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Abstract

An important goal in visual neuroscience is to understand how neuronal population coding in 

vertebrate retina mediates the broad range of visual functions. Microelectrode arrays interface on 

isolated retina registers a collective measure of the spiking dynamics of retinal ganglion cells 

(RGCs) by probing them simultaneously and in large numbers. The recorded data stream is then 

processed to identify spike trains of individual RGCs by efficient and scalable spike detection and 

sorting routines. Most spike sorting software packages, available either commercially or as 

freeware, combine automated steps with judgment calls by the investigator to verify the quality of 

sorted spikes. This work focused on sorting spikes of RGCs into clusters using an integrated 

analytical platform for the data recorded during visual stimulation of wild-type mice retinas with 

whole field stimuli. After spike train detection, we projected each spike onto two feature spaces: a 

parametric space and a principal components space. We then applied clustering algorithms to sort 

spikes into separate clusters. To eliminate the need for human intervention, the initial clustering 

results were submitted to diagnostic tests that evaluated the results to detect the sources of failure 

in cluster assignment. This failure diagnosis formed a decision logic for diagnosable electrodes to 

enhance the clustering quality iteratively through rerunning the clustering algorithms. The new 

clustering results showed that the spike sorting accuracy was improved. Subsequently, the number 

of active RGCs during each whole field stimulation was found, and the light responsiveness of 

each RGC was identified. Our approach led to error-resilient spike sorting in both feature 

extraction methods; however, using parametric features led to less erroneous spike sorting 

compared to principal components, particularly for low signal-to-noise ratios. As our approach is 

reliable for retinal signal processing in response to simple visual stimuli, it could be applied to the 

evaluation of disrupted physiological signaling in retinal neurodegenerative diseases.
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1. Introduction

Retinal ganglion cells (RGCs) carry visual signals from the eye to the brain, and can be 

subdivided into 20–30 cell types based on neuroanatomical, physiological, molecular and 

functional criteria.1 Information contained in the visual stimulus is detected by 

photoreceptors and decomposed into multiple information streams by the retinal circuitry.2–5 

Aspects of the visual scene, such as luminance, local contrast, color and movement, are then 

passed on to specific RGC types that relay the information to distinct brain nuclei. Given the 

topographic organization of the visual scene, some aspects of the visual stimulus can be 

reported over the entire retinal surface to construct a coherent representation of the 

surrounding world. Thus, it is suitable to record visual stimulus responses from the entire 

RGC population tiling the retinal surface to understand how our nervous system encodes the 

visual scene.

The three most promising techniques capable of simultaneous recording of potential activity 

from large neuronal ensembles are microelectrode arrays (MEAs), intracellular calcium 

(Ca2+) indicators and membrane voltage indicators. MEA recordings yield high spatial and 

temporal resolution for measuring extracellular action potentials.5–7 However, preparations 

resulting in a good transmission of the action potential from the cell to the electrode are not 

trivial. A major improvement in the field has come from the use of very dense arrays, or the 

introduction of CMOS-based devices that promise a higher resolution, nearing complete 

reporting of the RGCs in the ensemble.8–10 Ca2+ indicators are chemical or genetic probes 

whose fluorescence intensity or spectrum is modulated upon Ca2+ concentration changes 

and are amenable to full-field imaging of the retinal preparation.3,11,12 However, these 

changes are more prominent when the large depolarization waves associated with action 

potentials open voltage-dependent Ca2+ channels. Although these techniques are more 

successful at revealing activity of all neurons in the imaged preparation, they have poor 

temporal resolution. This is due to both the physicochemical limits of the Ca2+-dependent 

fluorescence change and the slow dynamics of Ca2+ clearance from the neuron after the 

signaling or action potential has subsided. Membrane voltage indicators are the most recent 

addition to the toolset, and have better temporal resolution than the Ca2+ indicators, however 

yield a far lower signal-to-noise (SNR) ratio.13

Spike sorting algorithms serve to separate extracellular spike recordings from individual 

cells into distinct neuronal units. After detecting spikes from the measurements and 

representing them by their salient features, a clustering method groups spikes into different 

clusters. Then, a template waveform can be defined to orient the rest of spike sorting to 

semi-supervised or unsupervised threads. Several spike inference approaches have been 

applied to solve this problem, including template matching,14–17 matched filter design18,19 

and Bayesian techniques.20–23 Given that these approaches are limited in scope by their 

modeling assumption, and pose heavy computation challenges for large datasets, there is a 

need to explore alternative solutions. As assignment of the spikes to clusters is typically 

subject to false-positive (FP; contamination of clusters by spikes belonging to other cells) 

and false-negative (FN; artifactual splitting of clusters of spikes that belong to the same cell) 

errors, it is necessary to introduce some metrics that quantify these errors. It is then possible 

to inform methods to reduce these errors by refining the quality of initial clusters. In the 
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literature, this step is simply known as splitting and merging, either manually15,24,25 or 

systematically.26–28 Apart from this error analysis, an ideal clustering technique should be 

robust against modes of firing, namely, regular spiking versus bursting,29–31 multispike 

trains7,21,32,33 and local field potentials.34,35

Classical cluster analysis techniques do not easily generalize to other unsupervised data 

partitioning tasks. Although they perform well on the specific task for which they were 

originally designed, their performance degrades when applied to other clustering tasks at 

scale, requiring huge data flow and intense data mining. If spike sorting is performed offline 

by clustering procedures, quality is usually improved by user’s verification of the clustering 

results. This typically includes visual inspection of raw data traces for sortable neuronal 

units, and/or generated clusters, to confirm whether each cluster contains exclusively the 

sorted spikes of individual units. To reduce this burden, thus facilitating automation, we 

considered iterative, exploratory computation routines to improve the quality of initial 

clusters in an integrated platform; that is, the initial representation of clusters was evaluated 

through a set of diagnostic tests, whose outputs were used to minimize the sum-of-squared-

error (SSE) from the initial clustering for a number of clusters. This combination of cluster 

analysis and failure diagnosis is the core of our approach to spike sorting: clustering 

supplied with diagnosis (ClusDiag). Our approach provides a new spike inference 

methodology for visual neuroscience, and herein we report the first illustration of its 

performance.

