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Stress remains a significant social problem for individuals in modern societies. This paper presents a
machine learning approach for the automatic detection of stress of people in a social situation by com-
bining two sensor systems that capture physiological and social responses. We compare the performance
using different classifiers including support vector machine, AdaBoost, and k-nearest neighbour. Our
experimental results show that by combining the measurements from both sensor systems, we could ac-
curately discriminate between stressful and neutral situations during a controlled Trier social stress test
(TSST). Moreover, this paper assesses the discriminative ability of each sensor modality individually
and considers their suitability for real time stress detection. Finally, we present an study of the most
discriminative features for stress detection.

Keywords: activity monitoring; assistive technologies; physiology; sensors; signal classification; sociomet-
ric badges; stress; stress detection; wearable technology

1. Introduction

While the world’s population continues to rise, the

ratio of caregivers to those who require care is rapidly

decreasing [3,5]. New technologies, however, can off-

set this concern by automatically monitoring the

physical and mental health of individuals across a

variety of contexts. Specifically, stress remains a

significant social problem for individuals and soci-

eties [2, 26, 67, 82]. Moreover, stressful situations en-

countered in everyday life can lead to additional neg-

ative mental states including depression and anxiety.

While early detection could improve an individual’s

quality of life, the automatic detection of stress may

also reveal key mechanisms and trigger points that

underlie related negative behaviours and cognitions.

Stress is a natural reaction of the human body

to an outside perturbing factor. Typical physiologi-

cal responses include variations in heart rate, pulse,

skin temperature, pupil dilation, and electro-dermal

activity amongst others [60,77,81]. While small lev-

els of stress may have beneficial effects on the body,

stress often negatively impacts attention, memory,

and decision-making [63, 71]. High levels of stress in

the long-term also correlate with a variety of neg-

ative health outcomes including anxiety, depression

and premature ageing [29,59].

Psychosocial stress remains a large problem for

society as a whole and has a detrimental impact on

health care systems and the economies. According to

the Mental Health Foundation in the UK [2], around

12 million adults in the UK visit their general practi-

tioner (GP) each year with mental health problems,

many of which are related to or brought on by stress.

As a consequence, 13.3 million working days are lost

per year due to stress related illnesses. Moreover, the

World Health Organization [5] recently calculated

that stress costs around 8.4 million pound sterlings

to UK enterprises. Therefore, treating negative men-

tal states has become a priority in our societies, and

numerous international organizations also consider

stress to be a significant global problem, particularly

within the work place [26,67,82]. Unfortunately, cur-

rent treatments offered by the National Health Ser-

vice (NHS) in the UK (e.g. Cognitive Behavioural

Therapy (CBT) [13]) have an average patient wait-

ing time of 3-6 months [58].

In this paper, we aim to detect stressful be-

haviours by analysing measurements provided by

several, non-invasive wearable sensors. In particu-

lar, we use a wearable sensor that provides real time

physiological responses such as electrodermal activ-

ity and photoplethysmogram [1]. In addition, we use

a sociometric badge [4] to measure the social activity

including body movement and voice. The measure-

ments obtained from both sensors are processed and

used as input to different classifiers that were trained

to discriminate between stressful and neutral situa-

tions during a Trier Social Stress Test (TSST) [42].

In this work, we use a binary classification and do not

differentiate between different levels of stress. Our re-

sults show that the combination of physiological and

activity measurements is able to discriminate with a

high level of confidence between stressful and neu-

tral situations on people while engaging across sev-

eral activities. The main novelty of our systems is the

combination of wearable sensors that makes the sys-

tem a realistic option for measuring stress in social

situations. As far as we now this is the first time that

these sensor modalities are combined to detect stress.

Finally we present a study of the most discriminative
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features obtained from the different sensors.

In this work, we train a personal classifier for

each participant because an individuals response to

a specific stressor is often highly variable. Therefore,

we adopted a personalised systems approach.

The remainder of this paper is organised as fol-

lows. After considering some related work in Sect. 2,

we introduce the physiological wearable sensor and

the sociometric badge in Sect. 3. In Sect. 4 we de-

scribe our experimental setup. The process for data

collection is explained in Sect. 5, and our classifica-

tion methods are introduced in Sect. 6. Feature se-

lection is explained Sect. 7. Experimental results are

presented in Sect. 8. Finally, we conclude in Sect. 9.

2. Related Work

Research concerning the automatic monitoring of

mental states has grown exponentially during the

last decade. The resulting technologies aim to help

patients monitor their own conditions while also sup-

porting carer-providers. Examples include the detec-

tion and monitoring of stress [47, 62, 68, 74, 83], clas-

sification of different emotional states [18,20,40,41],

depression monitoring [7, 37, 73], obsessive compul-

sive disorder [12], behaviour classification [55], or car-

diac states [48,49,65].

Various systems have been proposed for stress

monitoring and/or detection using different phys-

iological sensors. For example, the work reported

in [68] uses a wearable sensor to record electroder-

mal activity (EDA). This work applies the Montreal

Imaging Stress Task (MIST) [28] to induce states

of stress on participants, and the results indicate

that EDA measurements can be used to discriminate

stress from cognitive loads with 82.8% accuracy. Al-

though this work uses cross-validation for reporting

results, it does not present results of individual clas-

sifiers for each participant. In contrast, we study the

personalization of the detector for each participant.

