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The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and 

learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is 

still unclear. In principle, this understanding would benefit of the development of an artificial system embedding 

the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have 

exploited a realistic spiking computational model of the cerebellum to analyse the network correlates of cerebellar 

impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the 

main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage 

to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were 

challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar 

impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In 

all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an 

intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the 

cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response 

timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the 

generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at 

the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring 

in cerebellar pathologies.  
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1. INTRODUCTION

The brain architecture encompasses large-scale

networks organized in closed-loop, in which the strength 

of signal communication is continuously adjusted through 

synaptic plasticity. This anatomo-functional organization 

eventually allows to regulate the information processing 

required to drive adaptive behavior, as indicated by a 

wealth of physiological and pathological data and by 

theoretical motor control models.1,2 A critical element in 
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the control loop is the cerebellum3–5, which implements 

three fundamental operations: prediction, timing and 

learning of motor commands.6–10 These properties emerge 

in associative sensorimotor paradigms, such as the Eye-

Blink Classical Conditioning (EBCC). This Pavlovian 

associative task is learned along with repeated 

presentations of paired stimuli, a Conditioned Stimulus 

(CS, like a tone) followed after a fixed Inter Stimulus 

Interval (ISI) by an Unconditioned Stimulus (US, like an 

air-puff or an electrical stimulation), eliciting the eye-blink 

reflex. The cerebellum learns to produce a Conditioned 

Response (CR, an eye-blink) precisely timed to anticipate 

(or "predict") the US onset.11 

In the present work, we have exploited a detailed 

computational model of the cerebellum, embedded in a 

sensorimotor circuit and operating in closed-loop, to 

reproduce three prototypical pathological conditions of the 

cerebellar cortex and simulate the corresponding 

behavioral alterations. The model, a realistic Spiking 

cerebellar Neural Network (SNN)12–16, included detailed 

neuron models with proportionate population sizes and 

appropriate connection ratios. The model was connected to 

an external sensori-motor circuit capable of processing the 

EBCC. The model plasticity sites were distributed in both 

cortical and nuclear layers.17 Long-Term Depression 

(LTD) or Long-Term Potentiation (LTP) mechanisms 

were modeled as specific modifications of synaptic 

conductances. The same modeling framework was 

developed by our research group to simulate EBCC under 

physiological conditions and to provide insight into 

different cerebellar plasticity mechanisms.17,18 This 

framework establishes a solid basis for the analysis of 

pathological conditions in this work, as shown by 

preliminary proof-of-concept analyses.19,20 

We hypothesized that, by appropriately manipulating 

model parameters to reproduce cerebellar deficits, we 

should be able to observe the corresponding behavioral 

effects and to predict the underlying neural circuit 

adaptation. If this would be proved, in silico simulations 

based on realistic computational modeling could become 

fundamental to formulate hypotheses on disease 

mechanisms and to evaluate the efficacy of treatments.21 

This could also help to overcome the actual incomplete 

knowledge about cerebellar diseases22 and the limits of in 

vitro and in vivo analyses, bridging the gap between micro 

scales (cells), mesoscale (local circuits), macroscale 

(large-scale connection systems) and behavior.  

In order to face the issue, in this study, three different 

prototypes of cerebellar impairment have been analyzed, 

each one involving a different neural population or 

mechanism. The first pathological model was a reduced 

number of Purkinje cells, which are the final integrators of 

all cerebellar cortex computations and also a major site of 

plasticity.23 The second pathological model was 

characterized by a compromised input signal coming from 

the Mossy Fibers.24 The last case reproduced an 

impairment of long-term depression, the main mechanism 

of supervised cerebellar cortical plasticity.25 After tuning 

model parameters to simulate the standard physiological 

conditions, appropriate alterations were introduced in 

order to reproduce the pathological changes observed in 

humans or animals and, in these pathological cases, the 

EBCC was simulated and analyzed.  

2. METHODS

2.1. Computational cerebellar model and 

optimization 

The cerebellar model used for the simulations was 

based on a well-established cerebellar architecture18,26,27, 

which was built on physiological features of a cerebellar 

microcomplex. We used the Event-Driven simulator based 

on Look-Up-Tables, EDLUT28–30, an open source SNN 

simulator that operates by compiling the dynamic 

responses of pre-defined cell models into lookup tables, 

thus allowing real-time performance. The simulations 

were performed on a desktop PC (Intel® Xeon® CPU E5-

1620 v2 @3.70 GHz with 32 GB of RAM and Windows 7 

64 bit as Operating System). 

The SNN (Fig. 1A) was composed of 300 Mossy 

Fibers (MFs), 6000 Granule cells (GRs), 72 Inferior Olive 

cells (IOs), 72 Purkinje Cells (PCs) and 36 Deep 

Cerebellar Nuclei (DCNs). Reproducing the EBCC loop, 

the MFs received the CS, as a random spike pattern with 

physiological frequency, and were connected with the 

granular layer; each GR received 2 somatotopic and 2 

random excitatory synapses from the MFs. The GR 

activity was a sparse representation of the input signal, so 

each simulation time sample corresponded to a different 

state of the granular layer.31 The IOs received the US as a 

low-frequency random spike pattern32, not depending on 

the dynamics of the network but associated to the US 

event. The IOs were connected one by one to PCs through 

the Climbing Fibers (CFs). Each PC received synapses 

from each GR with a probability of 80%, through Parallel 

Fibers (PFs), resulting in 345444 connections. Each DCN 



received excitatory inputs from all the MFs and 2 

inhibitory connections from 2 PCs. Single neurons were 

modeled as Leaky Integrate and Fire33, while the synapses 

were represented as input-driven conductances, with the 

same parameters used in previous studies.30,34–36 Within 

our model, the DCN-IO inhibitory loop37 did not 

correspond to a physical connection, but it was 

implemented as a mechanism that decreased the IO firing 

rate of the spike pattern representing US, if a CR was 

detected before the US onset. This way, such DCN-IO 

inhibitory loop translated the motor command into a 

sensory modulation, meaning that a single cerebellar area 

simultaneously tackled both motor execution and sensory 

prediction.38,39 CR detection was based on the evaluation 

of the output signal DCNoutput, related to the DCN 

population firing rate. The algorithm was updated 

compared to previous versions of the model18,20 in order to 

consider the same parameters reported in experimental 

studies. We evaluated both the timing and the shape of the 

output signal, in terms of its amplitude and slope; 

specifically, for each trial, a CR was identified at time tCR 

if all the following conditions were verified (Fig. 1B): 

 latmax ≤ t
CR

< ISI.          (1) 

