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Many real-world problems require modeling and forecasting of time series, such as weather temperature,
electricity demand, stock prices and foreign exchange rates. Often, the tasks involve predicting over a
long-term period, e.g. several weeks or months. Most existing time series models are inheritably for
one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is
difficult and challenging due to the lack of information and uncertainty or error accumulation. The
main existing approaches, iterative and independent, either use one-step model recursively or treat the
multi-step task as an independent model. They generally perform poorly in practical applications. In
this paper, as an extension of the self-organizing mixture autoregressive model, the varied length mixture
(VLM) models, is proposed to model and forecast time series over multi-steps. The key idea is to preserve
the dependencies between the time points within the prediction horizon. Training data are segmented
to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a
self-organizing fashion on these segments to capture these dependencies in its component autoregressive
models of various predicting horizons. The VLM models form a probabilistic mixture of these varied
length models. A combination of short and long VLM models and an ensemble of them are proposed
to further enhance the prediction performance. The effectiveness of the proposed methods and their
marked improvements over the existing methods are demonstrated through a number of experiments
on synthetic data, real-world foreign exchange rates and weather temperatures.

Keywords: Time series forecasting; long-term prediction; probabilistic mixture model; regressive models;
self-organizing networks.

1. Introduction

Time series are sequences of data points associated

with time and are often analyzed for their statisti-

cal meaningfulness and predictive traits. Time series

models and methods are commonly used for predict-

ing or forecasting the future value on the basis of

observed data trends, but their practical applications

extend to many fields of studies, including communi-

cations, signal processing, economics, finance and so-

cial media. In recent years, especially in the era of Big

Data, growing interests have been witnessed in time

series analysis for extracting meaningful temporal in-

formation or patterns in data.1 Tasks can be divided

into clustering, classification and forecasting. Among

them, time series forecasting, constructing a model

to predict future values based on previous observa-

tions, is the most demanding and challenging one.

Many models and methods have been proposed, in-

cluding autoregressive models, heteroskedastic mod-

els, neural networks and learning methods.2

Once a time series model is established, through

either regression or learning of the current point

over previous points, the model can then be used for

predicting one step ahead. In practical applications,

multi-step prediction is often more desirable. How-
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ever, predictions over multi-steps are more difficult

and challenging to obtain due to lack of measure-

ments within the prediction horizon.3,4 The existing

approaches to multi-step forecasting can be mainly

divided into two categories: iterative and indepen-

dent.3 For an iterative method, prediction result of

the one-step forecast is used as the input for fore-

casting two-step ahead with the same model, and so

on, up to the prediction horizon. Inevitably the er-

rors of every prediction are accumulated along the

time steps. Due to this disadvantage, iterative meth-

ods are not often preferred in multi-step prediction.

For the independent approach, an individual model

is built for each forecasting horizon. Although it

does not have the problem of accumulating errors,

computational complexity of this approach is much

greater due to the need to build separate models for

each horizon and that dependencies among the time

points along the prediction horizon are not extracted

and kept.

In the past, time series forecasting has been pri-

marily performed with regressive models such as au-

toregressive (AR) and autoregressive moving aver-

age (ARMA).5 Both the AR and ARMA models are

built on the assumption of linearity and stationar-

ity, which limit their applications. Although, many

extended models exist such as the autoregressive

integrated moving average (ARIMA) and the gen-

eralized autoregressive conditional heteroskedastic-

ity (GARCH) (see2), their applications in multi-step

prediction are rare due to the aforementioned error

accumulation problem. Recently more and more at-

tention has been shifted to neural networks6,7 and

learning methods as general modeling and forecast-

ing tools, such as support vector machine (SVM)4,8, 9

and feed-forward and recurrent neural networks,10

due to their versatile, nonlinear, adaptive and data-

driven nature and capability of modeling complex re-

lations. As a nonlinear model, SVM extracts a group

of support vectors to represent characteristics of the

data. It constructs a hyperplane by which the largest

distances are achieved between the nearest data

points of different classes. SVM has been widely used

in classification and has also been applied to time se-

ries regression, which is regarded as a curve fitting

problem. Good performances have been achieved.8

To further improve the generalization performance

and computation speed, a twin SVM (TSVM) has

been proposed by employing two nonparallel planes

(two related SVM-type problems).11 SVM and its ex-

tensions generally have high computational complex-

ity and difficulties in choosing right kernel functions.

The existing neural networks that have been

widely used for forecasting time series12 include mul-

tilayer perceptron (MLP),13–16 recurrent neural net-

work (RNN),17–22 and self-organizing map (SOM).23

MLP is one of the widely used feed-forward neu-

ral networks, consisting of multiple layers of nodes

with nonlinear activation functions. It is commonly

trained with the back-propagation algorithm,14 in

which the error signals are back-propagated through

the network, for training the network weights. MLP

can be used for approximating smooth and measur-

able functions,14 as an alternative to traditional tech-

niques.16 When used for time series modeling, a seg-

ment of consecutive (delayed) time points is used as

the input. MLP typically has local minima and over-

fitting problems.

