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High-density surface microelectrodes for electrocorticography (ECoG) have become more common in recent years 
for recording electrical signals from the cortex. With an acceptable invasiveness/signal fidelity trade-off and high 
spatial resolution, micro-ECoG is a promising tool to resolve fine task-related spatial-temporal dynamics. However, 
volume conduction – not a negligible phenomenon – is likely to frustrate efforts to obtain reliable and resolved 
signals from a sub-millimeter electrode array. To address this issue, we performed an independent component 
analysis (ICA) on micro-ECoG recordings of somatosensory-evoked potentials (SEPs) elicited by median nerve 
stimulation in three human subjects before brain surgery for tumor resection. Using well described cortical 
responses in SEPs, we were able to validate our results showing that the array could segregate different functional 
units possessing unique, highly localized spatial distributions. The representation of signals through the root-mean-
square (rms) maps and the signal-to-noise-ratio (SNR) analysis emphasized the advantages of adopting a source 
analysis approach on micro-ECoG recordings, in order to obtain a clearer cortical activity picture. The implications 
are twofold: while on one side ICA may be used as a spatial-temporal filter extracting micro-signal components 
relevant to tasks for brain-computer interface (BCI) applications, it could also be adopted to accurately identify the 
sites of non-functional regions for clinical purposes. 

Keywords: micro-ECoG, SEP, ICA, BCI 

1. Introduction 

Electroencephalographic recording from the surface of 
the cerebral cortex (electrocorticography, ECoG) has 
become a prominent tool in electrophysiology for both 
clinical and research purposes. ECoG recordings have 
been used to characterize neural activity subtending 
motor tasks [1], such as movements of a computer 
cursor over two dimensions [2], of individual fingers 
[3], of the whole arm [4], and even fine hand 
movements [5]. ECoG advantages over 
electroencephalogram (EEG) include larger signal 
amplitude and frequency bandwidth and higher stability 
[6], [7]. On the other hand, the need to obtain higher 
spatial resolution, comparable to what is obtained 
through penetrating electrodes, has driven technology to 
design high-resolution microelectrode arrays for ECoG 
recordings [8]. Furthermore, a high-resolution interface 
was made available by recently developed technology 
based on flexible silicon electronics [9], [10] allowing 
to concurrently define local cortical area specialization 
and large-scale cortical networks. 
Although functional segregation is a well-established 
evidence of brain organization [11], [12], estimating 
neurophysiological current sources generating the 
electric fields recorded by micro-ECoG electrodes is 

still an unexplored path. In general, voltages recorded 
by surface electrodes - such as EEG and ECoG - may be 
modeled as a linear sum of independent current 
components [13], [14], [15]. An efficient technique is 
provided by Independent Component Analysis (ICA) 
[16] to decompose data into a set of maximally 
independent components linearly mixed to produce the 
original recorded signals. ICA was first applied by 
Makeig and colleagues [17] to decompose multi-
channel EEG data, thus opening up new perspectives 
into complex event-related brain data. Other later 
studies have also pointed out ICA potential for isolating 
artifacts produced in EEG data by muscle activity and 
eye blinks [18], [19] and studying the dynamics of some 
pathological sources [20], [21], [22]. However, standard 
ECoG probes, typically used for clinical evaluation 
before epilepsy surgery [23], [24] and for accurate 
cortical mapping of ‘eloquent areas’ prior to tumor 
resection [25], [26], [27], [28], use electrodes with 1-10 
mm2 surface and 1 cm spacing. Consequently, even 
though abnormal component activity can be extracted 
by ICA decomposition, spatial resolution is often 
inaccurate. 
In order to validate the ability of resolving features with 
higher spatial resolution using a new generation of 
microelectrode arrays, for the first time to our 
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knowledge, we used ICA to unmix independent sources 
of cortical data correlated to somatosensory evoked 
potentials (SEPs) collected across a spatial landmark - 
the central sulcus - by high density micro-ECoG 
recordings.  
In particular, we developed an ad hoc 64 channels 
micro-ECoG array with electrodes having diameter of 
140μm and an inter-electrode pitch of 600 μm. Data 
belong to three patients who underwent surgical 
procedures for tumor resection. Cortical SEPs, elicited 
by median nerve stimulation, are well known and 
widely used for clinical and research purposes [29], 
[30]. SEPs show a characteristic pattern for different 
recording areas: while in the motor cortex (M1) they 
show a positive peak at 18-23 ms (called P20) followed 
by a negative peak at 28-32 ms (called N30), in the 
somatosensory cortex (S1) the waveform is quite similar 
in timing but opposite in sign (i.e. N20 and P30, 
respectively) [31], [32]. This polarity inversion, called 
phase-reversal, is a functional marker of the central 
sulcus dividing M1 from S1 [32]. It is usually monitored 
during neurosurgical procedures to preserve 
somatosensory paths from surgical damage [30], [33], 
[34]. This well-known phase-reversal pattern at the level 
of the central sulcus was used as an anatomic-functional 
marker to spatially and temporally validate our results. 