Where latmax = {
200 ms,   for long ISI (e.g. 400 ms)

150 ms,   for short ISI (e.g. 250 ms)

This condition allowed excluding random responses at the 

beginning of each trial, which could not be related to the 

associative paradigm.40–42 

 At time tCR the output signal crossed the threshold

value, linearly depending on the baseline:

threshold = 2.5∙baseline + 45.  (2) 

Where the baseline was the mean output signal in the 

initial interval of each trial, before latmax. This way, we 

were able to consider only the CR resulting from an output 

activity significantly different from the baseline activity.43 

 The ratio parameter, which accounts for the output

signal’s slope, overcame a constant threshold:

ratio = 
DCNoutput (tCR)

mean(DCNoutput (t≤tCR))
 ≥ 3.    (3) 

Therefore, a CR was detected only in case of a rapid 

increase of DCN activity, before US onset.44 

Learning occurred thanks to synaptic plasticity, which 

was introduced in the three plasticity sites at both cortical 

and nuclear level. Cortical plasticity driving fast learning 

was modeled as LTP and LTD at PF-PC connections 

triggered by the IO teaching signal, which caused the 

decrease of synaptic strength 100 ms before the US-related 

IO activity. On the other hand, nuclear plasticity was 

modeled as LTP and LTD triggered by the PC activity for 

MF-DCN synapses, and as Spike-Timing Dependent 

homosynaptic Plasticity (STDP) for PC-DCN connections. 

These nuclear mechanisms were responsible for driving a 

slow consolidation of learned motor responses. 

For each one of the plasticity sites, synaptic strength 

variation was regulated by specific learning rules with 

Fig. 1. (A) Cerebellar model. The SNN includes 6480 neurons, 

with realistic population size and connection ratios. The input 

signals are conveyed through MFs and IOs, whereas the output 

motor command is provided by the DCNs. (B) Representation of 

the output during one single trial. The baseline and the 

corresponding threshold are represented as horizontal lines. CS 

and US onset and the CR are highlighted. The shadowed areas 

indicate the different time windows considered in the CR 

detection algorithm. 



 

parameters modulating the amount of LTP and LTD at 

cortical and nuclear sites.18 Tuning of learning rule 

parameters and initial weights of the plastic connections 

was obtained through a Genetic Algorithm45,46, which was 

based on the evaluation of EBCC simulations in order to 

achieve physiological behavior.47,48 Specifically, the 

protocol included two learning sessions so as to evaluate 

the proper physiological action of the different plasticity 

sites on multiple time scales.18 Referring to one of the 

pathological protocols23, each session consisted of 100 

acquisition and 30 extinction trials49, with ISI = 440 ms. 

After running the simulations for each one of the 12 

individuals in a generation, they were assigned a fitness 

value based on the %CR in a moving window of 10 trials. 

Specifically, the fitness evaluated the behavior during both 

the acquisition and the extinction phases: 

fitness = 
∑ pia∙pie

2
i=1

penalty
 .       (4) 

Where, i indicates the session, a = acquisition, e = 

extinction, p and penalty are functions defined as follows: 

p
ij
=

{

kj∙tij+δ,          if 0 < tij < thmin,ij      

p
max,j

,   if thmin,ij ≤ tij ≤ thmax,ij  

thmax,ij - (
tij - thmax,ij

∂j
)

3

∙ (thmax,ij - thmin,ij),

 if  tij > thmax,ij    

   (5) 

Where tij is the first trial when %CR reached a certain 

threshold during the phase 𝑗 (acquisition or extinction) of 

session i (1 or 2), the thresholds thmin,ij and thmax,ij were 

chosen to obtain acquisition and extinction in a 

physiological number of trials (Table 1), the constants kj, 

δ and ∂j were established to rescale the term pij, and the 

maximum value pmax,j was 1 for acquisition and 0.5 for 

extinction, in order to weigh the first phase more, since a 

lack of acquisition is a more severe non physiological 

behavior.  

The denominator of fitness was built so as to avoid 

saturation of %CR at 100%, which is unusual and would 

prevent further learning modulation: 

 penalty  = {
1,  if tot100% CR < 20 
1 - c∙tot100% CR,     if tot100% CR ≥ 20  

 (6) 

Where tot100%CR was the total number of trials with 100% 

of CRs and c was a normalization constant. 

The resulting maximum value for fitness was 1. 

Table 1. Minimum and maximum threshold trials for each phase 

(acquisition and extinction) of sessions 1 and 2. 

thmin,ij thmax,ij 

acq1 10 50 

ext1 105 120 

acq2 140 180 

ext2 235 250 

Based on the fitness values, the roulette wheel 

selection method was then applied and the obtained 

parents underwent one-point crossover and mixed 

mutation (to achieve elitism, exploration and exploitation 

of the search space). Specifically, the first four best 

individuals were kept in the following generation, other 

four ones were obtained through uniform mutation and the 

remaining ones through Gaussian mutation. As stop 

criteria, we chose a maximum total number of generations 

and a maximum number of generations without any 

significant improvement of the best individual’s fitness. 

After one of the stop criteria was met, the final parameters 

were chosen considering all the individuals that achieved 

the maximum fitness value (=1) and then computing the 

mean values of their genes. In fact, as the fitness function 

was not specific, there were multiple parameter 

combinations resulting in a physiological performance, 

and their mean values represented the best solution in an 

intermediate optimal region. To prove the robustness of the 

obtained parameters, we tested them on EBCC simulations 

with a shorter ISI of 250 ms. 