Similarly, a mobile elecrocardiogram (ECG) sen-

sor was used in [62] to monitor stress by analysing

ultra short term heart rate variability features during

a Stroop test [72]. The authors conclude that ultra

short term features could be used for stress moni-

toring, but they do not apply any machine learning

classification tool to support this claim. In compari-

son, we present results by applying classifiers to the

collected data.

In [43], the authors analyzed EDA measure-

ments together with skin temperature to discrimi-

nate between stressed and unstressed situations. Au-

thors report correct classification rates of 96.6% in

the test data. However, the paper does not detail

the final applied classification procedure.

Finally, the work in [83] combines EDA signals,

blood volume pulse, pupil diameter, and skin tem-

perature to detect stress in participants while they

took part in a modified Stroop test. The results re-

port classifications of 90.1% accuracy. However, this

system seems difficult to implement as a daily life

wearable technology due to the measurement of pupil

diameter. In contrast, our proposed system is easier

to wear by a patient.

The above mentioned works use physiological

measurements in isolation and do not include social

information. In contrast, we present a multi-modal

system for stress monitoring that includes a socio-

metric sensor that records social activity and thus

increases final detection rates. In addition, we focus

on personalized systems by analysing individual re-

sults for each participant. Moreover, our experimen-

tal setup is based on the TSST which, rather than

generate a stressful situation using a computer-based

task, provides neutral and stressful conditions in a

social setting.

Voice is also used as indicator for stress. The

StressSense system introduced in [47] is a voice based

stress detection mobile app that uses microphones to

record the voice of the participant and classifies the

obtained features using Gaussian Mixture Models.

This work reports classification accuracies of 81%

and 76% for indoor and outdoor environments, re-

spectively. In our research, we also use the voice as

one of the modalities for stress detection, but we

combine it with other physiological and activity mea-

surements, thus increasing the individual classifica-

tion accuracy of our results.

Multi-modal approaches for stress detection

have also been developed where activity and voice

signals are added to physiological measurements in

order to improve stress detection and monitoring.

The work in [74] presents a activity-aware men-

tal stress detection scheme that combines Electro-

cardiogram (ECG), galvanic skin response (GSR),

and accelerometer measurements from participants

across three activities, i.e. sitting, standing, and

walking, while users were subjected to mental stres-

sors. This work applies the Stroop test [72] to induce
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stress. In our work, however, we are interested in de-

tecting stress in social situations, therefore we apply

the TSST to our participants. In addition, we use

the sociometric badge to increase the modalities for

stress detection by including voice and body move-

ment.

Authors in [45] introduce a multi-modal ap-

proach in which a rich set of activity and physio-

logical measurements are used to monitor stress. In

addition, they use a combination of facial expres-

sions, eye movements, head movements, heart rate,

skin temperature, GSR, mouse finger pressure, be-

havioural data from user interaction activities with

the computer, and performance measures. The ob-

tained results show that the presented activity mea-

surements strongly correlate with the task workload

and ensure reliability for further classification ap-

proaches. However, the proposed system is thought

to be implemented in a desktop-based workplace en-

vironment, which restricts the situations in which

it can be tested. Our system, however, is based on

wearable sensors that allow the participants to freely

move during their activities.

In addition to stress, the work presented in [75]

aimed to detect deception while playing a poker game

by including measurements like voice variation, skin

conductance, and heart rate. The experimental re-

sults show that it is possible to develop simple lin-

ear models with high accuracy that can be used

to identify stress and bluffing for real money no-

limit Hold’em tournaments. However, this system

has been tested only in poker games where spikes

in stress levels are artificially high. In contrast, we

aimed to develop stress detectors in different social

activities.

The LiveNet system presented in [76] is a com-

plete wearable hardware and software system for long

term monitoring which, according to the authors,

has potential applications for monitoring soldiers and

Parkinson’s patients. It could also detetct epilepsy

seizures. However, these applications remain under

development. The LiveNet system can also include a

sociometric badge similar to the one we use in our

research, but no classification results are presented

using that sensor.

Finally, in [64], we applied the same wearable

physiological sensor to detect stress in people. How-

ever, that work only reports on 5 participants. In

contrast, in this work we combine the physiological

signals with the activity signals from the sociometric

sensor and thus we improve classification results. In

addition we use 18 participants in our experiments

thus providing better reliability in the results.

One of the main contributions of our work is the

use of the sociometric badge for stress detection. This

badge provides a way of capturing unconscious social

signals [56] that have recently provided researchers

with a novel and indirect way of capturing an in-

dividual’s thoughts and cognitive states. Methods

for assessing social signals also offer new tools for

measuring levels of stress, particularly where verbal

or written reports concerning underlying cognitive

states may be incomplete or inaccurate. Therefore,

we think the sociometric badge can be a powerful

tool to monitor stress.

3. Sensor Modalities

In this section we describe the two sensor devices

used during our experiments and the features ex-

tracted from them.

