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High-density surface microelectrodes for electrticography (ECoG) have become more common in re@ars
for recording electrical signals from the cortexittan acceptable invasiveness/signal fidelityeraff and high
spatial resolution, micro-ECoG is a promising taotesolve fine task-related spatial-temporal dymramiowever,
volume conduction — not a negligible phenomenos likely to frustrate efforts to obtain reliabledaresolved
signals from a sub-millimeter electrode array. ddrass this issue, we performed an independent@oemb
analysis (ICA) on micro-ECoG recordings of somatsseyrevoked potentials (SEPs) elicited by medianane
stimulation in three human subjects before bramgesty for tumor resection. Using well describecticat
responses in SEPs, we were able to validate oultseshowing that the array could segregate diffefienctional
units possessing unique, highly localized spaigtidutions. The representation of signals throtighroot-mean-
square (rms) maps and the signal-to-noise-ratid®(Sivalysis emphasized the advantages of adoptograe
analysis approach on micro-ECoG recordings, in aimebtain a clearer cortical activity picture. Tihwlications
are twofold: while on one side ICA may be used apatial-temporal filter extracting micro-signalnsponents
relevant to tasks for brain-computer interface (Biplications, it could also be adopted to accuyatigntify the

sites of non-functional regions for clinical purpss

Keywords micro-ECoG, SEP, ICA, BCI

1. Introduction

Electroencephalographic recording from the surfate
the cerebral cortex (electrocorticography, ECoG} ha
become a prominent tool in electrophysiology fothbo
clinical and research purposes. ECoG recording® hav
been used to characterize neural activity subtendin
motor tasks [1], such as movements of a computer
cursor over two dimensions [2], of individual finge
[3], of the whole arm [4], and even fine hand
movements [5]. ECoG advantages over
electroencephalogram (EEG) include larger signal
amplitude and frequency bandwidth and higher stgbil
[6], [7]. On the other hand, the need to obtainhbig
spatial resolution, comparable to what is obtained
through penetrating electrodes, has driven teclyyadio
design high-resolution microelectrode arrays foroEC
recordings [8]. Furthermore, a high-resolution iftee
was made available by recently developed technology
based on flexible silicon electronics [9], [10]aadling

to concurrently define local cortical area spezétion
and large-scale cortical networks.

Although functional segregation is a well-estaldidh
evidence of brain organization [11], [12], estimagti
neurophysiological current sources generating the
electric fields recorded by micro-ECoG electrodss i

still an unexplored path. In general, voltages réed

by surface electrodes - such as EEG and ECoG -bmay
modeled as a linear sum of independent current
components [13], [14], [15]. An efficient techniqige
provided by Independent Component Analysis (ICA)
[16] to decompose data into a set of maximally
independent components linearly mixed to produee th
original recorded signals. ICA was first applied by
Makeig and colleagues [17] to decompose multi-
channel EEG data, thus opening up new perspectives
into complex event-related brain data. Other later
studies have also pointed out ICA potential fotatng
artifacts produced in EEG data by muscle activitgd a
eye blinks [18], [19] and studying the dynamicsoime
pathological sources [20], [21], [22]. However,ratard
ECoG probes, typically used for clinical evaluation
before epilepsy surgery [23], [24] and for accurate
cortical mapping of ‘eloquent areas’ prior to tumor
resection [25], [26], [27], [28], use electrodeshwl-10
mn? surface and 1 cm spacing. Consequently, even
though abnormal component activity can be extracted
by ICA decomposition, spatial resolution is often
inaccurate.

In order to validate the ability of resolving feas with
higher spatial resolution using a new generation of
microelectrode arrays, for the first time to our
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knowledge, we used ICA to unmix independent sources

Table 1. Clinical data

of cortical data correlated to somatosensory evoked
potentials (SEPs) collected across a spatial larkima

the central sulcus - by high density micro-ECoG
recordings.
In particular, we developed an ad hoc 64 channels

micro-ECoG array with electrodes having diameter of
14um and an inter-electrode pitch of 6@@n. Data
belong to three patients who underwent surgical

procedures for tumor resection. Cortical SEPs,tetic
by median nerve stimulation, are well known and
widely used for clinical and research purposes ,[29]

