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Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-

optimal solutions of several difficult combinatorial problems. In many cases, the network energy function

is obtained through a learning procedure so that its minima are states falling into a proper subspace (fea-

sible region) of the search space. However, because of the network nonlinearity, a number of undesirable

local energy minima emerge from the learning procedure, significantly effecting the network performance.

In the neural model analyzed here, we combine both a penalty and a stochastic process in order

to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the

search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically

instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow

local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network

topology, the desired final distribution on the states can be reached by carefully modulating such process.

The model uses pseudo-Boolean functions both to express problem constraints and cost function; a

combination of these two functions is then interpreted as energy of the neural network. A wide variety

of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly

those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions

easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial

time) to maximize.
We show the asymptotic convergence properties of this model characterizing its state space distri-

bution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high
quality solutions on benchmarks and randomly generated instances of two specific problems taken from
the computational graph theory.

Keywords: Hopfield neural networks; stochastic dynamics; nonlinear pseudo-Boolean optimization;
penalty strategies; heuristics.

1. Introduction

The HNN model represents a paradigmatic artificial
neural network with a wide range of applications. It
has been used to model the process of associative
memory and more generally as classification algo-
rithm. Furthermore, HNN and its variants have been
applied to several combinatorial optimization prob-
lems as, for instance, the travelling salesman problem
and several graph problems as well as graph biparti-
tioning, weighted matching, independent set.

In some cases, the optimization process can be
bettered by approaches based on stochastic modi-
fications of the network to find local minima that
satisfy a set of given constraints characterizing a
restricted set of admissible solutions. Unfortunately,
because of its nonlinear character, often the net-
work can also exhibit non-desirable, local optima. A
common approach to handling constraints in neural
optimization is to apply a penalty function to bias
the search toward a feasible solution. In other terms,
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penalty consists on a learning strategy that adap-
tively chooses the network weights in order to deter-
mine a distributions on state space at the thermal
equilibrium which will favor valid and better solu-
tions. In such a way the probability to find non-
admissible solutions continuously decreases up to
negligible values.

The idea in our architecture, is related to the
notion of asymptotic stability and performance of
HNN with stochastic nature. We must alter the sta-
bility by introducing “noise” (penalization) when
the search direction does not promise to satisfy
essentials requirements, falling toward undesirable
local energy minima with hight probability. To avoid
such a behavior, the network performs a constraint-
satisfaction search process that begins with “weak”
constraints and then proceeds by gradually strength-
ening them until a feasible state is found. Based on
a stochastic state transition mechanism, the process
adaptively impose network connections in such a way
that the energy function associated with the network
is optimized for a set of desired network states. The
model is thus described by Markov chain showing
an equilibrium distribution like those characterizing
Boltzmann machines, even if the latest has substan-
tial difference with the network model studied here.
Also a convergence analysis which explains both why
the number of violations tends to zero and why the
maximality of the solution is given.

A family of functions that often plays an impor-
tant role in optimization models are the so-called
pseudo-Boolean functions.6 Their polynomial repre-
sentation, with particular regard to the quadratic
and symmetric ones, corresponds in a natural way
to the objective function of many optimization prob-
lems. Our aim here is to use them to discriminate
admissible solutions from non-admissible ones by
introducing suitable pseudo-Boolean penalty func-
tions, i.e., mappings from the family of subsets of
a finite ground set to the set of integers. Specifi-
cally, we consider monotone multivariate functions
based on a linear combination of a fixed collection
of bivariate boolean functions (binary constraints)
whose optima are characteristic vectors of admissible
solutions.

With the aim of dealing with a wide class
of problems, we show that this neural computing
model is promising when applied to the optimiza-
tion of a particular class of NP-hard constrained

combinatorial optimization problems10,23 having
monotone and symmetric quadratic pseudo-Boolean
constraint functions. To show the performances of
the proposed heuristic, we have done some compu-
tational experiments on two general problems on
graph, namely the minimum vertex cover and maxi-
mum clique problems. We compare its performances
with those of other heuristics known in literature.
We found that it outperforms these algorithms in
many cases or in the worst case it gives comparable
results.

