largest solved problems (d99 and d123) are the only ones in their group
that are known to have exactly one non-isomorphic solution (see Appendix

A).

From these results, although no regular behaviour can be found with respect to
problem size, it is again made clear that larger problems are really much more
difficult, as expected from an NP problem. Notice, as discussed in Section 1.1,
that problems as large as these (like the unsettled d94 testifies) are already
too large for exhaustive exploration.

5 Conclusions

In this work, the application of optimizing neural networks to the generation
of block designs has been studied, leading to a theoretical characterization
of the suitable cost functions, followed by an experimental comparison be-

21

Table 5

Solved /unsolved problems with vb up to 1000 entries.

vb | Solved? vb | Solved? vb | Solved?

db8 | 507 - d83 | 640 - d108 | 845 -
dd9 | 507 - d84 | 640 - d109 | 847 -
d60 | 512 - d85 | 648 - d110 | 864 -
d61 | 525 yes d86 | 648 - d111 | 882 -
d62 | 525 - d87 | 675 - d112 | 882 -
d63 | 528 yes d88 | 676 yes d113 | 882 -
d64 | 528 - d89 | 676 - d114 | 896 -
d65 | 529 - d90 | 676 - d115 | 900 -
d66 | 539 - dg1 | 720 - d116 | 900 -
d67 | 540 - d92 | 722 - d117 | 900 -
d68 | 540 yes d93 | 726 - d118 | 918 -
d69 | 560 - d94 | 726 - d119 | 924 -
d70 | 578 - d9s | 728 - d120 | 945 -
d72 | 588 yes d96 | 729 - d121 | 960 -
d73 | 600 - d97 | 735 - d122 | 960 -
d74 | 600 - d98 | 750 - d123 | 961 yes
d75 | 605 yes d99 | 750 yes di24 | 961 -
d76 | 605 - d100 | 756 - d125 | 961 -
d77 | 605 - d101 | 760 - d126 | 968 -
d78 | 612 - d102 | 768 - d127 | 968 -
d79 | 625 - d103 | 768 - d128 | 972 -
d80 | 630 - d104 | 792 - d129 | 1000 -
d81 | 630 - d105 | 792 -

d82 | 637 - d106 | 810 -

tween networks implementing these functions together with different search

strateg

Using the cost to the first solution as the performance measure allowed for an
objective comparison in terms of efficiency, and its estimation by means of the
response of the parallel experiment (2048 simultaneous runs on a Connection
Machine CM-200) was accurate enough, in spite of its statistical drawbacks

ies.

22

(occasional non-normality, unequal variances and nil results), that prevented
the use of standard tests such as ANOVA. Problems, functions and strategies
were the experimental factors that defined an experimental search space with
infinitely many levels. Thus, a training stage for function selection and pa-
rameter tuning was required, on the basis of the basic strategy (Down-Hill)
and the core cost function (F,,), respectively. A high interaction between the
experimental factors was observed and, although some choices were actually
validated, a good parameter generalization could not always be found. In all,
although results were consistent, experimental conclusions should not be ex-
trapolated lightly.

Although individual problems were intrinsically hard or easy, the general trend
was that larger problems were more difficult. Actually, most of the largest ones
remained unsolved. Results could not be compared with other techniques in
the literature, because most work in the combinatorics field is devoted to the
unsettled cases, and no systematic result listings could be found in terms of
generation cost.

The simplest cost function F),, performed best for all search strategies, empha-
sizing the descriptive capabilities of quadruples, and the definition of BIBDs
in terms of the measure (). Yet, the generalized function definition proposed
in this work, in terms of all the distribution measures, allows for different en-
hancements of the desired design properties. This could prove useful in cases
where pseudo-optima with a particular structure might be of interest. The
experimental analysis in terms of pseudo-optima (i.e, minimizing the average
energy of local minima) is a line for further research.

The best quality of DH was its low descent cost, leading to a fairly good
efficiency for the problems that it could solve. Yet, its efficacy was, as expected,
the lowest (only 13 solved out of 25 problems in the test set). Nevertheless,
DH was very useful as a reference, since the other two strategies were based
on it.