. Glioma Gliomasize . .
Patient | Sex | Age . . Diagnoss
location inmm
. X=8
Left subcortica .
1 M 31 Y=12 Motor seizure
retrocentral
Z=11
X=26 Routine
2 M 46 | Left precentrgl Y=27 |clinical follow-
Z=31 up
Right X=43 .
) Generalized
3 M 61 parasagittal Y=37 )
seizure
premotor Z=46

[30]. SEPs show a characteristic pattern for déffier
recording areas: while in the motor cortex (M1)ythe
show a positive peak at 18-23 ms (called P20) vdid

by a negative peak at 28-32 ms (called N30), in the
somatosensory cortex (S1) the waveform is quitélaim

in timing but opposite in sign (i.e. N20 and P30,
respectively) [31], [32]. This polarity inversiooalled
phase-reversal, is a functional marker of the edntr
sulcus dividing M1 from S1 [32]. It is usually mamvied
during  neurosurgical procedures to  preserve
somatosensory paths from surgical damage [30],, [33]
[34]. This well-known phase-reversal pattern atléhwel

of the central sulcus was used as an anatomiciunadt
marker to spatially and temporally validate ouuits

2. Materialsand methods

Three patients with low-grade glioma located near
somatosensory and/or motor cortical areas werdledro
for this investigation. The glioma size was meadure
from Navigator T1 of magnetic resonance imagesef t
brain along the three axis were X= axial axis; Ygital
axis; Z=coronal axis.

Patient_1 was a 31-year-old male with left subcatti
retrocentral low grade glioma (size of glioma fbe t3
axes: X=8mm; Y=12mm; Z=11mm). The clinical
diagnosis was made after the onset of complexabarti
motor seizures and secondary generalization.

Patient 2 was a 46-year-old male with recurrent lef
precentral low grade glioma diagnosed at routine
clinical neuro-radiological follow-up (size of gliwa for
the 3 axes: X=26mm; Y=27mm; Z=31mm).

Patient_3 was a 61-year-old male with right paritsdg
premotor low grade glioma (size for the 3 axes:
X=43mm; Y=37mm: Z=46mm) diagnosed after a

generalized seizure. The clinical data are summdiria
Table 1.

All patients gave their informed consent for catic
recordings and stimulation protocol. The protocasw
approved by the ethical committee of Azienda
Ospedaliera  Universitaria Santa Maria della
Misericordia (Udine, Italy) where tumor excisiongne
performed. Since the lesion was harbored in ‘elatjue
areas’, the so called ‘awake’ surgery was perfor(fied
technical details, see [26]) on all patients. This
procedure, aimed to preserve essential cortical and
subcortical eloquent structures while maximizingnaw
resection [27], [28], was performed while the patie
was conscious and aware of the surrounding
environment. No patient showed motor or cognitive
neurological deficits as assessed by neurological
preoperative tests.

2.1 Microelectrode array and acquisition system

Recording microelectrode arrays were developeteat t
Italian Institute of Technology (IIT), specifically
designed to provide higher spatial-resolution thiaa
other standard clinical devices. Thanks to Flexible
Printed Circuit Technology, the size of recordings
and inter-electrode spacing were reduced, while
nanostructured gold coating would ensure low
impedance [8], [35]. The 64 recording sites of 140
diameter were arranged in an 8x8 grid with 0.6 mm
spacing for a total covered area of 4. 3 by 4.3 (see
Figure 1-A, B). All signals were referenced to two
inactive metal plaques placed on both sides of the
recording area.
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Fig. 1. Microelectrode array for ECoG recordings. A)
Picture of microelectrode array for ECoG data adtions
Each small dot corresponds to one electrode sgaftom
electrode 1 (top-left corner) to electrode 64 (@wtright
corner) B) Schematic representation of relative tims

of microelectrodes within the array when they anetloe
cortex surface, with recording area dimensions. Jérae
electrode arrangement was maintained throughoat th
investigations reported in this paper.

Data were first amplified and then digitized at B@b
Hz, 24 bits of digital resolution, before being tseman
acquisition workstation for subsequent analysigotal
22X gain was obtained with a two stage amplifigneT
first stage, providing high input impedance and 11X
gain, was integrated on a custom built head-stage
directly connected to the microelectrode array.
Amplified data were then wired to the second
amplification stage featuring a band-pass filteHZ41
1500Hz) with an additional 2X gain factor. Finally,
Transistor-Transistor Logic (TTL) signal, providéy
the stimulation system for time synchronization hwit
external trigger, was digitized at the same samgpiate
used for ECoG data.