RNN, which has directed-cycle connections

(feedback) among units, is different from the feed-

forward networks.20 To deal with the dynamic tem-

poral behaviors in time series, internal states are

incorporated into the network. RNN is competitive

when applied to the temporal tasks such as handwrit-

ing recognition and time series prediction21,22 and

can achieve good performance in portfolio optimiza-

tion, speech recognition and price analysis. However,

RNN is not easy to train for large numbers of neurons

due to convergence and stability problems.

SOM24,25 is an unsupervised learning that maps

an input space onto a grid of neurons, in which topo-

logical relationships are preserved. When time points

are grouped into segments of consecutive points as

input vectors, SOM can be used to model time se-

ries. There were also a number of earlier extensions

of SOM for time series, such as NG,26 self-organizing

autoregressive (SOAR),27 temporal Kohonen map

(TKM),28 recurrent SOM (RSOM)29 and recursive

SOM (RecSOM).30 TKM attempts to integrate tem-

poral information in SOM by allowing some previous

activation into the activation of the current input,28

and RSOM, as a modification of TKM, moves the

leaky integrators into the difference vector.29 Rec-

SOM incorporates context information into the ref-

erence vectors.30 To further improve on SOM’s time

series modeling capability, the self-organizing mix-

ture autoregressive (SOMAR)31,32 and its neural gas

variant, the neural gas mixture autoregressive (NG-
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MAR)33 have been proposed. They are based on mix-

ture of autoregressive models and employ a new way

to measure similarity between input batches and ref-

erence vectors. All these models, however, are for sin-

gle step prediction.

This paper extends SOMAR for multi-step time

series forecasting. In this method, termed as varied

length mixture (VLM) models, probabilistic depen-

dencies between time points within the prediction

horizon are extracted and kept, rather than excluded

as in the independent methods. The VLM models are

trained with input segments of various lengths. The

reference vectors (or weights) of the VLM models

are of the maximum length for the required predic-

tion horizon. For each individual input segment, the

reference vectors only update those parts of the ref-

erence vectors that correspond to the length of the

input segment.

Further more the VLM models replace the

winner-takes-all mechanism used in SOM with a

more general mixture model such as the self-

organizing mixture network (SOMN).34 That is, all

the component models contribute to the final output

of the mixture model, where contributions are deter-

mined by the mixing weights, which are also adaptive

to the training data. The model acts as an ensemble

learning. For multi-step forecasting, the VLM mod-

els serve as a mixture of various length models, which

are co-trained and complementary to each other. A

graphic description of the VLM models is given in

Fig. 1. Furthermore, a dynamic combination of vari-

ous models (e.g. short-term and long-term), together

with an integrating or ensemble mechanism, can be

used on the VLM models for enhanced performance.

The proposed methods have been tested on a vari-

ety of benchmark datasets as well as real-world time

series and the results show that the proposed neural

network outperforms existing competitors.

In section 2, after a brief description of SOM

and SOMAR models for time series modeling, the

VLM models are introduced for multi-step predic-

tion. Section 3 extends the VLM models to an en-

semble learning. In section 4, performances of the

proposed methods are evaluated and compared with

the existing methods on benchmark data, foreign ex-

change rates and weather temperatures. Section 5

discusses the advantages of the proposed algorithms,

followed by conclusions in section 6.

Neuron has reference vector

and mixing weight

Input vectors of various lengths

Winner neuron : the

best matching unit

Current input

Figure 1. Graphical description of VLM models. Refer-
ence vector of each neuron contains the coefficients of an
AR model and a mixing weight.

2. Varied Length Mixture Model for
Multi-step Prediction

This section starts with SOM and SOMAR models

for time series modeling and then introduces the pro-

posed VLM models for multi-step forecasting. The

training procedure, including constructing input seg-

ments and updating reference vectors, and predicting

procedure are described in detail.

2.1. Prior work based on SOM,
SOMAR and NGMAR

2.1.1. SOM

SOM is a topology-preserving vector quantization

method. When SOM is used directly for modeling

time series, the sequence has to be segmented into

vectors (e.g. segments of l consecutive points) and

the reference or weight vector of neuron i is defined

as,

wi = [wi,0, wi,1, · · · , wi,l−1], i = 0, 1, · · · ,M − 1 (1)

where l denotes the length of the input vectors (and

length of the weight vectors) andM is the total num-

ber of neurons.

For a time series of total length L, {xτ}L−1
τ=0 ,

a sliding window of length l can be used to di-

vide the series into input segments as x(τ) =

[xτ−l+1, xτ−l+2, . . . , xτ ]
L−1
τ=l−1. There are in total L−

l+ 1 input segments in the input segment set. Then

the updating rule for the weight vectors is described

as,

∆wi = γ(n)gi,v(n)(x(n)−wi), i = 0, 1, · · · ,M − 1

(2)
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where n is the iteration number; x(n) is the input

segment at iteration n, randomly selected from the

input segment set; γ(n) is the learning rate; gi,v(n)

is the neighborhood function typically a Gaussian

and v is the best matching unit (BMU) based on the

minimum distance to the input ∥x(n)−wi∥.
This direct way of using SOM for time series is

also called vector SOM (VSOM). Once the SOM is

trained, the last element of the winner’s weight vec-

tor can be used as the estimated value in one-step

forecasting and the winner is chosen based on the

all the elements but the last one. VSOM (as well

as its other variants, RSOM and RecSOM) can cap-

ture some temporal information in the weight vec-

tors. However, these weight vectors do not represent

regressive temporal models. To turn SOM into time

series models, each neuron has to cast a regressive

model.

