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Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an 
individual’s internal state, which is then manifested physiologically. This study explores neurophysiological 
changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility 
of an on-line closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and 
can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue 
detection and mitigation between the EEG-based and a non-EEG-based random method. Twelve healthy subjects 
participated in a sustained-attention driving experiment. Each participant’s EEG signal was monitored continuously 
and a warning was delivered in real time to participants once the EEG signature of fatigue was detected. Study 
results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral 
performance following a warning signal; these findings are in line with those in previous studies. However, study 
results also showed reduced warning efficacy (i.e., increased response times to lane deviations) accompanied by 
increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and 
non-EEG-based random approaches clearly demonstrated the necessity of adaptive fatigue mitigation systems, 
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based on a subject’s cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the 
efficacy of this on-line closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive 
lapses that may lead to catastrophic incidents in countless operational environments. 

Keywords: EEG, Fatigue, Auditory Feedback, Brain Dynamics, Driving Safety. 

1. Introduction 

Fatigue is the induction of and generally accompanies 
drowsiness, a transitional state between wake and 
sleep.1 Further, fatigue accumulates gradually and 
associated with declines in attention, eventually 
reducing performance and efficiency.2 The resulting risk 
of injury or death is obvious when drivers are fatigued; 
that is, reaction time slows, situational awareness 
decreases, and judgment and vision are impaired.3, 4 
Driver fatigue is a major cause of crashes and 
negatively impacts road safety. Mechanisms that can 
identify fatigues are necessary to prevent fatigue-related 
accidents.5-8 

Studies have deployed indicators to measure 
physiological changes, such as changes in blinking rate9 
and heart rate,10 as a means of evaluating cognitive 
capability. A number of studies have also indicated that 
variation in an individual’s behavioral performance 
accompanies significant changes in the electro-
encephalogram (EEG) power spectrum.11-26 Researchers 
have indicated that the EEG signal may be a very 
predictive and reliable indicator of alertness27 and can 
be used to develop devices to combat fatigue.19, 25, 28, 29 

Our recent study25 used an event-related lane-
keeping task in a virtual environment and recorded brain 
dynamics via a noninvasive electroencephalogram 
(EEG) device. Subjects were instructed to steer a 
simulated car back to its original cruising position when 
it drifted into another lanes. Response time (RT), the 
time interval between deviation and response, was 
improved by auditory feedback delivered to drowsy 
subjects. Furthermore, the capacity of a subject to 
respond was correlated with variations in EEG power 
spectra. 

Several studies have explored methods to mitigate 
fatigue-related cognitive lapses. Graham5 and Belz et 
al.,30 for example, demonstrated that warning signals 
effectively improve the performance of drivers. Our 
previous studies25, 31 delivered an auditory warning 
signal at 1,750 Hz to drivers to restore performance that 
had been decreased by fatigue, and thereby reduced the 
magnitude of cognitive lapses. Furthermore, we have 

explored the effects of arousal feedback to reduce 
cognitive lapses in situations requiring attention25, 32 and 
conduct an on-line lapse detection and mitigation 
system28 in real-world environments. 

This study extends the previous work using an on-
line closed-loop EEG-based fatigue detection system to 
predict driving fatigue based on EEG power spectra. 
This system validates the correlation between EEG and 
behavioral performance while driving before and after a 
warning delivered to drowsy subjects. Additionally, this 
study investigates that the efficacy of warning signals 
often declines over time. Furthermore, in order to 
validate the benefits of an EEG-based fatigue-mitigation 
system over those that do not use the EEG, this study 
compares the task performance obtained by the EEG-
based and non-EEG-based random fatigue mitigation 
systems. 

2. Methods 

2.1. Subjects 

In total, twelve healthy subjects (7 males and 5 females) 
aged 20–26 with normal hearing were recruited as paid 
volunteers for this virtual reality (VR)-based highway 
driving experiment. No subjects had neurological and 
psychological disorders and did not abuse drugs or 
alcohol. The subjects were instructed to get sufficient 
and regular sleep in the night before the experiment. No 
subject consumed alcohol or caffeine in the morning on 
the experiment day or had worked a night shift during 
the previous two months. The Institutional Review 
Board of the Taipei Veterans General Hospital approved 
the experimental protocol. All experiments were 
conducted in the early afternoon (13:30 ± 1h) after 
lunch, when the circadian sleep rhythm becoming 
stronger. 