2.2 Protocol and Pathology impairments 

All tests were performed on the delay EBCC task (CS 

and US coterminate) after specific manipulations of the 

optimized physiological model, and the protocol 

parameters (stimuli durations, ISI, number of trials) were 

set to reproduce the same conditions as in the reference 

pathological studies. Then, for all the three pathology 

cases, we performed also simulations on a longer 

acquisition protocol, in order to make hypotheses on the 

evolution of behavior on a slow time scale. To evaluate the 

outcome of the model during both physiological and 

pathological situations, we computed the mean and SE 

(Standard Error) of the total number of CRs (#CR) 

produced along all the acquisition trials for different lesion 

amounts; moreover we evaluated the CRs incidence as the 

mean and SE of %CR on blocks of 10 trials, for the 

multiple pathological simulations with the same damage 



amount. Besides CRs generation, also the timing of the 

response is a fundamental parameter characterizing a 

proper learning.44 Therefore, we considered also the onset 

and peak latencies of CRs: onset latency was a negative 

value defined as the time interval, prior to US onset, when 

DCNoutput firstly overcame the baseline value, after 

latmax. Peak latency was defined as the time interval 

(negative value) between US onset and the CR-detection 

time, tCR. For all cases, the non-parametric Wilcoxon-

Mann-Whitney statistical test was performed to evaluate 

the response timing modifications between healthy and 

pathological outcomes. We then considered the low-level 

mechanisms, by analyzing the DCNoutput and the 

evolution of synaptic weights. Specifically, for the three 

plasticity sites we represented the histograms of the 

conductance values at the beginning and the end of the 

learning protocol. We also fitted the histograms with a 

normal distribution and compared the mean values of the 

final weights for healthy and pathological behaviors 

through the parameter ∆i: 

∆i = 
mean_path

i
 - mean_healthy

i

range
i

∙100,

 i = PFPC, MFDCN, PCDCN               (7) 

We considered non-significant an absolute value lower 

than 1%. 

Then, we also represented the firing patterns of PCs and 

DCNs, involved in the learning process. We computed the 

number of spikes in time bins of 10 ms during the whole 

duration of all the acquisition trials. 

2.2.1 Loss of Purkinje cells 

The first investigated case concerned a damage to a 

cerebellar neural population at cortical level, the PCs. 

Their role in motor adaptation has been proved crucial for 

learning, because they directly influence the DCN output 

through an inhibitory signal and their activity is controlled 

by cortical plasticity, which is the main fast learning 

mechanism. Therefore, PC loss produces severe damage 

on motor learning as demonstrated by studies on cerebellar 

cortical degeneration, with different extents of 

compromised PC volumes, which characterize some 

typical cerebellar pathologies.40,50,51 In this case, the delay 

EBCC paradigm is a common tool to evaluate motor 

impairment: a damage to PCs causes the DCNs to generate 

an inappropriate output, outside the physiological time 

window of associative responses, resulting in reduced 

conditioning and shorter latency of CRs. In particular, in 

Ref. 23 they used EBCC to evaluate motor learning 

impairment on 25 patients suffering from cerebellar 

cortical degeneration, with 20% of PC volume reduction. 

Each subject underwent 100 CS-US acquisition trials with 

ISI = 440 ms, followed by 30 CS-alone extinction trials.  

To simulate analogous conditions, we carried out 

EBCC simulations of the acquisition phase with the same 

protocol parameters, using a modified model that included 

a decreased number of PCs, ranging from 3 to 27 removed 

PCs, i.e. from 4% to 37% of the reference value in 

physiological conditions. For each amount of removed 

PCs, 36 tests were performed, with different templates of 

lost PCs (spatial patterns). We compared the model 

outcome with the results of the reference study and we 

predicted the modified underlying mechanisms through 

the analysis of the output activity and the synaptic weights. 

Moreover, we performed tests with 1000 acquisition trials 

to hypothesize the behavior on a longer time scale. 

2.2.2 Impaired cerebellar afferents 

This case concerned a study on a patient with damage 

to cerebellar input pathways, due to a cerebrovascular 

accident.24 In particular, the woman showed evidence of 

alterations at Pontine areas, which are the main afferents 

to the cerebellum. Because of this damage, when 

performing EBCC the patient was not able to acquire CRs. 

While control subjects reached 80% of CRs (computed on 

blocks of 10 trials), the woman maximum value was 20%, 

over a training session of 100 paired presentations of CS 

and US, with ISI = 400 ms; therefore, learning was 

compromised or at least severely delayed.   

To simulate the same situation in the cerebellar model, 

two solutions have been implemented: a reduction in the 

number of active MFs or a decrease in the MF firing rate 

during CS. The explored impairment level ranged from 5% 

to 50% of the reference value in physiological conditions 

and 36 tests were performed for each lesion amount, with 

different spatial patterns of MF damage. The protocol for 

in silico simulations of both physiological and 

pathological conditions was the same as in the reference 

case: CS = 500 ms, US = 100 ms co-terminating with CS, 

ISI = 400 ms, 10 blocks of 10 trials, with one CS-alone and 

9 CS-US repetitions. Then, the outcomes of both normal 

and altered models were compared, in terms of response 

generation, timing and low-level activity.  

In order to verify whether conditioning was totally 

compromised or only severely delayed as suggested in Ref. 

24, we run simulations with the same templates of 25% 

MF damage and 1000 total trials. Then we restored the 



 

damaged model and we run another simulation with the 

same protocol parameters and 1000 acquisition trials, to 

further shed light on the role of the cortical and nuclear 

pathways.52 

2.2.3 Impaired LTD at PF-PC synapses 

Finally, the third case involved a damage to intrinsic 

working mechanisms in the cerebellum, instead of neural 

population or signal impairment as in the first and second 

cases. Cortical plasticity (at PF-PC synapses) has been 

recognized to have an essential role in motor learning in 

the cerebellum.53–55 The reference study analysed 

adaptation during an EBCC task in mice reporting 

damaged LTD at PF-PC synapses.25 In particular, LTD 

impairment at this plasticity site resulted from the mutation 

of the gene encoding Myosin Va, which is also the cause 

of neurological diseases like Griscelli syndrome type1 and 

Elejalde syndrome in humans. In our cerebellar network, 

the same alteration was reproduced by decreasing the 

parameter 𝐿𝑇𝐷1 that regulated LTD at the PF-PC plasticity 

site. Different amounts of damage have been tested, from 

10% to 80% of the reference value in physiological 

conditions. The protocol consisted of one acquisition 

session including 10 blocks of 10 trials, with 9 CS-US and 

one CS alone repetitions, CS = 350 ms and US = 100 ms 

with ISI = 250 ms. We analyzed alterations in adaptation 

and timing of responses and the modified underlying 

mechanisms. As for previous cases, we evaluated the 

performance on a longer acquisition of 1000 trials, in order 

to verify whether in case of a severe damage to cortical 

LTD, learning was only delayed or completely 

compromised. 