2. Materials and methods 

Three patients with low-grade glioma located near 
somatosensory and/or motor cortical areas were enrolled 
for this investigation. The glioma size was measured 
from Navigator T1 of magnetic resonance images of the 
brain along the three axis were X= axial axis; Y=sagittal 
axis; Z=coronal axis. 
Patient_1 was a 31-year-old male with left subcortical 
retrocentral low grade glioma (size of glioma for the 3 
axes: X=8mm; Y=12mm; Z=11mm). The clinical 
diagnosis was made after the onset of complex partial 
motor seizures and secondary generalization. 
Patient_2 was a 46-year-old male with recurrent left 
precentral low grade glioma diagnosed at routine 
clinical neuro-radiological follow-up (size of glioma for 
the 3 axes: X=26mm; Y=27mm; Z=31mm).  
Patient_3 was a 61-year-old male with right parasagittal 
premotor low grade glioma (size for the 3 axes: 
X=43mm; Y=37mm: Z=46mm) diagnosed after a 

generalized seizure. The clinical data are summarized in 
Table 1. 
All patients gave their informed consent for cortical 
recordings and stimulation protocol. The protocol was 
approved by the ethical committee of Azienda 
Ospedaliera Universitaria Santa Maria della 
Misericordia (Udine, Italy) where tumor excisions were 
performed. Since the lesion was harbored in ‘eloquent 
areas’, the so called ‘awake’ surgery was performed (for 
technical details, see [26]) on all patients. This 
procedure, aimed to preserve essential cortical and 
subcortical eloquent structures while maximizing tumor 
resection [27], [28], was performed while the patient 
was conscious and aware of the surrounding 
environment. No patient showed motor or cognitive 
neurological deficits as assessed by neurological 
preoperative tests. 
 

2.1 Microelectrode array and acquisition system 

Recording microelectrode arrays were developed at the 
Italian Institute of Technology (IIT), specifically 
designed to provide higher spatial-resolution than the 
other standard clinical devices. Thanks to Flexible 
Printed Circuit Technology, the size of recording sites 
and inter-electrode spacing were reduced, while 
nanostructured gold coating would ensure low 
impedance [8], [35]. The 64 recording sites of 140 μm 
diameter were arranged in an 8x8 grid with 0.6 mm 
spacing for a total covered area of 4. 3 by 4.3 mm (see 
Figure 1-A, B). All signals were referenced to two 
inactive metal plaques placed on both sides of the 
recording area.  

Table 1. Clinical data 

Patient Sex Age 
Glioma 

location 

Glioma size 

in mm  
Diagnosis 

1 M 31 
Left subcortical 

retrocentral 

X=8 

Y=12 

Z=11 

Motor seizure 

2 M 46 Left precentral 

X=26 

Y=27 

Z=31 

Routine 

clinical follow-

up 

3 M 61 

Right 

parasagittal 

premotor 

X=43 

Y=37 

Z=46 

Generalized 

seizure 
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Data were first amplified and then digitized at 3051.8 
Hz, 24 bits of digital resolution, before being sent to an 
acquisition workstation for subsequent analysis. A total 
22X gain was obtained with a two stage amplifier. The 
first stage, providing high input impedance and 11X 
gain, was integrated on a custom built head-stage 
directly connected to the microelectrode array. 
Amplified data were then wired to the second 
amplification stage featuring a band-pass filter (1Hz-
1500Hz) with an additional 2X gain factor. Finally, 
Transistor-Transistor Logic (TTL) signal, provided by 
the stimulation system for time synchronization with 
external trigger, was digitized at the same sampling rate 
used for ECoG data. 