Results with SA were the most efficient on a problem by problem basis, and
only one problem (out of 25) remained unsolved. Process knowledge was useful
in parameter optimization and standardization, and SA’s experimental behav-
ior was “friendly”: good performance (leading to small deviations and good
precision), few cases of nil results, and a very good generalization capacity,
that could be validated against other cost functions and problems. Descent
cost was effectively minimized, and the use of a smooth temperature schedule
proved helpful. Using SA, most minima were already found by the end of the
stochastic phase of the search.

Results with PMS were promising (22 out of 25 solved problems), showing the
benefits of the parallel search, but its high descent cost penalized its efficiency.

23

Better results might be obtained, if only a way could be found of standardising
its parameters, but the lack of process knowledge didn’t help, and its experi-
mental behaviour was less friendly: nil results were more frequent, deviations
were larger (higher imprecision), and parameter sensitivity was lower. The
variant PMSfl proved best. Since parameters were optimized on cost, the very
smallest cluster size S = 2 yielded the best results. For PMS, minima didn’t
appear during the cooperative phase of the search, but formed on the (subse-
quent) independent down-hill relaxation. Thus, PMS can be interpreted as an
effective way of improving the initial state for Down-Hill search. Notice finally
that PMS and SA are not mutually exclusive. Since they are both based on
the same principle yet they act on different mechanisms, Parallel Mean An-
nealing, the combination of the two, might be another interesting approach
for further study.

The above comparison was done with general-purpose strategies. Building
problem knowledge into the search might lead to better-performing, problem-
specific algorithms. A possible approach along this line would be to do some
sort of isomorphism reduction, in order to reduce search space. Analysis of the
search space itself (ratio of local/optimal minima, attraction basins, structure
of local minima, neighbourhood of optimal solutions, etc.) might provide use-
ful hints for designing better strategies, and the characterization of problem
hardness and optimal strategy parameters with respect to design parameters
would also be interesting. A natural extension of Simulated Annealing is the
deterministic Mean Field Annealing strategy. Even if no further reduction of
the computational cost were obtained, the mean field model might allow for
new and different ways to explore the extended continuous search space.

Summarizing, the comparison of algorithms has proven an intrinsically difficult
task in itself, and BIBDs have proven a challenging problem for optimizing
neural networks to solve. Yet, BIBDs constitute a rich and coherent collec-
tion of samples which permit making fine discriminations. Using them as a
benchmark to test other optimizing techniques is one of our current research
lines [21].

24

Appendix A Admissible parameter sets for BIBDs

Admissible parameter sets (v,b,u) with vb < 1000 (extracted from [19] and
reordered by size). Problem number d;, original numbering m;, design pa-
rameters (v, b, u) and descriptors [r, k, A], problem size vb, and bounds on the
number N, of non-isomorphic solutions (N; = 0, a design does not exist;
Ny =7, unsettled case).

d; m; | v b ul r k M| wvb N,
d1l ml| 7 7 21| 3 3 1| 49 1
d2 md| 6 10 30| 5 3 2| 60 1
d3 m9| 7 14 42| 6 3 2| 98 4
d4 m2| 9 12 36| 4 3 1108 1
d5| ml5| 8 14 56| 7 4 3112 4
d6 | m43| 6 20 60|10 3 4| 120 4
d7 m7 |11 11 55| 5 5 2| 121 1
d8| m31| 7 21 63| 9 3 3147 10
d9| ml0|10 15 60| 6 4 2| 150 3
dli0| m24| 9 18 72| 8 4 3162 11
d11 m3 |13 13 52| 4 4 1169 1
dl2| m33 |10 18 90| 9 5 4180 21
dl3 | ml118| 6 30 90|15 3 6| 180 6
dl4 | mé67 | 7 28 84|12 3 4196 35
di5| m21| 9 24 72| 8 3 2216 36
d16 | m101 | 8 28 112 |14 4 6| 224 | 2224
dl7 | m20 |15 15 105 | 7 7 3| 225 5
dl8 | m236 | 6 40 120 |20 3 8| 240 13
d19 | md47 |11 22 110 |10 5 4| 242 4393
d20 | m117 | 7 35 105 |15 3 5 |245| 108
d21 | m13 |16 16 96| 6 6 2| 256 3