2.1.2. SOMAR

SOMAR was introduced to model non-linear time

series by a mixture of linear AR processes in a self-

organizing fashion.31,32 Although its weight vectors

are defined in the same way as in the VSOM, the

meaning of these weight vectors is different. They

represent the coefficients of learned component AR

models. Given the current input point xτ and the

previous segment x(τ − 1), each node yields a mod-

eling error as,

ei(τ) = xτ −wT
i x(τ − 1), i = 0, 1, · · · ,M − 1 (3)

After a small batch of input vectors, the auto-

correlation coefficients of the error sequences, instead

of the errors themselves, are used to measure the sim-

ilarity between the input and candidate regressive

models represented by the reference vectors,

Ri(ξ) =
1

sσ2

s−ξ−1∑
j=0

(ei(τ − j)− µ)(ei(τ + ξ − j)− µ),

i = 0, 1, · · · ,M − 1

(4)

where ξ is the lag, s is the size of the batch, µ and

σ2 are the mean and variance of the error sequences

ei(τ), i.e. µ =
∑s

ξ=1 ei(ξ)

s and σ2 =
∑s

ξ=1(ei(ξ)−µ)2

s .

Consequently, the BMU is selected with the

minimum sum of autocorrelation coefficients (SAC)

as,

v = argmin
i
(

s∑
ξ=−s

∥Ri(ξ)∥), i = 0, 1, ...,M − 1 (5)

The reference vectors are then updated by the LMS

algorithm, further coupled with SOM’s neighbor-

hood mechanism,

∆wi = γ(n)gi,v(n)ei(n)x(n− 1), i = 0, 1, ...,M − 1

(6)

The SOMAR model has been shown successful

in converging to underlying AR processes. It yields

better performance than previous SOM-based mod-

els on various benchmark data and foreign exchange

(FX) rates.32 However, its fixed grid structure of neu-

rons can be further relaxed for more optimal perfor-

mance in time series where topological lattice is not

essential.

2.1.3. NGMAR

To free the arrangement of neurons in SOMAR, a

neural gas version, NGMAR, was proposed by re-

placing SOM with NG.33 Local mixture autoregres-

sive models and the SAC similarity measure are kept

in the NGMAR model, while the reference vectors

are updated by,

∆wik = γ(n) exp(−k/λ(n))eik(n)x(n− 1) (7)

γ(n) = γ0(γN/γ0)
n/N (8)

λ(n) = λ0(λN/λ0)
n/N (9)

where k is the ranking of neuron ik, the learning

rate γ(n) and the neighborhood range λ(n) decay

to zero with time, and N is the total number of it-

erations. Due to that the dynamic neighborhood of

NG is based on similarity rankings, improved perfor-

mance of NGMAR in time series modeling has been

demonstrated over other neural networks.33

2.1.4. GSOMAR

SOMAR is in fact a simplified version of the mixture

autoregressive (MAR) model,35 proposed for deal-

ing with non-stationary time series. The conditional

cumulative distribution of the MAR model can be

expressed as

F (xt|Ft−1) =
K∑
i=1

PiΨ(xt − ϕi0 − ϕi1xt−1

−...− ϕilixt−li)

(10)



September 9, 2017 19:52 IJNS2016-rev9-
final

Multi-step Time Series Forecasting with an Ensemble of Varied Length Mixture Models 5

where Ft−1 represents the information at time t−1,

K is the number of AR processes, li is the order

of AR process i, Ψ refers to the cumulative distri-

bution functions of normal distribution, ϕij are the

parameters and Pi is the mixing weight represented

by winning frequency of neuron i.

In SOMAR and NGMAR, usually only the win-

ning AR model is selected to represent the time series

at any time in prediction. This means that the mix-

ing factor of only the winner is unit and others’ are

zero.