2.2 Impedance Measurement

The impedance of the micro-ECoG contacts was
systematically measured before surgery by galvatiost
electrochemical impedance spectroscopy (GEIS),
performed in saline physiological solution (0.9%(\a

by applying a current (sine wave) of 300 nA RM3.at
frequencies per decade over the range *1HDO GEIS
was carried out using a potentiostat/galvanostat
(PARSTAT 2273, Princeton Applied Research)
connected to a three-electrode electrochemicagéil

a platinum counter electrode and a Ag/AgCl refeeenc
electrode.

2.3 Arraylocation

In all patients, cortical recordings were carriedt o
during awake surgery for low-grade glioma resection

near somatosensory or motor areas. Neural sigrexis w
collected before beginning surgical procedure, and
immediately after opening the dura. The placemdnt o
the recording array was based on information ctatkc
from different preoperative surveys. As part ohstard
surgical protocol, patients had undergone a sesfes
fMRI scans in order to define functional brain netis.
Those data were entered into the neuro-navigation
system (Stealth Station, Medtronic, USA,
http://www.medtronic.com/) in order to determineeth
site of these regions during surgery. In additmortical
areas were mapped by the neurosurgeon throughtDirec
Electrical Stimulation (DES), a methodology presbu
described by Ojemann and Berger [26]. With DES, a
real-time functional map of the brain could be proed

by applying electrical current directly on the eort
surface with a bipolar stimulator. Current intepsitas
adjusted to each patient and determined by
progressively increasing the amplitude by 0.5mAste
from a 1mA baseline until a sensory-motor response
was elicited. Within the motor area, DES evokes
movements of the contralateral side of the body, &n
applied on the somatosensory area, it evokes aisens
response (see Figure 2-A). Finally, during surgatyo
continuous intraoperative neurophysiological
monitoring of SEP responses was required. This was
done by using standard cortical strips typicallgtfging
eight electrodes with one centimeter of inter-etme
spacing. Since lesions were located near somatogens
and/or motor cortical areas, SEPs elicited by media
nerve stimulation were continuously monitored by a
clinical neurophysiologist. Cortical SEPs, obtainey
averaging neural signals triggered by stimulatiare
univocally described in terms of P20-N30 and N2@-P3
patterns, depending on recording site. While threnéy
ones are recorded from the motor cortex, the |atbers
are recorded from the somatosensory cortex.
Consequently passing from one area to the other, th
evoked neural activity changes polarity, and thos s
called ‘phase reversal’ is used as a functionakeranf
central sulcus during functional monitoring [2932],
[33]. Thus, while DES provides an approximate
identification of M1 and S1, ECoG signals recordbgd
these standard cortical strips allow to better tifiethe
central sulcus path by means of the electrodesenther
‘phase reversal’ is observed.



4 Rembado |, Castagnola E, Turella L, lus T,BudahRsaldo A,Angotzi GN, DeBertoldi F, Ricci D, SkMpFadiga L

Based on these pre-resection data, the microetictro
recording arrays have been correctly placed adiuss
central sulcus (see Figure 2-A).

2.4 SEP stimulation protocol

Median nerve stimulation was triggered by a deeéitat
computer delivering a TTL signal to both the stiatat
and the acquisition system. Nerve stimulation was
conducted on the wrist contralateral to the coktica
recording site. Stimulation parameters were set

r\.-.l N~ L/vv ;\n% ’-—/\— -/\‘ Lw/\ %/\
'\—J —~ v\N vvv] B.,~. -./\ /\ F/\. M1

Fig. 2. Array location and SEP activity for Patieht A)
Photographs of surgical microarray placement. Left:
cerebral cortex before array placement with cadrtica
points where DES had evoked a response; 1- index
movement, 2- thumb tingling, 3- index tingling. The
array, schematically represented by the small squeas
placed on the central sulcus (dotted blue line).hRig
array placement. The side of the headstage-holder
provides array orientation on the cortex. B) Aver&gd>
activity for each electrode (plotted data show @@ems

of signal after the stimulation onset). Electrode
arrangement reflects actual electrode positiohiwithe
array and on the cortex (the black square in eagy a
representation indicates the position of electrbdelwo
vertical lines in each plot point out the timestaatp22
msec and 34 msec., respectively. The central sylatls
(dotted blue line) can be traced by following the
progressive phase reversal among electrodes. sinset
color maps of recorded voltages for all electrode®2
msec and 34 msec. There is a clear differencarimdi
and polarity between lower left and upper rightness of
the array which is used to validate the identifaa of
cortical areas (i.e. M1 and S1).