25

d; m; | v b wul r k XN| wvb N,
d22| mb8 [12 22 132 |11 6 5| 264 601
d23 |ml191 | 7 42 126 |18 3 6|29 417
d24 | m71 |10 30 12012 4 4]300| > 998
d25] m30 10 30 90| 9 3 2300 960
d26 | m409 | 6 50 150 |25 3 10| 300 19
d27 | ml6 |15 21 105 7 5 2315 0
d28 md |16 20 80| 5 4 11320 1
d29 | m66 | 9 36 108 |12 3 3|324| 22521
d30 |mlb0 | 9 36 144|116 4 6| 324 > 12
d31 | m278 | 8 42 168 |21 4 9|336| > 943
d32| m23 |13 26 104| 8 4 2| 338 2407
d33 | m77 |13 26 156 |12 6 5| 338 | > 1017
d34 m8 |13 26 78| 6 3 11338 2
d35 | m276 | 7 49 147 |21 3 7| 343 >9
d36 | m195 | 10 36 180 |18 5 8| 360 | > 1000
d37 | mbH96 | 6 60 180 |30 3 12| 360 34
d38 | m41 |19 19 171 9 9 4| 361 6
d39 | m125 |11 33 165 |15 5 6363 | > 127
d40 | m89 |14 26 182 |13 7 6| 364 > 179
d41| m35 (16 24 144 | 9 6 3 |384 | > 1512
d42 | m357 | 7 56 168 |24 3 8] 392 > 35
d43 | mb6 [12 33 13211 4 3|39 | > 103
d44 | m816 | 6 70 210 |35 3 14| 420 48
d45 | ml145 | 9 48 144 |16 3 4 |432| > 330
d46 m6 |21 21 105 5 5 11441 1
d47 | m477 | 7 63 189 |27 3 9| 441 > 10
d48 | m275 | 8 56 168 |21 3 6448 | > 101

26

d; m; | v b wul|l r k AN| wvb N,
d49 | mb24 | 8 56 224 (28 4 12448 > 2224
d50 | ml193 |10 45 180 |18 4 6450 | > 14819
d51| ml09 |15 30 210(14 7 6450 > 11
d52 | ml130 |16 30 240 |15 8 7[480 | >9x 107
d53 | m1078 | 6 80 240 |40 3 16 | 480 76
ds4 | m247 |11 44 220|120 5 8484 > 4394
d55| ml9 |22 22 154| 7 7 2484 0
d56 | m364| 9 54 21624 4 9| 486 > 10°
d57 | m595| 7 70 21030 3 10| 490 > 108
d58 | m70 |13 39 156 |12 4 3507 > 10°
d59 | ml24 |13 39 195|15 5 5507 > 30
d60| m76 |16 32 19212 6 4512 > 111
d61| ml4 |15 35 105| 7 3 11525 80
d62| mlo4 |15 35 21014 6 5525 > 117
d63| mb55 (12 44 13211 3 2528 > 10°
d64 | m319 |12 44 264 (22 6 10| 528 > 602
d65| m63 |23 23 253 |11 11 5529 1103
d66 | m735| 7 77 23133 3 11539 > 107
d67 | m480 | 10 54 270 |27 5 12 540 > 108
d68 | m235| 9 60 18020 3 5| 540 > 330
d69 | m819| 8 70 280 (35 4 15| 560 > 2224
d70 | mil158 |17 34 27216 8 7578 > 11
d71| m25[21 28 168| 8 6 2| 588 0
d72 | m881| 7 84 25236 3 12| 588 > 417
d73 | ml9 [10 60 180 |18 3 4600 > 961
d74 | m363 |10 60 240 (24 4 8|600| > 14819
d75| mll6 |11 55 165 |15 3 3 {605 | > 436800