3. RESULTS

3.1. Cerebellar model and optimization 

After 100 generations without improvement of the 

maximum fitness, the optimal parameters were obtained as 

the mean value of the genes of all the 1-fitness individuals 

(Table 2). The resulting model achieved an appropriate 

physiological performance during both acquisition and 

extinction of the two sessions and an acceptable number of 

trials with 100% CRs, resulting in a fitness value of 1. The 

distribution of genes throughout the whole evolution 

process demonstrated the robustness of the algorithm in 

exploring the whole search space, while exploiting the best 

regions (Fig. 2). Multiple good solutions were found, so 

the final genes were chosen in an intermediate region 

among near-optimal areas, which mostly corresponded to 

the convergence regions of the best values for each gene.  

To verify the proper behavior of the model with the 

final parameters, we computed the %CR on a moving 

window of 10 trials. The obtained fitness value was 1, as 

acquisition and extinction were achieved within a 

physiological number of trials; moreover cortical plasticity 

was responsible for fast learning and nuclear plasticity 

acted on a slower time scale, matching recent 

neurophysiological hypotheses56, and thus demonstrating 

the proper functioning of the model. The same results were 

obtained through the EBCC simulations with a shorter ISI, 

proving the robustness of the final parameters. 

3.2. Loss of Purkinje cells 

The results of PC loss simulations were compared to 

the reference outcome of experiments on ataxic patients 

with cerebellar cortical degeneration, suffering a decrease 

of cerebellar cortical volume of about 20%.23 We showed 

that for a small lesion (up to 9 removed PCs, i.e. 12% of 

all PCs), conditioning occurred as in healthy model (about 

80 #CR) and the whole network was able to compensate 

for the damage (Fig. 3A). When the lesion was more 

extensive, learning was proportionally compromised, 

rapidly reaching null %CR. In particular, when removing 

15 PCs (i.e. 20% of all PCs), the mean number of total CRs 

all over the acquisition sequence was 9, which properly 

matches the corresponding value in the reference study. 

For this case, we compared the %CR during acquisition to 

the physiological and the intermediate case with a 16% 

lesion (Fig. 3B). We showed that the model with 20% PCs 

removed was able to reproduce the same impaired 

behavior as in patients: no conditioning occurred and about 

10% of CRs was produced starting from the 3rd block. 

Along acquisition trials, there was not any improvement of 

%CR, resulting in a final value in the 10th block not 

significantly different from the values in the initial blocks. 

Also the timing of simulated responses in case of 20% PC 

lesion reproduced the alterations in patients: CRs started 

sooner after the CS onset, resulting in a shortened onset 

and peak latency (higher absolute values), if compared to 

normal simulated conditions (Fig. 3C). Specifically, the 

Wilcoxon-Mann-Whitney test showed differences 

between healthy and pathological latencies with p < 0.01. 

We analyzed the low-level activity of the network to infer 

the neural alterations leading to the observed impaired 

behavior.  



Table 2. Genes of the final chosen individual, resulting from the mean of all the 1-fitness individuals. 

LTP1 LTD1 LTP2 LTD2 LTP3 LTD3 PF-PC0 MF-DCN0 PC-DCN0 

2.09e-2 -4.97e-1 4.44e-7 -3.78e-8 3.65e-7 -3.01e-8 1.46 2.96e-2 3.71e-1 

 First, we showed that in case of PC loss, the DCNoutput 

of the model was altered in terms of amplitude and shape 

(Fig. 3D). In fact, as demonstrated by experimental data on 

animals32, a damage to PCs causes an improper inhibition 

on DCNs, which are allowed to fire independently from 

the IO signal. Therefore, the resulting response during an 

associative paradigm is not time-locked and learning is 

compromised. Our model accurately reproduced this 

Fig. 2. Distribution of genes along generations. Red dots highlight the values of the 1-fitness genes. At the end of 

evolution, the green diamonds represent the final optimized parameters for the model. 



misbehavior: PC loss resulted in an extended lack of 

inhibition on DCNs all over the trial; the baseline activity 

of DCNs increased and the peak in the CR window was 

not significant to generate a CR (Fig 3D). This low-level 

damage caused the missed conditioning and the alterations 

of CRs onset and peak latencies that were previously 

described. We then analyzed the evolution of synaptic 

weights to shed light on the modifications of neural 

plasticity. For both healthy and pathological simulations, 

we represented the histograms of weights in the three 

plasticity sites at the beginning and the end of acquisition 

(Fig. 3E). We showed that the learning mechanism at 

cortical level was not impaired since the weights reached 

the same minimum and maximum values   as in healthy 

conditioning. On the other hand, nuclear plasticity 

proceeded to compensate for the damage: a portion of the 

MF-DCN weights reached higher values in the 

pathological case, whereas a part of the PC-DCN 

conductances decreased to lower values than in 

physiological simulations. They corresponded to the 

Fig. 3. PC loss. (A) Number of CRs with different amounts of lesion. (B) %CR in case of intermediate and severe damage compared 

to healthy behavior. (C) Onset and peak latency in case of severe damage, compared to healthy conditions. (D) Cerebellar output 

throughout the protocol; green lines highlight the trials with CR. (E) Histograms (gray bars for the initial weights; black bars for 

pathological and white bars for healthy conditions at the end of simulations) of weights for the 3 plasticity sites. Red and green curves 

are the normal distributions corresponding to the histograms and ** indicates a difference higher than 1% of the full range between 

pathological and physiological weights. 



DCNs supposed to generate the CRs and they contributed 

to increase the output only in the CR time window.  

In the long acquisition simulations with 1000 trials, 

also the pathological model with 20% PC loss succeeded 

in reaching a higher value of %CR, even if the global 

performance was poorer and slower than in physiological 

conditions (Fig. 4A). The evolution of nuclear weights 

partially compensated for the cortical damage (Fig. 4C), 

exciting the DCNs in the CR window so as to reach the 

threshold value, despite the higher baseline (Fig. 4B).  

3.3. Impaired cerebellar afferents 

The simulated damage to cerebellar afferents produced 

a similar behavior both with decreased number of active 

MFs and with reduced MF firing rate.  