All subjects were informed about experimental 
materials, features and the driving task process in 
advance. Subjects practiced driving for 5–10 min until 
they felt comfortable with experimental procedures. 
They were also asked to complete a questionnaire 
before and after the experiment. 
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2.2. Experimental equipment 

The VR-based highway driving experiments were 
performed in a simulator that mimicked a driving 
situation in a darkened sound-reduced room. The VR 
scene simulated driving at a constant speed of 100 km/h 
on a four-lane divided highway with their car randomly 
drifting away from the center of the cruising lane to 
simulate driving on non-ideal road surfaces or with poor 
alignment.24, 25 In addition, a straight and monotonous 
road without traffic or stimuli was intended to simulate 
a long-time driving situation likely to induce 
drowsiness. The refresh rate of the highway scene was 
60 Hz. Scenes moved according to car displacement and 
steering. 

During the experiment, the EEG activities were 
recorded by 30-channel scalp electrodes (Ag/AgCl 
electrodes) with a unipolar reference at the mastoid by 

the SynAmps system (Compumedics Ltd., VIC, 
Australia). The EEG electrodes were placed based on a 
modified international 10-20 system. Contact 
impedance between EEG electrodes and the cortex was 
calibrated to <10 kΩ. The EEG data were recorded with 
a 32-bit quantization level at a sampling rate of 500 Hz 
and preprocessed with a 50 Hz low-pass filter and a 0.5 
Hz high-pass filter. 

2.3. Experimental paradigm 

An event-related lane-departure driving task (Fig. 
1(a))25 was used to assess objectively and quantitatively 
fluctuations in driving (behavioral) performance over 
long periods. Each driving session lasted 40–60 min, 
which was sufficient for subjects to experience fatigue. 
Furthermore, each experiment consisted of two sessions, 
a calibration session to determine a reasonable warning 
threshold (EEG power spectra in the alpha band) of 

 

Fig. 1.  Experimental paradigm. (a) Event-related lane-keeping tasks. The solid black arrows represent driving trajectory. The empty 
circle represents deviation onset. The double circle represents response onset. The circle with a cross represents end of response. 
Drivers’ response time (RT) is the time interval from deviation onset (empty circle) to response onset (double circle). End of response 
(circle with a cross) means that drivers are steering car back into the original lane. The next deviation begins at 16–20 s after end of 
response [Adapted from Ref. 25]. (b) Setting a warning threshold while drivers became drowsy. The height of an arrow represents the 
response time of a single trial. The alpha-band power was recorded as the warning threshold (WTH) when a trial’s RT was longer than 
2.5 times the mean RT of trials within the first 4 min of the task during which the subject was asked to remain alert and attend to the 
tasks [Adapted from Ref. 25]. (c) Criteria for delivering auditory feedback to drivers during driving tasks. The subject’s alpha-band 
power was calculated using the fast Fourier transform (FFT). A warning was delivered to drivers when their alpha-band power 
exceeded the WTH. The warning lasted until the driver’s alpha-band power dipped below the WTH. 
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each subject (Fig. 1(b)), and an on-line session (Fig. 
1(c)). 

Fig. 1(a) shows the event-related lane-departure 
task. Lane-departure events were randomly introduced 
at 16–20 s intervals with the car drifting at a constant 
speed with equal probability toward the curb or into the 
opposite lane.25 Subjects were instructed to then steer 
the vehicle back toward the center of the original 
cruising lane as soon as possible.25 Before the 
experiment, subjects were instructed to remain as alert 
as possible. Experimental performance was monitored 
by a surveillance camera and vehicle trajectory was 
recorded. The times at which the car veered, when a 
response onset occurred, and when the response ended 
were recorded during each experiment. In Fig. 1, an 
empty circle represents an unexpected veering event, 
and is marked as “deviation onset”. Response onset was 
when subjects began to steer the car back toward the 
center of the cruising lane (double circle). The moment 
subjects stopped moving the steering wheel (circle with 
cross) was end of response. Response time (RT) was the 
time interval between the deviation onset and response 
onset. 

The experiment had two sessions. Due to 
individual variability, suitable criteria for the warning 
needed to be determined from data acquired in the first 
calibration session (Fig. 2). The threshold of EEG alpha 
power was set according to a subject’s behavioral 
performance in the session.25 Then, the second session 
used the spectral threshold to trigger a warning 
delivered to fatiguing subjects. Fig. 2 presents the 
flowchart of the closed-loop fatigue-monitoring system. 

