

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/123535

Zamora Martínez, FJ.; Castro-Bleda, MJ. (2018). Efficient Embedded Decoding of Neural
Network Language Models in a Machine Translation System. International Journal of Neural
Systems. 28(9). https://doi.org/10.1142/S0129065718500077

http://doi.org/10.1142/S0129065718500077

World Scientific

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

International Journal of Neural Systems, Vol. 0, No. 0 (2005) 1–15
c© World Scientific Publishing Company

EFFICIENT EMBEDDED DECODING OF NEURAL NETWORKS
LANGUAGE MODELS IN A MACHINE TRANSLATION SYSTEM

FRANCISCO ZAMORA-MARTINEZ
R&D Department, das-Nano S.L., Poĺıgono Industrial Talluntxe II,

Tajonar 31192, Spain
E-mail: pakozm@gmail.com

MARIA JOSE CASTRO-BLEDA
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,

València, Spain
E-mail: mcastro@dsic.upv.es

Neural Network Language Models are a successful approach to Natural Language Processing tasks, such
as Machine Translation. We introduce in this work a Statistical Machine Translation system which fully
integrates Neural Network Language Models in the decoding stage, breaking the traditional approach
based on n-best list rescoring. The neural net models (both language models and translation models)
are fully coupled in the decoding stage, allowing to more strongly influence the translation quality.
Computational issues were solved by using a novel idea based on memorization and smoothing of the
softmax constants to avoid their computation, which introduces a trade-off between language model
quality and computational cost. These ideas were studied in a machine translation task with differ-
ent combinations of neural networks used both as translation models and as target language models,
comparing phrase-based and N -gram-based systems, showing that the integrated approach seems more
promising for N -gram-based systems, even with non-full-quality Neural Network Language Models.

Keywords: Neural networks; Language modeling; Machine translation; Statistical machine translation;
Embedded decoding.

1. Introduction

Neural Network Language Models (NNLMs) in ma-

chine translation, and their incorporation during de-

coding, is a highly active research area,1–3 even more

after recent deep learning breakthrough.4,5 Indeed,

language modeling is one of the most important parts

in an Statistical Machine Translation (SMT) system.

Formally, the goal of an SMT system is the transla-

tion of a sentence f = f1f2 . . . f|f |, for a given source

language and source vocabulary fi ∈ Σ, to an equiv-

alent sentence ê = e1e2 . . . e|e|, for a certain target

language and target vocabulary ei ∈ Γ. Under the

maximum entropy approach, the most likely sentence

is searched by computing its probability with a log-

linear combination of several models:6,7

ê = arg max
e

M∏
m=1

hm(f , e)λm , (1)

where M is the number of features, hm(f , e) is a fea-

ture score function used for the translation of f into

e, and λm are the weights of the log-linear combina-

tion. Optimization of weights λm is performed during

a tuning stage.

Two SMT approaches were followed in this

work: phrase-based SMT and N -gram-based SMT.

Both approaches use a similar modelization of the

problem, differentiated in how the translation units

are extracted from parallel corpora. Language Mod-

els (LMs) play a critical role in both approaches,

more pronounced for theN -gram-based approach be-

cause the translation model is also an LM.

1

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

2 Zamora-Mart́ınez and Castro-Bleda

Continuous space representation of the lexicon

proposes a better smoothing of unseen patterns, and

it has been successfully applied in neural networks

approaches to language modeling.8–11 NNLMs1,12

are the most popular approach in state-of-the-art

SMT systems, presented in the form of feedforward

neural networks. Nevertheless, the high computa-

tional cost of using NNLMs in decoding, particularly

in SMT, limits their use and the traditional approach

is to apply these NNLMs at a decoupled step using

n-best list rescoring.1,13,14

Several practical solutions have been proposed

to alleviate the computational problems associated

with the softmax computation, such as adopting hi-

erarchical versions of the softmax,15–19 avoiding the

normalization of the softmax,3,20 speeding up train-

ing,21–24 or using recurrent neural networks.25,26

In this same line, we have solved speed issues of

NNLMs by memorizarion and smoothing of softmax

constants for normalization. This paper describes

this technique to speed up NNLMs in order to ful-

fill a coupled integration into an SMT decoder. Also,

during decoding both the scores for the N -grams and

the hidden state for contexts are cached to avoid po-

tentially expensive forward propagation from the in-

put to the hidden layer. Moreover, comparisons be-

tween phrase-based and N -gram-based approaches,

and integrated NNLM decoding vs. n-best list rescor-

ing, are presented. Different combinations of NNLMs

used as translation models and as target LMs are also

tested. A deep discussion about the trade-off between

quality and speed is also stated. Experiments were

accomplished in a machine translation task based on

the News-Commentary 2010 corpora extracted from

the WMT’10 evaluation campaign.

The paper is organized as follows. A brief intro-

duction to NNLMs is described in Section 2. After

posing the problem of high cost of using NNLMs in

decoding, Section 3 reviews related solutions found

in the literature for this problem, and also presents

our contribution for fast testing. Section 4 is devoted

to explain the proposed embedded decoding SMT

system. Section 5 reviews both Phrase-based and N -

gram-based SMT systems and Section 6 describes

the experimentation and the analysis of the obtained

results for a machine translation task. Finally, con-

clusions are drawn at Section 7, outlining our major

contributions, and proposing future works in order

to combine our approach with others.

2. Feedforward Neural Network
Language Models

N -gram LMs are useful to estimate an approxima-

tion of the a priori probability of a given sentence

w to be correct, using the assumption that word wi
only depends of the history composed by the (N−1)

previous words wi−1
i−N+1:

p(w) ≈
|w|∏
i=1

p(wi|wi−1
i−N+1) . (2)

NNLMs improve N -gram LMs conditional prob-

abilities by using an automatic smoothing procedure

for unseen patterns.1,9, 10 The word symbols are pro-

jected into a continuous space where similar words

achieve similar projection, and probability is com-

puted over this projections. The projection matrix

is shared among all input positions (see Figure 1).

Each output neuron estimates the conditional prob-

ability p(wi|wi−1
i−N+1), for a given word wi of the vo-

cabulary Ω. The input layer is composed of the se-

quence wi−1
i−N+1, where each word is locally codified

as a “1-to-|Ω|” vector. Every input word is projected

onto a much smaller set of projection neurons which

learns the distributed codification of the words. The

weights of all projection layers are shared, and the

NNLM is able to learn both the distributed repre-

sentation of words onto a continuous space and the

conditional probability estimates of Eq. (2). After

training, the projection layer can be removed from

the network since it is much more efficient to replace

it by a precomputed table of size |Ω| which stores the

distributed encoding of each word.