To measure the physiological signals we use a

wireless sensor [1] that is worn as a wristband (Fig. 1

left) on the non-dominant hand of a subject and

it is equipped with a set of electrodes situated on

the fingers. This sensor connects wireless to a com-

puter through a communication station. This setup

allows the participant wearing the sensor to move

freely during the experiments while signals are sent

wirelessly to a computer.

Fig. 1. The left picture shows the wireless sensor worn
as a wristband. The right image depicts the sociometric
sensor worn as a conference badge.

From the electrodes situated on the fingers we

obtain the three different measurements: the electro-

dermal activity (EDA), the photoplethysmogram

(PPG), and heart rate variability (HRV). The EDA

signal, also called, skin conductance activity or gal-

vanic skin response, is an indication of perspiration.
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A transient increase on the EDA signal is propor-

tional to sweat secretion [27] and it is related to

stress [17]. The PPG signal, also termed blood vol-

ume pulse, is obtained using a pulse oxiometer which

illuminates the skin and measures the differences in

light absorption. The amount of light that returns

to the PPG sensor is proportional to the volume of

blood in the tissue [57]. Finally, the HRV signal rep-

resents the beat-to-beat variability over a given pe-

riod of time and is computed by calculating the stan-

dard deviation of the average of normal-to-normal

heartbeats [57].

During our experiments, the EDA and PPG

physiological signals were acquired at a 1000 Hz sam-

pling frequency. Following acquisition, the signals

were down-sampled to 10 Hz. A filtering and arte-

fact removal approach was also applied by using the

routines included in the AcqKnowledge software [1].

Specifically, the PPG signal was filtered using a band

pass filter, with a low frequency of 0.5 Hz and a high

frequency of 35 Hz. The EDA signal was filtered us-

ing a low pass filter with the cut-off frequency of

0.5 Hz. We obtain templates for the PPG signal by

applying autocorrelation. The final list of recorded

physiological features and their corresponding de-

scription are provided in Table 1.

Table 1. List of physiological fea-
tures from the Biopac wearable sensor.

Feature Description

eda raw electro-dermal activity (EDA).
edaf filtered EDA.
ppg raw pulse plethysmograph (PPG).
ppgt PPG template using autocorrelation.
ppgr PPG rate variability.
hrv heart rate variability (HRV).

The second sensor we used in our system is

the sociometric sensor [53], a small device that is

worn around the neck like a conference badge (Fig. 1

right). The sociometric badge is equipped with a mi-

crophone to record speech, an accelerometer to mea-

sure degree and direction of people’s movement, a

Bluetooth transmitter to measure the proximity of

other sensors, and an infrared transmitter to measure

when two sensor wearers are facing one another. In

this work we only used the measurements provided

by the microphone and the accelerometer. The data

recorded from the sociometric badge can be trans-

lated into useful measures of social behaviour [56].

In our experiments we recorded the signals from

the sociometric badge at 10Hz. The samples were

stored on the badge’s internal memory and down-

loaded to the computer in an off-line process. The

list of features that we used in our system based on

the measurements provided by the sociometric badge

is as follows:

(1) Body movement (bm): the normalized accelera-

tion magnitude over the 3 axis of movement.

(2) Body movement activity (bmact): absolute value

of the first derivative of the accelerometer’s en-

ergy.

(3) Body movement rate (bmr): second derivative of

energy. It indicates the direction of change in

someone’s activity level.

(4) Posture activity (posact): absolute angular veloc-

ity.

(5) Posture rate (posr): angular acceleration.

(6) Posture left right (poslr): orientation angle of the

badge in left-right plane.

(7) Posture front back (posfb): orientation angle of

the badge in front-back plane.

(8) Speak (voiced): takes values 0 when the person is

not speaking, and 1 when the person is speaking.

(9) Silence (unvoiced): takes values 1 when the per-

son is speaking, and 0 when the person is speak-

ing.

(10) Speech volume front (volf ): average absolute

value of amplitude of the front microphone.

(11) Speech volume back (volb): average absolute

value of amplitude of the back microphone.

(12) Volume consistency front (volcf ): measurement

of change in speech volume.

(13) Volume consistency back (volcb): measurement

of change in speech volume.

(14) Frequency and amplitude front (hz0f , amp0f ),

(hz1f , amp1f ), (hz2f , amp2f ), (hz3f , amp3f ):

pairs of (frequency, amplitude) for the 1st / 2nd

/ 3rd / 4th strongest peak in the frequency spec-

trum.

(15) Frequency and amplitude back (hz0b, amp0b),

(hz1b, amp1b), (hz2b, amp2b), (hz3b, amp3b):

pairs of (frequency, amplitude) for the 1st / 2nd

/ 3rd / 4th strongest peak in the frequency spec-

trum.

(16) Front pitch (pitchf ): pitch of the voice from the
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front mic correlated with the fundamental fre-

quency of the voice signal.

(17) Back pitch (pitchb): pitch of the voice from the

front mic correlated with the fundamental fre-

quency of the voice signal:

(18) Front pitch volume (frontpv) and back pitch vol-

ume (backpv) as defined in [52–54].

More detailed descriptions of the previous fea-

tures can be found in [52–54].