To fully employ the mixture model, the general-

ized SOMAR (GSOMAR)36 was proposed by learn-

ing the values of the mixing weights πi based on the

winning frequencies. Then the updating rule for the

mixing weights is described as follows

∆πi = γ(n)(P̂i − πi) (11)

where P̂i is estimated by winning percentage of node

i. In forecasting, the mixing weights are used, act-

ing as the posterior probability of a component class

given an input sample as in the self-organizing mix-

ture network (SOMN).34

2.2. Input segments of various lengths

In SOMAR, NGMAR and GSOMAR, the input seg-

ments are of the same length and the learned AR

models are of the same order and these methods

are inherently for one-step prediction. For multi-step

prediction, these methods can be applied repeat-

edly as in the iterative approach. For instance, given

the current input, x(t) = [xt−l+1, · · · , xt−1, xt], one-

step forecast is obtained directly from the model as

x̂t+1 = f(x(t)); and then two-step forecast uses one-

step forecast result and the current input as the in-

put, x̂t+2 = f(x(t), x̂t+1), ..., and so on. In the iter-

ative method, errors in previous steps are accumu-

lated to the next steps, resulting in poor accuracy

for long-term prediction.37

To build independent models for multi-step pre-

diction, time series points are segmented vectors ac-

cording to prediction horizons. For example, for one,

two, or h-step prediction, the current, 1st, 2nd, · · · ,
or h-th future values are concatenated with the pre-

vious values to form the input segments as follows.

x(τ, 1) = [xτ−l+1, · · · , xτ−1, xτ ] (12)

x(τ, 2) = [xτ−l+1, · · · , xτ−1, xτ+1] (13)

· · · · · ·
x(τ, h) = [xτ−l+1, · · · , xτ−1, xτ+h−1] (14)

Compared to the input vectors used in the iter-

ative method, these input vectors replace the present

value with a future value corresponding to the fore-

casting horizon. For each horizon, an independent

model is trained. The problem of error accumulation

is avoided. However, the dependencies among con-

secutive future points (between the current and the

horizon) are not taken into account.

To further improve the performance in multi-

step forecasting with the SOMAR/NGMAR model,

the proposed VLM method effectively uses compo-

nent AR models of varied orders instead of the same

order. Although the weight vectors are of the same,

the maximum length, their effective elements update

according to the input vectors of various length. All

the consecutive (future points) are kept in the seg-

mented training vectors, as follows:

x(1)(τ) = [xτ−l+1, · · · , xτ−1, xτ ] (15)

x(2)(τ) = [xτ−l+1, · · · , xτ−1, xτ , xτ+1] (16)

· · · · · ·

x(h)(τ) = [xτ−l+1, · · · , xτ−1, xτ , xτ+1, · · · , xτ+h−1]

(17)

· · · · · ·

x(H)(τ) = [xτ−l+1, · · · , xτ−1, xτ , xτ+1, · · · , xτ+H−1]

(18)

where H is the maximum horizon to be predicted.

When H = 1, the method becomes the one step

method. That is, for a given prediction horizon, H,

all other prediction horizons (up to H) can also

learned in the mixture model. The mixture is now

a set of heterogenous AR models.

2.3. Stochastic gradient descent
learning

The input vectors are built with various lengths of

l, l + 1, · · · , and l +H − 1, where l is the minimum

length of these inputs or the minimum order of local

AR models. The reference vectors of the nodes are
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all of the maximum length, (l +H − 1),

wi = [wi,0, · · · , wi,l−2, wi,l−1, · · · , wi,l+H−2] (19)

Different elements of the reference vectors are

updated by the corresponding elements of the in-

put vectors. For input vector x(1)(τ), the compo-

nents [wi,0, · · · , wi,l−1] are updated; For x(2)(τ),

[wi,0, · · · , wi,l] are updated; so on; and like-

wise, for input vector x(H)(τ), all components

[wi,0, · · · , wi,l+H−2] are updated.

An input segment is randomly drawn from all

possible input segments constructed by eqs. (15)-

(18). Depending on the input vector, the updating

rule can be rewritten as a series of rules,

[wi,0, · · · , wi,l−1] = [wi,0, · · · , wi,l−1] + Ξ(n)x(1)

(20)

[wi,0, · · · , wi,l] = [wi,0, · · · , wi,l] + Ξ(n)x(2) (21)

· · · · · ·

[wi,0, · · · , wi,l+H−2] = [wi,0, · · · , wi,l+H−2] + Ξ(n)x(H)

(22)

where Ξ(n) = γ(n) exp(−k/λ(n))eik(n).

Mirroring to the cost function of the SOM

(e.g.24), if the probability distribution of data vec-

tors x is described by p(x), then the mean modeling

error is determined by

E(w1, · · · ,wM ) =
∑
i

∫
Di

∑
k

gλ(ki)(xt+h−wT
i x)

2p(x)dx

(23)

Instead of minimizing the quantization errors,

∥x − wi∥2, as by the SOM with the further con-

sideration of neighborhood learning, here the regres-

sion errors, (xt+h−wT
i x)

2, are minimized, Then the

adaption of reference vectors wi in general can be

expressed by

∆wik = γ(n)gλ(ki(x,w))eik(n)x
(h)(n) (24)

where γ(n) is the step size decaying to zero for in-

creasing ik and ei is the error on the input vector x by

the reference vector wi, i.e. ei(x,w) = xn+1 −wT
i x.

The dynamics of the reference vector wik obeys a

stochastic gradient descent on the cost function.

The proposed VLM models are readily for pre-

dicting up to the given horizon, H, with the cor-

responding reference weights learned. To further

improve the prediction performance, the proposed

VLM models adopt probabilistic mixture principle,

which forms an ensemble or combination of models

of various orders (e.g. daily and weekly models), as

described next.