Fig. 1(b) shows the method used to set a suitable 
warning threshold for each subject. The EEG data were 
recorded and converted into the frequency domain using 
the fast Fourier transform (FFT) with a 4-s window and 
500-ms step. During the first 4 min, subjects were 
requested to stay alert and the RT of these alert trials 
was computed, averaged, and defined as mean RT. The 
averaged alpha-band power in the first 40 s was defined 
as the baseline. If a subject’s response times exceeded 
the mean RT by 2.5 times, the subject was considered 
fatigued. Simultaneously, the subject’s alpha-band 
power was recorded and averaged as the threshold, 
triggering a warning, and is marked as “WTH”. 
Notably, the alpha-power threshold was set to the 
averaged alpha power of trials with mild fatigue (RT 
between 2.5 and 5 times of alert mean RT). 

Fig. 1(c) presents the procedure of delivering a 
warning during the second session. The time interval 
marked as “over the warning threshold (OWT)” (Fig. 
1(c)), a subject’s alpha-band power exceeded WTH and 
the system delivered a 1,750-Hz tone burst31 to subjects 
until his/her alpha-band power reduced to below WTH. 
However, to compare EEG signals with and without a 
warning, a warning was delivered in only 50% of 
fatigue episodes. In all experiments, the warning signal 
volume was set at a fixed level (68.5±1.5 dB), which 
was very noticeable but not too loud. 

One might argue that if arousing feedback proves 
effective for improving task performance, the easiest 
practice of fatigue prevention seems to randomly deliver 
warning signals to participants. To justify the use of an 
EEG-based fatigue-mitigation system, ten subjects 
returned to participate in a control experiment in which 
a warning was randomly delivered to them every 15–20 
min. This study then could quantitatively compare the 
task performance obtained by the EEG-based and non-
EEG-based random fatigue mitigation systems. 

 

Fig. 2.  The flowchart of the experimental protocol. The first 
session determined a rational warning threshold for each 
subject (cf. Fig. 1(b)). In the second session, a warning was 
delivered if the average alpha-band power exceeded the 
warning threshold (cf. Fig. 1(c)). 
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2.4. Data analysis 

The recorded 32-channel EEG signals were first 
inspected to remove bad EEG channels, and then down-
sampled to 250 Hz. The continuous EEG signals were 
segmented into 55-s epochs, from 15 s preceding to 40 s 
after the start of the OWT (cf. Fig. 4) or end of the 
OWT (cf. Fig. 6(b)). The epochs contaminated by noise 
signals (muscle activity, blinking, eye movement and 
environmental noise) were eliminated manually to 
minimize their influence on subsequent analysis. 
Notably, the channel/epoch removal procedure was only 
applied to offline analysis. 

Independent component analysis (ICA)13, 33 was 
applied to decompose EEG signals into temporally 
independent time courses corresponding to brain and 
non-brain sources using EEGLAB.34 The 30-channel 
EEG signals were separated into 30 independent 
components, based on the assumption that EEG signals 
at sensors were linear mixtures of activation of distinct 
brain and non-brain sources whose time courses were 
statistically independent. 

To identify comparable independent components 
across subjects, components obtained from multiple 
subjects were grouped into component clusters based on 
their scalp maps, equivalent dipole locations and 
baseline power spectra of component activations.34, 35 
Time courses of activations of components of interest 
were selected and transferred into the frequency domain 
by the Fast Fourier Transform (FFT). 

The dynamic changes, tonic and phasic spectral 
changes of the EEG signals, were measured following 
the warning feedback in occipital area in this study. 
Tonic changes are long-time (minute-scale) variations in 
brain activities following a warning. Phasic changes are 
the short-time (second-scale) variations in brain 
activities in response to a warning. 

The RT and EEG power were not normally 
distributed, such that nonparametric statistical tests were 
performed to analyze the data. The Wilcoxon signed-
rank test (Matlab statistical toolbox, Mathworks) was 
applied to identify significant differences among the 
effects of auditory feedback on RTs and changes in 
average EEG power spectra. Bootstrapping (EEGLAB 
toolbox, University of California, San Diego) was 
applied to determine the statistical significance of EEG 
power changes at specific frequency bins. To test group 
statistics, intrinsic inter-subject RT differences were 
reduced by dividing RTs by the mean RT of trials 

within the first 4 min of each session. The EEG spectra 
were also aligned by shifting individual baseline power 
to all-subject average baseline power. 