The input impairment strongly compromised learning: 

the mean number of generated CRs dropped below 40 

along the 100 acquisition trials from 10% of MF lesion 

onwards (Fig. 5A). The reference experimental study 

showed that a damage to Pontine areas caused a decrease 

of total CR number to 6 within 100 acquisition trials. 

Starting from this behavioral observation without any 

quantitative reference about the amount of the damaged 

area, we used our model to associate a damage extent to 

the misbehavior; it came out that about 25% of impaired 

MFs account for the misbehavior, by modeling the 

impairment both as MF removal and as decreased 

frequency. Given the similarity of the results, we focused 

on the model embedding the decreased MF frequency; 

then, we deepened also the time evolution of %CR along 

the whole session with 25% damage, comparing it with 

physiological and an intermediate mild damage (Fig. 5B): 

no conditioning occurred and there was no improvement 

of the %CR in late acquisition, similarly to the 

experimental results on the patient. We computed the onset 

and peak latency for both physiological and pathological 

simulated data (Fig. 5C), showing that they were 

significantly different between the two groups (Wilcoxon-

Mann-Whitney test, with p < 0.01). 

Fig. 4. Long acquisition with 20% PC loss. (A) %CR on blocks of 10 trials for healthy and pathological conditions. (B) Cerebellar 

output for the healthy (on the left) and the pathological (on the right) model, during the long acquisition protocol; green lines highlight 

the trials with CR. (C) Histograms (gray bars for the initial weights; black bars for pathological and white bars for healthy conditions 

at the end of simulations) of weights for the 3 plasticity sites. Red and green curves are the normal distributions corresponding to the 

histograms and ** indicates a difference higher than 1% of the full range between pathological and physiological weights. 



We supposed that the low-level explanation for the 

altered behavior is that an impaired input on MFs result in 

a lower excitation on DCNs and a bad encoding in the 

Granular Layer, which also causes impaired activity of 

PCs. Indeed, in our simulations the DCNoutput was mainly 

absent (Fig. 5D), because the DCNs received low 

excitation from MFs and inaccurate inhibition from PCs. 

The analysis of synaptic weights (Fig. 5E) 

demonstrated that learning in the cortex occurred similarly 

to physiological conditions: some final weights reached 

zero and others maximum value, but most of weights 

remained at their initial value, because the corresponding 

PF-PC synapses were not recruited for learning. On the 

other hand, in the nuclear sites, PC-DCN weights 

decreased less in the pathological case if compared to the 

physiological case; effectively, the proper functioning of 

this plasticity site requires synchronized spikes of PCs and 

DCNs, but a damage to MFs caused decreased activity of 

Fig. 5. MF damage. (A) Number of CRs with different amounts of lesion. (B) %CR in case of intermediate and severe damage 

compared to healthy behavior. (C) Onset and peak latency in case of severe damage, compared to healthy conditions. (D) Cerebellar 

output throughout the protocol; green lines highlight the trials with CR. (E) Histograms (gray bars for the initial weights; black bars 

for pathological and white bars for healthy conditions) of weights for the 3 plasticity sites. Red and green curves are the normal 

distributions corresponding to the histograms and ** indicates a difference higher than 1% of the full range between pathological and 

physiological weights. 



both these neural populations. However MF-DCN 

plasticity allowed to partially obviate the severe damage 

and to produce some CRs in late acquisition: in fact, the 

MF-DCN weights were higher than in the healthy case, 

contributing to increase excitation from MFs on DCNs in 

the CR window, in order to produce the proper output. 

A slight increase of %CR in the last block of 

acquisition with 25% MF damage (Fig. 5B) and the trend 

of the DCNoutput in late acquisition (Fig. 5D) could 

suggest that learning was not completely compromised but 

only severely delayed, as hypothesized in the reference 

study. Along 1000 trials, a slow partial conditioning 

occurred, with a %CR increase up to 40% (Fig. 6A). The 

DCNoutput started to increase in the CR window on a 

longer time scale and the result was a stable CR generation 

in late trials (Fig. 6B). The analysis of weights 

demonstrated that in the cortical plasticity site a longer 

acquisition did not suffice to recruit the same amount of 

PF-PC synapses as in healthy conditions. However, in the 

nuclear sites a long training caused a significant increase 

of the MF-DCN weights that was crucial for the generation 

of CRs and a decrease of PC-DCN weights up to a 

configuration more similar to the healthy case (Fig. 6C). 

After this long acquisition phase, the simulations with 

restored MF damage showed that learning was rapidly 

recovered if MFs were reactivated as in normal conditions: 

%CR reached the same level as in the healthy case, for the 

whole 1000-trial protocol (Fig. 7). This result supported 

the hypothesis that learning capabilities are generated and 

stored in both the cortical and nuclear pathways. In fact a 

damage to MFs affected the Granular layer and 

consequently the cerebellar cortex, but plasticity at MF-

DCN synapses allowed to store information about 

Fig. 6. Long acquisition in case of 25% MF damage. (A) %CR on 100 blocks of 10 trials for healthy and pathological conditions. (B)  

Cerebellar output for the healthy (on the left) and the pathological (on the right) model, during the long acquisition protocol; green 

lines highlight the trials with CR. (C) Histograms of weights at the beginning and end of the long acquisition with 25% MF damage. 

Red and green curves are the normal distributions corresponding to the histograms and ** indicates a difference higher than 1% of 

the full range between pathological and physiological weights. 

Fig. 7. %CR on 100 blocks of 10 trials, with restored MF 

physiological activity, after the long acquisition phase with 

impaired MFs. 



conditioning on a slow time scale. Therefore, reactivating 

the normal MF activity after the long acquisition session, 

learning occurred as in healthy conditions. 

3.4. Impaired LTD at PF-PC synapses 

The simulations of EBCC with impaired LTD at PF-

PC connections were inspired by the experimental data 

from Ref. 25.  