3. Ensemble of VLM Models

As combining forecasts or ensemble predicting can

lead to performance improvement over individual

models by reducing prediction variance or errors,

an adaptive combination of VLM models of various

orders, short-term (e.g. daily) and long-term (e.g.

weekly), together with an ensemble, is employed for

multi-step forecasting of time series, resulting the

ensemble VLM (eVLM) method. Ensemble learning

can reduce the variance of the learning. The main

reason why ensemble can perform better than indi-

vidual models is that the ensemble employs multiple

models, each of which can focus on some particular

part of the input space. This is the very case in fi-

nancial time series, especially FX rates. The financial

time series has different patterns, which are embed-

ded in different time series segments. Therefore, an

ensemble can be useful and effective for describing

different time series patterns and reducing the pre-

diction error. Furthermore, the probabilistic mixture

principle can be adopted as an efficient way of the

ensemble.

3.1. Probabilistic mixture principle

To achieve effectiveness and robustness, the winner-

takes-all principle in the previous described models

is replaced by a probabilistic mixture where all com-

ponents contribute to the mixture,34 with the mixing

weights updating rule described by eq. (11).

After training, the updated reference vectors of

the network can be used for predicting over all the

horizons 1, 2, · · · ,H. Given a current input vector

x(t), various predicted future values are given as the
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output mixture of K individual component models,

x̂t+1 =
K∑
i=1

πi

l−1∑
j=0

wi,jxt−(l−1)+j (25)

· · · · · ·

x̂t+h =
K∑
i=1

πi(
l−1∑
j=0

wi,jxt−(l−1)+j

+

l+h−2∑
j=l

wi,j x̂t−(l−1)+j)

(26)

· · · · · ·

x̂t+H =
K∑
i=1

πi(
l−1∑
j=0

wi,jxt−(l−1)+j

+
l+H−2∑
j=l

wi,j x̂t−(l−1)+j)

(27)

3.2. Adaptively combining VLM models

Most existing time series predictions are concerned

with predicting the next step, i.e. H = 1. The so-

called long term prediction is concerned of predic-

tion when H >> 1; while the so-called short-term

prediction is about predicting near next step, i.e. H

is a small number (usually 1, 2 or 3). In FX fore-

casting, when daily data is used, short-time usually

means a day, or a couple of days or few days ahead;

while long terms could be weekly or fortnight, or even

months ahead.

In general, performance of combined forecast-

ing models (e.g. combining short-term and long-term

approaches) is better than that of single models.13

Such combination can benefit from performance ad-

vantages of individual models while complementing

their shortcomings. Furthermore, to overcome the

limitations of a fixed combination, adaptive, horizon-

dependent weighting is employed in the combination.

For example, consider that one can build two

forecasting models, a short-term, say daily model

fd(h) and a long-term, say weekly model fw(h), h =

1, 2, · · · , H. The parameters of the daily model are

estimated with the training data segments of short

forecasting horizons. Similarly, the weekly model is

trained with the training vectors revealing relation-

ship between values with long distance as described

in the previous section. The adaptive combination of

the both can be defined as

y(h) = α(h)fd(h) + (1− α(h))fw(h) (28)

where α(h) is real function of horizon h, and 0 ≤
α(h) ≤ 1.

There are two factors to consider in the combi-

nation:

1) For a short forecasting horizon, the combi-

nation should play more emphasis on the daily fore-

casting as the short-term model works better.

2) For a long forecast horizon, the perfor-

mance of the daily model deteriorates. Therefore, the

weighting of the daily model should decrease while

the weekly model will dominate the combination.

Taking these two factors into consideration,

α(h) can be defined as

α(h) = exp(−θh) (29)

where θ is a small positive value controlling the in-

fluence of the short term. For example, θ = 0.05 has

been applied to all the experiments.

All the input vectors are used as input segments

to train the daily model fd(h).

x(1)(τ),x(2)(τ), · · · ,x(H)(τ) (30)

Similarly, the weekly input vectors are used as inputs

to train the weekly model fw(h).

x(1)
w (τ) = [xτ−(l−1)∗5, · · · , xτ−5, xτ ] (31)

x(2)
w (τ) = [xτ−(l−1)∗5, · · · , xτ−5, xτ , xτ+5] (32)

· · · · · ·

x(h)
w (τ) = [xτ−(l−1)∗5, · · · , xτ−5, xτ , · · · , xτ+(h−1)∗5]

(33)

· · · · · ·

x(H)
w (τ) = [xτ−(l−1)∗5, · · · , xτ−5, xτ , · · · , xτ+(H−1)∗5]

(34)

With the trained daily and weekly models,

fd(h), fw(h), the combined forecasting model is given

as Eq. (28). The combination of short-term and long-

term models can be extended to an ensemble of κ in-

dependent such VLM models. Assume the k-th VLM

model has a h-step forecast x̂t+h(k), k = 1, 2, · · · , κ,
the final prediction by eVLM can be obtained as

x̂(t+ h) =
κ∑

k=1

αk(h)x̂t+h(k) (35)
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where αk(h) is a function of horizon h and∑κ
k=1 αk(h) = 1. The simplest version is simple av-

eraging, i.e. α1 = α2 = · · · = ακ = 1/κ. The num-

ber of independent models Z can be assigned to any

positive integer, which is 5 in the experiments. To

optimize the mixture model, αk(h) can be set as

αk(h) = e−|k−h|∑κ
k=1 e−|k−h| . The procedure of the eVLM

model is summarized in Algorithm 1.