3. Results 

3.1. Comparison of behavioral performance with 
alpha-band power exceeding warning 
threshold epochs with and without a warning 
feedback 

Fig. 3 shows the RTs of consecutive trials before and 
after alpha-band power exceeded WTH. In 50% of 
epochs, arousing warning signals were delivered to the 
subjects. Trials before the warning threshold (BWT) 
refer to trials with lane-departure events before a 
subject’s alpha-band power exceeded WTH. The trials 
after alpha-band power declined to under WTH in 10 s 
were marked as trials after the warning threshold 
(AWT) and the trials following these were marked as 
AWT+1. Notably, the RTs of AWT+1 were removed 
from analysis when a warning was delivered during the 
time between AWT and AWT+1. Additionally, trials 
after the low-alpha power (ALT) were regard as trials 

 

Fig. 3.  Comparison of response times (RTs) of trials with 
warning (red boxes) and without warning (blue boxes) before 
and after OWT (across subjects, sessions and trials). The box 
plot shows the RT distributions of trials before the warning 
threshold (BWT), trails after the warning threshold (AWT), 
trials following AWT (AWT+1) and trials after low-alpha 
power (ALT) with and without warning. The middle 
horizontal line is the median of the distribution, and the top 
and bottom of the rectangle are the third and first quartile, and 
the dash line ends are the maximum and minimum after 
removing extreme values. The Wilcoxon singed rank test was 
applied to determine significant differences. Note: alpha-band 
power was under WTH for the duration of the trials before 
BWT. 
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after the trials without a warning with a low alpha-band 
power (average 3-s alpha-band power after the onset of 
OWT was less than WTH). The RTs were normalized 
by dividing the respective subjects’ average RTs in the 
first 4 min of the experiment during which subjects 
were attentive and alert (evidenced by their RTs and 
video recordings). 

The RTs of BWT (i.e., lane-deviation events 
immediately before a subject’s alpha power exceeded 
the warning threshold) in both conditions were 
comparable at 1x normalized mean alert RTs. However, 
the RTs of AWT with a warning (the mean RT was 1.1 
times the normalized RT) were significantly shorter 
than those without a warning (the mean RT was 1.6 
times the normalized RT) (signed-rank test, p<0.05). 
The variation of RTs of AWT without a warning was 
markedly higher than that of RTs AWT with a warning. 
Furthermore, the RTs of BWT and AWT with a warning 
were comparable, suggesting that the warning 
effectively mitigate a fatigue-induced decrease in 
driving performance. In AWT+1, although the mean 
RTs of trials with and without a warning were 
comparable, the standard deviation of trials without a 
warning was higher than that with a warning in Table 1. 
Interestingly, the RTs of ALT were comparable to those 
of BWT under both conditions. Presumably, subjects 
were fairly alert in these trials and did not need any 
warning. The RTs of ALT immediately after low alpha 
power were therefore near the mean alert RT. 

These empirical results demonstrate the efficacy of 
this warning system to rectify cognitive lapses (Fig. 3). 

3.2. Comparison of dynamic brain activities 
between alpha-band power exceeding 
threshold epochs with and without a warning 
feedback 

Fig. 4 shows the time courses of the fatigue-related 
alpha- and theta-band spectral changes in occipital 

components for epochs with warning (red, orange and 
cyan curves) and without warning (blue curve). The 
epochs with warning were divided into three groups 
according to the duration of the warning: <3 s (red 
curve, short), 3–7 s (orange curve, medium) and >7 s 
(cyan curve, long). All epochs were aligned to the start 
of OWT and transferred to the frequency domain by the 
FFT with a 4-s window and 200-ms step. The time 
courses of the alpha- and theta-band spectra were 
plotted from 10 s before and 32 s after the moment 
when the alpha-band power exceeded WTH. The red, 
orange and cyan horizontal dots mark the time points 
when the spectral difference between the trials with and 
without warning was statistically significant (p<0.05, 
short-, medium-, long-duration warning is red, orange 
and blue, respectively). 

For the epochs with short-duration warnings, 
alpha-band power increased to over 5 dB (from 36 to 43 
dB) and dropped rapidly in 1–2 s after warning onset 
(upper panel in Fig. 4). For the epochs with 3–7 s 
warning, the alpha-band power increased from 36 to 47 
dB and peaked at 4 dB higher than the power with a 
short-duration warning. For the epochs with a long-
duration warning, alpha-band power increased from 36 
to 45 dB. For epochs without warning, the alpha-band 
power increased to 47 dB and then decreased to baseline 
slowly in 15 s. 