The dataset employed here was acquired from an MEA during visual stimulation of wild-

type mice retinas with whole field square wave stimuli. This study has three objectives: (i) 

sorting spikes recorded by individual electrodes into different clusters by using two feature 

extraction techniques; (ii) finding the number of active RGCs from the number of final 

clusters; and (iii) classifying those cells into three classical light-sensitive types. To meet the 

first objective, spike sorting was achieved by applying three analytical layers within 

ClusDiag to the data for each electrode: representation, evaluation and optimization. For 

representation, in the data preparation step, we first filtered baseline fluctuations caused by 

local field potentials out of the data and next enhanced the signal-to-noise ratio using the 

eigendecomposition technique. Second, an adaptive threshold method identified spike 

waveforms from the filtered data. Third, we inserted two feature extraction methods by 

projecting each detected spike waveform onto two feature spaces: a parametric space and a 

principal components space. Fourth, spikes were sorted into clusters based on leader–

follower and iterative minimum-squared-error (MSE) clustering algorithms. Subsequently, a 

template waveform for each cluster per electrode was defined. To evaluate the initial 

clustering results, we performed three diagnostic tests on each clusters template and its 

corresponding spikes, detected the FP and FN errors and tabulated them into a diagnostic 

dependency matrix (D-matrix). Depending on the number of clusters, failures and spikes, a 

logical decision indicated whether a reclustering was required. In case of reclustering for 

electrodes containing more than one cluster, a conjugate gradient method36 was used to 

iteratively mitigate the FP and FN errors. The updated clusters were derived by a second run 

of the MSE algorithm. Subsequently, a second iteration of reliability tests was run to see the 

extent of reduction of the errors after reclustering. The new D-matrix was examined next to 

see how well the errors were resolved and to discard those clusters or electrodes exhibiting 
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least error improvement from the rest of analysis. The remaining electrodes were checked by 

the third iteration of reliability tests that aimed to reduce the effect of spike events causing 

FP and FN failures. Finally, we quantified all FP and FN errors after complete execution of 

ClusDiag. We then turned to the second objective of finding the actual number of active 

RGCs based on the cluster identified in each electrode. To that end, we detected spike train 

coincidences between clusters of nearby electrodes, thus revealing RGCs whose spike trains 

had been recorded by more than one neighboring electrode. This allowed us to report the 

number of detected cells alongside the exact temporal features of each spike per cell per 

electrode. Lastly, to classify the sensitivity of the detected RGCs in response to the visual 

stimuli, we calculated the post-stimulus time histogram (PSTH) for spikes per cluster and 

defined a ratio index that indicated the light responsiveness of a cell.

2. Methods

This study analyzed electrophysiological responses of wild-type mouse RGCs to whole field 

stimuli. All mouse handling procedures during this study were approved by the Animal Care 

and Use Committee of the National Eye Institute (protocol NEI–640). The in vitro retina 

recording was performed with a standard MEA from Multi Channel Systems (MCS GmbH, 

Germany). This MEA allowed simultaneous light stimulation and recording of 60 

electrodes. The light stimulation and data acquisition system are shown in Fig. 1. Light 

stimulation consisted of fullfield black and white stimuli alternating every 2 s, for a total of 

10 iterations. Typically, multiple pieces of retina were derived from each mouse, and 

recorded successively on the same day. For this study, we used datasets from five such retina 

preparations (labeled WF1–WF5). We illustrate our approach over a 5 × 5 electrodes region 

of interest (ROI) centered on electrode E54.

For algorithmic data analysis suiting spike sorting, we considered an approach that drew on 

iterative, exploratory computation routines in an integrated platform. The approach evolved, 

altering specific parameters within itself, to become more consistent and robust over time 

through three analytical layers: representation, evaluation and optimization. First, the 

purpose of representation is to transform the time series data into a feature vector space that 

mines the data to learn the salient structure of the high-dimensional data space. 

Classification and regression techniques (such as logistic regression, decision trees and naive 

Bayes classifier), cluster analysis methods and dimensionality reduction techniques [such as 

principal component analysis (PCA) and partial least squares] have been commonly 

investigated. Second, an evaluation layer leverages diagnostic inference about the quality of 

the representation in place (e.g. deviation of the results from the expected values). This 

evaluation underpins rigorous improvement of the former presentation and is integral to 

reducing manual intervention. Third, continuous optimization techniques, such as gradient 

descent and quadratic programming, are versatile elements that provide iterative 

optimization of a criterion function describing the error incurred from the previous 

representation. Parameters within the representation are tuned iteratively to reinforce a more 

error-resilient representation of data to follow. It is noteworthy that choosing efficient, 

scalable algorithms and evaluations that fit together into this platform allows to continually 

improve the performance of the platform over its lifecycle.

Ghahari et al. Page 4

Int J Neural Syst. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The data representation comprised four stages per electrode: (i) data preparation, (ii) spike 

detection, (iii) feature extraction and (iv) cluster analysis. After data enhancement, the spikes 

were detected using an adaptive threshold technique.37 Each detected spike was projected 

onto two different feature spaces: a parametric space (fspike) and a principal components 

space. The rest of the analysis remained the same for both feature representations. The 

cluster analysis involved the sequential application of two clustering techniques: the leader-

follower algorithm and the iterative MSE clustering.38 Spikes from each electrode were 

grouped into clusters, and a template waveform was defined to represent their collective 

activity. To evaluate the clusters, a set of three diagnostic tests served to detect the FP and 

FN instances over the first run of clustering. The reclustering decision logic detected the 

faulty electrodes and, for optimization, called up the conjugate gradient method35 to 

minimize the sum-of-squared-error from the first run of clustering. The clustering routines 

were then run for only the faulty electrodes, and their new recovered clusters were examined 

by the second round of the diagnostic tests. This iteration served to detect the remnant 

severely faulty clusters and electrodes and, upon detection, excluded them from the rest of 

analysis. Finally, the last run of diagnostic tests resolved the rest of the contaminant clusters 

per electrode. This step finalized the diagnostic nature of ClusDiag, and an evaluation of 

total error quantified all the final FP and FN errors per cluster per electrode.39 At this point, 

all the clusters were represented by their templates. For cell detection, spike coincidence 

events were found among close-by cells whose spikes had been spread among nearby 

electrodes. For cell identification, the post-stimulus time histogram for the spiking pattern of 

each cell throughout the stimulation was calculated. Based on the relative difference of peak 

values during all ON and OFF periods from the histogram, each cell was classified into ON, 

OFF or ON–OFF type. The block diagram of the spike sorting approach is shown in Fig. 2. 