2.2  Impedance Measurement 

The impedance of the micro-ECoG contacts was 
systematically measured before surgery by galvanostatic 
electrochemical impedance spectroscopy (GEIS), 
performed in saline physiological solution (0.9% NaCl), 
by applying a current (sine wave) of 300 nA RMS at 10 
frequencies per decade over the range 1-105 Hz. GEIS 
was carried out using a potentiostat/galvanostat 
(PARSTAT 2273, Princeton Applied Research) 
connected to a three-electrode electrochemical cell with 
a platinum counter electrode and a Ag/AgCl reference 
electrode.  

2.3 Array location 

In all patients, cortical recordings were carried out 
during awake surgery for low-grade glioma resection 

near somatosensory or motor areas. Neural signals were 
collected before beginning surgical procedure, and 
immediately after opening the dura. The placement of 
the recording array was based on information collected 
from different preoperative surveys. As part of standard 
surgical protocol, patients had undergone a series of 
fMRI scans in order to define functional brain networks. 
Those data were entered into the neuro-navigation 
system (Stealth Station, Medtronic, USA, 
http://www.medtronic.com/) in order to determine the 
site of these regions during surgery. In addition, cortical 
areas were mapped by the neurosurgeon through Direct 
Electrical Stimulation (DES), a methodology previously 
described by Ojemann and Berger [26]. With DES, a 
real-time functional map of the brain could be produced 
by applying electrical current directly on the cortex 
surface with a bipolar stimulator. Current intensity was 
adjusted to each patient and determined by 
progressively increasing the amplitude by 0.5mA steps, 
from a 1mA baseline until a sensory-motor response 
was elicited. Within the motor area, DES evokes 
movements of the contralateral side of the body, and, if 
applied on the somatosensory area, it evokes a sensory 
response (see Figure 2-A). Finally, during surgery, also 
continuous intraoperative neurophysiological 
monitoring of SEP responses was required. This was 
done by using standard cortical strips typically featuring 
eight electrodes with one centimeter of inter-electrode 
spacing. Since lesions were located near somatosensory 
and/or motor cortical areas, SEPs elicited by median 
nerve stimulation were continuously monitored by a 
clinical neurophysiologist. Cortical SEPs, obtained by 
averaging neural signals triggered by stimulation, are 
univocally described in terms of P20-N30 and N20-P30 
patterns, depending on recording site. While the former 
ones are recorded from the motor cortex, the latter ones 
are recorded from the somatosensory cortex. 
Consequently passing from one area to the other, the 
evoked neural activity changes polarity, and this so-
called ‘phase reversal’ is used as a functional marker of 
central sulcus during functional monitoring [29], [32], 
[33]. Thus, while DES provides an approximate 
identification of M1 and S1, ECoG signals recorded by 
these standard cortical strips allow to better identify the 
central sulcus path by means of the electrodes where the 
‘phase reversal’ is observed.  

 
Fig. 1. Microelectrode array for ECoG recordings. A) 
Picture of microelectrode array for ECoG data acquisition. 
Each small dot corresponds to one electrode starting from 
electrode 1 (top-left corner) to electrode 64 (bottom-right 
corner) B) Schematic representation of relative positions 
of microelectrodes within the array when they are on the 
cortex surface, with recording area dimensions. The same 
electrode arrangement  was maintained throughout the 
investigations reported in this paper. 
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Based on these pre-resection data, the microelectrode 
recording arrays have been correctly placed across the 
central sulcus (see Figure 2-A).  

2.4 SEP stimulation protocol 

Median nerve stimulation was triggered by a dedicated 
computer delivering a TTL signal to both the stimulator 
and the acquisition system. Nerve stimulation was 
conducted on the wrist contralateral to the cortical 
recording site. Stimulation parameters were set 

following the guidelines of the American Clinical 
Neurophysiology Society by using a train of single 
pulses at 3.3 Hz frequency rate, 10 mA mean current 
intensity and 200 µs duration [36]. Stimulation intensity 
was always set above the motor threshold, inducing a 
twitch of the thumb in all patients. Patients were instruct 
ted to remain still and relaxed throughout the entire 
stimulation session. 