This paper is organized as follows. Section 2
presents some works on related concepts present in
literature. Section 3 explains why monotonic pseudo-
Boolean functions can be used in neural optimization
area. Section 4 considers a generalization of the adap-
tive stochastic neural model previously presented for
maximum clique problem and presents its conver-
gence analysis. Some experiments that validate the
heuristic for two problems taken from graph theory
are reported in Sec. 5. Finally, conclusions are given
in Sec. 6.

2. Related Works

The natural connections between pseudo-Boolean
functions and nonlinear binary optimization have
motivated and strongly influenced some of the first
studies in this area.16,17 Since then the study of
pseudo-Boolean functions has grown to a major area
of research with hundreds of related publications in
the last 30 years.6

On the other hand, the reputation of neural net-
works for combinatorial optimization, widely docu-
mented in over two decades of research, has known
various degrees of success. In some cases they showed
they were not competitive with ad-hoc heuristics
designed for a specific problem; nevertheless, almost
every type of combinatorial problem has been tackled
by neural networks. Many neural approaches result
in behavior comparable to alternative techniques in
terms of solution quality (for a review see the paper
of Smith29; see also Refs. 27 and 7).

Among them, the role played by stochastic
dynamics in Hopfield and analogous models has been
relevant and intensely used since the introduction
of the basic algorithm19 and its first application
to combinatorial optimization.20,21 For instance in
the paper32 a learning algorithm for the Hopfield
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neural network is presented for solving the minimum
set cover problem. The learning algorithm adjusts a
parameter in the energy function so that the local
minimum that the network once falls into vanishes
and the network can continue updating in a gradient
descent direction of energy. Particularly interesting
is also the work31 which presents a stochastic opti-
mal competitive Hopfield network to solve NP-hard
partitional clustering problem, which is to parti-
tion a data set into a specified number of clusters
according to certain criteria, e.g., a square error
function. The method permits temporary energy
increases and includes stochastic dynamics, which
helps the Hopfield network escape from local min-
ima by introducing a hill-climbing dynamics. In 2003,
Galán-Maŕın et al.9 presented a competitive Hop-
field model that always guarantees convergence to a
global/local minimum of the energy function for the
maximum/maximal clique problem of a given graph.
It consists on a discrete Hopfield model based on
the notion of group update introduced by Takefuji
et al.30 in the maximum neural network. The result
is a new network, namely the optimal competitive
Hopfield model, with a high speed of convergence
even for large-scale problems.

Also penalty strategies are widely used to lead the
network toward a subset of states in a more general
state space. As an example, in Ref. 3 a nonlinear neu-
ral dynamics is applied to minimum weight design of
space trusses subjected to stress and displacement
constraints. The global convergence and the stabil-
ity of the neural dynamical system is reached by
adopting an exterior penalty function method. This
issue is also addressed in Ref. 28 in which a set of
constraint-specific penalty or weighting coefficients
are defined by learning-based approach. These val-
ues are in turn used to compute values of network
weights, effectively eliminating the guesswork in
defining weight values for a given static optimization
problem.

3. Constrained Pseudo-Boolean
Optimization

Constrained optimization based on pseudo-Boolean
functions is a subject of two previous papers,13,14

briefly recalled here.
We represent pseudo-Boolean functions by means

of (the unique) multi-linear polynomials having the

form:

f(x1, . . . , xn) =
∑
S⊆V

cS
∏
k∈S

xk,

where cS are integer coefficients and, by convention,∏
k∈∅ xk = 1. The size of the largest subset S ⊆ V for

which cS �= 0 is called the degree of f , and is denoted
by deg (f). Naturally, a pseudo-Boolean function f

is quadratic if deg (f) ≤ 2. A pseudo-Boolean func-
tion f is monotone non-decreasing if f(x) ≤ f(y)
for every x,y ∈ {0, 1}n such that x ≤ y (com-
ponentwise), while it is monotone non-increasing if
f(x) ≥ f(y).

For a given problem P of size n, let us denote with
CP its set of variable pairs (xi, xj) for which a binary
constraint is defined, that is, a Boolean functions of
the form g : {0, 1}2 → {0, 1} such that g(xi, xj) = 1
if and only if the assignment x = {x1, . . . , xn} locally
satisfy the constraint.