. . .

. . .

0

0

1

0

.

.

.

0

0

1
0
.

.

.

0

1

0

0

0

.

.

.

. . .
. . .

. . .

w i i

w i-1

w i-2

w i-3

Figure 1. Instance of a 4-gram NNLM during train-
ing when computing p(wi|h̄i) with history h̄i =
wi−3wi−2wi−1. The input layer is composed by the three
previous words, locally codified as “1-to-|Ω|” vectors. The

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 3

projection layer learns the distributed codification of the
words.

Big computational issues arise when the task vo-

cabulary Ω is large, due to the NNLM output size,

which needs one output neuron i for each w ∈ Ω to

estimate p(w|h), the probability of the word w given

its history h, using the softmax activation function

as follows:

oi =
exp(ai)∑|Ω|
j=1 exp(aj)

(3)

ai being the activations of neuron i.

The shortlist approach1,27–29 is widely used to

solve this problem, training the NNLM over a re-

stricted vocabulary Ω′ ⊂ Ω composed by the most

frequent words in the training corpora. In our ap-

proach to NNLMs, Out-Of-Shortlist (OOS) word

probabilities are computed adding a new special out-

put neuron which estimates the joint probability of

all OOS words, p(OOS|wi−1
i−N+1). The value of this

OOS neuron is smoothed using a unigram computed

over all OOS words.

Similar alternatives are found in the literature.

For instance, Ref.1 uses a standard statistical N -

gram (not only a unigram) to estimate the OOS

word smoothing. Ref.28 proposes to approximate the

value of p(OOS|wi−1
i−N+1) to 0, obtaining indistin-

guishable results compared to the previous approach,

mostly due to the linear combination of NNLMs with

a standard N -gram LM. In Ref.30 the authors pro-

pose to consider equally the computation of OOS

class probability by using the NNLM and withby

using a standard N -gram. Therefore, the computa-

tion of OOS words probability is reduced to take

pNG(wi|wi−1
i−N+1) being pNG the probability com-

puted using the standard N -gram.

Finally, note that every NNLM probability com-

putation is combined with a standard N -gram prob-

ability by introducing both models at the log-linear

combination,31 ensuring full task vocabulary cover-

age.

3. Fast Computation of Neural
Network Language Models

A totally coupled integration of NNLMs into the de-

coder requires an efficient computation of NNLMs.

The solutions found in the literature to circumvent

the problem of high cost of NNLMs in decoding are

reviewed. Secondlly, our ideas for fast evaluation of

NNLMs are presented.

3.1. Related work

Several improvements have been reported since the

shortlist approach for the vocabulary size issue.

Among others, researchers from the Laboratoire

d’Informatique pour la Mécanique et les Sciences

de l’Ingénieur (LIMSI) have obtained significant im-

provements using Structured Output Layer Neu-

ral Network Language Models,18,19 which avoid the

shortlist problem by allowing the use of the whole

task vocabulary at NNLMs output. Basically, it con-

sists of using a softmax layer to determine a word

class and other softmax layers to determine the prob-

ability of a word given its class. A recent applica-

tion of these new models in an N -gram-based SMT

system with n-best list rescoring achieved large im-

provements.13 Other solutions adopting hierarchical

versions of the softmax to alleviate the complexity

problem can be found in Refs.15–17

More recently, Devlin et al3 present a novel for-

mulation for a neural network joint model which

augments the NNLM with a source context win-

dow which can be integrated into the SMT decoder.

Their approach is based on self-normalization, that

encourages the normalization constant to be close to

1 through a regularizer. At decoding time, the un-

normalized scores from the softmax layer are used.

Similar ideas applied to a speech recognition system

are found in Ref.20

More promising ideas to speed up training will

arise from the use of Noise Contrastive Estima-

tion (NCE).21–24 For instance, in Ref.,14 n-best list

rescoring and integration of target language models

are compared. However, in that work, NNLM output

probabilities are not normalized, what could be very

task depending and could be harmful.

Finally, using recurrent neural networks for lan-

guage modeling25 is also a hot topic. A particularly

relevant work, which applies recurrent neural net-

works to the N -gram formalism is presented in Ref.26

Different alternatives to speed up test or train-

ing of NNLMs can be combined to obtained further

speedups. For instance, we propose a way to integrate

the language model into the decoder using normal-

ized probabilities values following an idea which is

orthogonal to the NCE approach, so it is possible to

combine both ideas in a system.

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

4 Zamora-Mart́ınez and Castro-Bleda

3.2. Our approach to fast evaluation of
NNLMs

The number of LM look-ups at decoding stage (from

thousands to millions depending on sentence length)

force to use fast LMs. For this reason, NNLMs are

used traditionally at a decoupled stage, rescoring lat-

tices or n-best lists. NNLM bottleneck is located at

its output activation function (typically softmax),

which needs the computation of a normalization fac-

tor over the sum of all output neurons, even when

only a few are needed.1 Following Ref.32 it is possible

to speed up the NNLM by precomputation and mem-

orization of the most frequent softmax normalization

constants in a table, making possible NNLMs inte-

gration at decoding stage. Two solutions are given

when a softmax normalization constant is not found

in the table:

• On-the-fly Fast NNLM approach: compute the

needed constant and store it in the table for future

uses. This solution is equivalent in performance to

using a standard NNLM.

• Smoothed Fast NNLM approach: use a model of

lower order to compute the probability. Recur-

sively, this solution uses the first model which has

precomputed the constant in its table. The sim-

plest model is a bigram NNLM because all soft-

max normalization constants could be stored at

a table of size of the vocabulary. This approach

is not equivalent to a standard NNLM, and lower

quality results should be expected.

The smoothed Fast NNLM approach achieves

more useful speedup, but it introduces a trade-off be-

tween quality and speed, because quality could be in-

creased with the increment of precomputed softmax

normalization constants, but decreasing the speedup

of the system due to a major proportion of LM look-

ups which will be computed using more complex

models. The study of this trade-off in a medium-

sized vocabulary SMT task is one of the contribu-

tions of this paper. For instance, a million of con-

stants is required for the evaluation task proposed in

this paper, which leads to an upper bound of 20MB

of memory: 1 000 000 constants represented in a lin-

ear table, using a trie as the one proposed below,

considerably reduce this number. Nevertheless, the

memory requirements grow linearly with the num-

ber of constants, but the number of constants grow

exponentially with the N order.

4. Embedded Decoding of Neural
Network Language Models

The totally coupled integration of NNLMs into the

decoder requires to take care with some peculiari-

ties which will be explained in this section. A gener-

alization of NNLMs to fully connected finite state

automaton is described, and some remarks about

caching are stated.