27

d; m; | v b u| r k XN| wb N,
d76 | m242 [11 55 22020 4 6605 > 1
d77 | m416 | 11 55 275|25 5 10|605| > 3337
d78 | ml79 |18 34 306 |17 9 8612 > 10°
d79 | m40 |25 25 225 9 9 3625 78
d80 | ml02 |15 42 210|14 5 4[630| >103
d81| m49 |21 30 21010 7 3[630| >414
d82 | m1030 | 7 91 27339 3 13|637| >417
d83| m44 |16 40 160 |10 4 2|640| > 986
d84 | ml128 |16 40 24015 6 5640 > 15
d85| m356| 9 72 21624 3 6| 648 > 107
d86 | m690 | 9 72 288 (32 4 12648 > 10°
d87 | m290 |15 45 315|21 7 9675 > 10°
d88 | m65 |13 52 156 |12 3 2| 676 | > 92714
d89 | ml49 | 13 52 208 |16 4 4|676| > 2408
d90 | m373 |13 52 31224 6 10|676| > 1018
d91 | m891 |10 72 360 |36 5 16| 720 > 10°
d92 | m208 |19 38 34218 9 8| 722 > 7
d93 | m608 |11 66 33030 5 12| 726 > 108
d94 | m78 (22 33 26412 8 4726 ?
d95 | m451 |14 52 364 (26 7 12728 > 80
d96 | m98 |27 27 351 |13 13 6| 729 > 7
d97 | mil131 |21 35 315|15 9 6735 > 10"
d98 | m599 | 10 75 300 |30 4 10| 750 | > 29638
d99 | mll |25 30 150 6 5 1750 1
d100 | mb17 | 9 84 25228 3 7|75 | >330
d101 | m224 |20 38 380|19 10 9|760| >10'C
d102 | mi123 |16 48 240 |15 5 4768 > 11

28

d; m; | v b ul| r kA vb N,
d103 | m200 |16 48 2838 |18 6 6| 768 > 10%
d104 | m316 |12 66 26422 4 6| 792 > 10°
d105 | m743 |12 66 396 |33 6 15| 792 > 602
d106 | m1088 | 9 90 360 |40 4 15| 810 > 10°
d107 | m28|29 29 232| 8 8 2| 841 0
d108 | m241 |13 65 26020 4 5| 845 > 10°
d109 | m826 |11 77 385(35 5 14| 847 > 10°
d110 | m683| 9 96 288 |32 3 8| 864 > 107
di11| m46 |21 42 21010 5 2| 882 > 10
d112 | m75 |21 42 25212 6 3| 882 > 1
d113 | m259 |21 42 42020 10 9| 882 > 4
dl14 | m284 |16 56 336 |21 6 7| 896 > 1
d115 | m476 |10 90 270 |27 3 6| 900 > 102
d116 | m888 |10 90 360 |36 4 12| 900 > 10°
d117 | mb37 |15 60 420(28 7 12| 900 > 10'®
d118 | ml76 |18 51 306 |17 6 5| 918 >3
d119 | m293 |22 42 462 |21 11 10| 924 > 2
d120 | m280 |15 63 315|201 5 6| 945 > 2211
di21 | ml119 |16 60 240 |15 4 3| 960 | >6x 10°
d122 | m618 |16 60 480 |30 8 14| 960 | >9 x 107
di23| ml2 |31 31 18| 6 6 1| 961 1
d124| mb54 |31 31 31010 10 3| 961 > 38
d125 | ml43 |31 31 465|15 15 7| 961 | > 1266891
d126 | m1095 | 11 88 440 |40 5 16| 968 > 107
d127 | ml108 |22 44 308 |14 7 4| 968 > 1
d128 | m880 | 9 108 324 (36 3 9| 972 > 330
d129 | ml60 |25 40 400 |16 10 6| 1000 > 43

29

References

[1] Aarts E.H.L. and Korst J.H.M., “Boltzmann machines and their applications”,
Proc. PARLE. Springer-Verlag. Lecture Notes in Computer Science, Vol 258, p
34-50, 1987.

[2] Aarts E.H.L. and Korst J.H.M., Simulated Annealing and Boltzmann Machines,
Wiley Interscience, 1988.

[3] Ackley D.H., Hinton G.E. and Sejnowski T.J., “A Learning Algorithm for
Boltzmann Machines”, Cognitive Science, Vol 9, 147, 1985.

[4] Bofill P., Fontdecaba E. and Torras C., “Optimization Networks for the
Generation of Block Designs”, Journal of Artificial Neural Networks, Vol 2(4),
pp 302-312, 1995.

[5] Bofill P. and Torras C., “Neural Cost Functions for BIBDs leading to
MBMUDs”, submitted for publication.

[6] Bofill P. and Torras C., “Optimizing Neural Networks for the Generation of
Block Designs”, English version of the first author’s PhD dissertation, Technical
Report UPC-DAC-1997-76, November 1997.

[7] CM-200 Technical Summary. Thinking Machines Corporation. June 1991.

