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The main motivation of this paper is to propose a method to extract the output structure and find the
input data manifold that best represents that output structure in a multivariate regression problem.
A graph similarity viewpoint is used to develop an algorithm based on LDA, and to find out different
output models which are learned as an input subspace. The main novelty of the algorithm is related
with finding different structured groups and apply different models to fit better those structures. Finally,
the proposed method is applied to a real remote sensing retrieval problem where we want to recover the

physical parameters from a spectrum of energy.
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1. Introduction

In regression or classification problems a dimension-
ality reduction may be needed whenever there are
high dimensional datasets. That reduction searches
for the variables or a combination of them which
best preserves its intrinsic information. Principal
Component Analysis (PCA)! is a standard linear
dimensionality reduction technique that performs a
dimensionality reduction by projecting the original
data onto the linear subspace spanned by the first
l eigenvectors. It is optimal for Gaussian distributed
classes and captures the directions of maximum vari-
ance in the data using the correlation or covariance
matrix.

An important drawback of the technique is how
to choose the number of dimensions. Often, an

accumulative variance criteria is used and there
also have been proposed other methods based on
probabilistic principal components where the num-
ber of dimensions are learned.? Besides of this,
PCA is a very powerful unsupervised dimensional-
ity reduction tool and has been used widely, for
instance in computer vision.>® It is unsupervised
because it only uses the input data for the anal-
ysis. Otherwise, when the input and output data
are used during the dimensionality reduction pro-
cess it is called supervised. Linear discriminant anal-
ysis (LDA)? is the supervised version of PCA and
is also widely used in the dimensionality reduction
context.!?

On the other hand, kernel methods!! have proved
to be extremely powerful in many areas of machine
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learning, and the so-called “kernel trick” is by now
widely appreciated. Many dimensionality reduction
algorithms, as PCA, can be reformulated in terms of
Gram matrices, and generalized to nonlinear prob-
lems by substituting a kernel function for the inner
product. But, the Gram matrices not only can be
used in algorithms taking the advantage of the “ker-
nel trick” but also can be interpreted as a similar-
ity pairwise matrix. Spectral clustering!? is based on
this notion of similarity which can be defined by sim-
ilarity graphs and it is able to find arbitrarily shaped
data groups.

In this paper we want to transform a global
regression problem in n regression sub-problems
using the output data to find out different mod-
els. A recursive model division approach has been
adopted to find out the different models associated
to different local groups. This approach improves
the estimation capabilities comparing with a non-
recursive one.'? The recursivity allows to get a better
insight into the structures when there exist a hierar-
chy between the different models. Therefore, a differ-
ent manifold is learnt during each one of the recursive
steps until the number of clusters desired is found.
Afterwards, different regression models are applied
for each new group of data.

2. Computational Analysis

The goal of LDA? is to maximize the between-class
measure while minimizing the within-class measure.
The objective function for multiple classes can be
described by

- tr(ATS,A)
(= mx ATS,A) W

where S, is the between scatter matrix, S; is the
total scatter matrix, tr() denotes the matrix trace,
and A is a matrix with projections functions in its
columns.

We are going to analyze LDA from a graph view-
point likewise in Ref. 14. Assuming that the input
data is centered X = X — p, then

T
> n n
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where ny is the number of elements of class k, ¢ is
the number of classes, and R” is a ny x ny, structured
matrix with all elements equal to 1/ng. If we assume
that the classes k are ordered in the diagonal part of
the R matrix then,
Rl
R2

RC

In our regression application, we do not know
what is that output structure, and we have to deal
with that unknown information. Since we do not
know ¢, we do not know the number of elements in
each class ny either, and therefore the R matrix is
unknown.

We propose to use the output structure infor-
mation instead of classes for this purpose. The out-
put structure information is defined as the similarity
Gram matrix. In regression frameworks, this struc-
ture is very appealing because is going to allow to
do clustering in the output structure based on the
pairwise similarity, and therefore preserving homo-
geneity in the models. To introduce this approach
we are going to use the graph Laplacians properties
and a kernel approach.