2.5 Data pre-processing 

Data analysis was performed using MATLAB built-in 
and custom-built functions (Mathworks, 
www.mathworks.com) and adopting freely available 
EEGLAB Toolbox [37], (http://sccn.ucsd.edu/eeglab/). 
ECoG data were pre-processed before subsequent 
analysis by removing any artifacts induced by median 
nerve stimulation, and adopting an interpolation method 
substituting a two millisecond artefact with the mean 
activity during the two milliseconds before and after it. 
Channels showing abnormal activity were excluded 
from further analysis based on visual inspection of 
recorded micro-ECoG data. Finally, each data set was 
re-referenced on the common average. 
Data have been segmented into epochs of 160ms time-
locked to the stimulation (ranging from 100ms before 
the onset to 60ms after it). To obtain homogeneous 
samples, 360 epochs of SEPs, corresponding to about 
two minutes of median nerve stimulation, were selected 
for each patient for further analysis. For Patient_1, only 
250 epochs were selected due to his movements during 
acquisition. We didn’t down-sample the data because 
high frequencies oscillations (HFO) are characteristic of 
SEP signals [39.  

2.6 Independent Component Analysis (ICA) 

In order to decompose channel data into the same 
number of independent signals, we used ICA algorithm 
based on an “infomax” neural network, firstly described 
by Bell and Sejnowski [16] and implemented for EEG 
data by Makeig and collaborators [17]. Considering X(t) 
the set of recorded time series, the algorithm returns an 
unmixing matrix W by minimizing the Mutual 
Information of random vectors resulting from a linear 
transformation of mixed signals X(t) and followed by 
nonlinearities. In this way, redundancy between output 
units can be minimized [16]. When W multiplies mixed 
signals X(t), it decomposes data into a matrix of 

 
 
Fig. 2. Array location and SEP activity for Patient_1. A) 
Photographs of surgical microarray placement. Left: 
cerebral cortex before array placement with cortical 
points where DES had evoked a response; 1- index 
movement, 2- thumb tingling, 3- index tingling. The 
array, schematically represented by the small square, was 
placed on the central sulcus (dotted blue line). Right: 
array placement. The side of the headstage-holder 
provides array orientation on the cortex. B) Average SEP 
activity for each electrode (plotted data show the 60 ms 
of signal after the stimulation onset). Electrode 
arrangement reflects actual electrode  position within the 
array and on the cortex (the black square in each array 
representation indicates the position of electrode 1). Two 
vertical lines in each plot point out the timestamp at 22 
msec and 34 msec., respectively. The central sulcus path 
(dotted blue line) can be traced by following the 
progressive phase reversal among electrodes.  Insets: 
color maps of recorded voltages for all electrodes at 22 
msec and 34 msec. There is a clear difference in timing 
and polarity between lower left and upper right corners of 
the array which is used to validate  the identification of 
cortical areas (i.e. M1 and S1).  
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independent component (IC) time series, S(t), of the 
same size as the input data.  

W*X(t)=S(t)                                                  (1) 
 By multiplying IC activations with W-inverse (Eq. 1),  
the original data channel is back-projected or restored. 

X(t)=W(-1)*S(t)                                            (2) 
W-inverse is the component mixing matrix, whose 
columns provide the relative strengths and polarities of 
projections of one component source signal to each of 
the recorded channels (Eq. 2) [40]. 

2.7 Pairwise correlation 

Correlation analysis based on coefficient of 
determination (R square) was computed between pairs 
of electrodes or pairs of components. For this 
investigation, the square value of Pearson’s correlation 
coefficient (r) was adopted as coefficient of 
determination. Pearson’s r is a statistical quantity 
measuring the strength and direction of a linear 
dependence between two X and Y variables.  

In our case, X and Y are the recorded data and R 
square value is the strength of the relationship between 
the two signals without any polarity definition. It is a 
useful measure because, ranging from 0 to 1, it assesses 
the similarity between the two signals.  

For correlation estimates the averages over all 
selected epochs of each non discarded electrode (i.e. 
SEP responses) and the component activations were 
considered. For each electrode pair and for each 
component pair, the R square was calculated and two 
distributions were conveyed and compared. Only 
significant values (p<0.05) were reported. 