4.1. Neural Network Language Models
as a Full Finite State Automaton

The integration into the decoding needs some LM hy-

potheses generation procedure in order to store the

LM hypotheses in the active states of the decoder,

and to update the hypotheses with the expansion

of new incoming words. For standard N -grams, it is

possible to use an automaton representation of the

N -gram, using the automaton states as history (pre-

vious N − 1 words) identifiers.33

An NNLM could compute the probability of full

N -gram space (ΩN N -grams of order N). Due to its

huge size, it is impossible to expand the underlying

automaton (take into account that the conversion of

an NNLM into an automata has to deal explicitly

with back-off to avoid an exponential increase of its

size34,35), but on-demand approach is feasible. Like

for standard N -grams, each NNLM history is iden-

tified by a state number at the full automaton. The

states are enumerated on-demand using a trie data

structure which keeps word sequences of lengthN−1,

associating each trie node with an automaton state.

The trie allows to look for a state number given its

sequence of history words, and to retrieve the words

sequence given the state number. Precomputed soft-

max normalization constants are stored as persistent

paths in the trie, and decoder LM look-ups are stored

as dynamic paths which will be erased with every

sentence decoding end. In order to use the smoothed

Fast NNLM approach, the same trie may store paths

for NNLMs of different order.

4.2. Caching LM look-ups during
decoding

Another important issue to increase performance of

NNLM integration is to introduce a two-level cache

of LM look-ups.

The first level stores complete N -gram proba-

bilities: the key of the cache is a pair of 〈automaton

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 5

state, next word〉, and the stored value is the prob-

ability p(next word|automaton state). It is a cache

with large number of entries where each entry needs

8 bytes for the key and 4 bytes for the value.

The second level stores NNLM hidden layer ac-

tivations for a given N -gram history: the key is an

automaton state, and the value is an array of size H,

being H the number of hidden neurons. It is a cache

with short number of entries because the size of each

entry is 4 bytes for the key and 4H for the value.

5. Phrase-based and N-gram-based
SMT Systems

The most popular statistical approach to translation

is the so-called phrase-based SMT36 (in most cases

using Moses implementation37). However, N -gram-

based SMT systems38–41 have shown their capabil-

ity to obtain state-of-the-art results, but their ac-

ceptance by the machine translation community is

low.13,41–43

Phrase-based translation models allow lexical

blocks with more than one word on either the source-

language or target-language side, where the lengths

may differ, eliminating the restrictions of word-based

translation. The lexical blocks are found using sta-

tistical methods from corpora.36

N -gram-based SMT is based on finite state ma-

chine translation framework. The N -gram LMs are

trained over a bilingual corpora aligned and seg-

mented in a unique way, generating a sequence of

bilingual units called tuples. The LM trained over

these tuples is known as a bilingual translation

model, and computes an approximation to the joint

probability p(e, f) at sentence level. N -gram-based

approach, by its nature, allows a tighter integration

of NNLMs for both the target language model and

the translation models, motivating the study pre-

sented in this work. Before the tuple generation, nor-

mally the bilingual corpora is monotonized, reorder-

ing source language sentences to follow the order of

words at its corresponding target language sentence.

N -gram-based decoders need to produce reordering

hypotheses, which could be constrained to reduce the

search space. The reordering search constraints are

taken into account generalizing the Eq. (1) as follows:

(T̂, ϕ̂) = arg max
(T,ϕ)

M∑
m=1

λmhm(T, ϕ), (4)

where T = T1T2 . . . T|T| is a sequence of target tu-

ples Ti = (xi, yi) ∈ ∆, with xi ∈ Σ+ (one or more

source words), and yi ∈ Γ? (zero or more target

words). The vocabulary ∆ is the bilingual vocabu-

lary of the N -gram translation model. The function

ϕ : {1, 2, . . . , |f |} → {1, 2, . . . , |T|} associates a tuple

index with each source word position of the sentence

f . The model restricts the order of source words in-

side a tuple to be always in an increasing order. The

target sentence ê is extracted from the sequence T̂

taking into account the target part yi of each tuple.

5.1. Combination of LMs for
translation

Both SMT approaches to translation, phrase and N -

gram based approaches, use a combination of models

as shown in Eq. (1): the bilingual N -gram translation

model, an N -gram target language model, phrase

translation probabilities (direct and inverse), lexicon

direct and inverse translation models, a weak dis-

tortion model, a lexicalized reordering model, word

penalty, and tuple penalty. In our SMT system, both

language models and translation models are NNLMs.

5.1.1. The bilingual N -gram translation
model

The N -gram translation model41 computes the ap-

proximation of p(e, f) ≈ p(T) over the composition

of the source and target sentences into a sequence of

bilingual tuples, given the sequence of tuples. This

model is a Stochastic Finite State Transducer trained

from the bilingual tuple segmented corpus, following

the GIATI (Grammar Inference and Alignments for

Transducer Inference) technique:40

hTrM (T, ϕ) = p(T) ≈ p(T1T2 . . . T|T|)

≈
|T|∏
i=1

p(Ti|Ti−N+1 . . . Ti−1) (5)

where N is the order of the N -gram translation

model. In our SMT system, this translation model

is an NNLM, which will be called Neural Network

Translation Model (NNTrM).

5.1.2. The N -gram target language model

The N -gram target language model computes the

approximation of p(e) as:

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

6 Zamora-Mart́ınez and Castro-Bleda

hTaLM (T, ϕ) = p(e) ≈
|e|∏
i=1

p(ei|ei−N+1 . . . ei−1) (6)

where N is the order of the N -gram target language

model. Again, an NNLM is used as the target lan-

guage model in our translation system, Neural Net-

work Target Language Model (NNTaLM).

5.1.3. Other models

Besides the translation and the target LMs, we added

to the SMT system the following models:

• Lexicon direct and inverse translation models:

Both are based on IBM-1 models.44 Let q(yj |xi)
the direct statistical dictionary probability for the

alignment of source word xi with target word yj :

hf2e(T, ϕ) =

|T|∏
i=1

h′f2e(Ti) (7)

h′f2e(x, y) =
1

(|x|+ 1)|y|

|y|∏
j=1

|x|∑
i=0

q(yj |xi) (8)

being he2f and h′e2f computed in a complementary

way.

• Weak distortion model: It computes a penalization

of the reordering of the output hypothesis penal-

izing adjacent tuples which source part is not con-

secutive. The order of words inside a tuple is not

penalized.

• Lexicalized reordering model: Six different mod-

els were trained, based on the Moses lexicalized

reordering model,37 and they were computed over

the current and previous tuple, and the ϕ function.