[8] Corneil D.G. & Mathon R.A., “Algorithmic Techniques for the Generation and
Analysis of Strongly Regular Grafs and Other Combinatorial Configurations”,
Ann. of Discrete Mathematics, North Holland Publishing Company, Vol. 2, pp.
1-32, 1978.

[9] Gibbons P.B., “Computational Methods in Design Theory”, The CRC
Handbook of Combinatorial Designs, pp 730-740, 1996.

[10] Goles E. and Matamala M., “Dynamical and Complexity Results for High Order
Neural Networks”, International Journal of Neural Systems, Vol. 5(3), pp 241-
9252, 1994.

[11] Gutzmann K.M., “Combinatorial Optimization Using a Continuous State
Boltzmann Machine” Proceedings of IANN Conference, San Diego, 1987.

[12] Hall M., Combinatorial Theory, Ed. John Wiley & Sons, Second Edition 1986.

[13] Hertz J., Krogh A., Palmer R.G., Introduction to the Theory of Neural
Computation, Ed., Addison-Wesley, January 1993.

[14] Hopfield J.J., “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities”, Proc. Nat. Academ. Sciences USA, Vol 79, pp 2554-
2558, 1982.

[15] Hopfield J.J. and Tank D.W., ““Neural” Computation of Decisions for
Optimization Problems”, Byological Cybern., Vol. 52, pp. 141-152, 1985.

30

[16] John J.A and Mitchell T.J., “Optimal Incomplete Block Designs”, J. Roy.
Statist. Soc. Ser. B, Vol. 39, p 39-43, 1977.

[17] John van Rees G.H., “(r, \)-designs”, Colbourn C.H and Dinitz J.H. (Eds.) The
CRC Handbook of Combinatorial Designs, CRC Press, p 434-436, 1996.

[18] Mathon R., Rosa A., “2-(v,k, A) Designs of Small Order”, The CRC Handbook
of Combinatorial Designs, pp 3-41, 1996.

[19] Mathon R. and Rosa A., “Tables of parameters of BIBD with r<41 including
existence, enumeration and resolvability results: an update”, Ars Combinatoria,
Vol 30, December, Winnipeg, Canada, 1990.

[20] McKay B.D. and Radziszowski S.P., “Towards Deciding the Existence of 2-
(22,8,4) Designs”, Journal of Combinatorial Mathematics and Combinatorial
Computing, Vol. 22, pp. 211-22, 1996.

[21] Meseguer P. and Torras C., “Solving strategies for highly symmetric CSPs”,
Proc. Sixteenth Intl. Joint Conf. on Artificial Intelligence (IJCAT’99),
Stockholm, Aug. 1999.

[22] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., and Teller E.,
“Equation of State Calculations for Fast Computing Machines”, Journal of
Chemical Physics, Vol 21, pp 1087-1092. 1953.

[23] Montgomery D.C., Design and Analysis of Experiments, John Wiley & sons,
third edition, 1991.

[24] Mullin C.R. and Gronau H.O.F., “PBDs and GDDs: The Basics”, Colbourn
C.H and Dinitz J.H. (Eds.) The CRC Handbook of Combinatorial Designs, CRC
Press, p 185-193, 1996.

[25] Peterson C. and Anderson J.R., “A Mean Field Theory Learning Algorithm for
Neural Networks”, Complex Systems, Vol 1(5), 995-1019, 1987.

[26] Peterson C. & Sodeberg B., “A New Method for Mapping Optimization
Problems onto Neural Networks”, Int. Journ. Neural Sys., Vol. 1(1), pp. 3-22,
1989.

[27] Sejnowski T.J., "Higher-Order Boltzmann Machines”, Proc AIP, Snowbird
1986.

[28] Street A. P. and Street D. J., Combinatorics of Ezperimental Design, Oxford
Science Publications, Claredon, Oxford 1987.

[29] Street D.J. and Street A.P., “Partially Balanced Incomplete Block Designs”,
Colbourn C.H and Dinitz J.H. (Eds.) The CRC Handbook of Combinatorial
Designs, CRC Press, p 419-423, 1996.

[30] Van den Berg J., “Neural Relaxation Dynamics, Mathematics and Physics of
Recurrent Neural Networks with Applications in the Field of Combinatorial
Optimization”, PhD thesis, Erasmus University Rotterdam, 1996.

31