following the guidelines of the American Clinical
Neurophysiology Society by using a train of single
pulses at 3.3 Hz frequency rate, 10 mA mean current
intensity and 200 ps duration [36]. Stimulatioreimsity
was always set above the motor threshold, induaing
twitch of the thumb in all patients. Patients wigrgtruct

ted to remain still and relaxed throughout the renti
stimulation session.

2.5 Data pre-processing

Data analysis was performed using MATLAB built-in
and custom-built functions (Mathworks,
www.mathworks.com) and adopting freely available
EEGLAB Toolbox [37], (http://sccn.ucsd.edu/eeglab/)
ECoG data were pre-processed before subsequent
analysis by removing any artifacts induced by media
nerve stimulation, and adopting an interpolatiorihrod
substituting a two millisecond artefact with the ane
activity during the two milliseconds before andeafit.
Channels showing abnormal activity were excluded
from further analysis based on visual inspection of
recorded micro-ECoG data. Finally, each data set wa
re-referenced on the common average.

Data have been segmented into epochs of 160ms time-
locked to the stimulation (ranging from 100ms befor
the onset to 60ms after it). To obtain homogeneous
samples, 360 epochs of SEPs, corresponding to about
two minutes of median nerve stimulation, were geléc

for each patient for further analysis. For Patiénonly

250 epochs were selected due to his movementsgdurin
acquisition. We didn’'t down-sample the data because
high frequencies oscillations (HFO) are charadiers

SEP signals [39.

2.6 Independent Component Analysis (I CA)

In order to decompose channel data into the same
number of independent signals, we used ICA algorith
based on an “infomax” neural network, firstly déised

by Bell and Sejnowski [16] and implemented for EEG
data by Makeig and collaborators [17]. Considedity

the set of recorded time series, the algorithmrnstan
unmixing matrix W by minimizing the Mutual
Information of random vectors resulting from a &ne
transformation of mixed signals X(t) and followeg b
nonlinearities. In this way, redundancy betweerpout
units can be minimized [16]. When W multiplies nidxe
signals X(t), it decomposes data into a matrix of
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independent component (IC) time series, S(t), & th
same size as the input data.
W*X(t)=S(t) Q)
By multiplying IC activations with W-inverse (Eq),
the original data channel is back-projected ororest.
X()=W(-1)*S(t) &)
W-inverse is the component mixing matrix, whose
columns provide the relative strengths and potitf
projections of one component source signal to edch
the recorded channels (Eg. 2) [40].

2.7 Pairwise correlation

Correlation analysis based on coefficient of
determination (R square) was computed between pairs
of electrodes or pairs of components. For this
investigation, the square value of Pearson’s caticed
coefficient (r) was adopted as coefficient of
determination. Pearson’s r is a statistical qugntit
measuring the strength and direction of a linear
dependence between two X and Y variables.

In our case, X and Y are the recorded data and R
square value is the strength of the relationshigvéen
the two signals without any polarity definition. it a
useful measure because, ranging from 0 to 1, #s38S
the similarity between the two signals.

For correlation estimates the averages over all
selected epochs of each non discarded electrode (i.
SEP responses) and the component activations were
considered. For each electrode pair and for each
component pair, the R square was calculated and two
distributions were conveyed and compared. Only
significant values (p<0.05) were reported.

2.8 Percent variance accounted for (PVAF)

Extracted components contribute with different viatig
to channel signals, which we quantified in terms of
‘percent variance accounted for' (PVAF). PVAF
conveys the relationship between electrode and
component, providing a numeric value of correlation
strength with all channel signals for each compbnen
Every recorded signal is totally reconstructed gk
projecting all independent component activationd an
consequently, despite different component contidlout

to channel data, their total sum provides a PVARakq
to 100% for every signal.
From a mathematical point of view, given comporent
and signal Xi(t) of electrode i, component k back-
projection on channel i is defined as:

Xj,i(t)= Wj,i(-1)*Sj(t) (©)
Where W(-1) is the ICA mixing matrix and Sj(t) iset
activation time series of the jth component (Eg. 3)
This allows to calculate PVAF of component j to the
signal of electrode i as:

) _var[Xi(f)—Xj.i(f)j

var(Xi(f):l *100

PVAF(j,i) = )

2.9 Root-mean-square (rms) maps and Signal-
to-Noise Ratio (SNR) analysis

In order to establish whether ICA provides a sutith
improvement in understanding a neural pattern direa
visible by averaging the signal over several triaie
calculated for each electrode the root-mean-squars)

of SEP signals and the rms of the back-projecticth®
component which best fits the location of the cantr
sulcus (we refer to this component as phase-reversa
component). For both signals we generated a cosr m
representing the rms values for all electrodes. To
provide a quantification in term of signal-to-noisio
(SNR) of such improvement, we compared SNR values
for all electrodes. Consistent with previous wofk$],

[42], [43] we defined as signal (S) the peak-tokpea
amplitude of the averaged signal in the range 684D

ms from the stimulation onset and as noise (N)rthe

of 100 ms of signal before the stimulation onsdtug

we calculated for each electrode the SNR as: SNR =
S/2*(N). To show the result we used a color map,
plotting for each electrode the difference betwées
SNR of the phase-reversal component and the SNR of
SEP.

3. Resaults

3.1 Phasereversal at sub-millimeter scale
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SEPs for Patient_1, averaged over all trials, amvs
in Figure 2B. The array provided a sub-millimeter
spatial distribution of ECoG on the cerebral susfac
Due to phase reversal, the central sulcus locadiwh
path could be identified with high precision in all
patients, as represented by dotted blue lines. a\thi
recording cortical site was anatomically similar fdl
patients, differences among patients in craniotodiog
to surgical approach, determined different origotest
of
trajectories on the arrays.

In particular for Patient_1, the border was located

between the left and right side, of the matrix icaity
dividing the array. More specifically, between
electrodes 57 and 8 (diagonal direction on theyaria

clear phase reversal from 22 ms to 34 ms could be

observed (see Figure 2B).

3.2 Reduction in pairwise R2 of independent
components when compared to electrode
signals

After extraction of independent components from
recorded data, we first asked whether ICs timeeseri
were statistically less correlated than the timaeseof
the corresponding microelectrode signals (see Eigr
To answer this question, we calculated pairwise R
between all pairs of average SEP channels and batwe

recording arrays and consequently of sulcus

A ECoG Signals
Electrode 1

Electrode 8

NS

Electrode 57

»  FElectrode64
1 ﬁ/\/\/
» 3
0 )
Time (msec)

ICA Components
ic1

AATNT e\ p

!

A S W AW

Ic14

ChO » w
Time (msec)

o m v

B Electrode 24

—c1 ICs 14243

»
Time (msec)

ICs142 = ICs 14243+

Patient 2
-

-

.

m
1 ol
=
o
% s

0 05

ICs 142434445 —— ERP | | Patie:
—— ICS 14243444546

»
Time (msec)

at 3 [
o o
P o
. .
g 03 v 05

RA2 (p<0.05) RA2 (p<0.05

Fig. 3. Comparison between electrode signals and
independent components. A) Single trial SEP (laftpl
ICA (right) for four representative electrodes oti€at_1.
B) Contribution of four components progressively atltie
the signal of two representative electrodes foreRat2. C)

Histograms of pairwise Foetween electrodes (on the left)

and ICs (on the right) returned from ICA for all igats.
The X axis represents thé Rlues (p<0.05) and the Y axis
represents the number of pairs. The plots show tthet
distribution of the number of independent companpeatirs

is shifted towards zeroRor all patients. This means that
the similarity between time series waveforms isatye
reduced if we consider components instead of eldetr

signals.

the first related to the electrode pairs and theose
related to the component pairs. From a statispcétt
of view, the analysis quantifies, in terms of meamd
median distribution (see Table 2), a reduction in

all pairs of relative IC time series. Only signéit waveform similarity of independent components
values (p<0.05) were considered. In Figure 3-C, the compared to original electrode signals.
results are shown with two histograms for eachepiti
Table 2. Statistics related to histograms of piaeviR2 for all three patients.
Patient Type of pairs N pairs (p<0.05) M ean R? Median R? Range R?
Electrodes 3422 0.4098 0.3314 mg(%%zgjéjé
1 —
Components 2808 0.1710 0.1249 ,\'\A/'g(%%ilzl?
Min: O
Electrodes 3825 0.4994 0.5447 Max: 0.9988
2 —
Components 3193 0.1538 0.0995 | a'\)f.'r(')' g 201
Min: O
Electrodes 3897 0.5603 0.6568 Max: 0.9999
3 —
Components 3357 0.1890 0.1356 | a'\)f.'r(')' 2838
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3.3 Relationship between electrodes and
components and advantages of extracting
ICs