• Word and tuple bonus models: These two models

penalize the number of inserted words and inserted

tuples generated by the system.

5.2. Decoders for SMT

All experiments were conducted using our APRIL

toolkit,45,46 which implements the decoding of both

phrase-based and N -gram-based SMT systems. The

two approaches are similar and the decoding process

is divided in three steps:47 source sentence reordering

hypotheses lattice generation, extension of previous

lattice with tuples or phrases, and finally a Viterbi-

based procedure which searches the best translation

over a previous bilingual lattice. The major difference

between the phrase-based and the N -gram-based de-

coder lies in the generation of translation options (see

Figure 2 for an example):

• In phrase-based SMT, the source sentence lat-

tice is extended with translation options spanning

on source word positions in increasing order and

which are contiguous. The Viterbi step searches

over phrase lattice using the target LM and the

reordering models.

• In N -gram-based SMT, the source sentence lattice

is extended with tuples spanning on source word

positions in increasing order but allowing jumps,

so positions may not be contiguous. At the Viterbi

step, besides the target LM and the reordering

models, a bilingual N -gram translation model is

used.

6. Experimentation in an SMT System

The translation experiments were performed

with the medium-sized vocabulary News-

Commentary 2010 Spanish-English task. Statistics

extracted from the WMT’10 are shown in Table 1.

All numbers are computed after cleaning, tokeniza-

tion and lowercase preprocessing. The tokenization

was done using the script tokenizer.perl from the

WMT10. The English vocabulary was extracted from

the 80.9K sentences of the News-Commentary 2010

corpus that comes from limiting sentence lengths to

40. The News2008 set was used as a development set;

the News2009 set was used as an internal test set, for

comparison purposes between systems. Finally, the

News2010 set was used as a final test to measure the

generalization ability of the full experimentation.

All translation systems were trained from

Giza++48 word alignments using the heuristic

grow-diag-final-and.

N -gram baseline system combines 15 models in

the log-linear search: two lexical translation scores

(direct and inverse), two phrase conditional trans-

lation scores (direct and inverse), a 4-gram bilin-

gual translation model and, six lexicalized reorder-

ing model (based on the Moses lexicalized reorder-

ing model37), one weak reordering model, an En-

glish 4-gram LM (trained on monolingual data),

word penalty, and tuple penalty. N -gram LMs were

trained with the SRI tookit,49 and the NNLMs using

our APRIL toolkit.45,46

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 7

(a) Translation options for a phrase-based decoder:

Marı́a no daba una bofetada a la bruja verde

Mary not give a slap to the witch green

did not a slap by green witch

no slap to the

did not give to

the

slap the witch

(b) In an N -gram-based SMT, all previous translation options were possible, and more:

daba bofetada ||| slap

la verde ||| green

... ...

Figure 2. (a) Translation options for a phrase-based decoder, and (b) two additional options for an N -gram-based
decoder.

Table 1. NC-WMT’10 task. News2008 is used as a development set, News2009 as an internal
set, and News2010 as a final test.

Spanish English
Set # Lines # Words # Lines # Words Voc. size

News-Commentary 2010 80.9K 1.8M 81.0K 1.6M 38, 781
News2008 2.0K 52.6K 2.0K 49.7K –
News2009 2.5K 68.0K 2.5K 65.6K –
News2010 2.5K 65.5K 2.5K 61.9K –

Monolingual English corpus

Set # Lines # Words

News-Commentary 2010 125.9K 2.97M

N-gram bilingual translation model corpus

Set # Lines # Tuples Voc. size

News-Commentary 2010 80.9K 1.5M 231, 981

The phrase-based system combines 14 models,

the standard configuration of Moses.37 All systems

were optimized using the MERT procedure on the

News2008 set. For comparative purposes, phrase-

based systems were trained with Moses, and after

tuned and run using Moses and APRIL.

We experimented with one or two NNLMs, de-

pending if the NNLM was only used for the target

language model, only for the bilingual translation

model, or for both. NNLMs were trained using the

same version of the Stochastic Back-propagation al-

gorithm implemented in APRIL.

6.1. Neural Network Target Language
Model using the shortlist approach

For the target language model, different N -gram or-

ders were tested (values of N = 2, 3, 4, 5), which

will be identified as NNTaLM-Ngr being N the or-

der. Each model was a combination of three neu-

ral networks that differed only on the projection

layer size (Pj = 128, 160, 208). A hidden layer with

H = 200 neurons was selected, and a shortlist of the

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

8 Zamora-Mart́ınez and Castro-Bleda

|Γ′| = 20K most frequent words was used as an input

and output vocabulary for the neural networks. The

full vocabulary was formed by |Γ| = 39K words.

6.2. Neural Network Translation Model
based on statistical classes

If the vocabulary of the task is large, using the most

frequent words will only cover a small portion of the

tuples of the translation model. For example, for

the News-Commentary 2010 Spanish-English task

extracted from the WMT’10, the full tuple vocab-

ulary is |∆| ≈ 232K (see Table 1), which implies

that using a shortlist of the 20K more frequent tu-

ples will be only cover a 16% of the 1.5M running

tuples contained on training corpora, due to the big

sparsity of tuple vocabularies. This proportion will

make it useless, so the bilingual N -gram translation

model is estimated over statistical classes similarly

as in Ref.50 following these steps:

(1) A distribution of tuples in C statistical classes is

computed using command mkcls of Giza++.48

This distribution is not ambiguous, that is, a tu-

ple only belongs to one class. The number of

classes C is a parameter that needs to be em-

pirically estimated. The conditional probability

of a tuple given its class is computed as:

p(z|c) =
count(z|c)∑

z′∈∆ count(z′|c)
(9)

being z a tuple of ∆, c a class of C, count(z|c)
the count of times that tuple z appears in class

c. Note that in our formulation, due to the non-

ambiguity of tuple-to-class relation, count(z|c) is

equal to count(z).

(2) Every tuple in the training set was substituted

by its related class, generating a new version of

the training set. The translation model is esti-

mated over this new training set instead of over

raw tuples.

(3) In evaluation time, the conditional probability of

the translation model is computed as:

p(Ti|T i−1
i−N+1) ≈ p(Ti|ci) · p(ci|ci−1

i−N+1) , (10)

being Ti a tuple of hypotheses, ci the class where

tuple Ti belongs, and p(ci|ci−1
i−N+1) the probabil-

ity computed by the class-based NNLM.