The lower panel of Fig. 4 shows the time courses 
of theta-band power. Evidently, the theta-band power 
trend resembled that of alpha-band power, albeit the 
range of fluctuations for theta-band power (36–40 dB) 
was smaller than that of alpha-band power. This 
empirical results suggest that alpha-band power 
fluctuations were more sensitive than theta-band 
fluctuations to the transition from full alertness to mild 
drowsiness. 

The spectral difference between epochs with short-
duration warnings and without warnings was 

Table 1.  Average RTs and standard deviations of BWT, AWT, AWT+1 and ALT (cross subjects, trials and sessions). 

 BWT AWT AWT+1 ALT 

 w/ warning w/o 
warning w/ warning w/o 

warning w/ warning w/o 
warning 

w/o 
warning 

Mean 1.15 1.11 1.12 1.58 1.11 1.16 1.07 

Standard 
Deviation 0.53 0.38 0.54 2.31 0.58 1.10 0.33 

(Normalized RT) 
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statistically significant from 2–13 s after OWT in the 
both theta and alpha bands. Notably, once the power of 
epochs without warning declined to under WTH, a 
warning is again delivered if the power again exceeded 
WTH, leading to an insignificant spectral difference 
between a warning lasting <3 s and no warning after 13 
s in alpha and theta bands. For epochs with warning 
lasting 3–7 s and without warning, the spectral 
difference was statistically significant from 4–12 s in 
the alpha band. 

Fig. 5 extends the result of Fig. 3 to divide the 
trials with warning into three groups according to the 
durations of warnings. The RTs of AWT with short- and 
medium-duration warnings were comparable to the 
mean alert RT and significantly different (signed-rank 
test, p<0.05) from those without a warning. However, 

the RTs of the trials with long warnings and without 
warnings did not differ significantly due to the high 
variation of RTs and less number of trials. 

3.3. Reduced warning efficacy to the auditory 
feedback 

Fig. 6 shows the average alpha-band power elevations 
relative to the alert baseline (33.8 dB) from 5 to 20s 
after the warning offset during different sections of the 
experiments. Fig. 6(a) shows the time courses of alpha 
power of the occipital components for epochs following 
an auditory warning. These time courses were selected 
from sessions with at least ten trials with warning. All 
the epochs with warning were divided into five 
segments based on ‘sections of warning feedback’ (0–
20%, 20–40%, 40–60%, 60–80% and 80–100%, note 

 

Fig. 4.  Averaged (across subjects, sessions and trials) power spectral time series in alpha (upper) and theta (lower) bands of the 
occipital components. The spectral fluctuations were estimated using a moving discrete wavelet transform (DWT) with a 4-s time 
window. All trials were aligned with the starting alpha power exceeding the warning threshold (vertical black solid line). The red, cyan 
and orange curves are average power spectra of trials with warnings of different durations (<3, 3–7 and >7 s). Further, the blue curves 
are those trials without warning. The horizontal colored lines mark the spectral differences between trials with different warning 
durations (<3, 3–7 and >7 s) and without warning that were statistically significant (bootstrap significance test, p<0.01). 
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that the interval was left-open and right-closed) and 
time-aligned to the warning offset. The alpha power of 
the epochs in Section 40–60% fluctuated between 36 
and 43 dB at 5–20 s; this fluctuation was greater than 
that in other sections. The power fluctuation of epochs 
in Section 80–100% was between 36 and 40 dB, and 
that in Sections 0–40% and 60–80% was between 36 
and 38 dB. Fig. 6(b) shows the alpha-band power across 
different sections, which was computed by averaging 
half-maximum power relative to the mean baseline 
power (33.8 dB) in 5–20 s after the warning offset. The 
power increase of 40–60% was significantly different 
from 0–20% and 20–40% (signed-rank test, p<0.05). 
Additionally, the alpha power in Section 80–100% was 
significant higher than that in Section 20–40% (signed-
rank test, p<0.05).  

Furthermore, Fig. 7 compares the RTs of AWT’s in 
different sections of the experiment. The RTs in 
Sections 40–60%, 80–100% and 60–80% were 
significantly higher than those in Sections 0–20% and 
20–40% (signed-rank test, p<0.05, p<0.05 and p<0.05, 
respectively). The standard deviations of RTs in 
Sections 40–60%, 80–100% and 60–80% were larger 
than those in Sections 0–20% and 20–40%. 