Under this setting, the above constraints are lin-
early combined into the following monotone (non-
decreasing) quadratic pseudo-Boolean function:

ψ(x) def=
∑

(xi,xj)∈CP

γijg(xi, xj) (1)

that we call the constraint function. The parameters
γij are the coefficients or weights associated to the
constraints.

Thus, a maximization problem P with linear
objective function f =

∑n
i=1 xi and unitary coeffi-

cients γij can be translated in the following general
form

maximize
n∑

i=1

xi

subject to ψ(x) = |CP |.
(2)

Observe that, by changing the sign to the cost func-
tion f , also minimization problems can be treated in
this framework.

Combinatorial optimization problems, which
arise naturally in many theoretical or applicative
areas such as logic, set and graph theory, program-
ming, electronics, etc., can be easily formulated as
pseudo-Boolean optimization problems. Some exam-
ple are: max independent set, max CSP (constraint
satisfaction problems), min vertex cover and max
k-colorable induced subgraph.

For instance, in order to find a vertex cover of an
undirected graph, i.e., a subset of vertices such that
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Fig. 1. Instance of the the min vertex cover prob-
lem: V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4)}.

each edge has at least one end-point in the subset,
we translate the problem in the form:

maximize −
∑
i∈V

xi

subject to
∑

{i,j}∈E

(xi ∨ xj) = |E|.

As an example, consider the graph G = 〈V,E〉
depicted in Fig. 1.

Since at each clause (xi ∨ xj) corresponds the
multi-linear polynomial xi +xj−xixj , the constraint
function becomes:

ψ(x) = 2x1 + 3x2 + 2x3 + x4 − x1x2 − x1x3

− x2x3 − x2x4.

Its maximum value is 4 and is given, for instance,
by the assignments (1, 1, 0, 0) and (0, 1, 1, 0); notice
that the latter also represent the best solutions for
the min vertex cover instance.

4. The Model

In this section we recall the adaptive stochastic neu-
ral model introduced in the recent papers.13,14

The energy function combines together the cost
and the constraint function as shows the following
quadratic pseudo-Boolean form (up to an additive
costant term):

E(x1, . . . , xn) = α

n∑
i=1

xi +
∑

(i,j)∈CP

γijg(xi, xj).

(3)

Here α represents a positive constant useful to
improve the effectiveness of the neural optimizer.
The parameters γij are positive integers modified by
learning process in order to find admissible solutions.

For each α > 0 the energy preserves the optima
of the problem. Infact, if y is an admissible solution,
the quadratic term

∑
(i,j)∈CP

γijg(xi, xj) assumes its

maximum value on it because all constraints are sat-
isfied, i.e.,

ψ(y) =
∑

(i,j)∈CP

γij = M = max
x∈{0,1}n

ψ(x).

Thus, every admissible solution y has energy

E(y) = α

n∑
i=1

xi +M,

making the linear term
∑n

i=1 xi the only responsible
of the cost.

The network architecture is derived from the
problem (for instance, the graph topology), with the
set of neurons (or units) isomorphic to the set of
binary variables representing the solutions. The con-
nections between neurons are achieved according to
the logical dependencies between variable pairs: the
absence of such a connection implies neither strength
in the synaptic connection between neurons nor con-
straint between the variables themselves.

Each unit i (1 ≤ i ≤ n) is stochastic, assuming
the state according to the rule

xi =

{
1, with probability φβ(h)

0, with probability 1 − φβ(h)

where,

φβ(h) =
1

1 + e−βh
(4)

is the classical Glauber12 or logistic sigmoid-shaped
function conditioned by parameter β > 0. Usually,
in recurrent stochastic neural networks β controls
the gain (or slope) of the activation function (e.g.,
annealing algorithms24,25 or Boltzmann machines2)
and it is proportional to the inverse of tempera-
ture. But the main difference between our model and
the classical stochastic ones is that instead of define
a cooling protocol for the temperature, we assign
to β a fixed value ranging from 1 (to favorite the
hight energy level) to α (to speed up the search),
and we will simply let the system adaptively choose
its weights to lead the search toward a feasible
solution. Therefore, the role played by annealing,
consisting on leading the system along the satura-
tion region of the sigmoid function, is here covered
by the learning phase. Therefore, by adopting the
saturated-nonlinear activation function (4) and let-
ting the network evolve with asynchronous dynamics,
the resulting dynamical system locally minimizes the
network energy with high probability.
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The proposed weight learning process consists
on a penalty method applied at the end of one
or more updatings of all neurons even if the net-
work has not reached the thermal equilibrium: for
each unit pair (xi, xj) that violates the problem con-
straint g(xi, xj), the absolute value of the weight
γij is increased. More formally, it can be written as
follows:

∀(xi, xj) ∈ CP if g(xi, xj) = 0

then γij = γij + 1.

As said above, the neuron state changes accord-
ing to the alternation of units updating and weights
strengthening stages. A characteristic sequence of
states assumed by a neuron during a simulation
and relative probability are showed in Fig. 2.
It is evident typical fluctuations that are due
to the non-stationarity character of the system
because the probability distribution φ(hi) changes
continuously.

A key issue is to link the energy gain at each step
during the network evolution with the penalty strat-
egy explained above to show the ability of neural
system to discriminate in the state space.

To update the network state, a unit i is chosen
at random or in sequence and its input is calcu-
lated by the analytical differentiation of the energy
function (i.e., by the relationship that bind the

(3) and the (4)):

hi(x1, . . . , xn) =
∂

∂xi
E(x1, . . . , xn)

= α+
∑

j∈N (i)

γij
∂

∂xi
g(xi, xj)

= ∆Ei.

Thus, flipping the state of the unit i produces a vari-
ation of energy ∆Ei which does not depend on xi.
This energy dependency helps the algorithm con-
verge toward a feasible solution, because hi is a
derivative of a function depending on all variables
connected with xi which grows indefinitely when the
previous updating schema is applied. We can state:

Proposition 4.1. Let hi = ∂E
∂xi

involving all vari-
ables xj such that j ∈ N (i). Then:

sup
γij∈R+

hi(x) =

{
±∞, if ∃j | g(xi, xj) = 0

α, otherwise
.

Proof. The proof is easily given recalling the
assumption that the quadratic Boolean function g

has as partial derivative the linear function

∂g(xi, xj)
∂xi

= b+ cxj ,

where b ∈ {0, 1,−1} and c ∈ {1,−1} are the coef-
ficients of the linear and quadratic term of g(xi, xj)

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2 Neuron state

Probability φ(hi)

Fig. 2. State fluctuation of a neuron during the network evolution.
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respectively. Note that, if b �= 0 then b = −c because
g(xi, xj) has maxima and minima on the set {0, 1}.2

This gives rise to a linear combination of all pos-
itive or all negative terms (the sign depends on c)
in hi:

hi(x1, . . . , xn) = α+
∑

j∈N (i)

γij
∂

∂xi
g(xi, xj)

= α+ bNiγij +
∑

j∈N (i)

cγijxj ,

where Ni = |N (i)|. Since all γij are positive, it is
obvious that suphi(x) = α when the variables xj

are all null and b = 0 or they are all 1 and b �= 0,
respectively. Vice versa it is ±∞.

The two main phases of the ASNM algorithm
(Adaptive Stochastic Neural Model) that simulates the
neural network behavior, alternating units updating
and selective penalization, is sketched as flow dia-
gram in Fig. 3.

4.1. Markov chain analysis

Consider the previous system in thermal equilib-
rium with 2n different states and associated energies
E(x1), E(x2), . . . , E(x2n). Dynamics of state transi-
tions can be described as a Markov chain with the
state mixing matrix P = (pab) such that the proba-
bility pab of a transition from a state of energy E(xa)
to another state of energy E(xb) is given by

pab =
1

1 + eβ(E(xb)−E(xa))
.

, α, βConstraints

state
Initial

Output state

Penalty: weight

Network unit
updating

strengthening

Fig. 3. Two main phases of the ASNM algorithm.