The relationship between electrodes and components
was quantified through the “percent variance actagin
for” (PVAF). As previously described, with PVAF the
contribution of independent components to the pabi
signal of every electrode can be calculated. Figure
shows the percent variance accounted for some
components to the signal of all electrodes fordptil.
One color map was obtained for every component by
outlining the electrodes in their relative posisomithin

the geometry of the recording device. A green seale
adopted: electrodes shown in light-green have the
highest PVAF. If recorded signals were totally
independent, the components would be localized only
on one electrode providing 100% variance. Instead,
each component contributes to the signal of several
electrodes defining its own characteristic spatatern.
The back-projection of the components on all etetes
confirms this fact (see Figure 5). This means sigitals
from microelectrodes are not independent and tiey t
do not arise from the activity of wholly separatetical

Ic1 iIc2 iIc3 Ic4
. E . . e
Ic5 ic7 ice ico

ic1 ic14 ic19 Ic20

Fig. 4. Examples of independent component maps.
Spatial distribution of twelve components extracted
from Patient_1 dataset. Maps are obtained by piptti
the percent variance accounted for the considered
component of all electrode signals by keeping their
relative position within the array. Electrodes ight-
green have the highest PVAF, implying the prevaenc
of such single component. Components are on
electrodes with accurate spatial definition, allogvito
identify, for every component, a subset of eleasod
within the array. In particular, the IC14 seems to
provide the best indication about central sulcestion
showing a PVAF greater than zero only for electsode
involved in phase-reversal.

3 8

QouRLIRA %%

3 8 8 &5 & 8

domains. Components are not randomly distributed in
space and their distribution has a significant dgadal
meaning. In figure 4 the color map of IC14, for
example, seems to follow the central sulcus as
confirmed by its back-projection activity on all
electrodes (see Figure 5). This “phase-reversal-
component” shows a characteristic development for
each specific recording site.

Waveform differences are based on polarity andhiate
with P20-N30 pattern on the motor cortex and N30-P2
pattern on the somatosensory cortex. As a consequen

SEP Best-fitting component of SEP
AR R e e e e R e e R
FHEHER=RERERERER  EHERERCHBRERER R
R b e R R e e R e e
pf e e e R e e e R R e
W R R R R R e e S R R
et b i e i e e e
e e e e e i e e e e S R
wmwwka%rjﬁ “ti:%{v%»%—k—i-—%

rms of SEP rms of the best-fitting component

rms (uV)

e |

Fig. 5. Comparison between SEP and back-projectfon o
the component that best fits the location of thatred
sulcus for Patient_1Every black line corresponds to the
time series (-100ms before the median nerve stiiounla
and 60 ms after) respectively for SEP and for thekb
projection on all electrodes of the component wisicbws

a polarity inversion between motor and somatosgnsor
cortex. Based on this inversion of polarity the ddtblue
lines show where the central sulcus path approxgiyat
lies. The root-mean-square (rms) of SEP and trectssl
component are shown in the two color maps at thiimo

of the figure. Note that the central sulcus logaii® more
easily identified thanks to the color contrast fdun the
component-rms map. The color map in the middle show
the difference between the SNR of the same sigfoals
each electrode. The mean difference over all eldefs is
positive (mean+SEM = 0.80+0.63), therefore the phas
reversal component carries more information abbet t
signal and it is less noisy.
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the reduced signal intensity of phase-reversal-
component between the two cortical areas provides a
clear landmark of the sulcus. A more direct
identification of the sulcus location can be obégirby
representing the signal through rms values (seer&ig

for Patient_1). The color contrast in the componemt
map allows to easily detect the border betweentioe
areas, which is less evident in the SEP-rms map. Th
advantage of decomposing the signal into ICs is
guantified by the SNR analysis, which shows that th
stimulation-related signal (i.e. the two peaks eauby
the stimulation) is higher for the back-projectiof
phase-reversal component than for the simple SEP
signal. Difference for each electrode of SNR betwee
the two signals have been plotted through a colap m
and the average of differences over all electrddes
been calculated (dASNR) (see Figure 5 for Patient 1)
For all patients the SNR related to the phase-saver
component is higher with a positive mean difference
(mean + SEM for each patient: P_1: dSNR=0.80+0.63;
P_2: dSNR=9.46+0.62; P_3: dSNR=10.12+0.48).