The clustering approach, together with the diagnostic tests, found the most reliable template 

waveforms representing individual neuronal units per electrode. The properties of each 

analytical layer of ClusDiag are outlined in the rest of this section up to Sec. 2.8.

2.1. Data preparation

Extracellular recording at sampling rate of fs = 25 kHz from low-impedance electrodes 

yields a typically low signal-to-noise ratio. In addition, when the dendrite–soma axes of the 

neighboring cells are aligned, their signals summate, and a compound fluctuating signal 

(local field potential) is generated. To ameliorate these existing physiological and 

bioelectrical constraints, the data preparation stage processed the raw data at two steps. First, 

the periodogram estimate of power spectral density of the data was found. This estimate 

showed that low-frequency dominant range for local field potentials appeared to exist below 

200 Hz, beyond which the power spectral density decreased notably. A zero-phase-shift 

finite impulse response (FIR) high-pass filter with cutoff frequency of 200 Hz was defined to 

offset the baseline fluctuation caused by local field potentials. Second, the 

eigendecomposition technique was applied.40 This technique has been central in the 

compass of discrete-time linear filter theory. An FIR filter designed with the optimization 

criterion to maximize the output signal-to-noise ratio is an eigenfilter. The coefficient vector 

of the impulse response of such optimum FIR filter is the eigenvector corresponding to the 

largest eigenvalue of the sample correlation matrix of the stochastic input process.
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2.2. Spike detection

Spike is the signal of interest in the extracellular recording stream from RGCs. Techniques 

used for spike detection include amplitude threshold,38,40–42 local minima detection,15,44 

spectral analysis,13,44,45 and adaptive threshold.37,46,47 A dependable approach needs to 

accommodate for potential fluctuations in RGCs firing rate during stimulus presentation. 

Most approaches to spike detection include adaptive corrections, which consider spike 

amplitude variations to refine the accuracy of spike detection. Here, an adaptive threshold 

spike detection37 is implemented, where the objective is to estimate the root-mean-square 

(rms) value of the background noise in an adaptive way. To this end, the approach uses the 

frequency of the threshold crossing, rather than spike amplitude, to adjust the rms level of 

background noise over time. A duty-cycle module is locked to the output of the first clocked 

comparator and is thus synchronized with each spike recurrence. It incorporates proportional 

and proportional-integral feedback controls of the rms value to maintain a duty cycle of 

0.159 for the output of the first comparator (representing the probability of crossing the one 

standard deviation (s.d.) threshold for a band-limited Gaussian noise). To emulate the 

electronics circuit here, the threshold detection employed the discrete samples of its input 

(filtered voltage) on each electrode to refine the noise rms level over time. This was done 

through the basic sample-and-hold discrete events for the first comparator’s output model, 

and provided a piecewise constant estimation of the adaptive threshold through each spike 

recurrence. Setting the integer multiplier of the second comparator to seven led to robustness 

against false detection due to occasional fictitious threshold crossings. Figure 3 shows the 

detection of spikes from three different electrodes.

2.3. Feature extraction

We defined a 2.5 ms long temporal window for each detected spike, which was registered to 

the peak amplitude, with the depolarization interval set to 1.15 ms and that of repolarization 

set to 1.35 ms. At the recording frequency of 25 kHz, each spike temporal cutout was 

represented by a vector of 63 samples. We then considered two different feature extraction 

methods for each detected spike by projecting it onto two feature spaces: (i) a spike-

parametric space and (ii) a principal components space. Feature extraction was not trivial, 

however, and required several trials to identify the most effective set of features to be used in 

clustering. Previously, we described a fast algorithm for spike clustering based on 

decomposition of mixture distribution of spike peak depolarization.44 Here, among the 

possible spike parameters previously reported,31,48–50 we initially chose two features: 

depolarization amplitude and hyperpolarization amplitude. Clustering algorithms were run 

to inspect the quality of generated clusters. Although some cluster separation was observed 

using these two features, the quality was reasonably improved by incrementing the number 

of features. A few temporal parameters were also considered. The rationale to add these 

features was to make the feature set flexible to the disparate modes of firing, in particular to 

the decrease in amplitude and increase in width for the trailing spikes of a burst.39 Also, it is 

assumed that adding temporal features allows the clustering algorithms to respond more 

robustly in face of nonstationarity.51 We therefore included two temporal parameters: (i) the 

disparity in time between the depolarization and hyperpolarization amplitudes and (ii) the 

temporal width of the spike at the threshold crossing. Cluster analysis of these combined 

four features showed a fair improvement in quality. Adding more features (amplitude 
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variance and zero crossing number) did not yield obvious improvements to between-cluster 

separation. The combined four-dimensional feature vector is shown in Fig. 4. For cross-

evaluation of the clustering through a reference benchmark, we used MC_Rack.52 For PCA, 

the number of principal components that captured (95±1)% variation in the normalized spike 

waveform was calculated. The number of components varied from five to eight accordingly, 

and the components built the second feature vector.

2.4. Initial cluster analysis

Clustering algorithms here serve to separate the firing activity of neuronal units captured by 

their salient, representative features.38,53 Generally, they are best suited to situations where 

the underlying data structure may not be expressed well by a parametric model. Indeed, as 

motivated by Ref. 38, in such situations any assumption of parametric form may be 

imposing an unsound structure to the data. When resorting to clustering algorithms, 

otherwise, the challenge is pronounced when designing clustering algorithms under 

conditions of nonstationarity. A solution is to select algorithms that render a reliable 

stability–plasticity tradeoff.38 That is, they are stable enough to find the data structure via 

finite number of clusters, and plastic enough to adapt to a new pattern.

The iterative MSE clustering algorithm was applied to each of the feature sets.38 To find an 

optimal partition as one that minimizes the criterion, the procedure started from an initial set 

of clusters. This algorithm required careful choice of initial number of clusters together with 

their centers. Instead of choosing random samples as the initial centers for a chosen number 

of clusters, we applied the basic leader–follower clustering algorithm38 for learning of 

centers prior to clustering. To illustrate an example algorithm incorporated in this work, 

Appendix A includes the pseudocode of this clustering algorithm.

With the initial learning phase for number of clusters and their centers given by the basic 

leader–follower clustering algorithm, the iterative MSE clustering algorithm was applied to 

formalize clusters.38 After the assignment by the algorithm, updating of the centers at the 

last step resulted in some clusters becoming very close to each other. Therefore, we 

implemented a merging mechanism for such clusters. Figure 5 shows the result of initial run 

and sorted spikes for three electrodes. In the three-dimensional cluster space, we observed 

that clusters formed mostly ellipsoidal clouds of various sizes and orientations.