According to the Boltzmann distribution the prob-
ability pa that a system assumes the energy level
E(xa) during thermal equilibrium is

pa =
eβE(xa)

Z
,

where Z =
∑2n

a=1 e
βE(xa) is a normalizing factor

known as the state sum.
In constraint optimization the transition proba-

bility must be designed in such a way that the limit-
ing distribution of the undesiderable states becomes
arbitrary “little”, then the infeasible solutions can be
altogether avoided. Moreover, it must also be guar-
anteed that the better solutions have more chance to
be selected within the admissible state space.

In this model we have exactly this behavior. If
xa = (xa1 · · ·xan) is the binary representation of the
state a its probability at equilibrium is

pa =
1
Z
e

β(α
Pn

i=1 xi+
P

(i,j)∈CP
γijg(xai,xaj)).

By denoting as Ma =
∑

(i,j)∈CP
γijg(xai, xaj) and

defining M to be the maximum above all Ma, if
we divide numerator and denominator of previous
expression by the term eβM we obtain:

pa ∼ eα
Pn

i=1 xai

eM−Ma
.

Depending on the character of state a, it can be
observed two kinds of behaviors of the probabil-
ity pa:

• if a represents a feasible state the probability is
proportional to the size of the correspondent solu-
tion because Ma = M , that is

pa ∼ eα
Pn

i=1 xai ;

• if a is not a feasible state, pa is reduced by factor of

eM−Ma > 1.

Notice that when the algorithm runs, if the stop
condition is not reached, the term eM−Ma tends to
infinity since at least one of the parameters γij con-
tinues to increase because of the alternation of neu-
ron update and weight strengths, as explained better
in the next section. Figure 4 shows how the grow-
ing values of parameters γij forces the system to
choose the probability in the saturation regions of the
sigmoid.
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γij

φβ

Fig. 4. Saturation regions of the sigmoid and its relation
with the parameters γij .

4.2. Convergence analysis

The purpose of this section is to prove that under the
conditions given on the constraints and a random ini-
tialization, the stochastic process deriving by neural
network simulation stops with hight probability. In
particular, it must be proven that the stable state
reached by the sequence of neural networks not only
represents a valid solution, but also that it is a max-
imal solution of the optimization problem embedded
in the network structure.

According to this, it holds:

Theorem 1. Let x(t) be the state found by the
algorithm ASNM at time t and let Z(t) be the ran-
dom variable denoting the number of violations at the
same time. Then,

lim
t→+∞Pr {Z(t) > 0} = 0,

that is, the probability of having violations in x(t)
vanishing as t tends to infinity.

Proof. Let us give a maximization problem P with
constraint set CP , of size m = |CP |, as described in
(1) and cost function of the form given in (3). With-
out loss of generality, we also assume from now on
β = 1.

First of all, we observe that, at every time t, if
the stop condition for ASNM algorithm is false, at
least one constraint among g(xi, xj) is not satisfied
causing the related weight γij in (3) to increase in
absolute value; otherwise there are no violations and
the algorithm stops. Thus, for all γij in (3) it holds
that:

1 ≤ · · · ≤ γij(t− 1) ≤ γij(t) ≤ · · · .

Let Zij(t) ∈ {0, 1} be a random variable which
tells whether the violation of the constraint involv-
ing the pair (xi, xj) has occurred at time t, i.e.,
Zij(t) = 1 if occurred, Zij(t) = 0 otherwise. Let us
assume that the function g(xi, xj) is monotone non-
increasing, so its partial derivative are positive and
the coefficient of the quadratic term c is negative. In
this case we have a violation with high probability
if both φ(hi(x(t))) and φ(hj(x(t))) are near 1, i.e.,
when it is verified that:

φ(hi(x(t))) ≈ 1 ∧ φ(hj(x(t))) ≈ 1. (5)

The probability of having a violation on the link (i, k)
(condition (5)) is:

Pr {Zij(t) = 1} = Pr {g(xi(t), xj(t))) = 0}
= max{φ(hi(x(t))), φ(hj(x(t)))}.

Thus, at time t, we have:

Pr {xi(t) = 1} = φ(hi(x(t)))

=
1

1 + e−(α−P
k∈N(i) γik(t)xk(t))

≥ 1
1 + e−(α−γij(t)xj(t))

,

which tends to 0 when γij(t) → +∞. Obviously,
the same holds for φ(hj(x(t)). It is easy to extend
the previous proof to the other cases in which the
constraint function has a negative partial derivative
and the coefficient of the quadratic term satisfies
c > 0.