The relation between spectral clustering based
on graph Laplacians and the kernel approach relies
on the fact that the smallest eigenvectors of graph
Laplacians can also be interpreted as the largest
eigenvectors of kernel matrices (Gram matrices).

The unnormalized graph Laplacian matrix is
defined as L = D — W, where D € R"*" is a diag-
onal matrix such that each entry is the sum of the
rows of W, i.e. d;; = Zj wy;, and W is the similarity
matrix. An overview of its properties can be found
in Ref. 15. One important property for spectral clus-
tering is the following: (Number of connected compo-
nents and the spectrum of L) Let G be an undirected
graph with non-negative weights. Then the multiplic-
ity k of the eigenvalue 0 of L equals the number of
connected components Ay, ..., A, in the graph. The
eigenspace of eigenvalue 0 is spanned by the indicator
vectors 14,,...,14, of those components.

Therefore if we consider a graph of k connected
components and without loss of generality, we can
assume that the vertices are ordered according to
the connected components they belong to, and the
matrix W and L have a block diagonal form as R.



Because we want to use the output structure
information to cluster the data, we calculate the ker-
nel similarity output matrix as K,, = ®(Y)®(Y)?
where ®(Y) is only defined in the feature space F,
and Y € R¥*™ is the output matrix data where
s is the number of features and n the number of
samples.

The main freedom of using the kernel approach
lies in choosing the kernel function K (z,y), or other-
wise specifying the kernel matrix K;;. Some widely
used kernels are the linear, polynomial and Gaus-
sian kernels, given by: K(z,y) = z -y, K(z,y) =

2
(142 9P, K(z,y) = e%. For this study we
have used a linear kernel.

If we compare the hypothetical diagonal matrix
K,, that contains the Gram structure of the output,
and the one obtained by the computational analysis
of LDA at Eq. 2 it can be observed that R matrix
can be decomposed as RF = K’ij -D* where D is a
diagonal block matrix containing the normalization
values for each block k. Then S, = X(K,, - D)XT,
and the within scatter matrix is reformulated as
Sw =S — S, = X(I — (Kyy - D))XT. It can be
derived that the new total scatter matrix is equal
to the total covariance matrix in the input space
S, =X(K,, D)X +X(I-(K,, D)X =XX .

With this approach the optimization problem
defined in Eq. (1) can be transformed

where the new ratio of the between and within scat-
ter matrices is the straightforward result of applying
the Gram matrix instead of a matrix containing the
proportional part of the number of elements associ-
ated to each class k.

3. Recursive Discriminant Regression
Analysis

A recursive partition approach has been adopted in
order to find the different models in the new low
dimensional space A. As it is shown in the Fig. 1, this
approach split the samples into two different subsets
iteratively using the projection of the samples (P =
ATX) and a density based clustering algorithm.
Then a new estimation model (M1/Model 1) is
calculated for the subset with the lowest deviation
X1, and the other subset X2 = {X — X1} is used

Model 1

Model 2

Model n-1 Model n

Fig. 1. Recursive groups models.

for the next iteration of the analysis. Afterwards, the
process is repeated using X4 = {X2 — X3} being
M3 a new model and so on. The main advantage
of this recursivity is that it allows to separate those
samples that have been already classified as homoge-
neous from the other ones, and to get a better insight
into the last ones during the next analysis.

In the next, we explain the proposed algorithm.
Given a set of input /output data X € RP*" and Y €
X" with n samples, and each one of the samples
with input dimension p, and output dimension s, the
algorithmic procedure is:

(1) Construct the output Gram matrix K, € £"*".
(2) Solve the generalized eigenproblem of (3) using
the following steps:

Calculate the SVD (singular value decomposi-
tion) of X, X = USVT, where sy, ...,s, are the
singular values associated to the left and right
eigenvectors U, and V.

Then we can transform the Eq. (3) sub-

stituting X by its SVD decomposition, as

tr(ATUSVTK,, VSUTA)
tr(ATUSVTVSUTA)

SUTA we get the next optimization problem,

tr(BTVTK,, VB)
maxp tr(BTB)

eigenproblem on B and then compute A as
A =US'B.