2.5. Failure diagnosis

We sought to evaluate the quality of spike sorting after the first round of clustering to 

address possible overclustering54,55 and intermixing of clusters.22,55 These potential error 

sources could result in either overestimating (FP cases) or underestimating (FN cases) the 

average firing rate of individual RGC units or misrepresent their correlation to visual stimuli. 

A possible treatment of this issue is to apply splitting15 and merging55 procedures based on 

inference from the average firing rate. To check the clustering quality, we employed a set of 

tests for diagnostic knowledge representation. We then developed an approach to reiterate 

the clustering routines for additional improvement of sorting quality.
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2.5.1. Diagnostic tests—Fault isolation tests report diagnostics in order to improve the 

clustering results. The test strategy often involves a testability tool in the form of a tabular or 

graphical fault tree for failure mode and effects analysis.56–58 A well-known testability tool 

consists of a data structure that relates fault isolation modes to the test results. This data 

structure is mostly referred to as a D-matrix, which is a pivotal element of the test strategy 

computation.60 The D-matrix tabulates signatures of binary digits indicating whether the 

failure modes are detected by the designated tests. Failure modes herein refer to FP and FN 

cases in clustering. We here describe the structure of each test and explore the diagnosability 

of the failures. We assessed the quality of the spike sorting through three diagnostic tests per 

electrode. This set of tests was applied to the clusters generated after each clustering run 

(diagnostic tests Run 1 and Run 2, see Fig. 2) and a third time after the removal of faulty 

electrodes or clusters (Run 3, Fig. 2), each serving its distinct diagnostic purpose.

2.5.1.1. Unimodal amplitude scale factor: This test was applied to each cluster from 

each electrode to detect the FP cases over the first run of clustering. We first identified the 

template waveform for each cluster as the pointwise median of all the spikes per cluster. In 

this test, we defined the amplitude scale factor as the ratio between the maximum 

depolarization amplitude of individual spikes (feature A1) and the corresponding amplitude 

of the template waveform for the same cluster. We then calculated the histogram of the 

distribution of amplitude scale factors for each cluster. The distribution of this histogram is 

shown to be unimodal around unity for reliable templates.22 A normal distribution centered 

at unity, with standard deviation equal to that of the amplitude scale factor, was compared 

against the normalized histogram. We then inferred the mean absolute error (MAE) statistic 

to calculate the difference between the normalized histogram and the normal distribution for 

each cluster on each electrode, and proceeded to test its statistical significance.

The unimodality assumption can be tested between the two competing hypotheses: H0 : θ = 

0 null hypothesis against the one-sided alternative hypothesis H1 : θ > 0. For the observed 

MAE values z from θ across the electrodes, a half-normal distribution as an approximation 

fit to the histogram of likelihood function under the null hypothesis was drawn. The test was 

run at the 30% level of significance for the null hypothesis. This level was a proper 

likelihood for failure detection due to the multimodality of amplitude scale factor, among all 

possible levels between 10% and 30%, in increment of 5. The significance statistic to rule 

out H0 in favor of H1 is then z > λ, where λ is the 70% quantile of the half-normal 

distribution. For any electrode, then the corresponding diagnostic test can be formed:

Tc = 1 if z > λ,
0 otherwise, (1)

where c denotes the cluster index, and the test can be run for all clusters. Here, three clusters 

were generated at max by the clustering routines, so their corresponding Tcs were listed in 

Table 1 (T1–T3). This test can detect contaminations by FP cases that violate unimodality. 

Such FP cases were seen in situations where spikes from different cells were included into 

the same cluster, i.e. some spikes were falsely assigned to a given cluster. Figure 6 shows the 
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distributions of amplitude scale factor for the three electrodes by their first clusters, and 

histograms of the MAE statistic for clusters 1 and 2 across all the electrodes.

2.5.1.2. Mutual refractory period incident: When not all the spikes of a cell unit are 

sorted together, FN cases may occur. In that case, one can proceed to assess the correlation 

among the spikes of seemingly disparate clusters for intercluster separation. This correlation 

is determined by counting near-coincident spike events to derive their likelihood functions.59 

Therefore, the spike-time cross-correlation function was found for different pairs of clusters 

per electrode to check if spikes in each cluster had been emitted from a unique cell.39 For 

two independent clusters, this function should have no falling gap within [−1 ms, +1 ms]. A 

gap may signify that the spikes are mutually respecting the refractory period across clusters, 

and thus some or all spikes from the two clusters might be derived from one unique cell. 

This then raises an FN case, which affects the clustering specificity. The refractory period 

window was set to 2 ms, and the inference of mutual refractory period (MRP) between any 

pair of clusters per electrode was performed by the following test:

Te = 1 if MRP exists,
0 otherwise, (2)

where e is the electrode index. Te signifies the MRP incident on each electrode and is the 

fourth tabulated test (T4) in Table 1. It effectively detected the FN cases that in turn violated 

autonomy of the clusters. Figure 6 shows the histogram distributions of the cross-correlation 

functions between clusters 1 and 2 on two electrodes.

2.5.1.3. Interspike interval violation: Tests for the refractory period condition reveal 

contamination of a given cluster with spikes from other clusters or incorrectly included noise 

fluctuations (FP instances).22 We therefore found the distribution of interspike interval (ISI) 

separately for each cluster per electrode. A refractory period violation was defined as an ISI 

less than 2 ms. We identified all instances of violation in a cluster, and recorded the 

probability of violations per cluster per electrode. This probability represents a fraction of 

the total FP error computed for overall performance assessment. It also indicates the 

separation quality of clusters and is expected to be less than a certain threshold for reliably 

identified neuronal units.22,55 A cluster was deemed to have failed this test if its probability 

of having ISI violations (denoted as PISI) was moret han 3%. For each cluster c, then the 

following test was assumed:

Tc =
1 if PISI > 0.03,
0 otherwise.

(3)

This Tc accounts for additional tests (T5–T7) in Table 1 that illustrates the D-matrix 

including all the tests for three sample electrodes across five whole field datasets (WF1–

WF5) evaluated in this work. This represents the outcome of diagnostic tests performed on 

the clusters derived from the first run of the clustering routines, applied to the spike 

parameters derived by both methods of feature extraction (fspike and PCA). Figure 6 shows 

Ghahari et al. Page 9

Int J Neural Syst. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two example ISI histograms with different violation rates from cluster 1 on all three 

electrodes.