Let Z(t) =
∑

(xi,xj)∈CP
Zij(t) be a random vari-

able which denotes the number of violations at time
t in x(t), and then assuming values on the set
[0, . . . ,m]. Since the updates of each constraint are
independent from each other, it holds

lim
t→+∞Pr {Z(t) > 0}

= lim
t→+∞Pr




∑
(xi,xj)∈CP

Zij(t) > 0




=
∑

(xi,xj)∈CP

lim
t→+∞Pr {Zij(t) > 0} = 0.

About the solution quality, it can be objected
that the system tends to converge toward states that
trivially satisfy all constraints, that is vectors with
zeros or ones in all components. Actually, we prove
that the neural system always find optimal solutions
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i.e., solutions that are not subset of another one, as
assured by the following:

Corollary 1. Let xS be the stable state of the
network found by the ASNM algorithm. Then xS

represents, with high probability, an optimal solution,
i.e., S is a maximal subset.

Proof. Theorem 1 shows that the solution xS found
by the ASNM algorithm is admissible, which means
no constraint violation and thus E(xS) = α

∑n
i=1 x

S
i .

Let us suppose now that a maximal set T ⊃ S

exists such that
∑n

i=1 x
T
i − xS

i = k > 0 and conse-
quently E(xT )−E(xS) = kα, which implies for each
v ∈ T − S that

Pr {xv = 0} = 1 − φ(hv(x(t)))

= 1 − 1
1 + e−∆Ev

= 1 − 1
1 + e−α

=
1

1 + eα
.

Since α > 1, we have that Pr {xv = 0} < 0.11 and it
is about 4, 5 ∗ 10−5 when we set α = 10, as was done
in the experiments.

Differently from systems based on the Ising
model with Glauber dynamics,12 like Boltzmann
machines2,1 and stochastic Hopfield network,18 the
proposed model does not provide a control parame-
ter like temperature. Nevertheless, for maximization
(minimization) problems, this dynamical system
naturally “moves” in the direction of increasing
(decreasing) energy but this also allows it to move
in the opposite direction. The probability of such a
move is initially high, but it decreases during the
system evolution (the argument of the activation
function gets far away from zero, in the regions of sat-
uration). In other words, the probability of making a
contrary move depends on the absolute value of (4),
which is proportional to the number of violations.

The previous results are asymptotic and there-
fore not suitable for determining the time spent by
the algorithm in reaching a feasible state. To this
end, is more useful the worst case analysis in order
to give a lower bound to the time t (number of execu-
tion of the updating cycle of ASNM) for having the
average number of violations at time t, E [Z(t)] less
then one. Remember that the number of violations is
an integer number in the range [0 · · · |CP |] and that
we want to derive a time t̃ such that for every t > t̃

it holds E [Z(t)] < 1, indefinitely. This statement is
proved in the following:

Theorem 2. Let Z(t) be the random variables
defined in Theorem 1. For every problem P satis-
fying the condition of Sec. 2 such that m = |CP | and
for each input parameter α > 1, it holds that

E [Z(t)] < 1 when t > t̃ = m(α+ lnm).

Proof. Let P be a maximization problem with m =
|CP |, x(t) be the state found by the algorithm ASNM

at time t and let Z(t) =
∑

(xi,xj)∈CP
Zij(t) be the

random variable denoting the number of violations
at the same time, defined in Theorem 1. By definition
and by applying linearity, the expectation E [Z(t)] of
the sum of variables Zij(t) can be bounded as follows:

E [Z(t)] = E


 ∑

(xi,xj)∈CP

Zij(t)




=
∑

(xi,xj)∈CP

E [Zij(t)]

≤
∑

(xi,xj)∈CP

max{φ(hi(x(t))), φ(hj(x(t)))}

=
m∑

k=1

ψk,

where ψk = max{φ(hi(x(t))), φ(hj (x(t)))} by defini-
tion.