 

2.8 Percent variance accounted for (PVAF) 

Extracted components contribute with different weight 
to channel signals, which we quantified in terms of 
‘percent variance accounted for’ (PVAF). PVAF 
conveys the relationship between electrode and 
component, providing a numeric value of correlation 
strength with all channel signals for each component. 
Every recorded signal is totally reconstructed by back-
projecting all independent component activations and 
consequently, despite different component contribution 

to channel data, their total sum provides a PVAF equal 
to 100% for every signal. 
From a mathematical point of view, given component k 
and signal Xi(t) of electrode i, component k back-
projection on channel i is defined as: 
 

Xj,i(t)= Wj,i(-1)*Sj(t)                                    (3) 
 

Where W(-1) is the ICA mixing matrix and Sj(t) is the 
activation time series of the jth component (Eq. 3). 
This allows to calculate PVAF of component j to the 
signal of electrode i as: 
 
 
 
 
 

2.9  Root-mean-square (rms) maps and Signal-
to-Noise Ratio (SNR) analysis 

In order to establish whether ICA provides a substantial 
improvement in understanding a neural pattern already 
visible by averaging the signal over several trials, we 
calculated for each electrode the root-mean-square (rms) 
of SEP signals and the rms of the back-projection of the 
component which best fits the location of the central 
sulcus (we refer to this component as phase-reversal 
component). For both signals we generated a color map 
representing the rms values for all electrodes. To 
provide a quantification in term of signal-to-noise ratio 
(SNR) of such improvement, we compared SNR values 
for all electrodes. Consistent with previous works [41], 
[42], [43] we defined as signal (S) the peak-to-peak 
amplitude of the averaged signal in the range of [0-60] 
ms from the stimulation onset and as noise (N) the rms 
of 100 ms of signal before the stimulation onset. Thus 
we calculated for each electrode the SNR as: SNR = 
S/2*(N). To show the result we used a color map, 
plotting for each electrode the difference between the 
SNR of the phase-reversal component and the SNR of 
SEP. 

3. Results 

3.1 Phase reversal at sub-millimeter scale 

PVAF(j,i) =                (4) 
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SEPs for Patient_1, averaged over all trials, are shown 
in Figure 2B. The array provided a sub-millimeter 
spatial distribution of ECoG on the cerebral surface. 
Due to phase reversal, the central sulcus location and 
path could be identified with high precision in all 
patients, as represented by dotted blue lines. While the 
recording cortical site was anatomically similar for all 
patients, differences among patients in craniotomy, due 
to surgical approach, determined different orientations 
of recording arrays and consequently of sulcus 
trajectories on the arrays. 
In particular for Patient_1, the border was located 
between the left and right side, of the matrix vertically 
dividing the array. More specifically, between 
electrodes 57 and 8 (diagonal direction on the array), a 
clear phase reversal from 22 ms to 34 ms could be 
observed (see Figure 2B). 
 

3.2 Reduction in pairwise R2 of independent 
components when compared to electrode 
signals 

After extraction of independent components from 
recorded data, we first asked whether ICs time series 
were statistically less correlated than the time series of 
the corresponding microelectrode signals (see Figure 3). 
To answer this question, we calculated pairwise R2 
between all pairs of average SEP channels and between 
all pairs of relative IC time series. Only significant 
values (p<0.05) were considered. In Figure 3-C, the 
results are shown with two histograms for each patient: 

the first related to the electrode pairs and the second 
related to the component pairs. From a statistical point 
of view, the analysis quantifies, in terms of mean and 
median distribution (see Table 2), a reduction in 
waveform similarity of independent components 
compared to original electrode signals. 

Table 2.  Statistics related to histograms of pairwise R2 for all three patients. 

Patient Type of pairs N pairs (p<0.05) Mean R2 Median R2 Range R2 

 
1 
 

Electrodes 3422 0.4098 0.3314 
Min: 0.0211 
Max: 0.9998 

Components 2898 0.1710 0.1249 
Min: 0.0211 
Max: 0.8127 

2 
Electrodes 3825 0.4994 0.5447 

Min: 0 
Max: 0.9988 

Components 3193 0.1538 0.0995 
Min: 0 

Max: 0.8491 

3 
Electrodes 3897 0.5603 0.6568 

Min: 0 
Max: 0.9999 

Components 3357 0.1890 0.1356 
Min: 0 

Max: 0.8838 
 

 
 