2.6. Reclustering through optimization

The outcomes of diagnostic tests, combined with the clustering results, can be used to 

reassess the clustering routines for diagnosable electrodes, to further minimize the error due 

to the first run of clustering. The SSE in clustering depends on how the features are clustered 

and the number of clusters. Therefore, the decision logic for cluster reassessment should 

consider the number of clusters. A decision logic was devised to harness the extant 

knowledge of clustering and diagnostic tests (Appendix B). This logic relativized itself on 

the number of clusters, number of failures and the average firing rate in cluster 2 per 

electrode. The decision was to either retain the electrode, or to rerun the leader–follower 

routine (with a reduced threshold) followed by the iterative MSE routine (one cluster), or to 

employ the conjugate gradient method36 (two or three clusters) before rerunning the iterative 

MSE routine for assignment.

The SSE across clusters can be improved by methods that minimize error in individual 

clusters over successive update of cluster center. An efficient method should provide a 

reasonable convergence rate and an optimal performance in reaching the global minimum of 

SSE. We chose the conjugate gradient method since it achieved a balance between 

convergence rate and computation time overhead. This quadratic optimization technique led 

to iterative descents of SSE per cluster from the successive update of cluster center along the 

conjugate gradient directions. The outputs were the updated cluster centers (at last iteration, 

reaching solution) for each diagnosed electrode. Subsequently, the new cluster centers for 

each electrode were passed to the iterative MSE clustering for the second run. The results of 

second run of clustering on the three electrodes are depicted in Fig. 7. Across all datasets, 

the improvement was statistically significant. For example, after reclustering, when Run 2 of 

diagnostic tests was applied to data on E35 and E54 in WF3 dataset, these electrodes were not 

among the faulty electrodes nor did they have even a faulty cluster to be discarded. This 

exemplifies the role of conjugate gradient method in improving the specificity and 

sensitivity of newly formed clusters.

2.7. Final clusters

Table 2 represents the D-matrix for diagnostic tests after Run 2. The improved clustering 

quality is demonstrated in a few cases, e.g. E35 in WF3 dataset with fspike turns out error-

resilient because of reclustering. The implementation of merging of clusters, due to the 

reclustering, is also evident (e.g. see number of clusters for E52 in WF3 dataset with PCA 

between Tables 1 and 2).

Having refined the clustering through two runs of diagnostic tests, we proceeded to discard a 

few clusters or electrodes that were still severely faulty. The second run of diagnostic tests 

was based on the number of FP cases in terms of spike amplitude and ISI violation rate. The 

decision for each electrode was either to discard it, or to discard only few of its clusters, or 

otherwise to retain it for the last run of diagnostic tests (Run 3). Appendix B conveys the 
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flowchart of the logic to detect faulty clusters or electrodes. Some quantities of the approach 

from the initial clustering to the second run of diagnostic tests are listed in Table 3.

The previous two runs of diagnostic tests dealt with the failure detection across all the 

electrodes. The last run, Run 3, served to make additional corrections into spikes within and 

across clusters, inferred from observed instances. First, within the amplitude scale factor test 

as described, if the test outcome was significant, then we excluded from the cluster the 

spikes for which the amplitude scale factors were less than a threshold. This refinement of 

the cluster was necessary only for a few electrodes. Second, for mutual refractory period if 

the gap existed for any two clusters, then we retrieved the clusters whose spikes led to this 

gap. We ultimately found the cluster that resulted in most gap violations per electrode and 

merged that cluster with the cluster that had the second most gap violations. This step made 

the required merges only for a few electrodes. Finally, we recorded the ISI violation rate per 

cluster. This was a fraction of the total FP error in overall performance assessment. The 

spurious spikes of violating ISI were removed from the corresponding cluster. The 

remaining electrodes and clusters thereof were represented with their templates for the rest 

of the analysis, namely, cell detection and error assessment. Table 5 includes the final 

number of clusters and spikes for each stimulus.

2.8. Cell detection and identification

At this point, the final clusters through the execution of ClusDiag were formed. If the 

identified clusters represent the cell activity recorded on different electrodes, what is the 

number of active cells during each stimulation? The distinction between number of clusters 

and number of cells appears because some clusters may represent the same cell whose 

spikes were detected on very few nearby electrodes. To see if this was the case for any 

cluster c1 on an electrode, we searched for time coincidence between any spike of c1 and 

spikes from all the other clusters of nearby electrodes (nearest lateral and diagonal). For 

example, one iteration of search compared the time differences (lags) between a spike of c1 

with all the spikes of another cluster c2 on a nearby electrode. Having set the coincidence 

interval to be 1 ms,7,60 then a coincident spike from c2 on the other electrode was detected if 

the corresponding time difference was less than 1 ms. This step continued for all the spikes 

of c1 with respect to those of c2. If most of the spikes of c1 each had a paired coincident 

spike from c2, then the corresponding electrodes were identified to have recorded the activity 

of one cell (represented with two clusters). We did not observe such firing coincidence in our 

data. Therefore, the final number of generated clusters and the total number of detected cells 

were equal, as shown in Table 4.

Controlled light stimulation of the retina triggers highly correlated bursting of RGCs, 

signifying spike frequency adaptation in relation to luminosity and pattern of the light 

stimulus. That is, certain cells fire more frequently in response to increase of luminosity, 

whereas others are silenced or maintain an unchanged firing rate. From correlation of the 

visual stimulus properties to the spike train of individual identified RGCs, one can 

characterize and classify RGC types into distinct classes. To examine the frequency response 

of the detected cells in relation to the stimuli, we calculated the cumulative PSTH for spikes 

per cluster. This histogram is statistically depicted to identify the short latency responses to 

Ghahari et al. Page 11

Int J Neural Syst. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



light spot within three various classes.61 They are ON, OFF and ON–OFF classes. This 

classification was evident in our data likewise. The whole field stimuli evoked RGCs’ light 

responses, proving the reception of a visual input.