4. Experimental Protocol

To check the validity of our stress detector system

we prepared an experimental setup where partici-

pants experienced different stressful situations. The

work in [29] reviews more than 200 stress experi-

ments, and concludes that the most effective tasks

for inducing stress include public speaking and cog-

nitive tasks. Therefore, our final design is based on

the Trier Social Stress Test (TSST) [42], which in-

cludes both public speaking and cognitive tasks that

place participants under high cognitive load.

The TSST is a very popular controlled exper-

imental set-up and it has been used in more than

4000 sessions during the last few decades [29]. This

test consists of a neutral task followed by a pub-

lic speaking task, a cognitive task, and a final neu-

tral task. Each neutral task consists of 2 minutes

of predefined standard questions including: “How do

you find the weather today?” and “How did you get

here?”. The public speaking segment is a 5 minute in-

terview for a desired job. After this, a cognitive task

involves the participant counting back in steps of 13,

starting from 1022. All the previous tasks are per-

formed in front of a live audience and video camera.

The camera, however, is only used to increase stress

levels [29] and recordings are not stored. The neu-

tral tasks are considered as non-stressful situations,

while the speaking and cognitive tasks are consid-

ered stressful conditions. The TSST experiment is

used in this work as a valid proof of concept to show

the capabilities our system to detect stress in social

situations.

In addition we ask the participants to fill in a

State Trait Anxiety Inventory (STAI) [70] to measure

their levels of anxiety. The STAI questionnaire is di-

vided into two sections. The state section contains

20 items that measure state anxiety, that is, how

an individual feels right now; and the trait section

contains a further 20 items that measure trait anxi-

ety, that is, how an individual feels generally. Items

are rated on a 4-point scale running from (1=Almost

never to 4=Almost always). The state section of the

STAI was completed before and after the TSST ses-

sion to ensure our protocol was having the desired

effect on stress levels.

Our protocol for the TSST was as follows. When

a participant entered the room, she was given ver-

bal and written information about the procedures

involved in the experiment. The participant was then

asked to fill in a consent form and to confirm that

she did not suffer from any cardiovascular or anxi-

ety disorder that might be affected by experiencing

stress or that might affect the results. After being

briefed, the participant was asked to fill in the STAI

form. This provided an estimate current and general

levels of stress. After fitted with both sensors, the

participant was asked predefined neutral questions

for 2 minutes in order to determine each individual’s

baseline measurements, which we used as a neutral

state. Afterwards, the participant was asked to sit

at a desk and prepare a presentation for a mock job

interview for 3 minutes. They were provided with

pen and paper. When 3 minutes of time expired, she

was asked to hand back the sheet of paper, stand

up in a predefined location inside the room, and

begin her presentation. The participant was encour-

aged to speak continuously during 5 minutes. If the

participant stopped during the presentation, at the

first pause, she was told about the remaining time

and asked to continue. At the next pause, she was

asked a set of predefined typical interview questions

including: “What are your strengths/weaknesses?”,

“Where do you see yourself in 5 years?” and so on.

Following the presentation, the participant was asked

to complete a cognitive task by counting backwards

in steps of 13 from 1022 and a 5 minutes timer was

started. If the participants made a mistake, she was

asked to start the countdown again from the be-

ginning (from 1022). At the end of this cognitive

task, the participant was given a short time to relax

while being debriefed. Another two minutes of neu-

tral questions were then recorded. Finally, the par-

ticipant was asked to re-complete the STAI question-

naire. A flowchart indicating the steps of our protocol

is presented in Fig. 2.

The times for each tasks during the TSST ses-
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sion are tentative and for most tasks, the duration of

each differs by a few seconds between participants.

Fig. 2. Flow chart of our TSST session.

5. Data Collection

Eighteen participants P1 − P18, who completed the

TSST, were volunteering students from the School of

Psychology at the University of Lincoln. The partic-

ipants were aged 18 to 39, and included males and

females. All participants signed a consent form be-

fore taking part. In addition, ethical approval for the

experiment was obtained from the School of Psychol-

ogy Research Ethics Committee at the University of

Lincoln, following the British Psychological Society

(BPS) ethical guidelines.

Each participant took part individually in one

TSST session as introduced in Sec. 4. The partic-

ipants wore both sensors at the same time during

the TSST session, and the signals from both sen-

sors were recorded and synchronised using the closest

timestap. The final sample frequency for both sensor

modalities was 10Hz. This value is below the maxi-

mum recommended for EDA measurements [14]. The

complete sets of signals for each sensor are listed in

Sect. 3. The final set of sampled signals for each time

step t is thus defined as:

xt = {xtphy, xtbadge}, (1)

where xtphy is the vector containing the physiological

signals as:

xtphy = {edat, edatt, ppgt, ppgtt , hrvt}, (2)

and xtbadge is the vector containing the activity sig-

nals from the sociometric as:

xtbadge ={bmt, bmt
act, bm

t
r, pos

tlr, postfb,

voicedt, unvoicedt, voltf , vol
t
b, volc

t
f , volc

t
b,

hz0tf , amp0
t
f , hz1

t
f , amp1

t
f , hz2

t
f , amp2

t
f ,

hz3tf , amp3
t
f , hz0

t
b, amp0

t
b, hz1

t
b, amp1

t
b,

hz2tb, amp2
t
b, hz3

t
b, amp3

t
b, pitch

t
f , pitch

t
b

frontptv, backp
t
v}. (3)

The synchronised signals recorded from each

participant Pk were stored in the corresponding

dataset Dk. The total number of synchronized sam-

ples for each participant Pk is shown in Table 2. As

explained in Sect. 4, our TSST sessions are com-

posed of stressful and neutral scenarios. Therefore,

each entry xt in the dataset Dk is labeled as stressed,

or neutral depending on the corresponding task (c.f.