Different translation models were trained,

changing the order of the N -gram N = 2, 3, 4, 5

and the number of statistical classes C =

100, 300, 500, 1000. Only the more promising com-

binations of N and C were tested. Each transla-

tion model was a combination of three neural net-

works that differed only in the projection layer size

(Pj = 64, 96, 128). Each neural network had a hidden

layer with H = 200 neurons. The input and output

vocabulary were the class vocabulary.

6.3. Analysis of the experimental
results

Different toolkit and MERT configurations were

tested on the experimentation. Specifically, the con-

figurations were:

• Moses: default Moses configuration using the same

training and development/test sets.

• APRIL-PB: our decoder configured to use Phrase-

based translation models. MERT procedure is ex-

ecuted using our decoder.

• Moses?: Moses configured to use the weights ob-

tained as the best ones from APRIL-PB.

• APRIL-NG: our decoder using the N -gram-based

translation models.

Performance of the tuning experiments with dif-

ferent Neural Network Target Language Models is

shown in Table 2. All these results are obtained by

integrating the NNLMs in the decoding stage, using

the smoothed Fast NNLM approach. For comparison

purposes, the PPL is measured linearly combining

the NNLM with the standard N -gram, even when

during decoding stage this combination is log-linear.

The loss of PPL corresponding to the smoothed Fast

NNLM is 8 absolute points in the worst case (ap-

proximately 4% relative loss), in contrast with the

improvement of 44 points respect to the baseline (ap-

proximately 16% of relative improvement).

Relating automatic assessment measures for

translation, several ones have been proposed in the

literature to model the correspondence between the

output produced by the SMT system and a refer-

ence. BLEU (BiLingual Evaluation Understudy)51

and TER (Translation Edit Rate)52 are currently

ones of the most used in the field. BLEU is based

on the geometric average of a modified N -gram pre-

cision, so that the higher the value the better. By

contrast, TER is a modification of the Word Er-

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 9

Table 2. NC-WMT’10 task, tuning experiments: BLEU/TER for the
News2009 set using different Neural Network Target Language Models
(NNTaLM-Ngr). Perplexity (PPL) results are also shown linearly combining
NNLMs and standard N -grams.

System BLEU TER PPL

APRIL-NG baseline 20.2 60.4 269

Fast NNLM Std. NNLMs

+ NNTaLM-2gr 20.3 60.4 246 246
+ NNTaLM-3gr 20.6 60.2 231 227
+ NNTaLM-4gr 20.9 59.9 226 217
+ NNTaLM-5gr 20.8 60.0 225 213

ror Rate (WER) which allows to take into acount

word reorderings, trying to evaluate the cost of a

post-editing in order to correct the output of the

SMT system. So, as with WER, the lower the value

the better. The best BLEU/TER result is obtained

by the N = 4 target language model The improve-

ment respect to the baseline is 0.7 absolute points of

BLEU (3.5% of relative improvement), and 0.5 abso-

lute points of TER (0.8% of relative improvement).

Results with different Neural Network Transla-

tion Models are shown in Figure 3. The best model

is NNTrM-300-4gr, a 4-gram translation model esti-

mated with C = 300 statistical classes. The improve-

ment respect to the baseline is 0.7 absolute points of

BLEU (3.5% of relative improvement) and 0.4 abso-

lute points of TER (0.6% of relative improvement).

Following, performance of combining the best 4-

gram target language model with the two best trans-

lation models (4-grams with 300 and 500 classes) is

shown in Table 3. It is observed that the best perfor-

mance, obtained with the 4-gram translation model

with 500 classes (NNTrM-500-4gr model) achieves an

improvement of 1 absolute point of BLEU (5% of

relative improvement) and 0.7 points of TER (1.2%

of relative improvement). BLEU improvements are

statistical significant under a “pairwise comparison”

test53 for a confidence interval of 95%.

The final results with the News2009 internal test

set and the official test set News2010 are shown in

Table 4.

 20.5

 20.6

 20.7

 20.8

 20.9

 2 3 4 5

B
L
E

U

Value of N-gram order

NNTM-100
NNTM-300
NNTM-500

NNTM-1000

Figure 3. NC-WMT’10 task, tuning experiments using
the News2009 set and different values of N (value of N -
gram order) and C (statistical classes) for the Neural
Network Translation Model (NNTrM).

6.3.1. Baseline systems comparison

Differences between Moses and our decoder APRIL

are not significant (APRIL-PB, Moses?, APRIL-

NG), being the Phrase-based translation models,

APRIL-PB, the faster decoder.

6.3.2. NNLMs in a totally coupled decoding
algorithm on the News2010 test set

Adding both neural network translation and target

language models to the N -gram-based APRIL-NG

system achieves an improvement of 0.9 BLEU points

(4% of relative improvement), and 0.9 TER points

(1.6%). These differences are statistically significant

under a pairwise comparison test using a 95% con-

fidence interval. On the other hand, adding a target

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

10 Zamora-Mart́ınez and Castro-Bleda

Table 3. NC-WMT’10 task, tuning experiments: BLEU/TER
for the News2009 set combining a 4-gram Neural Network Target
Language Model (NNTaLM-4gr) with 4-gram Neural Network
Translation Models (NNTrMs) with different number of classes
C = 300, 500.

System BLEU TER

APRIL-NG baseline 20.2 60.4
+ NNTaLM-4gr 20.9 59.9
+ NNTaLM-4gr + NNTrM-300-4gr 21.1 59.7
+ NNTaLM-4gr + NNTrM-500-4gr 21.2 59.7

Table 4. NC-WMT’10 task, final experiments: BLEU/TER for the News2009 internal
test set and the official News2010 test set. NNTrM stands for Neural Network Transla-
tion Models and it is a 4-gram estimated with 500 classes (NNTrM-500-4gr). NNTaLM
stands for Neural Network Target Language Model and it is a 4-gram (NNTaLM-4gr).
The averaged number of seconds per sentence (Time) was measured for each system.
Time of rescoring approach is the sum of both stages: decoding plus rescoring.

News2009 News2010
System BLEU TER BLEU TER Time

Moses 20.4 60.3 22.6 57.8 0.6
APRIL-PB 20.6 60.3 22.7 57.8 0.4
Moses? – – 22.6 57.9 0.6
APRIL-NG 20.2 60.4 22.7 58.0 0.8

Integrating smoothed Fast NNLMs in the decoder

APRIL-PB + NNTaLM 21.2 59.8 23.2 57.5 1.8
APRIL-NG + NNTaLM 20.9 59.9 23.2 57.4 1.8
APRIL-NG + NNTrM 20.7 60.0 23.3 57.6 1.6
APRIL-NG + NNTaLM + NNTrM 21.2 59.7 23.6 57.1 2.5

Integrating on-the-fly Fast NNLM (standard NNLMs) in the decoder

APRIL-PB + NNTaLM – – 23.3 57.3 384.3
APRIL-NG + NNTaLM + NNTrM – – 23.7 57.1 177.3

Rescoring 2000-uniq-best list with standard NNLMs

APRIL-PB + NNTaLM 21.1 59.9 23.4 57.3 3.9
APRIL-NG + NNTaLM 20.9 60.0 – – –
APRIL-NG + NNTrM 20.6 60.2 – – –
APRIL-NG + NNTaLM + NNTrM 21.1 59.8 23.5 57.4 4.3

language model to the Phrase-based APRIL-PB sys-

tem achieves an improvement of 0.4 BLEU and TER

points.