4. Experiments

The proposed VLM models and eVLM network have

been evaluated and compared with various bench-

mark methods including the naive method,38 ex-

ponential smoothing (ES),39 regressive models and

various neural networks, including support vec-

tor regression (SVR)8 and the echo state network

(ESN),19 on several benchmark datasets, FX rates

and weather data.

4.1. Synthetic data

The Mackey-Glass time series, a commonly used

benchmark data, was evaluated on first. The second

case study investigated on modeling and predicting

the Lorenz series.

In these case studies, 10% of the training data

was used as the validation set to terminate the train-

ing and to decide model orders.

There are several ways to measure prediction ac-

curacy,2,40 of which two mostly common ones were

employed in the experiments. One is the normalized

root-mean-square error (NRMSE)32,33

NRMSE =

√√√√ (1/Ntest)
∑Ntest

t=1 (xt − x̂t)2

(1/Ntest)
∑Ntest

t=1 (xt − x̄)2
(36)

where Ntest is the number of test examples, x̂t and

xt are the predicted and actual values respectively,

and x̄ denotes the sample mean.

The Mackey-Glass time series was generated

from the following time-delay differential equation,

dxt

dt
= βxt +

αxt−δ

1 + x10
t−δ

(37)

where xt is the sample time series at time t. An ex-

ample of 2000 observations were generated with pa-

rameters set to α = 0.2, β = −0.1 and δ = 17, and

the first 1800 points were used as the training set

and the last 200 were employed as the test set.

The Lorenz time series were generated from the

following system with parameters chosen as σ = 10,

ρ = 28 and β = 8/3

dxt

dt
= σ(yt − xt) (38)

dyt
dt

= xt(ρ− zt)− yt (39)

dzt
dt

= xtyt − βzt (40)

where xt, yt and zt are the values of time series at

time t. An example of Lorenz time series, x(t), of

total 1000 points was generated. The first 900 data

points were used for training and the rest for testing.

The actual and predicted test series on these two

datasets are shown in Figs. 2 and 3. It is seen that

the estimated values by the proposed method are

closer to the actual values than others. The detailed

NRMSE results (avergaed over H = 1, 2, ... 10) are

presented in Tables 1 and 2. The compared bench-

mark methods performed multi-step forecast by the

independent approach. Among these methods, the

naive method had the highest NRMSE and ES had

the similar performance to other neural networks.

eVLM significantly outperformed all other multi-

step forecasting methods with the lowest NRMSE.

Although SOMAR and NGMAR performed better

than other neural and learning methods, they were

still inferior to eVLM.

The improved prediction performances are

largely due to two factors. First, the probabilistic

dependencies between neighboring time points are

preserved and modeled in these VLMs and therefore

beneficial for forecasting. Second, dynamic combina-

tion of short and long term models, as well as an

ensemble of them in eVLM, further reduce the error

in prediction in all prediction horizons. The proposed

methods are effective and efficient for multi-step fore-

casting tasks.

4.2. Foreign exchange rates

The proposed multi-step method was also evaluated

on foreign exchange (FX) rate time series. FX rates

(GBP/USD, GBP/EUR and GBP/JPY), down-

loaded from the PACIFIC exchange rate services,

were used in this case.
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Table 1. Average multi-step
prediction performance of var-
ious models on Mackey–
Glass (H = 1, 2, · · · , 10)

Model NRMSE p-value

Naive 0.1325 3.3e-8
ES 0.0683 1.7e-5

ARMA 0.1247 1.2e-7
GARCH 0.1205 2.6e-7
MLP 0.0958 8.4e-6
SVR 0.0697 6.3e-5
ESN 0.0672 4.1e-5
SOM 0.1043 3.0e-6
NG 0.0775 1.9e-4

SOMAR 0.0695 3.4e-4
GSOMAR 0.0674 2.6e-4
NGMAR 0.0651 8.5e-4
VLM 0.0592 0.0031
eVLM 0.0513 N/A

Table 2. Average multi-step pre-
diction performance of various mod-
els on Lorenz (H = 1, 2, · · · , 10)

Model NRMSE p-value

Naive 0.1362 1.3e-10
ES 0.0870 5.7e-8

ARMA 0.1327 2.4e-10
GARCH 0.1189 6.2e-10
MLP 0.0885 1.5e-7
SVR 0.0851 3.5e-6
ESN 0.0768 7.7e-5
SOM 0.0932 8.4e-8
NG 0.0763 2.3e-5

SOMAR 0.0684 9.4e-5
GSOMAR 0.0661 4.7e-4
NGMAR 0.0635 2.8e-4
VLM 0.0569 5.4e-3
eVLM 0.0464 N/A
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Figure 2. Actual and predicted test series for the
Mackey-Glass time series.
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Figure 3. Actual and predicted test series for the Lorenz
time series.