Both the brain dynamics and behavioral 
performance showed that the efficacy of warning 
signals often declined over time. 

3.4. Comparison of an EEG-based and a non-
EEG-based random fatigue detection and 
mitigation system 

The analytical results obtained by this study and 
previous studies show that auditory feedback can 
mitigate the adverse effects of cognitive fatigue and 
alter EEG activities.25 However, they did not completely 
justify the necessity of EEG-based fatigue detection as 
one might randomly deliver arousing feedback to 
subjects to keep them awake. To evaluate the 
advantages of an EEG-based fatigue detection system 
over its non-EEG-based random counterpart, 10 of the 
12 subjects participated in an additional simulated 

 

Fig. 6.  Comparison of averaged occipital alpha-band power of 
epochs in five different sections of warning occurrence order 
(0–20%, 20–40%, 40–60%, 60–80% and 80–100%, note that 
the interval was left-open and right-closed). (a) Averaged 
alpha-band power spectral time-series (between 10 s preceding 
and 30 s following warning offset) in different sections of the 
experiment. (b) The Δ Power refers to the difference between 
the average half-maximum alpha-band power and the mean 
alert baseline power (33.8 dB) at 5–20 s after warning onset. 
Standard deviations are also shown. The Wilcoxon signed-rank 
test was applied to determine significant differences (p<0.05). 

 

Fig. 5.  Comparison of response times (RTs) of trials with 
warning of different durations (red, orange, and cyan boxes) 
and without warning (blue boxes) before and after OWT 
(across subjects, sessions and trials). The box plot shows the 
RT distributions of BWT, AWT and AWT+1 with and without 
warning. The middle horizontal line is the median of the 
distribution, and the top and bottom of the rectangle are the 
third and first quartile, and the dash line ends are the 
maximum and minimum after removing extreme values. The 
Wilcoxon signed rank test was applied to determine 
significant differences. 
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driving experiment during which a warning was 
delivered randomly (between 15–20 min), rather than 
according to subjects’ EEG spectra. Fig. 8 shows 2-trial 
moving averaged RTs from one subject using an EEG-
based fatigue detection/mitigation (red time course) vs. 
a non-EEG-based random method (blue time course). 
The EEG-based lapse mitigation system delivered a 
warning whenever the subject’s alpha power exceeded 
the warning threshold. The resulting RTs never 
exceeded three times the mean alert RT. The RTs of the 
non-EEG-based random system varied widely (twice 
reaching 11 times the mean alert RT in Fig. 8(a)). As 
expected, if warning signal were delivered to the subject 
randomly, the system could miss periods when the 
subject was fatigued and non-responsive to lane-
deviation events (i.e., minutes 16, 26 and 36 in Fig. 
8(a)). 

Furthermore, Fig. 8(b)–(j) shows the 2-trial moving 
average of RTs in nine additional subjects. Again, the 
EEG-based lapse mitigation system delivered warning 
signals whenever the subject’s alpha power exceeded 
the warning threshold. The resulting RTs never 
exceeded three times the mean alert RT in Fig. 8(b)–(j). 
The RTs of the non-EEG-based random system from the 
subjects in Fig. 8(b)(e)(f)(g)(h) exceeded three times the 

mean alert RT on several occasions. These results again 
demonstrated that the EEG-based detection/mitigation 
method effectively assisted subjects in maintaining good 
performance during the entire experiments. 

4. Discussion 

4.1. Changes in behavioral performance with the 
warning system 

Many studies, including ours, have shown brain 
oscillations in the alpha and theta bands were associated 
with fluctuations in task performance.13, 14, 25, 36 Several 
studies, have also explored the use of warnings as 
feedback to help individuals combat drowsiness or 
prevent cognitive lapses.6-8, 25, 30-32, 37-40 Our previous 
studies further showed that warning signals improved 
task performance of individuals experiencing 
momentary cognitive lapses and reset the EEG spectra 
in the alpha and theta bands to alert baseline power,25, 32 
suggesting that auditory feedback assisted subjects in 
reducing their drowsiness, reflected in both behavioral 
performance and brain activities. 