To find the cumulative PSTH, we first retained and aggregated the spike times of a cell 

during all ON periods (2 s long), as well as separately for those of all OFF periods (2 s 

long). Then, the post-stimulus time histogram of firing was found (bin width: 50 ms). Next, 

to proceed with a basic classification of responses, we defined a ratio index that indicated 

the repertoire of light responsiveness of a cell. The index definition for each cell was Il = 

(AON − AOFF)/(AON + AOFF), where AON is the maximum amplitude of cumulative PSTH 

during the ON stimulation periods and the maximum amplitude is AOFF for the OFF 

periods. This index accounts for relative difference during ON and OFF periods, normalized 

by sum of the two amplitudes. As per discrete observations from cumulative PSTH over the 

results to different whole stimuli, we set the limits to identify cells’ responses. They were 

0.2 < Il ≤ 1 for ON cells (if AON = 1.5 × AOFF), −1 ≤ Il < −0.2 for OFF cells (if AOFF = 1.5 

× AON) and −0.2 ≤ Il ≤ 0.2 for ON–OFF cells. There are two example cumulative PSTH 

responses illustrated in Fig. 8. Cell identification summaries for all the datasets are provided 

in Table 4. It illustrates that both feature extraction techniques yield similar numbers of 

identified cell types.

2.9. Error assessment

We recorded the FP and FN errors due to each cluster as well as the overlap between pairs of 

clusters after each run of clustering routines. We now assess the total error in spike sorting 

with respect to the raw data SNR ratio for each electrode. First, the noise segments were 

taken as the portions of raw recordings in which there was no spike of any type. From the 

detected and sorted spikes per electrode, we thus estimated the noise signature on each 

electrode by removing each spike cutout from the raw data. Next, we examined the 

stationarity and distributional spread of the noise over the electrodes. A sketch of space–time 

dependency of the observed noise correlation function over a smaller ROI is shown in Fig. 9. 

Particularly, the cross-correlation function of noise showed that it was isotropic along x- and 

y-directions, with a significant decay at minimum interelectrode distance of 100 μm. This 

distance may well explain the degree of noise and, hence, recorded voltage correlatedness. 

Hence, the fact that electrodes have little cross-talk with each other is consolidating our 

finding that the number of final recorded RGCs coincides with the number of clusters 

reliably detected over all electrodes. In addition, we tested the Gaussian assumption for the 

noise by the negentropy criterion.62 It determines how Gaussian a distribution is by taking a 

differential measurement of entropy of any distribution with respect to a Gaussian 

distribution with the same first two moments. This metric is statistically robust, and for a 

Gaussian, it is equal to zero. Figure 9 includes the negentropy values for all the electrodes. 

The mean of all negentropy values across the electrodes was 0.88 bit.

Because here we estimated the noise signature based on the sorted spikes, the SNR will be 

an estimated SNR.14 It can be defined as the difference between the sum of averaged 

variances of all spikes in a cluster and the sample variance of noise, divided by the sample 

variance of noise. The total error for single-unit recording is defined in Ref. 14. We extended 
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this definition to the MEA system. The total error of spike sorting per cluster c per electrode 

e was defined as the ratio TEe,c = (FPe,c + FNe,c)/(FNe,c + TPe,c). The FP error, FN error and 

true-positive probability are represented by FPe,c, FNe,c and TPe,c, respectively. The FP error 

for each cluster per electrode was defined to be the maximum of single-cluster error and the 

multiple-cluster errors.39 The single-cluster error was the ISI violation rate, whereas the 

multiple-cluster errors factored in the probability that overlap between a cluster and the 

others had made an FP. Between each pair of clusters this probability was calculated by 

fitting a multivariate Gaussian distribution into the spikes in each cluster.39 In case of 

singularity of the covariance matrix, a Choleskey-like covariance decomposition was 

applied. The FN error for each cluster per electrode was calculated by combining the terms 

of the single-cluster error and multiple-cluster errors. The single-cluster error ascertained the 

error from spike detection. The multiple-cluster errors deal with the overlap between pairs of 

clusters by expressing the errors in terms of the probability that a sample spike from one 

cluster is misassigned to another cluster. In addition, the true positive probability was 

calculated by finding the probability that spikes in a cluster indeed belong to that cluster. We 

calculated this probability together with fractional FP and FN errors for each cluster per 

electrode to find the corresponding total error. We found that the total error was dominated 

by FP error per cluster across the electrodes. The FN error turned out to be quite low, so 

ClusDiag performed optimally in the sense that it minimized the probability of the FN error.

Figure 8 shows the total error for cluster 1 as a function of the estimated SNR across all 

electrodes for different stimuli. It can be seen that the error remains low for the range of 

estimated SNRs for these experiments. Moreover, comparison between the feature extraction 

methods indicates that fspike is more error-resilient than PCA by a good margin for SNRs 

fewer than a half, although performance becomes close for SNRs between 0.5 and 1. 

Beyond unity SNR, the former outperforms the latter. Some elaborate quantities of the error 

assessment, including example specificity and sensitivity values from cluster 1, are listed in 

Table 5. We also paid attention to computation times for different stages of ClusDiag to run 

their course during its execution. In particular, for illustrative values here, we divided the 

overall runtime to two cumulative runtimes. First, we recorded the runtime of the two rounds 

of clustering algorithms, together with that of the optimization routine and first round of 

diagnostic tests, per electrode (ASR1 in Table 5). Second, the runtime for the execution of 

the second and third rounds of diagnostic tests per electrode was saved (ASR2 in Table 5). 

These two runtimes nearly balance each other out across all datasets and feature sets (e.g. for 

PCA the average ASR1 over all datasets is 1.84 s, while that of ASR2 is 1.71 s). The last run 

of diagnostic tests had extra corrective steps applied to each diagnosed cluster, each of 

which imposing its own load on the ASR2 division. The workstation here was an ×64-based 

PC with Intel Xeon eight-core CPU E5-2630 v3 at 2.40 GHz.

3. Discussion

Neuro-inspired machine learning algorithms are amenable to address the spike sorting 

problem in different biological substrates. A survey of previously implemented approaches 

indicates that the existing challenges fall into four categories from an algorithmic 

perspective:
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(i) Robustness against modes and frequency of firing, when confronted with: 

sparsely firing neurons,63 regular spiking versus bursting,29,30,35 multispike 

trains21,32,33 and compounding local field potentials.34,36

(ii) Automated spike sorting to reduce as much time due to user’s intervention as 

possible for evaluating or enhancing cluster assignment,22,64 and processing 

time tradeoff versus sorting quality.55,63

(iii) Error analysis such as relating FP and FN along with diagnosis,39,65 low signal-

to-noise ratio,25,66 intercluster correlation39,67 and interelectrode correlation.
15,68,69

(iv) Potential blueprint for a toolbox that manages delivery across varying signal 

conditioning from acquisition electronics,39,70 number of micro-

electrodes69,71–73 and geometrical differences of array.51,72

These various challenges were considered in our approach at different steps to balance 

sorting accuracy with computational cost. We ultimately converged on an approach built 

upon iterative, exploratory computation routines in an integrated platform. The 

implementation employed methods across three analytical layers: representation (data 

preparation and unsupervised clustering), evaluation (D-matrix and error rate) and 

optimization (conjugate gradient method).