In order to verify component mapping reliability at
single-trial level, we analyzed PVAF for each trél
the three recording sessions by back-projecting
components on every time series epoch. Due tatige |
number of selected trials, we compressed all figjimea
video (see multimedia Moviel) showing the dynamics
of spatial structure components for all singlelsriaf
Patient_1, from the first to the last one (n=2%09spite
the expected variability among trials, spatial maps
some components are highly reliable, practically
involving the same electrodes throughout all triédsr
example, in no trial IC1 is on the array top rigbtner,
while 1C14, the phase-reversal-component, allows to
‘track’ the central sulcus in most trials. The abllity at
single trial level is also confirmed by the sigtalnoise
ratio analysis which showed for all patients thia¢ t
phase-reversal component carries more stable
information than the SEP signal itself (results not
shown).

3.4 Absence of correlation between | Cs and
electrode impedance

Since the electrode impedance variability among all
electrodes might affect the topography of the
component maps, the normalized magnitude impedance
at 30 Hz has been plotted for all subjects by using
green-scale color maps as in Figure 4. We haveechos

this value because it corresponds in the frequency
domain to the phase-reversal pattern characteniztith
time domain by a peak around 20ms and an inversion
polarity around 30ms. Figure 6 shows the impedance
maps at 30 Hz for the arrays used to record the SEP
activity of all three patients. The impedance value
(mean + SEM for 64 electrodes) are respectively
540.948.5K), 463.2+8.1K) and 572.9+7.1R. A direct
comparison of the impedance maps with the pathiseof
central sulcus (represented in the Figure 6 byedott
blue lines) and the spatial distributions of indwegbent
components (Figure 4), do not show any similarity.
Therefore impedance variability of electrodes dat n
affect the components distribution.

4. Discussion

To the best of our knowledge, this is the firstdgtin
which ICA has been applied to high-density micro-
ECoG data to investigate independent components
subtending neural response elicited by median nerve
stimulation. Several studies on scalp recordings @m
intracranial EEG recordings used ICA as a tool to
suppress artifacts of muscle activity and eye Islird

to demonstrate the wide distribution of functional
networks [17], [18], [19], [20], [21], [22], [37][38],
[44], [45], [46], [47], [48], [49], [50]. In this taidy we
applied ICA to micro-ECoG data provided by custom
made micro-ECoG arrays with sub-millimeter spatial
resolution, demonstrating that our approach can
improve the discrimination of fine segregate fuoicdl
neural signals.

4.1 Decomposition of sub-millimeter ECoG data
into independent components

We applied ICA to high density SEPs, because
changing the domain of neural signal processiramnfr
electrode signals to sources that generate suclalsjg
could be instructive. This study focused on SERadat
acquired epicortically through a probe with 18.48¥m
recording area subdivided into 64 individual elede@s.
Given the close proximity of recording electrodes,
volume-conduction effects cannot be neglected. Thus
signals from close electrodes might appear verylaim
while efforts to obtain such spatial resolution Idobe
unjustified. Moreover, signal variability, causeg b
different contact impedance of individual electrsde
might be confused with meaningful physiological
patterns.
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-0
-

Fig. 6. Green-scale color map of normalized magieitu
impedance at 30 Hz for all subjects. Such frequeadye

is characteristic for the phase-reversal pattehe maps
do not show any similarity with the central sulqaths
(dotted blue lines) and with the PVAF-maps of
components (see Figure 4 for Patient_1).

We firstly determined whether from such dataset we
could extract signals holding greater independewe.
applied ICA to decompose neural signals into ao$et
maximally temporally independent components and
tested their correlation compared to the origirbdR2
histogram demonstrated that ICA decomposed original
neural activity of all patients into a set of compats
with much greater independence among signals tiean t
original neural signals.