Sect. 6), i.e. we assume the participant is not stressed

during the neutral activities as discussed in Sect. 4.

Thus, the recorded dataset Dk for each person was

composed of the measurements obtained at each time

interval xt together with their corresponding label
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as Dk = {(xt, lt)}, with lt ∈ L = {stress, neutral}.
The corresponding number of stressful and neutral

samples in each dataset are also shown in Table 2.

The average sample size for each participant is 13745

which is much higher than the dimension of the fea-

ture vector.

Table 2. Sample Size for Each Participant

Participant Total |Dk| Stress Neutral

P1 12800 8200 4600
P2 11620 8400 3220
P3 13550 8350 5200
P4 13450 8460 4990
P5 13740 8760 4980
P6 13000 8310 4690
P7 15940 8600 7340
P8 13610 7810 5800
P9 12900 8420 4480
P10 14200 8900 5300
P11 15680 8660 7020
P12 13530 8660 4870
P13 14120 8560 5560
P14 13900 8810 5090
P15 13350 8350 5000
P16 14500 8800 5700
P17 13480 8760 4720
P18 14040 8820 5220

Average ± std 13745 ± 685 8535 ± 220 5210 ± 608

Some examples of the collected features during

the TSST session are given in Figure 3. In particu-

lar, we show the features PPG template (ppgt), EDA

(edaf ), HRV (hrv), and body movement rate (bmr)

for participants P6 and P16. The signals are shown

with the corresponding task during the TSST ses-

sion.

6. Classification

In order to predict the state of each person at each

point in time we compared different classification ap-

proaches. In particular, we use SVM [15, 25], Ad-

aBoost [31], and K-nearest neighbour (KNN) [10].

In this work we use a binary classification and do

not differentiate between different levels of stress.

SVM-based predictors are popular in different

areas [9, 19, 23, 24, 32, 38, 39] including the classifica-

tion mental states using physiological signals [6,8,12,

30, 37, 40, 55, 74, 83]. SMVs were used in our exper-

iments because the size of a trained SVM model is

often much smaller than the volume of training data

required in order to be successful. They can also be

developed in real time. In this work we compare two

different kernel types: radial basis function (RBF)

and linear.

AdaBoost is a popular boosting classifier ap-

plied in several areas [11,51,80] including biomedical,

cognitive signals, and diagnosis [16, 21, 34, 50, 61, 78,

79]. Adaboost is a meta classifier that improves the

classification capabilities of a weak classifier. Follow-

ing [51], we created a single-feature weak classifier

from each feature described in Section 3:

hj(x) =

{
1 if pjfj(x) < pjθj
0 otherwise.

(4)

where θj is a threshold and pj is either −1 or 1 and

thus representing the direction of the inequality. The

AdaBoost algorithm determines for each weak clas-

sifier hj(x) the optimal values for θj and pj , such

that the number of misclassified training examples is

minimized. The output of the AdaBoost algorithm

is an ensemble of weak classifiers weighted by their

discriminative power. The final ensemble may con-

tain a subset of weak classifiers, i.e. a subset of the

original features.

KNN classifiers are instance-based clasifiers that

are used in several medical applications [22,44,66,69].

The KNN algorithm assigns the label of the k train-

ing instances that are closer in the feature space us-

ing a majority vote.

In this paper, we trained one individual clas-

sifiers Ck for each participant Pk using the corre-

sponding dataset Dk. As introduced in the previous

Sect. 5, each dataset Dk contains the synchronized

physiological and activity signals for the correspond-

ing participant Pk. For each individual Ck, we used

75% of the corresponding dataset Dk for training and

the remaining 25% for testing. To create these sets

we used a random stratified selection to ensure the

same class distribution in both the training and test

sets. Afterwards, the attribute values of the training

and test sets were scaled to the range [−1, 1].

The classification results for each personalized

classifier Ck are evaluated using accuracy, precision,

and recall, which are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)
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Fig. 3. Example signals recorded during the TSST sessions for participant P6 (left column), and participant P16 (right
column). The x-axis additionally presents the task the person was carrying out at each instant: NT 1 (First Neutral Task),
PP (Presentation Preparation), PS (Public Speaking), Cognitive Task (CG), NT 2 (Second Neutral Task).

Precision =
TP

TP + FP
(6)

and finally recall is given by:

Recall =
TP

TP + FN
(7)

where TP indicates true positives, TN true nega-

tives, and FN false negatives. In our case we consider

positive the examples labeled as stress. The values

for accuracy, precision, and recall lie in the range

[0, 1] with values closer to 1 indicating better results.