In addition to NRMSE, the correct prediction

percentage (CPP) measure33,41 was also adopted as

a performance measure for making correct trend pre-

diction (i.e. price going up or down). It is defined as,

CPP =
Number of Correct Direction Predictions

Total Number of Predictions
(41)

The FX rate series used in the experiments in-

clude daily closing prices of GBP/USD, GBP/EUR

and GBP/JPY over a period of 12 years (2004-2015).

Each FX rate series was divided into training set

(first 90% points) and test set (last 10% points).

Tables 3-5 show the averaged performances

(NRMSE and CPP) over H = 1, 2, · · · , 10 hori-

zons and their t-test values. In each table, the first

column represents the model used, the second and

third columns are the NRMSEs and the correspond-

ing p values of the t-test, and the fourth and fifth

columns are the CPPs and their p values. As can

be seen, the proposed methods significantly outper-

forms other methods in both NRMSE and CPP.

Fig. 4 plots the performance comparisons of var-

ious models including SVR,8 ESN19 and SOMAR32

over all the horizons. The marked improvements of

the proposed method over other methods on all hori-

zons can be clearly seen.
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Figure 4. Performance comparisons (in CPP) of all the
horizons by various models on GBP/USD.

Table 3. Multi-step prediction performance comparison
of various models on GBP/USD (h = 1, 2, · · · , 10)

Model NRMSE p-value CPP(%) p-value

Naive 0.3025 1.7e-13 49.37 8.5e-14
ES 0.1876 2.5e-9 51.75 2.0e-8

ARMA 0.2955 1.6e-12 49.68 2.7e-12
GARCH 0.2837 2.7e-12 49.92 1.6e-12
MLP 0.2367 2.5e-10 50.49 8.5e-11
SVR 0.1672 8.7e-8 51.43 6.9e-8
ESN 0.1353 2.3e-4 53.10 8.4e-5
SOM 0.2396 4.9e-10 50.22 6.5e-12
NG 0.1835 3.5e-9 50.63 3.7e-10

SOMAR 0.1533 6.8e-7 52.18 2.0e-5
GSOMAR 0.1418 7.7e-7 52.59 1.1e-5
NGMAR 0.1364 8.1e-5 53.25 7.9e-5
VLM 0.1193 3.6e-4 54.03 1.5e-4
eVLM 0.1064 N/A 55.02 N/A

Table 4. Multi-step prediction performance comparison
of various models on GBP/EUR (h = 1, 2, · · · , 10)

Model NRMSE p-value CPP(%) p-value

Naive 0.2055 1.3e-11 49.20 8.1e-11
ES 0.0931 9.5e-7 51.57 3.9e-5

ARMA 0.1964 4.2e-10 49.29 7.8e-10
GARCH 0.1882 1.5e-10 49.67 3.4e-10
MLP 0.1343 8.6e-8 50.14 8.0e-9
SVR 0.0878 1.3e-6 50.82 1.9e-6
ESN 0.0749 5.3e-5 52.22 0.0011
SOM 0.1402 7.2e-9 50.17 7.3e-9
NG 0.1085 6.6e-8 50.66 6.5e-7

SOMAR 0.0768 4.9e-5 51.39 3.7e-4
GSOMAR 0.0751 6.5e-5 51.84 7.3e-4
NGMAR 0.0740 1.3e-4 52.37 0.0018
VLM 0.0619 0.0012 52.84 7.0e-4
eVLM 0.0526 N/A 53.61 N/A

4.3. Weather prediction competition

The Weather Prediction Competition at Inter-

national Joint Conference on Neural Networks

IJCNN2015 (www.ijcnn.org) provided a good oppor-

tunity to test a prediction model on an extremely dy-

namic data (a local UK weather). The objective of

this competition was to predict 5-day ahead a local

weather data. It had attracted a number of entries to

the competition, similar to the previous time series

prediction competitions at the previous IJCNN.

The VLM method proposed in this pa-

per was submitted to the competition and

subsequently tested by the competition or-

ganizers. It was awarded as the Winner;

and the result was announced at IJCNN2015

(http://www.ijcnn.org/assets/docs/ijcnn2015-

awards.pdf). The experimental results are presented

in Tables 4 and 5, in terms of the mean squared

errors (MSE) in predicted maximum and minimum

temperatures. The standard deviations of them are

also presented, so are the t-test significance values

(p-value).