Fig. 3. Comparison between electrode signals and 
independent components. A) Single trial SEP (left) and 
ICA (right) for four representative electrodes of Patient_1. 
B) Contribution of four components progressively added to 
the signal of two representative electrodes for Patient_2. C) 
Histograms of pairwise R2 between electrodes (on the left) 
and ICs (on the right) returned from ICA for all patients. 
The X axis represents the R2 values (p<0.05) and the Y axis 
represents the number of pairs. The plots show that the 
distribution of the number of  independent component pairs 
is shifted towards zero R2 for all patients. This means that 
the similarity between time series waveforms is greatly 
reduced if we consider components instead of electrode 
signals. 
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3.3 Relationship between electrodes and 
components and advantages of extracting 
ICs 

The relationship between electrodes and components 
was quantified through the “percent variance accounted 
for” (PVAF). As previously described, with PVAF the 
contribution of independent components to the original 
signal of every electrode can be calculated. Figure 4 
shows the percent variance accounted for some 
components to the signal of all electrodes for Patient_1. 
One color map was obtained for every component by 
outlining the electrodes in their relative positions within 
the geometry of the recording device. A green scale was 
adopted: electrodes shown in light-green have the 
highest PVAF. If recorded signals were totally 
independent, the components would be localized only 
on one electrode providing 100% variance. Instead, 
each component contributes to the signal of several 
electrodes defining its own characteristic spatial pattern. 
The back-projection of the components on all electrodes  
confirms this fact (see Figure 5). This means that signals 
from microelectrodes are not independent and that they 
do not arise from the activity of wholly separate cortical  

domains. Components are not randomly distributed in 
space and their distribution has a significant biological 
meaning. In figure 4 the color map of IC14, for 
example, seems to follow the central sulcus as 
confirmed by its back-projection activity on all 
electrodes (see Figure 5). This “phase-reversal-
component” shows a characteristic development for 
each specific recording site.  
Waveform differences are based on polarity and latency, 
with P20-N30 pattern on the motor cortex and N30-P20 
pattern on the somatosensory cortex. As a consequence, 

 
 
Fig. 4. Examples of independent component maps. 
Spatial distribution of twelve components extracted 
from Patient_1 dataset. Maps are obtained by plotting 
the percent variance accounted for the considered 
component of all electrode signals by keeping their 
relative position within the array. Electrodes in light-
green have the highest PVAF, implying the prevalence 
of such single component. Components are on  
electrodes with accurate spatial definition, allowing to 
identify, for every component, a subset of electrodes 
within the array. In particular, the IC14 seems to 
provide the best indication about central sulcus location 
showing a PVAF greater than zero only for electrodes 
involved in phase-reversal. 
 

 
Fig. 5. Comparison between SEP and back-projection of 
the component that best fits the location of the central 
sulcus for Patient_1. Every black line corresponds to the 
time series (-100ms before the median nerve stimulation 
and 60 ms after) respectively for SEP and for the back-
projection on all electrodes of the component which shows 
a polarity inversion between motor and somatosensory 
cortex. Based on this inversion of polarity the dotted blue 
lines show where the central sulcus path approximately 
lies. The root-mean-square (rms) of SEP and the selected 
component are shown in the two color maps at the bottom 
of the figure. Note that the central sulcus location is more 
easily identified thanks to the color contrast found in the 
component-rms map. The color map in the middle shows 
the difference between the SNR of the same signals for 
each electrode. The mean difference over all electrodes is 
positive (mean±SEM = 0.80±0.63), therefore the phase-
reversal component carries more information about the 
signal and it is less noisy.  