7. Feature Selection

The classification results may improve by select-

ing a subset of the features that provides best dis-

crimination capabilities. In this paper, we apply a

correlation-based feature selection (CFS), which is a

filter method that selects a subset of features that

are highly correlated with the class and uncorrelated

with each other [35]. In our experiments, we apply

CFS to each individual dataset Dk to select the best

features for each participant. The resulting reduced

datasets are then used to train the corresponding in-

dividual classifiers Ck. We used this method as pre-
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processing for the SVM and KNN classifiers.

In the case of Adaboost we do not need to apply

any filtering method since the algorithm already ap-

plies a weighted selection of weak classifiers to create

the final ensemble. In our case, the best T features

can be obtained by selecting the T weak classifiers

with highest weights in the ensemble [11,51,80].

8. Experimental Results

To ensure our approach for stress detection was

valid, we ran a series of experiments that involved

analysing the recorded physiological and activity sig-

nals of people under stress. We run one TSST for

each participant, and each participant wore both sen-

sors during the session.

We first present stress detection results when ap-

plying different classifiers to the synchronised physi-

ological and activity signals. In addition, we analyse

the capabilities of each individual sensor modality,

and compare the classification results with those ob-

tained in combination. Moreover, we analyse the dis-

crimination capabilities of each feature. Finally, we

discuss the results of the STAI questionnaires.

8.1. Stress Detection using
Physiological and Activity Sensors

In a first experiment we analysed the results of ap-

plying our proposed system using a combination of

physiological and sociometric sensor.

We trained an individual classifier Ck for each

participant Pk using the data Dk corresponding to

her TSST session. Each participant wore the socio-

metric badge and the wearable sensor during the cor-

responding TSST session and features from both sen-

sors were synchronised using the closest timestamp

(cf. Section 5).

We then divided each dataset Dk into disjoint

training and test sets. The training set contains 75%

of the samples in Dk and the test set contains the re-

mainder 25%. To create these sets we used a random

stratified selection to ensure the same class distribu-

tion in both the training and test sets. Afterwards,

the attribute values of the training and test sets were

scaled to the range [−1, 1] .

We first present classification results using the

full set of features. We compare four classifiers: SVM

with a RBF kernel, SVM with linear kernel, Ad-

aBoost, and KNN. For the RBF-based SVM we se-

lected the best C and γ for each participant Pk using

grid-search and cross-validation in the corresponding

training data [36]. The parameters C = 10 for the

linear SVM, T = 300 for AdaBoost, and k = 3 for

KNN were empirically selected.

Table 3 shows the classification results for the

four methods averaging over the 18 participants. As

we can see from the table, in our experiments the

AdaBoost classifier and the RBF-based SVM provide

similar classification results, although AdaBoost pro-

vides slightly higher correct accuracy and precision

rates. In both cases, the results are higher than in

the linear SVM and KNN classifiers.

Table 3. Classifications for the combined sensors.

Method Accuracy Precision Recall

AdaBoost (T=300) 0.94±0.03 0.94±0.03 0.96±0.02
RBF kernel SVM 0.93±0.03 0.93±0.03 0.96±0.01
Linear kernel SVM 0.85±0.04 0.84±0.04 0.94±0.02
KNN 0.87±0.03 0.87±0.03 0.94±0.02

In Table 4 we present in more detail the classifi-

cation results of the AdaBoost classifier for each par-

ticipant. Values for accuracy, precision and recall are

similar for all the participant indicating that our per-

sonalised classification approach is suitable for differ-

ent individuals.

Table 4. Classification Results us-
ing Combined Sensors and AdaBoost

Participant Accuracy Precision Recall

P1 0.95 0.95 0.97
P2 0.91 0.92 0.96
P3 0.87 0.89 0.92
P4 0.96 0.96 0.98
P5 0.99 0.99 0.99
P6 0.89 0.90 0.93
P7 0.96 0.97 0.97
P8 0.93 0.94 0.94
P9 0.93 0.94 0.95
P10 0.92 0.92 0.95
P11 0.95 0.95 0.96
P12 0.96 0.96 0.97
P13 0.91 0.92 0.94
P14 0.97 0.96 0.98
P15 0.91 0.90 0.95
P16 0.95 0.96 0.96
P17 0.98 0.98 0.99
P18 0.96 0.96 0.97
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In addition, we include the average confusion

matrix when using the Adaboost classifier in Table 5.

The rows indicate the original label of the examples

in the test set and the columns indicate the predicted

label by the classifier. We observe high classification

results in the main diagonal (true classifications) of

the confusion matrix, which indicates that the clas-

sifier correctly labels the test examples with high ac-

curacy.

Table 5. Average Confusion Matrix for
Combined Sensors using AdaBoost

Predicted Label
% Stress Neutral

Original Stress 96.05 3.95
Label Neutral 9.00 91.00

To exemplify the behaviour of our classifier we

show its prediction for participants P6 and P16 dur-

ing a complete TSST session in Fig. 4. The contin-

uous line indicates the right label for each time in-

stant (1 for stress and -1 for no-stress), while red

diamonds indicate the predicted values by the classi-

fier. The plots show that most of the time the classi-

fier predicts the correct state of the person during

the TSST session. We can see in the plot several

false alarms. This is likely due to the slow rate of

change for some physiological properties between re-

laxed and stressed situations. Future work will con-

sider these transitions in more detail.