First, we focused on the single session of 100 

acquisition trials and we analyzed the effects of impaired 

cortical LTD. The evolution of #CR as the LTD1 parameter 

decreased showed that the cerebellum could recover even 

a high LTD damage, with at least 30 total CRs for LTD1 

reduction up to 50% (Fig. 8A). Moreover, the evaluation 

of %CR on blocks of 10 trials demonstrated that LTD 

impairment did not completely compromise learning, but 

delayed it; for example for an LTD decrease of 50%, 

Fig. 8. LTD damage. (A) Number of CRs with different amounts of lesion. (B) %CR in case of intermediate and severe damage 

compared to healthy behavior. (C) Onset and peak latency in case of severe damage, compared to healthy conditions. (D) Cerebellar 

output throughout the protocol; green lines highlight the trials with CR. (E) Histograms (gray bars for the initial weights; black bars 

for pathological and white bars for healthy conditions) of weights for the 3 plasticity sites. The red circle in panel E indicates that there 

are 5% of the normal LTD weights less in the pathological case. 



healthy values of 80% of CRs were achieved in the late 

acquisition blocks (Fig. 8B). However, when the LTD1 

lesion overcame a damage of 70% (Fig. 8B) learning was 

completely switched off, reproducing the same behavior 

obtained on dilute-neurological mutant mice during 

multiple acquisition sessions. The reduced cortical LTD 

did not alter the shape of the output (Fig. 8D). 

Consequently, the timing of CRs was the same as in 

physiological conditions (Fig. 8C), as demonstrated also 

by experimental data25: for both onset and peak latencies, 

the Wilcoxon-Mann-Whitney test proved that healthy and 

pathological values were comparable, with p=0.98 and 

p=0.20, respectively. 

The compromised learning was due only to a slight 

modification of PF-PC conductances, which were less 

inhibited than in the healthy case with 5% less weights 

undergoing LTD in the pathological simulation (Fig. 8E). 

The damage to LTD1 also affected the velocity of learning, 

decreasing the overall DCN activity throughout the 

acquisition and therefore affected plasticity at PC-DCN 

connections, which was modeled as STDP triggered by PC 

and DCN spikes. On the other hand, in the MF-DCN 

synapses there were not any significant differences 

between healthy and pathological situations. 

On a longer time scale, learning was partially restored 

(Fig. 9A and 9B), even though %CR did not reach the same 

level as in the normal case and conditioning was more 

unstable, because the DCNoutput did not have an altered 

shape, but it did not always verify all the requirements to 

generate a CR. The evolution of %CR agreed with the 

results obtained during the multi-session protocol in the 

reference study.25 The analysis of weights showed that for 

all the plasticity sites, the pathological values moved in the 

same direction as normal values, but the initial differences 

highlighted in the first session affected even the long 

protocol (Fig. 9C).  

3.5. Predictions on the changes in neuronal and 

synaptic activity 

By comparing results in the three cases, it was possible 

to identify the peculiarities of each pathological condition. 

During the short acquisition protocol, we obtained a 

strongly compromised learning, with a decrease of total 

CRs to less than 12% of the value in healthy conditions. 

However, the CR timing was differently modified, 

suggesting different alterations of the underlying neural 

and synaptic activity. In particular, the values of ∆i for the 

Fig. 9. Long acquisition in case of 70% LTD1 damage. (A) %CR on 100 blocks of 10 trials. (B) Cerebellar output throughout the 

protocol, for both healthy and impaired conditions; green lines highlight the trials with CR. (C) Histograms (gray bars for the initial 

weights; black bars for pathological and white bars for healthy conditions) of weights for the 3 plasticity sites. 



three plasticity sites showed how the damages differently 

impacted on cortical and nuclear learning mechanisms 

(Table 3). 

The representation of firing patterns for PCs and DCNs 

clearly disclosed the specific features of each case (Fig. 

10). During PC loss, the overall activity of PCs was 

decreased resulting in a lack of inhibition on DCNs, which 

were allowed to fire through the whole trial duration; 

thanks to synaptic plasticity, DCN spiking frequency 

increased in the CR window as acquisition proceeded, but 

it was not sufficient to differentiate from the high activity 

at baseline. MF damage resulted in a decreased activity of 

both PCs and DCNs, without any time-locked variation of 

frequency; only at late stages of acquisition, DCNs fired in 

the CR window, as a result of nuclear weight changes. 

Finally, after cortical LTD reduction, the learning 

mechanisms were not severely modified as in the previous 

case, but they were markedly delayed; PC and DCN 

Fig. 10. Firing patterns of PCs (top) and DCNs (bottom) in healthy and pathological conditions: from left to right, healthy, PC loss, 

MF damage, LTD reduction. For each acquisition trial (vertical dimension), the panels report the number of spikes in time-bins of 10 

ms, from tb (starting of the baseline window) to tend (end of the trial). 



activity evolved as in the healthy case, but the neural 

activity modifications started later (trials 20-30) than in 

healthy conditions (in which  the effects of the learning 

process appeared after trials 5-10). 

Table 3. Summary of pathological simulations outcome. For 

each type of impairment, we reported the mean #CR and the % 

of the healthy value (first column), the onset latency as the % of 

the healthy latency (second column), the parameter ∆i for each 

plasticity site (last three columns). 

#CR Latency ∆PFPC ∆MFDCN ∆PCDCN 

PC loss 9 CRs 

(11.7%) 

199% = 4% -3%

MF damage 3 CRs 

(3.4%) 

84% -7% 9% 18% 

LTD reduction 1 CR 

(1.3%) 

= = = = 

4. DISCUSSION

The aim of this work was to demonstrate that

computational models of neural circuits (and biological 

systems in general) can be a powerful tool not only for 

testing hypotheses from physiological studies on low-level 

mechanisms, but also to achieve a deeper insight into 

pathological conditions. We engaged a realistic cerebellar 

SNN into the feed-back and feed-forward loops of an 

entire sensori-motor system operating in closed-loop to 

associate specific cerebellar microcircuit mechanisms to 

altered behavioral outcomes. Indeed, the model tunability 

empowered it with the important property of directly 

testing hypotheses that associate neuron-scale to 

behavioral-scale features. This approach demonstrated a 

high potential not just to investigate the physiological 

mechanisms of cerebellar control but also to address the 

mechanisms of various pathological conditions, providing 

a new powerful tool to understand and act on cerebellar 

disorders.21 The simulated behaviors were consistent with 

experimental observations and, thanks to the realism of the 

model, it was possible to formulate hypotheses on the low-

level mechanisms underlying pathologies and to explore 

relationships between local lesions and altered behavior. 

Eventually, the model allowed to quantify low-level 

parameters and to bind them to the process of plasticity, 

learning, timing and prediction that characterizes high-

level cerebellar control. 