The contribution of each component to the original
signal was expressed through PVAF measurements
which quantified the relationship between composent
and electrodes. Given the matrix geometry, we were
able to display a 2-D map for each considered
component by plotting its contribution to the sigp&

all electrodes. The components contribute to edeetr
signals in different ways, but no one electrodensttba
100% variance accounted for one single component.
This means that there is no univocal association
between sources and recording sites. The sources,
indeed, project to multiple electrodes and the n{ape
Figure 4, Figure 5) showed that every component is
characterized by its own spatial distribution. Tkeo

the central sulcus landmark, spatial patterns are
biologically validated. For all subjects ICA extted

one phase-reversal-component that changes polarity
depending on recording site (see Figure 5).

This component offered a clear identification o€ th
central sulcus path, as shown by the rms maps,tand
also provided a substantial improvement in terrSNR

in understanding a neural pattern already visibye b
averaging the electrode signals over multiplegrial

We also tested whether the impedance variability
among electrodes affected the spatial distributadn
components. Impedance maps at 30Hz of the electrode

arrays used for recordings did not show any siitylar
with the central sulcus paths (see Figure 6). This
evaluation further confirmed that ICA can decompose
high density ECoG data into signals characterized b
biologically plausible spatial maps. Thanks to the
presence of both the anatomical marker of centilals
and the functional landmark of phase-reversal weewe
able to assess the reliability of our approach hat t
spatial resolution of our arrays.

Sub-millimeter spatial definition of component
distribution encourages the development of new
approaches to locate the sources responsible for
abnormal activities in neurological disorders like
epilepsy or infiltrating tumors. ICA technique hasen
already applied to investigate and identify signal
components with seizure-like patterns [20], [2D2]}
[50], [51]. The success of surgical proceduresnsfiyp
depends on accurate site identification of theolesi
borders. Our ICA for micro-ECoG data, eventually
combined to a realistic brain model, may be a usefu
tool to identify the exact site and borders of p&igical
brain regions with micrometric accuracy.

4.2 Micro-sources and Brain Computer
Interface

We extracted independent components at single trial
level and calculated related PVAF of all electrodes
Each trail has been used as a frame of a movie (see
multimedia Movie 1) to show the spatial-temporal
development of PVAF maps. Despite the expected
variability among trials, components showed strgngl
stable spatial patterns throughout stimulation. &édoer

the reliability at single trial level of the phasssersal
component over the SEP signal is further confirfogd

the SNR analysis (results not shown).

This result opens new perspectives for Brain Coeput
Interface (BCI). The key point of BCI, indeed, Iset
capability of the decoder to discriminate meanihgfu
signal features at single-trial level and many i&sid
have been focused precisely on improving the featur
extraction [52], [53], [54], [55], [56], [57], [58][59].

He Bin and collaborators have clearly shown the
benefits from adopting a source analysis approach t
classify motor imagery tasks in humans [15], [@BY.
switching from sensors to sources, they have be&n a
to increase the mean classification accuracy
discriminating hand movements in three subjectsaby
factor of 9.2%. Thus, component analysis has ifledti

in
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temporal-spectral-spatial biomarkers subtendingadbk
leading to greater differentiation of stimuli, whidn
turn can lead to increase the efficacy of decoding
algorithms for BCI applications [15].

In this work, we have demonstrated that sourceyaisal

is reliable for micro-ECoG data interpretation, ofhi
thanks to a small recording array size and itseexély
localized dense spatial sampling, is a promisirad for
chronic BCls.

5. Conclusions

To conclude, micro-ECoG recordings combined with
suitable source analysis open up new and powerful
perspectives for deeper understanding of brain and
cognitive functions. We demonstrated that ICA
decomposition can isolate, out of high density data
different components with biologically plausibleasipl
distribution and that are reliable at single triavel.
This important result highlighted the advantages of
employing microelectrode probes in ECoG recordings,
providing evidence of the feasibility to resolve
independent signals at sub-millimeter scale. Sévera
benefits arise from micro-ECoG array adoption, ragg
from high reliability to the reduced invasiveness.
Moreover, as we have shown, micro-ICA provides a
reliable fine segregation of functional units. ¢tutd be
applied to identify the sites of pathological sagdor
clinical purposes, or it could improve the decoding

performance for discriminating neural patterns
subtending motor or cognitive tasks for BCI
applications.
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