6.3.3. NNLMs n-best list rescoring using
2000-uniq-best lists

First of all, note that for rescoring, standard NNLMs

are used instead of smoothed Fast NNLMs. For the

N -gram-based APRIL-NG system, the integration

of the translation model and the target language

model in the decoding stage achieves better results

than their use in a decoupled rescoring step for

both News2009 and News2010 test sets. However,

the Phrase-based APRIL-PB system obtains better

results by using the rescoring approach than by the

integrated approach. In all cases the differences are

not statistically significant, though very interesting

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 11

B
L

E
U

T
E

R

BLEU NG
BLEU PB
TER NG
TER PB

22.6

22.8

22.9

23.1

23.2

23.4

23.5

23.6

23.8

57.0

57.1

57.2

57.3

57.4

57.5

57.6

57.7

57.8

T
im

e
 (

s
/s

e
n

te
n

c
e

)

Number of pre-calculated softmax normalization constants (log-scaled)

NG
PB

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

1e+02 1e+03 1e+04 1e+05 1e+06

Figure 4. BLEU/TER and time versus number of pre-calculated softmax normalization constants during decoding of
News2010 test set with smoothed Fast NNLM: PB refers to phrase-based system, and NG to N -gram-based system.

because, even when the integrated approach uses a

“degraded” version of NNLMs, its quality is com-

petitive compared with the rescoring approach. It is

also important to notice here that integrated sys-

tem is faster than the decoupled one (almost double

faster, 1.8 averaged number of seconds per senteces

versus 3.9, and 2.5 versus 4.3, respectively, see last

column of Table 4). This comparison, in terms of per-

formance and in terms of time, clarifies the merits of

our approach.

6.3.4. Trade-off between quality and time

Figure 4 represents the evolution of BLEU and

TER for N -gram-based APRIL-NG and Prase-

based APRIL-PB systems, depending on the number

of precomputed softmax normalization constants.

APRIL-NG shows better accuracy when increasing

the number of constants, due to the incorporation of

two kinds of NNLMs, one for target LM and other

for bilingual translation LM. This behavior is found

for both figures, BLEU and TER. However, N -gram-

based APRIL-NG needs more decoding time due to

the same reason. Figure 5 shows the percentage of

LM look-ups: a first cache level hit; a 4-gram NNLM

hit; a 3-gram hit; or a bigram hit. The number of

cache hits is not affected by the number of precom-

puted constants. For the target language model, the

Prased-based APRIL-PB system shows more cache

hits. The usage of order N NNLM is similar in all

cases, showing that exists a big room for improve-

ment increasing the number of 4-gram hits. The num-

ber of cache hits at the translation model decreases

drastically compared to the target language model,

which is the principal reason for the computational

difference between APRIL-NG and APRIL-PB. Im-

pressive speedup is achieved following the smoothed

Fast NNLM (more than 70 times faster) compared

to the integration of on-the-fly Fast NNLM (see Ta-

ble 4).

6.3.5. Comparing SMT systems output

Finally, TER was computed between all pairs ob-

tained from the following systems: the integrated

system without smoothing, the integrated smoothed

Fast NNLM system, and using rescoring of n-best

lists in a non-integrated NNLM system (see Table 5).

Integrated systems show more similar outputs, even

when one is using standard NNLMs and the other

smoothed Fast NNLMs. Differences between rescor-

ing and integrated systems suggests deeper future

research to improve the integration of NNLMs in the

system.

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

12 Zamora-Mart́ınez and Castro-Bleda

Figure 5. % usage of N orders versus number of pre-calculated softmax normalization constants during decoding of
News2010 test set with smoothed Fast NNLM: (top) N -gram-based system % usage for the target language model
(NNTaLM); (middle) N -gram-based system % usage for the translation model (NNTrM); (bottom) phrase-based system
% usage for the target language model (NNTaLM).

Table 5. NC-WMT’10 task, final experiments for the official News2010 test set. Compar-
ison of TER between best system outputs. Systems: Integrated Standard NNLM system
without smoothing; Integrated smoothed Fast NNLM; Rescoring n-best list using a stan-
dard NNLM system.

Phrase-based SMT N -gram-based SMT
Integrated Rescoring Integrated Rescoring

Standard 5.5 10.2 Standard 4.6 10.6
Integrated – 9.0 Integrated – 11.2

7. Conclusions

Different combinations of NNLMs used as both N -

gram-based translation models and as target lan-

guage models have been tested on a medium-sized

March 5, 2017 2:25
2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 13

vocabulary task extracted from international ma-

chine translation evaluations. Our SMT system is

one of the first to fully integrate NNLMs for both tar-

get and translation models into the decoding stage,

breaking the traditional approach based on n-best

lists rescoring in a decoupled stage. This integration

into the decoder allows to more strongly influence

the translation quality. To fulfill this integration, the

computational issues associated with NNLMs were

solved by memorization of the softmax normaliza-

tion constants and by degrading the models using

smoothing techniques. This approach leads to a sys-

tem between two and three times slower than the

reference system, but more than 70 times faster than

an integrated NNLMs system without smoothing.

Our translation system is competitive with

state-of-the-art Phrase-based Moses systems.37 A

class-based bilingual translation model trained as

an NNLM is enough to enhance the results of a

conventional N -gram-based system. Obviously, bet-

ter translation models, not only based on statistical

classes, would achieve better results, and a further

research is needed in this line. The integration of

“degraded” NNLMs (smoothed Fast NNLMs) in the

decoding algorithm has been shown competitive with

standard NNLMs used in an n-best list rescoring ap-

proach, slightly improving the results obtained with

standard NNLMs and making the integrated system

faster than the n-best list resconring approach. How-

ever, there is still a room for improvement on the cou-

pling of NNLMs in the decoding stage of the search

algorithm.