Fig. 4. Classifier behaviour during a complete TSST

session for participants P6 (top) and P16 (bottom) us-
ing both sensors. The y-axis represents the output of the
classifier which is 1 for stressful tasks, and -1 for non-
stressful tasks. The x-axis indicates each instant time in
seconds during the TSST and the corresponding task:
NT 1 (First Neutral Task), PP (Presentation Prepara-
tion), PS (Public Speaking), Cognitive Task (CG), NT
2 (Second Neutral Task). The continuous line indicates
the right label for each time instant, and red diamonds
indicate the predicted values from the classifier.

In addition we analysed the capability of each

single sensor to detect stressful situations in the par-

ticipants. In this way we can compare the detector

capabilities of each sensor with respect the combina-

tion of both. We believe this information can be use-

ful when deciding he sensor device to use in different

situations. We include results using Adaboost since

we showed in the previous section that this classifier

provides the best classification results in our TSST

sessions. For the physiological results we use as input

for the classifier the feature vectors xphy, whereas for

the activity results we classify the vector xbadge (see

Sec. 5). Table 6 compares single sensor modalities

and the combination of both. In all cases we have

applied our AdaBoost classifier. As we can see in the

table the combined modality provides better classifi-

cation results. We also observe that the sociometric

sensor provides better prediction results when used

as single device. This may be due to the fact that

the TSST session requires the participant to speak

continuously and participants are also free to move

during the experiments. A more detailed analysis of

the features is provided in the following section.

Table 6. Comparison of single and combined modalities

Method Accuracy Precision Recall

Physiological 0.79±0.08 0.79±0.09 0.86±0.06
Sociometric 0.89±0.03 0.90±0.03 0.92±0.03
Physiological + Sociometric 0.94±0.03 0.94±0.03 0.96±0.02

8.2. Feature Analysis

In this section we apply a selection of features and

analyse its impact in the final classification results.

As introduced in Section 6, we applied a CFS fil-

tering to each individual dataset Dk. The resulting

subsets of selected features are shown in Table 7.
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Table 7. Selected subset of features according to CFS

Dk size best features

D1 7 amp3f , volcb, hz0f , bm, volb, poslr, posfb
D2 5 amp3f , volcb, posr, bmr, frontpv
D3 7 volf , amp3f , volcb, volcf , backpv, bmact, ppg
D4 6 amp3f , volcb, hz0f , pitchb, bmact, ppgr
D5 5 amp3f , volcb, amp2b, posr, bmr

D6 5 amp3f , posr, frontpv, bmact, ppg
D7 4 amp3f , volcb, frontpv, ppgt
D8 4 amp3f , volcb, volcf , posfb
D9 7 amp3f , volcb, hz1b, volb, poslr, ppg, ppgr
D10 7 amp3f , volcb, pitchf , posact, bmact, poslr, ppgr
D11 4 amp3f , volcb, poslr, ppg
D12 6 amp3f , volcb, posr, pitchf , posfb, ppgr
D13 6 amp3f , volcb, hz1b, posr, volb, bmact

D14 4 volf , amp3f , volcb, posfb
D15 16 volf , voiced, hz2f , amp3f , volcb, hz0f ,

posr, frontpv, backpv, posact, poslr, ppgt,
ppgr, hz2b, hz1b, eda

D16 5 amp3f , volcb, pitchb, posact, bmact

D17 7 amp3f , volcb, bmr, posact, bmact, ppgt, ppgr
D18 4 amp3f volcb, frontpv, posact

We applied the classifiers to the subset of se-

lected features shown in Table 7. The new classifica-

tion results, which are provided in Table 8, do not

show any significant improvement. This may be due

to the fact that the original feature vector has a di-

mension 38, which is low. However, it is interesting

to see that we can get high classification results, as

for example for SVM with RBF kernel, using a very

small subset of features. Moreover, for some partici-

pants the selected features by CFS correspond only

to one sensor. For example, for participant P1 we

can detect the stress using only the features of the

sociometric badge as indicated in Table 7.

Table 8. Classification on selected features

Method Correct classification rate

RBF kernel SVM 0.92±0.03
Linear kernel SVM 0.80±0.03
KNN 0.62±0.03

As explained in Section 7, the AdaBoost algo-

rithm creates a ranked ensemble of weak classifiers

weighted by their discriminative capabilities. When

each weak classifiers is constructed using a single fea-

ture, then the ranked ensemble is representative of

the best features for the classification [11, 51, 80].

The features can appear several times with differ-

ent weights. To compare the feature selection by Ad-

aBoost with the CFs filter method, in Table 9 we

indicate the first 5 most discriminative features, in

order of discrimination capabilities, that are selected

by AdaBoost for each personalised classifier Ck. The

most frequent features that appear in all the classi-

fiers are eda (16% appearance), posact (15%), hz3f
(14%), bmact (13%), and amp3f (13%). The rest of

features do not appear on the top five or they do

with less than 10%.