(3) Compute the projected data on the new axes as,
P=ATX.

(4) Apply a density based clustering algorithm on
the first [ components of the projected data P
obtaining a cluster X1 € RP*9 associated to a
model M1, and other data subset X2 = {X —
X1} € RP*™~¢ This step looks for a two clus-
tering division adjusting gradually the density

max4 , and being B =

that can be solved as an

algorithm parameters pursuing that purpose.



(5) While the number of found clusters is minor than
desired return to step 1 using X2 € RP*"~7 and
Y2 € R°*" 1 subsets as inputs.

(6) Apply a regression model (M;) to each one of the
obtained groups X;.

3.1. Artificial example

We have created an artificial example which is com-
posed by four different groups of random values
drawn from a normal distribution. The data sets
have been centered in (0,0), (5,5), (10,15), (20,0),
and their standard deviation are (2,1), (2,1), (1,4),
(4,1) as it is shown in Fig. 2. The polynomial fitting
of degrees 1 and 4 has been added for comparison
purposes. We want to point out that the linear fit-
ting is very vague and has a poor accuracy. As the
polynomial degree is increased a better fitting can
be found but also a more complex model has to be
build which eventually could lead to overfitting. The
adjustment of degree 4 is still vague and although
improves the linear model it is very difficult to find
a good model for the chosen dataset.

The Fig. 2(b) shows the projection (P) of the
same dataset onto the subspace (A) found by the
proposed algorithm. It can be seen how the differ-
ent groups have their own center of mass. In a first
step the group {D} can be discovered obtaining two
groups: {4, B,C} and {D}, and a lineal model is
assign to the group {D}. During the next step of

70
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Fig. 2.
of dataset samples.

the recursivity the group {C} is discovered and it
is also modeled by a linear approximator having the
dataset {A, B} as the last group to analyze. Doing
the same process the groups {A} and {B} are dis-
covered assigning to them their corresponding lineal
model. Finally we obtain four lineal models which fit
the different data samples ranges. In the Fig. 2(a)
the different local models are drawn with solid lines.
These models fit very well each one of the different
groups and therefore are able to find a good fitting
to the complete dataset.

4. Application to a Combustion
Temperature Estimation Scenario

We have applied the explained algorithm to a com-
bustion scenario which is related with the inversion of
the radiative transfer equation (RTE). This inversion
is a challenging mathematical problem, it is ill-posed
and it also has multicollinearity problems. Given
the measurements of energy at different wavenum-
bers represented by X € RP*™ and the output data
associated to the temperature profile represented by
Y € R¥*" we would like to learn a mapping f
such that Y = f(X). Recall that each column of
X and Y corresponds to a different observation. For
instance, each sample x; is a spectrum of radiance
in the infrared range of 2110 cm ™! — 2410 cm ™! with
p = 2341. Likewise, each sample y; is the correspond-
ing temperature profile with s = 200.
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(a) Global model versus Local models fitting for four different groups of normal distributed data. (b) Projection
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Fig. 3. Training and testing data projected into the first three components.

The dataset used in this study has been generated
with a simulator based on the experimental database
HITRAN'® and the parameter ranges used to gen-
erate this dataset are based on typical combustion
environment conditions (see Ref. 17 for more detailed
information).

The Fig. 3 shows the first three dimensions of
training Pypain and testing Piest projections. It can
be seen in this figure that the test data its almost per-
fectly embedded into the learnt manifold A. There-
fore we have chosen a simple classification technique
as k-nearest neighbors with £ = 1. Then, if two sam-
ples are close in the lower subspace they are con-
sidered to belong to the same model. That is, each
testing sample is associated with the model of its
nearest neighbor of the training dataset.

The different clusters do not have a uniform
structure and they are characterize by areas of high
density, separated by others that are empty or are
noisy. In order to cluster this type of data, we have

used the well known density clustering algorithm
DBSCAN'® due to its simplicity and speed.