However, the above-mentioned studies defined 
cognitive fatigue in terms of behavioral performance 
(non-responsive to lane departures). In reality, if the 
warning feedback is delivered to subjects after cognitive 
lapses, catastrophic incidents may have occurred. Thus, 
to be practical for real-life applications, a fatigue 
mitigation system needs to detect cognitive fatigue 
based on spontaneous EEG activities. 

Wang et al28 recently proposed a smartphone-based 
system that detects and tracks the cognitive states of 
users, and delivers arousing signals that mitigate 
cognitive fatigue. Their study focused on the design and 
implementation of the fatigue detection and mitigation 
system and demonstrating the effectiveness of their 
system. However, their study did not systematically 
explore brain dynamics following arousal feedback. 
This study extended their work by exploring transient, 
and more importantly, tonic changes on brain activities 
and task performance following a warning (i.e., reduced 
warning efficacy). Finally, this study compared the 
efficacy of a closed-loop EEG-based fatigue detection 
and mitigation system with that of a non-EEG-based 
random system. The goal of this study is to investigate 
and justify the advantages of an EEG-based fatigue 
detection and mitigation system over its non-EEG-based 
random counterparts. 

 

Fig. 7.  The box plot of RTs of AWT in different sections (0–
20%, 20–40%, 40–60%, 60–80% and 80–100%) in Fig. 6. The 
middle horizontal line is the median of the distribution, and 
the top and bottom of the rectangle are the third and first 
quartile, and the dash line ends are the maximum and 
minimum after removing extreme values. 
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Fig. 8.  A comparison of 2-trial moving averaged RTs based on two different warning strategies (EEG-based vs non-EEG-based 
random methods). The red curve represents RTs in the experiment using an EEG-based method, as this study designs. The blue curve 
represents the RTs in the experiment using a non-EEG-based random method (a random warning every 15–20 min) and the green 
point is the warning time (e.g. 20 and 38 min in (a)). The x-axis is the processing time of the experiment. The y-axis is the normalized 
RT by divided the mean baseline RT. 
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Additionally, it should be noted that fatigue 
generally accompanies drowsiness and associated with 
declines in attention, eventually reducing performance 
and efficiency1, 2. Thus, both fatigue and attention might 
affect behavioral performance in the simulated driving 
task. However, Lin et al.25 and current study showed 
that occipital alpha- and theta-band power would 
increase with decreasing behavioral performance during 
drowsiness. In contrast, studies have shown that 
increasing attentional demands were associated with 
anterior and frontal midline theta and low alpha 
power.41 The current study mainly focused on the 
associations between the occipital theta- and alpha-band 
power and task performance. Study results showed 
increased, as opposed to decreased, theta activities in 
the frontal midline and occipital components, indicating 
subjects put forth their best attentional efforts to 
perform the task even during low-performance periods. 
These result suggested that the decline in task 
performance was due to fatigue. 

4.2. Effects of task performance with and without 
warnings 

4.2.1.  Behavioral Performance 

Our previous study25 verified the efficacy of auditory 
feedback by assessing the subject’s RT as an index of a 
decrease or increase of behavioral performance. This 
study presented a real-time system that monitors brain 
dynamics and computes fluctuations of alpha-band 
power to identify a subject’s condition. Significant 
changes between RTs before and after a warning were 
consistent with those in our previous study.25 

Behavioral results in this study showed that the 
average RTs of epochs with warning were steady at 
around 1.15 times the mean alert RT. However, the RTs 
of trials whose alpha power exceeded the warning 
threshold but without receiving a warning was 
statistically significantly higher (and with a higher 
variance) (cf. Fig. 3) than those of trials following 
warning signals, demonstrating the necessity of the 
warning at that moment. Fig. 5 further splits the trials 
following a warning into three groups depending on the 
duration of the warning signals. Presumably, as a 
subject’s fatigue increased, the mitigation system must 
use prolonged warning signals to arouse the subject. 
The mean RTs were slightly longer following longer 
warnings, but were still shorter than that in the OWT 

trials without warning (Fig. 5). These analytical results 
suggest that the warning feedback can effectively retain 
driving performance at the onset of fatigue. 

4.2.2.  Brain Activities 

The EEG power spectra of the occipital component in 
the theta and alpha bands decreased rapidly following a 
warning (Fig. 4). However, the alpha-band power 
variation of the epochs with long warnings (>7 s) was 
more fluctuant and decreased more slowly than that of 
epochs with short warnings (0–7 s). In addition, the 
power of epochs without warning also decreased 
slightly, which could be attributed to the fact that lane 
deviations aroused drivers as well (Fig. 4). 
Nevertheless, the alpha-band power of epochs without 
warning was significantly different from that of epochs 
with warning at 1–13 s after the OWT onset. 