Table 5. Multi-step prediction performance comparison
of various models on GBP/JPY (h = 1, 2, · · · , 10)

Model NRMSE p-value CPP(%) p-value

Naive 0.2183 1.7e-11 49.15 2.3e-9
ES 0.0974 9.5e-7 51.01 5.6e-4

ARMA 0.2131 5.2e-11 49.37 7.3e-9
GARCH 0.1992 8.6e-11 49.80 1.6e-7
MLP 0.1565 1.1e-8 50.13 8.3e-7
SVR 0.1067 7.3e-8 50.96 1.3e-4
ESN 0.0926 8.4e-6 51.54 8.6e-4
SOM 0.1509 2.3e-8 50.15 6.9e-7
NG 0.1326 7.5e-8 50.51 3.2e-5

SOMAR 0.1015 9.6e-7 51.29 6.0e-5
GSOMAR 0.0954 5.3e-6 51.40 9.3e-5
NGMAR 0.0912 7.5e-6 51.87 0.0014
VLM 0.0724 0.0052 52.40 0.0065
eVLM 0.0617 N/A 53.11 N/A

It is evident that the proposed methods out-

perform other neural networks as shown in the ta-

bles in terms of MSE and standard deviation (except

ESN in some cases). The significant performance im-

provements show the importance of extracting prob-

abilistic dependencies or relationship between mul-

tiple neighboring time points within the horizon in

modeling and forecasting.
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5. Discussions

In SOMAR or NGMAR, each node converges to an

AR model in a mixture. When it is used for mul-

tistep prediction in the independent fashion, for a

prediction horizon, H, each constructed AR model

will be

xt+H = wi,0xt−l+1+wi,1xt−l+2+· · ·+wi,l−1xt+ϵt+H

(42)

where ϵt+H is white noise.

As can be seen, in this fashion, the model ig-

nores the points between xt+H and xt. While in the

eVLM models each horizon, h, within [1, H], and its

equivalent AR model becomes

xt+h = wi,0xt−l+1 + · · ·+ wi,l−1xt + · · ·
+wi,l+h−2xt+h−1 + ϵt+h

(43)

and the output of the mixture model is

xt+h =
∑
i

πi(wi,0xt−l+1+· · ·+wi,l+h−2xt+h−1+ϵt+h)

(44)

That is, it uses all the available points, either

observed or estimated. The latter are the equivalent

estimated values by the lower horizon models but

readily obtainable from neurons’ weight vectors, con-

taining the learned coefficients for all horizons. More-

over, the mixing is fully considered by employing the

mixture of all component models rather than relying

on only one local AR model. This naturally embeds

regressive models of various horizons together and

can enhance the predictions as demonstrated by the

experimental results. Note that the mixing is carried

out in a small neighborhood of the winner, therefore

mixing weights are sparse comparing to the entire set

of neurons.

6. Conclusions

In this paper, a generalized self-organizing mixture

of autoregressive models of varied lengths has been

introduced for multi-step prediction. It generalizes

the previous self-organizing mixture of autoregres-

sive models of the same order to a mixture of het-

erogeneous models and this further minimizes the

accumulated errors along with various prediction

steps. Such varied length models retain as much de-

pendency information as possible among the points

within the prediction horizon. These dependencies

between consecutive future points serve the key role

in improving the prediction accuracy. An ensemble

of these varied length models can further reduce the

prediction error and enhance the performance. The

experiments conducted on various benchmark data,

FX rates time series and weather data demonstrated

the markedly improvements over the existing meth-

ods. The results also validate the efficiency of the

proposed methods.

Table 6. Mean-squared-error
(MSE) and standard deviation
(σ) on weather data (h = 1)

Model MinTmp σ p-value

MLP 4.37 0.57 8.6e-6
SVR 4.26 0.66 3.1e-5
ESN 4.05 0.51 1.7e-4
SOM 4.84 0.72 8.5e-8
NG 4.56 0.68 2.3e-6
VLM 3.97 1.51 0.0012
eVLM 3.64 0.49 N/A

Model MinTmp σ p-value

MLP 4.97 0.71 5.7e-6
SVR 4.91 0.66 8.3e-6
ESN 4.85 0.61 1.2e-4
SOM 5.41 0.80 2.6e-7
NG 5.23 0.73 9.4e-7
VLM 4.84 0.82 0.0028
eVLM 4.26 0.62 N/A

Table 7. Mean-squared-error (MSE)
and standard deviation (σ)
on weather data (h = 5)

Model MinTmp σ p-value

MLP 4.93 0.72 2.0e-7
SVR 4.76 0.75 3.7e-6
ESN 4.38 0.64 1.4e-5
SOM 4.96 0.79 3.9e-7
NG 4.72 0.82 9.5e-7
VLM 4.19 0.75 8.3e-5
eVLM 3.85 0.66 N/A

Model MaxTmp σ p-value

MLP 5.77 0.85 2.0-7
SVR 5.53 0.84 5.5e-6
ESN 5.24 0.70 8.7e-6
SOM 5.98 0.77 6.3e-9
NG 5.51 0.73 4.4e-6
VLM 5.03 0.76 1.6e-4
eVLM 4.42 0.68 N/A

The relationship between consecutive future

points serve the key role in improving the prediction

accuracy. An ensemble of these varied length mod-

els can further reduce the prediction error and en-
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hance the performance. The experiments conducted

on various benchmark data, FX rates time series and

weather data demonstrated the markedly improve-

ments over the existing methods. The results also

validate the efficiency of the proposed methods.
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