4.1. Specific adaptations differ depending on the 

underlying network alterations 

The closed-loop simulations reproduced an eye-blink 

classical conditioning paradigm, in which the number and 

timing of conditioned responses (CRs) was measured. A 

comparison of the effect of different pathological changes 

revealed that, in all cases, CR incidence was strongly 

reduced compared to healthy conditions (Table 3). 

Moreover, in all cases, the slow acquisition rate typical of 

DCN plasticity emerged during the long acquisition 

protocol. These results were in line with the hypothesis 

that the cerebellar cortex plays a critical role in fast 

acquisition of plasticity that is later transferred to 

DCNs.48,57,58 In the absence of an effective cerebellar 

cortex, learning of sensory-motor associations can just 

proceed at a slow rate and is incomplete. In addition to this 

common set of changes, adaptation to circuit damage 

showed characteristic differences among cases: PC loss 

caused a strong CR delay, MF impairment caused diffused 

plasticity alterations, LTD decrease caused only minor 

abnormalities in CR delay and synaptic plasticity.  

The differences among these three cases emerged in 

the firing patterns of PCs and DCNs. Following a PC loss, 

the basal firing rate of PCs showed a remarkable decrease 

releasing inappropriate DCN spikes; the CR-related 

silencing of PCs was very pronounced and triggered an 

exaggerated DCN time-locked response.  Following a MF 

damage, both PC and DCN activity was severely 

compromised, so that DCN spikes showed some time-

locked spikes only very late during CR acquisition. 

Following a PF-PC LTD impairment, PC spike 

suppression was delayed and incomplete, bearing about a 

late and anomalous increase in DCN activity time-locked 

to CRs. There are therefore discernible and typical patterns 

for each kind of lesion, which are further considered in 

detail below.  

4.2. Loss of Purkinje Cells 

Following PC reduction, the model accurately 

reproduced the EBCC alterations measured in patients 

suffering from different types of cerebellar ataxias.23 A PC 

loss also characterizes other brain diseases resulting in 

compromised motor learning. For example, an age-related 

decrease in the PC number is reported in Alzheimer’s 

disease patients, who also show altered CR generation and 

timing during EBCC.40 A PC loss is observed in children 

with prenatal alcohol exposure, who also show EBCC 



 

alterations.59 A PC loss associated with motor impairment 

has been documented in Autism Spectrum Disorders.60 

Therefore, the results obtained here may also be extended 

to these pathological cases.    

Animal experiments have revealed that PC loss is often 

associated with alterations in other parts of the cerebellar 

network.  In mutant mice with genetically-induced PC 

loss61, there is also a decrease in GRs. In mice, prenatal 

alcohol exposure causes a PC loss and damages to GRs and 

PF-PC synapses.62 Although these associated 

abnormalities may concur to alter the EBCC pattern, the 

PC is the final common pathway channeling information 

to DCN, so that reducing the PCs is equivalent to 

weakening the whole cortical output to DCNs. Indeed, 

pharmacological blockage of PCs in rabbits caused a 

higher uniform DCN activity during EBCC, due to the lack 

of inhibition from the cortex32,63, which perfectly agrees 

with the alterations of neural activity in our model. 

Interestingly, in our simulations the lack of time-locked 

inhibition of PC on DCN cells was the cause for the 

modifications in CR timing and rate.   

These results confirmed the role of the cerebellar 

cortex in driving learning on a fast time scale during 

associative tasks, as predicted by neurophysiological 

studies.64 The role of the nuclear pathway in partially 

compensating for the damage could suggest a key to 

neurorehabilitation22: as the increase of MF-DCN synaptic 

weights contributed to compensate for the impaired output 

in our model, an enhanced sensory input to MFs could be 

used to improve patients recovery.  

4.3. Impaired cerebellar afferents 

There are several forms of ataxia involving structural 

alterations of the mossy fiber pathways.65,66 In the case of 

MF damage, the model was able to reproduce the %CR 

evolution reported in a reference study on a single 

cerebellar patient.24 Consistently, the model predicted that, 

even after a prolonged training (1000 pairings), 

conditioning was strongly delayed and weaker than 

normal. The predicted mechanism was a weaker DCN 

excitation by MFs and an inaccurate DCN inhibition by 

PCs. The damage to the cerebellar afferents affected also 

the Granular Layer, resulting in poor encoding of input 

signals and reduced plasticity generation. However, the 

increased action of nuclear plasticity allowed to partially 

recover the damage and to produce some CRs, though 

slowly and partially. Although no other EBCC studies are 

available on patients with impaired cerebellar afferents, we 

could extend our results to pathologies implying a GR 

lesion. For example, altered associative learning has been 

observed in Schizophrenia patients and abnormal activity 

in the cerebellar Granular layer has been suggested among 

the causes.67 Animal experiments also demonstrated the 

role of a proper input encoding to achieve motor learning: 

in Ref. 68, they showed that an extensive inactivation of 

cerebellar GRs prevented from acquisition and 

consolidation of the Vestibulo-Ocular Reflex (VOR) in 

mice. They also hypothesized that other plasticity 

mechanisms could compensate for altered cortical 

plasticity in case of GR lesion. In particular, a study on 

EBCC in mice suggested nuclear plasticity as the main 

compensatory mechanisms when transmission from GRs 

to PCs was blocked52, as observed here.  

Our work thus supported the hypothesis that nuclear 

plasticity at MF-DCN connections was responsible for the 

acquisition of CRs on a long time scale. However, 

conditioning still remained compromised because the 

lesions to MFs affected altogether the cortical and nuclear 

pathways, which are both fundamental for learning. 

Immediately after restoring the normal MF activity, 

conditioning occurred as in normal conditions. Thus, our 

work allowed to identify a redistribution of synaptic 

plasticity at nuclear sites, suggesting that distributed 

plastic modifications are fundamental to compensate for 

damages during pathology.18,27,56 

4.4. Impaired LTD at PF-PC synapses 

Further insight into the impact of synaptic plasticity in 

cerebellar pathology was achieved by simulating a damage 

in cortical LTD. In such condition, the model was able to 

reproduce impaired associative learning in mice.25 CR 

acquisition was delayed and reduced to a degree depending 

on the amount of LTD reduction. However, even in case 

of severe damage, CR acquisition could be at least partially 

restored over a prolonged acquisition session. Through the 

representation of synaptic weights we showed that a 

damage to cortical LTD not only delayed or compromised 

learning, but also altered nuclear plasticity at PC-DCN 

synapses. Interestingly, dynamic aspects contributed to 

compromise nuclear plasticity: plasticity at PC-DCN 

connections was modeled as STDP, so that a damage to 

cortical LTD, by delaying PC inhibition, blocked the 

activity of DCNs required for physiological learning to 

take place. 