Fig. 4(b) shows the time courses of theta-band 
power, which had smaller fluctuations but the trends 
was comparable to that of the alpha power; power was 
significantly different between trials with and without 
warning at 1–12 s after the OWT onset. Furthermore, 
Fig. 4 also shows the alpha-power spectra following 
different durations of warnings (<3, 3–7 and >7 s). The 
longer warning would correspond to worse fatigue level. 

The spectral changes following warning feedback 
reported in this study were consistent with those in our 
previous studies,25 suggesting that auditory feedback 
can help subjects improve task performance. 

4.3. Reduced warning efficacy 

This study further investigated the effects of warnings 
over time. We hypothesize that the efficacy of a 
warning may decline over time due to habitation to the 
warning signals. Fig. 6 shows that the first 40% of 
warnings were most effective, evidenced by the fact that 
alpha power at 5–20 s after a warning offset was lower, 
compared to alpha power rebounds in Section 40–60% 
and thereafter. Additionally, the behavioral performance 
in different sections also resembled the results in the 
alpha power (Fig. 7). According to questionnaire filled 
out by subjects, as many as 80% of subjects felt that a 
warning had less or no effect during the second half of 
the experiment. These findings indicate that the 
warnings delivered to subjects may not always be 
effective in arousing drowsy drivers. Future studies will 
explore the efficacy of changing warning signals or 
other modalities to mitigate cognitive fatigue. 
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4.4. Comparison of long-term behavioral changes 
with different warning strategies 

Fig. 8 shows the behavioral performance fluctuations in 
two separate 50-min lane-keeping driving experiments 
from ten subjects. For each subject, the red time course 
shows that the RTs of the session with a warning 
delivered based on the subject’s alpha-band power were 
always under 3.5 times the mean alert RT (most were 
under 2.5 times). These analytical results were 
consistent with those in our previous studies.25 On the 
contrary, the blue time course shows that the RTs of the 
session with a warning delivered randomly to a subject; 
these RTs were often much higher and variable than 
those of the red time course. For example, in Fig. 8(a), 
half of the RTs were also over 3.5 times the mean alert 
RT. The random warning was delivered to the subject at 
around 20 min and 38 min, and as expected, they 
resulted in short RTs in the subsequent trials. However, 
at 16 and 36 min, RTs exceeded 11 times the mean alert 
RT (completely non-responsive) on two occasions, 
which may have led to devastating incidents. Fig. 8(b)–
(j) provides more evidence for the efficacy of the EEG-
based lapse detection and mitigation system to 
preventing fatigue-related lapses. 

4.5. Limitations of the EEG-based fatigue 
detection and mitigation system 

Although the results of the current study validated the 
efficacy of the EEG-based system for detecting and 
mitigating fatigue in a driving task, it is important to 
keep in mind that the current demonstration still has 
some limitations. 

First, the calibration data were needed before every 
online session to model subjects’ physiological 
condition. This could be time-consuming and labor-
intensive and hinders the utility of BCI systems in real 
life. Therefore, the methods to reduce or even eliminate 
the amount calibration data were needed. 

Second, the study findings indicate that the 
efficacy of warning signals delivered to drowsy subjects 
may decline over time, suggesting that the warning 
signals should be more versatile (changed over time or 
through other modalities) to mitigate cognitive fatigue. 

Third, although the study has yielded the consistent 
results across the subjects participating this 
experiments, the more testing samples and comparison 
tests were still needed to confirm effectiveness and 
robustness of an EEG-based fatigue detection and 

mitigation system, and reduce possible individual 
physiological differences. 

5. Conclusions 

This study demonstrates the feasibility and efficacy of 
an on-line closed-loop fatigue detection and mitigation 
system based on monitoring and measuring subjects’ 
EEG spectra noninvasively measured from the scalp. 
The auditory warnings can effectively arouse subjects, 
helping them avoid possible cognitive lapses in real 
environments. Furthermore, study results suggest that 
the efficacy of the warning signals with same modality 
and form may decline over time. More importantly, this 
study compared an EEG-based with a non-EEG-based 
random approach for mitigating cognitive fatigue and 
clearly showed the need for an adaptive fatigue 
detection and mitigation system that delivers warnings 
based on subjects’ cognitive levels. 
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