To obtain E [Z(t)] < 1, that is less than one vio-
lation in mean, is equivalent to impose

max
k∈[1···m]

ψk = φ(hp(x(t))) ≤ 1
m
,

for some p ∈ [1 · · ·m]. This implies:

1
1 + e−αhp(x(t))

≤ 1
m
,

and then

−
∑

j∈N (p)

cγpj(t)xj(t) ≥ ln(m− 1) + α.

The worst case hypothesis implies:

• only one variable xq ∈ N (p) is different from zero

γpq(t) ≥ ln(m− 1) + α,

where γpq(t) is the number of upgradings of con-
straint (p, q) ∈ CP inside the cycle;

• there is exactly only one updating for each execu-
tion of the cycle.
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Under these assumptions we can conclude that:

t̃ = m(α+ lnm),

as stated by theorem.

5. Experimental Results

To give an idea of the performances (solution qual-
ity and computation time) of the ASNM heuristic we
chose two problems from the computational graph
theory: one of maximization, Max Clique and one
of minimization, Min Vertex Cover (see Sec. 3 for
an example). For both the problems we consider ran-
domly generated graphs of various size. We compare
the ASNM heuristic with a plethora of heuristics and
approximation algorithms given for the two problems
and already presented in literature.

Regarding the experiments, a fundamental
parameter which deserves a discussion is the param-
eter α because of its dependencies on the quality of
ASNM performances. The simulations stress the fact
that small values of α w.r.t. n (α � n

10 ) give fast
execution time, but poor performances in terms of
solution quality. On the contrary, according to the
theoretical results, large values of α (α � n

10 ) cause
large execution time without significantly increasing
the performances. This behavior has been observed
in the following experiment involving instances ran-
domly generated for Min Vertex Cover: for var-
ious values of n and p (10 ≤ n ≤ 500, p = 0.1, 0.5,

0.9), 30 p-random graphs have been generated and
fixed; for all α (1 ≤ α ≤ n) the average size of the
vertex cover found by ASNM has been computed. As
an example, in Fig. 5 results for n = 100 and p = 1

2

are reported.
Apparently, there is not a clear rule that defines

the best values to assign to the parameter α, we
can only turn to empirical laws that find a com-
promise between time and quality. Because of its
not deterministic character, we execute the heuristic
many times (10 in general) picking then the better
value carried out, a typical practice which exploits
the intrinsic randomness of the algorithm making it
possible to better explore the solution space.

5.1. First experiment

The Max Clique instances taken into account here
are p-random graphs. They are represented by the
pair 〈V,E〉, where V = {1, . . . , n} and E is obtained
selecting {i, j} as edge with probability p (1 ≤ i <

j ≤ n). To show the behavior of the algorithm on
these instances we give a direct comparison with the
meta-heuristic IHN presented and tested in Ref. 5,
which is in some sense the deterministic version of
ASNM. IHN builds a finite sequence of discrete Hop-
field networks in which the energy function of the
(t + 1)-th network is the energy function of the t-th
network augmented by a penalty factor depending
on the violations. We choose such a meta-heuristic

10 20 30 40 50 60 70 80 90 100 α

90

91

92

Fig. 5. Dependence of the performances of ASNM on parameter α.
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Table 1. Clique average size with relative stan-
dard deviation at confidence level 95% obtained by
ASNM and IHN (columns 4 and 5) on p-random
graphs for various values of n and p (column 1).
Column 2 gives the expected size C(n, p) of the
maximum clique while column 3 reports the average
time (in seconds) spent by ASNM to converge.

n-p C(n, p) Av. time Average ± stdev

ASNM IHN

200-0.2 6.2 2.15 5.76± 0.07 5.53± 0.09
200-0.5 11.6 0.96 10.73± 0.09 10.23± 0.11
200-0.8 26.6 0.25 24.13± 0.12 22.96± 0.12

400-0.2 7.0 29.14 6.20± 0.07 6.06± 0.04
400-0.5 13.3 13.84 12.30± 0.08 11.83± 0.10
400-0.8 31.7 3.48 28.70± 0.14 26.80± 0.17

600-0.2 7.4 135.7 6.96± 0.03 6.76± 0.07
600-0.5 14.2 69.48 13.10± 0.05 12.53± 0.10
600-0.8 34.6 17.11 31.40± 0.10 29.83± 0.14

because its performances have been already shown
good in Ref. 5 and 15, in which it was compared with
many other well known heuristics for Max Clique

presented at DIMACS challenge.22 Also in this case
we set the parameter α = 10, run the algorithm 10
times for each instance graph and take the best value
obtained.