Thus, our model supported the neurophysiological 

hypothesis on the fundamental role of cortical LTD in 



driving learning69, based on the observations that reduced 

PF-PC synaptic transmission and LTD in genetically 

modified mice resulted in impaired EBCC. Similar 

conclusions were achieved in previous experiments70,71, 

although other studies questioned the crucial role of 

cerebellar cortical LTD in motor learning.72 It should be 

noted that the absence of major changes in %CR and 

plasticity redistribution when LTD is decreased can 

explain why, in mutant mice, disruption of LTD can lead 

to inconsistent behavioral changes.56,72,73 Moreover the 

analysis of neural activity in the model showed that in case 

of CR, the shape of the output was not modified, thus 

resulting in the unchanged response timing that matches 

the experimental findings.  

The implications of these modeling results could be 

extended to other cerebellar pathologies. Indeed, altered 

LTD (either reduced or enhanced) is associated to specific 

pathologies, as Autism Spectrum Disorders (ASD)74 and 

the Fragile X Syndrome.75 In particular, the human 15q11-

13 duplication, which is typical of ASD, has been studied 

through a mouse model, showing that the genetic alteration 

results in reduced cerebellar LTD and altered pruning at 

CF-PC synapses. Therefore, a more specific computational 

model of this pathology should include both modifications. 

In our simulations of cerebellar plasticity damage, 

cortical LTD was decreased resulting in reduced CR 

acquisition without changing CR timing and shape. This 

case matches the human Griscelli syndrome type I and 

Elejalde syndrome25,76, which are characterized by the 

same Myosin Va mutation that caused LTD damage in the 

reference animal study.25 

Nevertheless, it should also be noted that we were not 

able to reproduce the exact experimental protocol during 

the first 100 trials. This was probably due to the fact that 

our model was optimized against human data, resulting in 

a faster conditioning than in mice. This difference suggests 

that care is needed in comparing animal to human 

experiments.77 

4.5. Advances and limitations of the present study 

Besides the implications for neuropathology, the 

present work also contributes to validate and update 

current cerebellar models; in addition to be able to 

reproduce a variety of physiological behaviors during 

multiple cerebellum-driven tasks17,26, these same models 

turn out now to be able to reproduce pathological states. 

Actually, closed-loop modeling allowed to simulate 

dysfunctional behaviors in neuropathological experiments 

by introducing controlled neural alterations inspired by 

clinical data.  

As a limitation of our study, we imposed a localized 

damage to the model in order to reproduce prototypical 

pathological conditions and allow the circuit to activate 

compensatory effects. This is unusual in real pathological 

cases, in which the lesion is often distributed over multiple 

systems, neural populations and cellular mechanisms. 

However, the possibility to unequivocally isolate the 

damage is crucial to identify the causes of diseases and the 

causality of the underlying mechanisms, especially 

because it cannot easily be achieved in human or animal 

experiments.  

Future work will have to consider more complex 

paradigms like VOR, and to use more realistic cerebellar 

and system models, including extracerebellar 

connections.78  In particular, within the cerebellar model 

we will  incorporate new neuronal properties like DCN 

pacemaking, chaotic and stochastic resonance in IOs79,80, 

and regulatory circuits like the interneuron inhibitory 

networks of granular and molecular layer. This would 

allow a careful analysis of spike patterns in the neuronal 

populations of the model, providing further hints of the 

inner structure of network computation and of its 

alterations in pathology.81,82 Moreover, the introduction of 

other plasticity sites would be necessary to better 

understand the role of synaptic plasticity in compensating 

for a pathological condition. For example, plasticity at 

MF-GR connections has been demonstrated by 

neurophysiological studies56 and its role could be clarified 

through the use of a computational model, also in case of 

cerebellar damages. Plasticity between IOs and DCNs has 

been predicted to accelerate learning toward biological 

levels.83 

It will also be useful to extend modeling to other 

mechanisms typical of cerebellar diseases: irregular firing 

patterns of PCs have been recognized in animal models of 

dystonia84, and oscillations in the Inferior Olive have been 

demonstrated in case of Essential Tremor.85 This more 

complex role of IOs will make it necessary to introduce 

dynamic properties in the IO circuit (e.g. oscillation and 

resonance)86,87, which have been shown in 

neurophysiological studies.88 

4.6. Conclusions and perspectives 

These closed-loop simulations reproduced several 

aspects of cerebellar pathologies revealed in human and 

animal experiments, allowing to predict how the 



 

underlying neural mechanisms operate in normal 

conditions and during compensation to network damage. 

The current method may help developing new tools for 

medicine, by exploiting the bidirectional correspondence 

between computational and experimental worlds in order 

to verify new pathogenetic hypotheses and define 

appropriate corrective strategies. The specific patient’s 

cerebellar microcircuit, inserted into control loops 

designed ad-hoc to perform behavioral tasks within a real 

environment, could provide a new tool to model 

experimental data, to associate and decompose the 

corresponding underlying mechanisms and to hypothesize 

modifications induced by neural perturbations or 

dysfunctions. As a result, it may be envisaged that a new 

knowledge will be gained on the adaptation mechanisms 

occurring during brain diseases, which still remain largely 

unknown. This would allow to move from the static 

“lesion-symptom” view of diseases, still widely adopted, 

toward a more sophisticated understanding of the internal 

circuit dynamics determined by circuit adaptations based 

on recurrent circuit loops and neural plasticity. The present 

approach is non-invasive and can help distinguishing 

among the overwhelming number of possible 

configurations that the neural system can assume during 

repair following a lesion. Model simulations could help 

containing animal experimentation (3Rs principle: 

Replacement, Reduction and Refinement89), which would 

then be needed to test selected hypotheses rather than 

explore an immense field of possibilities. This approach 

may eventually lead to design new diagnostic and 

therapeutic tools addressing the concepts of personalized 

medicine in neurorehabilitation.90–95  
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