Various modes of firing in RGCs and spike morphology variability require holistic and 

tolerant spike detection and feature extraction routines. An adaptive threshold spike detector 

and a parametric spike feature set provide robustness against nonstationary dynamics and 

result in improved detection and representation of spikes despite varying firing modes (e.g. 

regular, burst or tonic firing). For PCA-based feature sets, it is often observed that projection 

onto the few first principal components may not result in optimal intercluster separability.
20,22 PCA-based techniques also cannot assign weights to the various aspects of the shapes 

of the spikes to be sorted. Here, we noticed that, as per the initial number of clusters in Table 

3, PCA is more likely to overcluster the data. Furthermore, as Fig. 8 illustrates, even after 

implementing various refinement steps, the FP error from the overlap between the clusters 

appears to dominate the error in PCA-based approach. In addition, deviation of the 

distribution of a feature set from normality restricts the generalization of most unsupervised 

clustering algorithms.20,22 Therefore, user’s verifications become part of the cluster-cutting 

evaluation process to gradually derive more compelling clusters. However, these 

verifications could in fact reinforce human bias, and the cluster-cutting process captures the 

underlying natural clusters solely through excessive trials,22,74 which is the reason behind to 

evaluate and diagnose the clusters against computation routines.

Clustering-based spike sorting approaches infer statistics about the spatiotemporal 

correlation of spike events along with additive noise, yet they may be subject to error in 

validation of the results of clustering and may not perform well at scale for long recordings. 

ClusDiag achieved high sensitivity and specificity to sort the spikes of different extracellular 

recordings. That was mainly due to automation and inferential robustness by improving 

clustering results through a trial of diagnostic tests. To test the feasibility for a long 

recording, we applied ClusDiag on 5-min long recordings of retinas carrying wild-type and 
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phosphonull versions of the photopigment melanopsin, under conditions of complete 

synaptic blockade. Despite the small percentage of intrinsically photosensitive RGCs, which 

respond to light in the absence of classical photoreceptor synaptic input, our approach 

recovered them reliably and revealed the difference in firing rates between RGCs carrying 

normal or mutated photopigments.75

The field of failure analysis provides unique frameworks to design, test and implement 

scalable algorithms for failure diagnosis using systems engineering methods, such as 

simulation, mathematical analysis and failure mode and effects analysis. The tests applied 

here were effective in providing diagnostics for the reclustering routines of spike sorting. 

They attributed different properties of clusters to the spiking dynamics of their underling 

cells. Typically cells of distinct spiking dynamics show unique spike shapes and frequencies 

whose patterns could be revealed by applying inferential statistics. For example, Fig. 6 

reveals a systematic difference in MAEs between the populations of cluster 1 and cluster 2 

across electrodes. This distinction could be due to the nature of the algorithm in the 

clustering procedure. The leader–follower algorithm found the number of clusters in the 

order of temporal appearance of spikes, which possibly depended on the spiking frequency 

of each cell. Therefore, a fast spiking cell was more likely to have had its spikes assigned to 

cluster 1 on each electrode, hence cluster 1 included more spikes versus cluster 2. This led to 

a more accurate template waveform across cluster 1, and thus the respective MAE statistics 

of spikes were smaller. Structural differences as per cluster type on the other two tests 

signatures were also observed across all datasets. In addition, the tests collectively served to 

diagnose failure cases, which gave rise to the optimization algorithm to improve the quality 

of initial clusters. An obvious challenge for offline clustering-based spike sorting methods is 

that they tend to overestimate the number of clusters.22,55 To address this challenge here, the 

set of diagnostic tests reliably identified the failure cases per electrode over the evaluation 

cycles of this platform, as seen in Table 5. However, additional tests may leverage certain 

diagnostic structures for a more dynamic test design under large noise contaminations and 

error propagation properties. Current set of tests turned out a reasonable computation time 

complexity for spike sorting per electrode.

Several toolboxes have achieved a compromise between sorting quality, speeding up 

processing time and scaling up to larger amounts of data.20,31,51,64,72–78 The generalization 

performance of toolboxes across various electronics and biological systems, however, is at 

the frontier of neuroscience, inviting additional research and development. We attempted to 

implement a spike sorting algorithm employed in cortical and hippocampus recordings,51 

although with limitations, likely due to changes in geometry of the electrode arrays. While 

continuing our cross-checking efforts, it is possible to generalize the modular and diagnostic 

core of ClusDiag into other spike sorting domains; that is, due to its modular core from the 

representation of data to the final evaluation of the platform, other inferential algorithms 

could be applied, tested and gradually accreted. We envision that additional improvement 

over performance could be achieved through testing more complex representation models, 

but one caveat may be that they consume more computation cycles per electrode. 

Augmenting our current findings with those of others, dealing with visual stimulation 

paradigms in real-time condition, could spawn new applications for spike inference in visual 

neuroscience.
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4. Conclusion

Timely, elaborate progress across the growing scale of data-driven tasks in visual 

neuroscience requires iterative, exploratory cycles of development, technical validation, 

experiments and performance optimization. We reported an integrated analytical platform 

for spike sorting, with engineered modules from initial representation to intermediary 

optimization to final evaluation. The centerpiece of this work was the unsupervised 

clustering supplied with failure diagnosis (dubbed the ClusDiag) for data collected during 

visual stimulation of wild-type mice retinas with whole field stimuli. In retrospect, an 

adaptive threshold spike detector and a parametric spike feature set led to robustness against 

various dynamics of firing in RGCs. The whole field stimuli resulted in massive, highly-

correlated RGC bursting, combined with robust field potential responses from the retina. 