Table 9. Best 5 features from AdaBoost

Classifier 1st 2nd 3rd 4th 5th

C1 hz3f eda ppgt amp0f bmact

C2 hz3f pitchf eda posact bmact

C3 posact pitchb volcb hz3f volcb
C4 hz3f eda pitchf posact posact
C5 amp3f eda poslr hz3f eda
C6 amp0b hz3f hz0f bmact eda
C7 hz3f eda pitchf bmact posact
C8 hz3f ppg amp3f eda volcb
C9 amp3f bmact bmact amp1b ppg
C10 bmact eda posact hz3f bmact

C11 hz3f bmact ppg ppgt amp3f
C12 amp3f posact hz3f pitchf ppg
C13 amp3f posact eda hz3f ppg
C14 amp3f hz3b bmact eda posact
C15 volb backpv eda amp3f bmact

C16 posact eda amp3f bmact posact
C17 posact amp3f eda ppgt posact
C18 hz3f pitchf posact amp3f amp3f

8.3. Generalization

In order to check how well our method generalizes we

trained the AdaBoost classifier using the first 9 par-

ticipants and then tested the resulting model in the

remainder 9 participants. The classification results

are shown in Table 10. The results show a decrease

in the accuracy of the classifier when using several

participants for training. These results are to be ex-

pected given the large between-subject variance to

stress [33].

Table 10. General AdaBoost
Classifier
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Accuracy Precision Recall

0.67 0.68 0.76

8.4. STAI Questionnaire Analysis

We recorded participants self-reported anxiety lev-

els using the STAI [70] before and immediately after

the TSST session (all Cronbach alphas > 0.9 [46]).

A paired sample t-test demonstrated that partici-

pants felt more stressed following the TSST [t(34)

= 3.54, p > 0.01] suggesting that our procedure

provided a stressful environment. While changes in

state-levels of anxiety indicate that participants felt

more stressed following a TSST session, it does not

confirm how levels of stress varied across each part of

the protocol independently. During the TSST, we as-

sume that participants became more relaxed during

the neutral sections, but this is difficult to validate

with 100% accuracy because any additional measures

of self-report would both disrupt the flow of the ex-

periment and reduce the ecological validity of the

procedure by reminding participants they were tak-

ing part in an experiment. Future research aims to

explore these changes beyond a laboratory setting in

conjunction with real-time self-report.

9. Conclusion

In this paper we have presented a novel approach

for stress detection using a combination of wearable

physiological and sociometric sensors. The experi-

ments were carried out under controlled conditions

during different TSST sessions. Our wearable system

allows the state of a participant to be determined at

any instant by providing an accurate decision regard-

ing his/her stress state at any time. Our classification

results demonstrate that our method and analysis

provides a useful tool for real-time stress detection.

In the future this may allow other researchers to con-

sider for example, the effect of real-time feedback and

even reveal specific triggers that lead to high and un-

healthy levels of stress.

Although the TSST is a controlled setup and

does not completely represent general everyday ac-

tivities, it is useful for our work because it provides a

reliable and safe protocol to generate a stressful envi-

ronment. A controlled situation like this is the logical

first step towards validating any new system. More-

over, a personal interview is an example of a social

activity that many people will have to face. How-

ever, future work will include longer experiments in

order to use these technologies in daily life activi-

ties, although artificially manipulating stress levels

for longer periods will be difficult to achieve exper-

imentally. Alternative methods will be required to

analyse the transitions between relaxed and stressed

states in more detail.

The combined sensor solution presented in this

paper may not be a perfect general solution for de-

tecting stress on a day-to-day basis because the sen-

sors can be uncomfortable in the long term, in par-

ticular the wireless physiological sensor, although the

sociometric sensor can be worn as a simple badge

during longer periods of time. However, one of the

main contributions of this paper is to show the indi-

vidual capabilities of each sensor modality to detect

stress, and to present results that will aid in the fu-

ture selection of appropriate sensors in different sit-

uations. The sociometric badge can be worn as part

of an anyone’s daily activities (e.g. in an office envi-

ronment) however, the physiological sensor may be

more suitable within controlled environments (e.g.

patients in hospital). In addition, new physiological

and activity sensors continue to be developed which

are smaller and more ergonomic, and the results pre-

sented in this paper can easily transfer across.

Classification results using only the sociometric

badge indicate that easy to wear activity recording

sensors are likely to be suitable for monitoring every-

day stress. While the classification rates were lower

when compared to a combination of both physio-

logical and sociometric sensors, they still remained

high. In addition, the sociometric badge allows for

the recording of social interactions between partici-

pants. Thus, studying stress levels while interacting

in a variety of social activities is another future area

of research that we would like to explore in the fu-

ture. Combined signals from social interactions could

be combined with individual variation to increase the

modalities when detecting stress in individuals and

groups.

Finally, similar sensors to those contained

within the sociometric badge can be readily found

in other devices including intelligent bracelets, smart

phones or smart watches. Therefore, a further series

of studies is likely to explore the usefulness of these

devices alongside self-report when monitoring every-

day levels of stress over longer periods of time that
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go beyond the psychological laboratory.
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