The proposed recursive approach allows to get
the different structures during the different iterations
of the analysis. Table 1 shows the standard devia-
tions for each group during the first six iterations.
It is also indicated the different models which are
associated to the lowest standard deviation.

To measure the success of the classification pro-
cess we have split the data intro training and test-
ing samples and used a 1-nearest neighbor classifier.
The classification ratio of success obtained has been
of 98.8% which can be considered as very high.

To show the improvements between a global
model and the approach suggested in this study we
have done six different experiments. Each experiment
corresponds with different data sets associated to
each one of the clusters discovered. Then we have
applied a regression model to estimate each one of
these data sets. Because the similarity criteria used

Table 1. Standard deviation of the different clusters found during the recursive

partition process.

Iteration  Cluster Standard Model

Iteration  Cluster Standard Model

no. deviation no. no. deviation no.
1 1 0.014 M1 4 1 0.012 M4
2 0.016 2 0.018
2 1 0.013 M2 5 1 0.018 M5
2 0.016 2 0.020 M6
3 1 0.010 M3
2 0.017




Table 2. Mean Absolute Error per sample(MAES) of temperature, and its
standard deviation (SD).

Method

Cluster no.

Global Model

Cluster 1(MLP)
Cluster 2(MLP)
Cluster 3(MLP)
Cluster 4(MLP)
Cluster 5(MLP)
Cluster 6(MLP)

Model 1 (M1)  Cluster 1(linear)
Model 2 (M2)  Cluster 2(linear)
Model 3 (M3)  Cluster 3(linear)
Model 4 (M4)  Cluster 4(linear)
Model 5 (M5)  Cluster 5(linear)
Model 6 (M6)  Cluster 6(linear)

Temperature test Temperature
(MAEs/SD)K train(MAEs/SD)K
2.45/1.40 0.75/0.50
2.18/1.62 0.76,/0.52
1.49/0.93 0.88/0.68
1.21/0.90 0.77/0.51
1.10/1.54 0.76,/0.47
0.80/1.33 0.78/0.45
0.12/0.25 4E-6/4E-6
0.17/0.33 5E-6/4E-6
0.10/0.17 9E-6/8E-6
0.17/0.32 1E-4/9E-5
0.19/0.87 6E-4/5E-4
1.21/0.97 1.15/0.80

in the algorithm has been linear we use a linear model
as estimator. In the global approach a multilayer
perceptron (MLP) has been used as estimator. The
architecture of the MLP is one hidden layer, and the
number of neurons is fixed using a greedy approach
(30 neurons). This results are indicated in the Table 2
which shows the Mean Absolute Error profile per
sample (MAEs). The obtained MAEs in temperature
is computed as MAEs = 22370 >0 |ykj — ¥yl
where z is the discretized length, and n the number
of samples. The MAEs gives an idea of the physical
error.

The table is divided in two rows, and each one
in another six which correspond to the number of
clusters discovered by our algorithm. The first row
from above shows the results of the global model per
each one of the clusters, and the second row shows
separately the error for each one of the models.

In data experiments, the MAEs is below 1% rel-
ative error (1.21K. for the worst case) which is an
acceptable level of accuracy for most of the practical
applications in the context of combustion tempera-
ture retrieval.'® Also the standard deviation error for
every model is lower because the discovered groups
of data are more homogeneous.

5. Conclusions

In this paper we have presented a novel algorithm
that tries to use the Gram matrix output structure to
discover an input manifold that best represents that
structure. We have used a graph similarity viewpoint

to develop the algorithm which also introduces recur-
sivity to find hierarchical relations between the clus-
ters and improves the quality of the obtained models.
We have tested the algorithm in an specific remote
sensing application where we want to retrieve the
temperature profile of a combustion from its spec-
trum of energy. The results obtained after cluster-
ing the data using our proposed algorithm improves
the results obtained by a single model. Therefore, we
suggest that using the output structure of the data
can be a very powerful idea to discover some inter-
esting information in the input data for regression
problems.

Acknowledgments

The authors wish to acknowledge the Spanish Min-
istry of Education for financial support under the
projects TRA2005-08892-C02-01, and M*::UC3M-
TIN2008-06491-C04-04. E. Garcia would also like to
thank Margarita Gallardo.