8 Rembado I, Castagnola E, Turella L, Ius T,Budai R, Ansaldo A,Angotzi GN, DeBertoldi F, Ricci D, Skrap M, Fadiga L 

the reduced signal intensity of phase-reversal-
component between the two cortical areas provides a 
clear landmark of the sulcus. A more direct 
identification of the sulcus location can be obtained by 
representing the signal through rms values (see Figure 5 
for Patient_1). The color contrast in the component-rms 
map allows to easily detect the border between the two 
areas, which is less evident in the SEP-rms map. The 
advantage of decomposing the signal into ICs is 
quantified by the SNR analysis, which shows that the 
stimulation-related signal (i.e. the two peaks caused by 
the stimulation) is higher for the back-projection of 
phase-reversal component than for the simple SEP 
signal. Difference for each electrode of SNR between 
the two signals have been plotted through a color map 
and the average of differences over all electrodes have 
been calculated (dSNR) (see Figure 5 for Patient_1). 
For all patients the SNR related to the phase-reversal 
component is higher with a positive mean difference 
(mean ± SEM for each patient: P_1: dSNR=0.80±0.63; 
P_2: dSNR=9.46±0.62; P_3: dSNR=10.12±0.48).  
In order to verify component mapping reliability at a 
single-trial level, we analyzed PVAF for each trial of 
the three recording sessions by back-projecting 
components on every time series epoch. Due to the large 
number of selected trials, we compressed all figures in a 
video (see multimedia Movie1) showing the dynamics 
of spatial structure components for all single trials of 
Patient_1, from the first to the last one (n=250). Despite 
the expected variability among trials, spatial maps of 
some components are highly reliable, practically 
involving the same electrodes throughout all trials. For 
example, in no trial IC1 is on the array top right corner, 
while IC14, the phase-reversal-component, allows to 
‘track’ the central sulcus in most trials. The reliability at 
single trial level is also confirmed by the signal-to-noise 
ratio analysis which showed for all patients that the 
phase-reversal component carries more stable 
information than the SEP signal itself (results not 
shown). 

3.4 Absence of correlation between ICs and 
electrode impedance 

Since the electrode impedance variability among all 
electrodes might affect the topography of the 
component maps, the normalized magnitude impedance 
at 30 Hz has been plotted for all subjects by using 
green-scale color maps as in Figure 4. We have chosen 

this value because it corresponds in the frequency 
domain to the phase-reversal pattern characterized in the 
time domain by a peak around 20ms and an inversion of 
polarity around 30ms. Figure 6 shows the impedance 
maps at 30 Hz for the arrays used to record the SEP 
activity of all three patients. The impedance values 
(mean ± SEM for 64 electrodes) are respectively 
540.9±8.5kΩ, 463.2±8.1kΩ and 572.9±7.1kΩ. A direct 
comparison of the impedance maps with the paths of the 
central sulcus (represented in the Figure 6 by dotted 
blue lines) and the spatial distributions of independent 
components (Figure 4), do not show any similarity. 
Therefore impedance variability of electrodes did not 
affect the components distribution. 

4. Discussion 

To the best of our knowledge, this is the first study in 
which ICA has been applied to high-density micro-
ECoG data to investigate independent components 
subtending neural response elicited by median nerve 
stimulation. Several studies on scalp recordings and on 
intracranial EEG recordings used ICA as a tool to 
suppress artifacts of muscle activity and eye blinks, or 
to demonstrate the wide distribution of functional 
networks [17], [18], [19], [20], [21], [22], [37], [38], 
[44], [45], [46], [47], [48], [49], [50]. In this study we 
applied ICA to micro-ECoG data provided by custom 
made micro-ECoG arrays with sub-millimeter spatial 
resolution, demonstrating that our approach can 
improve the discrimination of fine segregate functional 
neural signals. 

4.1 Decomposition of sub-millimeter ECoG data 
into independent components 

We applied ICA to high density SEPs, because 
changing the domain of neural signal processing, from 
electrode signals to sources that generate such signals, 
could be instructive. This study focused on SEP data 
acquired epicortically through a probe with 18.49 mm2 
recording area subdivided into 64 individual electrodes. 
Given the close proximity of recording electrodes, 
volume-conduction effects cannot be neglected. Thus, 
signals from close electrodes might appear very similar 
while efforts to obtain such spatial resolution could be 
unjustified. Moreover, signal variability, caused by  
different contact impedance of individual electrodes, 
might be confused with meaningful physiological 
patterns. 
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We firstly determined whether from such dataset we 
could extract signals holding greater independence. We 
applied ICA to decompose neural signals into a set of 
maximally temporally independent components and 
tested their correlation compared to the original data. R2 
histogram demonstrated that ICA decomposed original 
neural activity of all patients into a set of components 
with much greater independence among signals than the 
original neural signals. 
The contribution of each component to the original 
signal was expressed through PVAF measurements 
which quantified the relationship between components 
and electrodes. Given the matrix geometry, we were 
able to display a 2-D map for each considered 
component by plotting its contribution to the signal of 
all electrodes. The components contribute to electrode 
signals in different ways, but no one electrode showed a 
100% variance accounted for one single component. 
This means that there is no univocal association 
between sources and recording sites. The sources, 
indeed, project to multiple electrodes and the maps (see 
Figure 4, Figure 5) showed that every component is 
characterized by its own spatial distribution. Thanks to 
the central sulcus landmark, spatial patterns are 
biologically validated. For all subjects ICA extracted 
one phase-reversal-component that changes polarity 
depending on recording site (see Figure 5). 
This component offered a clear identification of the 
central sulcus path, as shown by the rms maps, and it 
also provided a substantial improvement in term of SNR 
in understanding a neural pattern already visible by 
averaging the electrode signals over multiple trials.  
We also tested whether the impedance variability 
among electrodes affected the spatial distribution of 
components. Impedance maps at 30Hz of the electrode 