In Table 1 (column 4) we report, for some val-
ues of n and p, the clique average size (on 30 graphs
randomly generated for each pair n and p) found
by ASNM at confidence level 95%. Observe that the
average values found by ASNM are always better
than those found by IHN (column 5). These results
are also compared with the theoretical evaluation of
the expected maximum clique for p-random graphs
of size n, obtained according to an asymptotic resulta

(column 2).
Summarizing, on random graphs the clique sizes

found by ASNM are always better than those found
by IHN and they are at least 90% of the optimal
estimate C(n, p).

5.2. Second experiment

In this simulation the behavior of ASNM is experi-
mentally analyzed and compared with that of other
heuristics for Min Vertex Cover on p-random
graphs.

More precisely, the ASNM algorithm has
been compared on random graphs with other
heuristics such as MM (Maximal Matching
Algorithm),11 Greedy Algorithm, WG (Weighted
Greedy Algorithm),8 BE (Bar-Yehuda Even
Algorithm).4 The Greedy algorithm repeatedly picks
an edge that has not yet been covered, and places
one of its endpoints in the current covering set. This
algorithm does not achieve any bounded ratio: on
the contrary, the modified Greedy algorithm WG

obtains ratio 2. The basic idea is to assign weights
to the vertices: each time a vertex is placed in the
cover, each of its neighbors has its weight reduced by
an amount equal to the ratio of the selected vertex
current weight and degree. Another heuristic that
achieves ratio 2 is MM algorithm: picks a maximal
matching M in the graph and place both endpoints
of edges in M into the cover. The last heuristic we
consider is BE, obtained starting from a relaxation
of an integer programming formulation of min vertex
cover; this algorithm achieves a ratio 2 − log log n

2 log n .
All these algorithms have been compared both

regarding the quality of solutions and the compu-
tation time. For each instance size we generated
30 random graphs and executed the algorithms
on each one. We report here the average results

Table 2. Results of the simulations of ASNM and
others algorithms for Min Vertex Cover problem.

n Algorithms

ASNM Greedy WG BE MM

100 68.6 72.7 76.9 91.8 93.6
200 157.3 164.8 172.7 190.6 192.8
300 251.6 260.3 273.3 290.9 293.2
400 348.7 357.8 372.1 390.6 393.6
500 447.4 458.1 475.2 491.1 494.3

aThe expected number of cliques of size k in a p-random graph of size n is
“

n
k

”
p

“
k
2

”
. For p fixed (0 < p < 1) and

sufficiently large n, let C(n, p) be the real number k such that
“

n
k

”
p

“
k
2

”
= 1; it was shown26 that, for n → ∞, the

probability that a p-random graph of size n has a clique of size C(n, p) approaches 0. Therefore, C(n, p) estimates quite
well the expected size of the maximum clique.
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obtained, while the standard deviation is in general
little for all algorithms and no more than 2.33.

As regards the solution quality, the ASNM algo-
rithm performs better than the others, while the
worse performances are given by the algorithms MM

and BE (see Table 2).

6. Conclusions

We have introduced a model of computation based
on adaptivity and stochasticity to explore the solu-
tion space in order to find solutions constrained to
satisfy a fixed structure or a given property. In the
model the pseudo-Boolean functions are used both
to express the constraints and to define the cost
function of the problem, consequently interpreted as
energy function of a neural network with stochastic
dynamics. A wide variety of NP-had problems fall
in the class of problems that can be solved by the
model at hand, particularly those having a pseudo-
Boolean constraint function easy (polynomial time)
to maximize (or minimize).

The tests carried out show that it is a feasible
and a good heuristic when compared with other well-
known methods to solve the problems considered.
The future work concerns the analysis (worst case) of
the performances of the algorithm in terms of com-
putational complexity and approximation properties,
because most of the problems recalled here admit
an approximation algorithm with guaranteed perfor-
mance ratio.
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