Thus, to summarize our primary contribu-

tions:

(1) A fast approach for using integrated NNLMs in

the SMT decoder. To circumvent the expensive

computation of the softmax normalization con-

stants, we pre-compute and memorize some nor-

malization constants for contexts of different or-

ders (the most frequent ones), which are stored

in a trie. At decoding time, smoothing, if needed,

is performed by using the normalization constant

for the largest subset of the context that is stored

in their trie.

(2) Smart caching during decoding of both the scores

for the N -grams and the hidden state for con-

texts. The hidden state caching avoids poten-

tially expensive forward propagation from the

input to the hidden layer.

(3) A detailed comparison of integrated decoding vs

rescoring on a medium-scale vocabulary machine

translation task. To do so, our phrase based and

N -gram based machine translation systems were

augmented with both neural network target lan-

guage and translation models.

It is important to remark that the techniques

presented in this work are compatible with many

other improvements that have recently appeared:

• Integration of Structured Output Layer NNLMs18

at the decoding stage is a very promising future

work in order to better exploit the integrated sys-

tem versus the rescoring n-best aproach.

• It is straightforward to combine the ideas pre-

sented in this paper using Noise Contrastive Es-

timation,21,24 allowing substantial less time for

training and evaluation using normalized output

probabilities.

In the future, more experimentation with big-

ger sized vocabularies will be performed to study the

scalability of the proposed approach.

Bibliography

1. H. Schwenk, Continuous space language models,
Comput. Speech and Lang. 21(3) (2007) 492–518.

2. D. Bahdanau, K. Cho and Y. Bengio, Neural ma-
chine translation by jointly learning to align and
translate, CoRR abs/1409.0473v6 (2015) 1–15.

3. J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz
and J. Makhoul, Fast and robust neural network
joint models for statistical machine translation, Proc.
of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL), 2014, pp. 1370–
1380.

4. Y. LeCun, Y. Bengio and G. Hinton, Deep learning,
Nature 521 (05 2015) 436–444.

5. A. Ortiz, J. Munilla, J. M. Górriz and J. Ramı́rez,
Ensembles of Deep Learning Architectures for the
Early Diagnosis of the Alzheimers Disease, Int. J.
Neural Syst. 26(07) (2016) p. 1650025.

6. K. Papineni, S. Roukos and T. Ward, Maximum like-
lihood and discriminative training of direct transla-
tion models, Proc. of International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
1998, pp. 189–192.

7. F. Och and H. Ney, Discriminative training and max-
imum entropy models for statistical machine trans-
lation, Proc. of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), 2002,
pp. 295–302.

March 5, 2017 2:25
2017IJNS˙EfficientEmbeddedDec

14 Zamora-Mart́ınez and Castro-Bleda

8. H. Schwenk and J.-L. Gauvain, Connectionist lan-
guage modeling for large vocabulary continuous
speech recognition, Proc. of International Confer-
ence on Acoustics, Speech, and Signal Processing
(ICASSP), 2002, pp. 765–768.

9. Y. Bengio, R. Ducharme, P. Vincent and C. Jauvin,
A Neural Probabilistic Language Model, J. Mach.
Learn. Res. 3(2) (2003) 1137–1155.

10. M. J. Castro-Bleda and F. Prat, New Directions
in Connectionist Language Modeling, Computational
Methods in Neural Modeling , LNCS 2686 (Springer-
Verlag, 2003), pp. 598–605.

11. H. Schwenk, D. Dèchelotte and J. L. Gauvain, Con-
tinuous space language models for statistical ma-
chine translation, Proc. of the Joint Conference
ACL/Coling , 2006, pp. 723–730.

12. Y. Bengio, Neural net language models, Scholarpedia
3(1) (2008) p. 3881.

13. L. H. Son, A. Allauzen and F. Yvon, Continu-
ous Space Translation Models with Neural Net-
works, Proc. of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL
HLT), 2012, pp. 39–48.

14. A. Vaswani, Y. Zhao, V. Fossum and D. Chiang,
Decoding with large-scale neural language models
improves translation, Proc. of Empirical Methods in
Natural Language Processing (EMNLP), 2013, pp.
1387–1392.

15. F. Morin and Y. Bengio, Hierarchical probabilistic
neural network language model, Proc. of the 10th In-
ternational Workshop on Artificial Intelligence and
Statistics (AISTATS), 2005, pp. 246–252.

16. A. Mnih and G. Hinton, A Scalable Hierarchical Dis-
tributed Language Model, Advances in Neural Infor-
mation Processing Systems, 21 2009, pp. 1081–1088.

17. T. Mikolov, A. Deoras, D. Povey, L. Burget and
J. Cernocký, Strategies for Training Large Scale
Neural Network Language Models, Proc. of the
Workshop on Automatic Speech Recognition and Un-
derstanding (ASRU), 2011, pp. 196–201.

18. L. Hai-Son, I. Oparin, A. Alluzen, J.-L. Gauvain
and F. Yvon, Structured Output Layer Neural Net-
work Language Model, Proc. of International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), 112011, pp. 5524–5527.

19. H. S. Le, I. Oparin, A. Messaoudi, A. Allauzen, J.-L.
Gauvain and F. Yvon, Large vocabulary soul neu-
ral network language models., Proc. of Interspeech,
2011, pp. 1469–1472.

20. Y. Shi, W.-Q. Zhang, M. Cai and J. Liu, Efficient
one-pass decoding with nnlm for speech recognition,
IEEE Signal Process. Lett. 21 (2014) 377–381.

21. M. Gutmann and A. Hyvärinen, Noise-contrastive
estimation: A new estimation principle for unnor-
malized statistical models, Proc. of the International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2010, pp. 297–304.

22. A. Mnih and Y. W. Teh, A fast and simple algo-
rithm for training neural probabilistic language mod-
els, Proc. of the 29th International Conference on
Machine Learning (ICML), 2012, pp. 1751–1758.

23. V. Mnih and G. E. Hinton, Learning to label aerial
images from noisy data, Proc. of the 29th Inter-
national Conference on Machine Learning (ICML),
2012, pp. 567–574.

24. A. Mnih and K. Kavukcuoglu, Learning word embed-
dings efficiently with noise-contrastive estimation,
Advances in Neural Information Processing Systems,
26 2013, pp. 2265–2273.

25. T. Mikolov, S. Kombrink, L. Burget, J. Cernocký
and S. Khudanpur, Extensions of recurrent neural
network language model, Proc. of International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), 2011, pp. 5528–5531.

26. Y. Hu, M. Auli, Q. Gao and J. Gao, Minimum
translation modeling with recurrent neural networks,
Proc. of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL), 2014, pp. 20–29.

27. A. Graves, S. Fernández, F. Gomez and J. Schmidhu-
ber, Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural
networks, Proc. of the 23rd International Conference
on Machine learning (ICML), 2006, pp. 369–376.