References

1. 1. T. Jollife, Principal component analysis, Springer
Series in Statistics Springer-Verlag (Chap. 8), (2nd
edn.) New York (2002).

2. E. Lopez-Rubio and J. M. Ortiz-de-Lazcano-Lobato,
Dynamic competitive probabilistic principal compo-
nents analysis, International Journal of Neural Sys-
tems 19(2) (2009) 91-103.

3. M. Turk and A. P. Pentland, Face recognition using
eigenfaces, IEEE Conference on Computer Vision
and Pattern Recognition (1991) 586-591.



10.

11.

S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Prin-
cipal component analysis-enhanced cosine radial
basis function neural network for robust epilepsy and
seizure detection, IEFEE Transactions on Biomedical
Engineering 55(2) (2008) 512-518.

H. Yin and I. Hussain, Independent component
analysis and non-gaussianity for blind image decon-
volution deblurring, Integrated Computer-Aided
Engineering 15(3) (2009) 219-288.

J. Xu, A. Roy and M. H. Chowdhury, Noise separa-
tion in analog integrated circuits using independent
component analysis technique, Integrated Computer-
Aided Engineering 15(2) (2008) 163-180.

Q. Wu and J. Ben-Arie, View invariant head recogni-
tion by hybrid PCA based reconstruction, Integrated
Computer-Aided Engineering 15(2) (2008) 97-108.
F. Cong, I. Kalyakin, T. Huttunen-Scott, H. Li,
H. Lyytinen and T. Ristaniemi, Single-trial based
independent component analysis on mismatch neg-
ativity in children, International Journal of Neural
Systems 20(4) (2010) 279-292.

K. Fukunaga, Introduction to statistical pattern
recognition, Academic Press, New York (1990).

A. Samant and H. Adeli, Feature extraction for
traffic incident detection using wavelet transform
and linear discriminant analysis, Computer-Aided
Cwil and Infrastructure Engineering 13(4) (2000)
241-250.

B. Schélkopf and A. Smola, Learning with ker-
nels: Support vector machines, regularization, opti-
mization, and beyond, MIT Press, Cambridge MA
(2002).

12.

13.

14.

15.

16.

17.

18.

19.

A. Y. Ng, M. 1. Jordan and Y. Weiss, On spectral
clustering: Analysis and an algorithm, NIPS (2001)
849-856.

E. Garcia-Cuesta, I. M. Galvdan and A. J. de Cas-
tro, Discriminant regression analysis to find homo-
geneous structures, IDEAL (2009) 191-199.

D. Cai, X. He and J. Han, SRDA: An efficient algo-
rithm for large-scale discriminant analysis, IEEFE
Transactions on Knowledge and Data Engineering
20(1) (2008) 1-12.

B. Mohar, Some applications of laplace eigenvalues
of graphs, Graph Symmetry: Algebraic Methods and
Applications, 497 of NATO ASI Series C (1997) 225—
275.

L. S. Rothman et al., The HITRAN molecular
spectroscopic database: Edition of 2000 including
updates through 2001, J. Quant. Spectrosc. Radiat.
Transfer 82 (2003) 5-44.

E. Garcia-Cuesta, I. M. Galvan and A. J. de Castro,
Multilayer perceptron as inverse model in a ground-
based remote sensing temperature retrieval problem,
Engineering Applications of Artificial Intelligence 21
(2008) 26-34.

M. Ester, H.-P. Kriegel, J. Sander and X. Xu,
A density-based algorithm for discovering clusters
in large spatial databases with noise, KDD (1996)
226-231.

G. Lu, Y. Yan and M. Colechin, A digital imaging
based multifuncional flame monitoring system, IEEE
T. Instrum. Meas. 53 (2004) 1152-1158.



	1 Introduction
	2 Computational Analysis
	3 Recursive Discriminant Regression Analysis
	3.1 Artificial example

	4 Application to a Combustion Temperature Estimation Scenario
	5 Conclusions