arrays used for recordings did not show any similarity 
with the central sulcus paths (see Figure 6). This 
evaluation further confirmed that ICA can decompose 
high density ECoG data into signals characterized by 
biologically plausible spatial maps. Thanks to the 
presence of both the anatomical marker of central sulcus 
and the functional landmark of phase-reversal we were 
able to assess the reliability of our approach at the 
spatial resolution of our arrays.  
Sub-millimeter spatial definition of component 
distribution encourages the development of new 
approaches to locate the sources responsible for 
abnormal activities in neurological disorders like 
epilepsy or infiltrating tumors. ICA technique has been 
already applied to investigate and identify signal 
components with seizure-like patterns [20], [21], [22], 
[50], [51]. The success of surgical procedures strongly 
depends on accurate site identification of the lesion 
borders. Our ICA for micro-ECoG data, eventually 
combined to a realistic brain model, may be a useful 
tool to identify the exact site and borders of pathological 
brain regions with micrometric accuracy. 

4.2 Micro-sources and Brain Computer 
Interface 

We extracted independent components at single trial 
level and calculated related PVAF of all electrodes. 
Each trail has been used as a frame of a movie (see 
multimedia Movie 1) to show the spatial-temporal 
development of PVAF maps. Despite the expected 
variability among trials, components showed strongly 
stable spatial patterns throughout stimulation. Moreover 
the reliability at single trial level of the phase-reversal 
component over the SEP signal is further confirmed by 
the SNR analysis (results not shown). 
This result opens new perspectives for Brain Computer 
Interface (BCI). The key point of BCI, indeed, is the 
capability of the decoder to discriminate meaningful 
signal features at single-trial level and many studies 
have been focused precisely on improving the features 
extraction [52], [53], [54], [55], [56], [57], [58], [59]. 
He Bin and collaborators have clearly shown the 
benefits from adopting a source analysis approach to 
classify motor imagery tasks in humans [15], [60]. By 
switching from sensors to sources, they have been able 
to increase the mean classification accuracy in 
discriminating hand movements in three subjects by a 
factor of 9.2%. Thus, component analysis has identified 

 
Fig. 6. Green-scale color map of normalized magnitude 
impedance at 30 Hz for all subjects. Such frequency value 
is characteristic for the phase-reversal pattern. The maps 
do not show any similarity with the central sulcus paths 
(dotted blue lines) and with the PVAF-maps of 
components (see Figure 4 for Patient_1).  
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temporal-spectral-spatial biomarkers subtending the task 
leading to greater differentiation of stimuli, which in 
turn can lead to increase the efficacy of decoding 
algorithms for BCI applications [15].  
In this work, we have demonstrated that source analysis 
is reliable for micro-ECoG data interpretation, which, 
thanks to a small recording array size and its extremely 
localized dense spatial sampling, is a promising tool for 
chronic BCIs.  

5. Conclusions 

To conclude, micro-ECoG recordings combined with 
suitable source analysis open up new and powerful 
perspectives for deeper understanding of brain and 
cognitive functions. We demonstrated that ICA 
decomposition can isolate, out of high density data, 
different components with biologically plausible spatial 
distribution and that are reliable at single trial level. 
This important result highlighted the advantages of 
employing microelectrode probes in ECoG recordings, 
providing evidence of the feasibility to resolve 
independent signals at sub-millimeter scale. Several 
benefits arise from micro-ECoG array adoption, ranging 
from high reliability to the reduced invasiveness. 
Moreover, as we have shown, micro-ICA provides a 
reliable fine segregation of functional units. It could be 
applied to identify the sites of pathological sources for 
clinical purposes, or it could improve the decoding 
performance for discriminating neural patterns 
subtending motor or cognitive tasks for BCI 
applications.  
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