28. A. Emami and L. Mangu, Empirical study of neural
network language models for arabic speech recogni-
tion, Proc. of the Workshop on Automatic Speech
Recognition Understanding (ASRU), 2007, pp. 147–
152.

29. F. Zamora-Mart́ınez, V. Frinken, S. España-
Boquera, M. J. Castro-Bleda, A. Fischer and
H. Bunke, Neural network language models for off-
line handwriting recognition, Pattern Recogn. 47(4)
(2014) 1642–1652.

30. J. Park, X. Liu, M. J. Gales and P. C. Woodland, Im-
proved Neural Network Based Language Modelling
and Adaptation, Proc. of Interspeech, 2010, pp. 26–
30.

31. H. Schwenk and P. Koehn, Large and diverse lan-
guage models for statistical machine translation,
Proc. of the International Joint Conference on Nat-
ural Language Processing (IJCNLP), 2008, pp. 661–
666.

32. F. Zamora-Mart́ınez, M. J. Castro-Bleda and
S. España-Boquera, Fast Evaluation of Connec-
tionist Language Models, Proc. of the Int. Work-
Conference on Artificial Neural Networks (IWANN),
2009, pp. 33–40.

33. C. Allauzen, M. Mohri and B. Roark, Generalized al-
gorithms for constructing statistical language mod-
els, Proc. of the 41st Annual Meeting on Association
for Computational Linguistics (ACL), 2003, pp. 40–
47.

34. E. Arisoy, S. F. Chen, B. Ramabhadran and
A. Sethy, Converting neural network language mod-

March 5, 2017 2:25 2017IJNS˙EfficientEmbeddedDec

Efficient Embedded Decoding of NNLMs in a MT System 15

els into back-off language models for efficient decod-
ing in automatic speech recognition, Proc. of Inter-
national Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), 2013, pp. 8242–8246.

35. R. Wang, M. Utiyama, I. Goto, E. Sumita, H. Zhao
and B.-L. Lu, Converting Continuous-Space Lan-
guage Models into N-gram Language Models for Sta-
tistical Machine Translation, Proc. of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), 2013, pp. 845–850.

36. P. Koehn, F. J. Och and D. Marcu, Statistical
phrase-based translation, Proc. of the 2003 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Lan-
guage Technologies (NAACL HLT), 2003, pp. 48–54.

37. P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin
and E. Herbst, Moses: open-source toolkit for statis-
tical machine translation, Proc. of the Association
for Computational Linguistics (ACL), 2007, pp. 177–
180.

38. F. Prat, F. Casacuberta and M. J. Castro, Machine
Translation with Grammar Association: Combining
Neural Networks and Finite-State Models, Proc. of
the Second Workshop on Natural Language Process-
ing and Neural Networks, 2001, pp. 53–60.

39. F. Casacuberta, E. Vidal and J. M. Vilar, Architec-
tures for speech-to-speech translation using finite-
state models, Proc. of the Workshop on Speech-to-
Speech Translation: Algorithms and Systems, 2002,
pp. 39–44.

40. F. Casacuberta and E. Vidal, Machine transla-
tion with inferred stochastic finite-state transducers,
Comput. Ling. 30 (2004) 205–225.

41. J. B. Mariño, R. E. Banchs, J. M. Crego, A. de Gis-
pert, P. Lambert, J. A. Fonollosa and M. R. Costa-
jussà, N-gram-based Machine Translation, Comput.
Ling. 32 (2006) 527–549.

42. M. R. Costa-jussà, J. M. Crego, P. Lambert,
M. Khalilov, J. A. Fonollosa, J. B. Mariño and R. E.
Banchs, Ngram-based statistical machine transla-
tion enhanced with multiple weighted reordering hy-
potheses, Proc. of the Second Workshop on Statisti-
cal Machine Translation (WMT), 2007, pp. 167–170.

43. H.-S. Le, T. Lavergne, A. Allauzen, M. Apidianaki,
L. Gong, A. Max, A. Sokolov, G. Wisniewski and
F. Yvon, Limsi@wmt12, Proc. of the Workshop on

Statistical Machine Translation (WMT), 2012, pp.
330–337.

44. P. F. Brown, V. J. Della-Pietra, S. A. Della-Pietra
and R. L. Mercer, The mathematics of statistical
machine translation: parameter estimation, Comput.
Ling. 19(2) (1993) 263–311.

45. S. España-Boquera, F. Zamora-Mart́ınez, M. J.
Castro-Bleda and J. Gorbe-Moya, Efficient BP Al-
gorithms for General Feedforward Neural Networks,
Bio-inspired Modeling of Cognitive Tasks, LNCS
4527 (Springer, 2007), pp. 327–336.

46. F. Zamora-Mart́ınez, S. España-Boquera, J. Gorbe-
Moya, J. Pastor-Pellicer and A. Palacios-Corella,
APRIL-ANN toolkit, A Pattern Recognizer In
Lua with Artificial Neural Networks (2013),
https://github.com/pakozm/april-ann.

47. F. Zamora-Mart́ınez, M. J. Castro-Bleda and
H. Schwenk, N-gram-based Machine Translation en-
hanced with Neural Networks for the French-English
BTEC-IWSLT’10 task, Proc. of the 7th Interna-
tional Workshop on Spoken Language Translation
(IWSLT), 2010, pp. 45–52.

48. F. J. Och and H. Ney, A Systematic Comparison
of Various Statistical Alignment Models, Comput.
Ling. 29(1) (2003) 19–51.

49. A. Stolcke, SRILM: an extensible language model-
ing toolkit, Proc. of the International Conference
on Spoken Language Processing (ICSLP), 2002, pp.
901–904.

50. T. Mikolov, S. Kombrink, L. Burget, J. Cernocky
and S. Khudanpur, Extensions of recurrent neural
network language model, Proc. of the International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), May 2011, pp. 5528–5531.

51. K. Papineni, S. Roukos, T. Ward and W.-J. Zhu,
BLEU: A Method for Automatic Evaluation of Ma-
chine Translation, Proc. of the 40th Annual Meet-
ing on Association for Computational Linguistics
(ACL), 2002, pp. 311–318.

52. M. Snover, B. Dorr, R. Schwartz, L. Micciulla and
J. Makhoul, A study of translation edit rate with
targeted human annotation, Proc. of the Association
for Machine Translation in the Americas, 2006, pp.
223–231.

53. P. Koehn, Statistical significance tests for machine
translation evaluation, Proc. of Empirical Methods
in Natural Language Processing (EMNLP), 2004, pp.
388–395.