Final evaluation of this approach marked a dependable specificity and sensitivity in 

performance for all the whole field stimuli. Hence, we envision that this approach will 

perform reliably when extended to more complex stimulation conditions, where lower levels 

of synchronized activity are expected. To sort spikes of the retinal ganglion cells with 

widespread firing dynamics, ClusDiag performed robustly across the stimuli, thanks to its 

automated, fault-tolerant and computation-efficient platform. Distributed machine learning 

platforms will be an active theme for sourcing, processing and integrating large-scale data 

from high-density micro-electrode arrays. This would let us explore the prime potential of 

transforming ClusDiag into a distributed platform with specialized computing frameworks.

Appendix A. Cluster Analysis: Leader–Follower Algorithm

For unsupervised learning prior to iterative MSE clustering algorithm, the leader–follower 

algorithm (see Algorithm A.1) was applied.38 Feature vectors of spikes were incorporated 

into the analysis in the temporal succession of their spike detection. In the second run of 

clustering the locations of the centers of clusters were updated within the conjugate gradient 

method, making the combined training more robust to the order of presentation of feature 

vectors. The algorithm measured the similarity of each feature vector to the centers of 

clusters by 1-norm distance. If the distance from the winner cluster (closest) was below a 

threshold, the spike was incorporated in the cluster, and the algorithm updated the center of 

this winner cluster by a learning rate, to adjust for the newly incorporated spike. In contrast, 

when the distance was higher than the threshold, the number of clusters incremented, and 

the current spike seeded a new cluster. The algorithm iterated through all the spike feature 

vectors and finally returned the centers for the formed clusters.

The learning rate was tweaked for the best cluster resolution to be η = (0.4)s for the sth 

spike. Finding a suitable threshold θ demanded more trials for the best possible heuristic 

value. To find a threshold for each electrode, individual two s.d.s along each feature were 

calculated and added with those of the rest. The pseudocode description follows, where the 

feature vector fs is either four-dimensional extracted from the detected spikes and 

normalized on each dimension or multidimensional comprised of the principal components 

for each detected spike. The variables Nc, Ns and ci are in order representing the number of 

clusters, the number of spikes and each formed cluster. The first cluster is formed from the 

first feature vector in line 2. Cluster update is represented in lines 6 and 7, and so forth is 
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cluster learning in lines 8–11. The cluster set ci i = 1
Nc  was obtained through the run for each 

electrode. Their centers, μi i = 1
Nc , were stored in an array indexing through the electrodes. 

Each array element included Nc centers of clusters for an electrode.

Algorithm A.1.

The leader–follower clustering

1 Declare μ and initialize η, θ, Nc

2 μ1 ← f1

3 for e = 1,… ,E do

4  for s = 1,… ,Ns do

5   c ← arg minc′ ||fs − μc′||

6   if ||fs − μc|| < θ then

7    μc ← μc + ηfs

8   else

9    Nc ← Nc + 1

10    μNc ← fs

11    μNc ← μNc/||μNc||

12   end if

13  end for

14 end for

15
return ci, μi i = 1

Nc

Appendix B. Decision Logics for Iterative Evaluation

Shown here is the flowchart (see Fig. B.1) of factors of decision for reclustering per 

electrode based on outcomes of the first run of clustering and diagnostic tests. This logic 

formed according to the number of clusters per electrode, number of failures and average 

firing rate. In case of two clusters, decisions were made based on the number of failures and 

the average firing rate in cluster 2. This was based on our observation that, for cluster 2, a 

failure when testing on amplitude scale factor was typically the result of insufficient number 

of spikes. For this reason, only large clusters were routed to reclustering. Small clusters, 

showing failures in amplitude scale factor, were addressed via the last run of the diagnostic 

tests. The thresholds for large clusters were set based on the number of failures. The average 

firing rate, r2, was found diagnostic in case of one failure, and a lower threshold, r3, was so 

in case of two or three failures. With three clusters, any failure prompted a reassessment of 

the clustering, since the quality of sorting was very likely affected. In case of one cluster, if 

there was any failure, the average firing rate, r1, was used as a threshold. For an average 

firing rate more than r1, clustering routines were run again beginning with the leader–

follower algorithm (Run 2). The decision for each electrode was either to retain it as was, or 
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to run the conjugate gradient method (when there were two or three clusters), or to rerun the 

leader–follower algorithm (one cluster).

Next shown here is the flowchart (see Fig. B.2) of metrics to detect the faulty clusters and 

electrodes after the second run of clustering and diagnostic tests. The progression based 

itself on observations of FP failures in terms of spikes amplitudes and ISI violation rate. 

Severely faulty clusters were detected and discarded when fewer tests had failed. At higher 

numbers of failures (three or more), however, an entire electrode was discarded. For fewer 

than three failures, the reclustering results indicated that the FP failures dominated the 

failure set, so they were dealt with first. A threshold value of 6% ISI violation rate (a two-

fold increase compared to the initial limit) detected clusters with severe contamination. If 

this condition was not met (severity was low), the next check was on violation of 

unimodality for spikes1 amplitudes per cluster. To do so, the threshold of one-sided 

alternative hypothesis test on MAE values was increased to 95th percentile point. Thus, if 

the MAE value fell above this threshold, the null hypothesis was rejected, and the cluster 

was discarded. Finally, for all the retained electrodes, we ran a set of diagnostic tests (Run 

3).
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Fig. 1. 
Light stimulation and data acquisition hardware and software. (a) MEA recordings. The 

stimulus was generated on a PowerBook G4 running Mac OS X 10.3.9, MATLAB 7.4 and 

Psychtoolbox 3.0.8, presented on a CRT Sony Trinitron MultiScan 420GS screen. It was 

demagnified using a light path consisting of two mirrors and a total reflection prism 

mounted on a customized Zeiss Axiovert 40 C inverted microscope, and projected onto the 

retina plane through a Zeiss EC Plan-Neofluar 5× objective. The stimulus consisted of 10 

iterations of 2 s bright, 2 s dark whole field illumination, while synchronized with the 

MC_Rack recording software using a DAQ USB-1208FS (Measurement Computing Corp., 

Norton, MA). Retinas were placed RGC side down onto the titanium oxide electrode array 

(electrodes were 10 μm diameter and placed at 100 μm distance). (b) Whole field stimulus 

projected on a 60-channel MEA in the retinal plane (the retina covered a surface area of 0.49 

mm2 on the MEA). An arbitrary 5 × 5 region of interest centered on E54 is selected to 

exemplify the MEA response and data analysis in this work. Waveforms in (a) show 1 s raw 

data recorded at 25 kHz from E42, E43, E52 and E53, demonstrating spikes overlaid on strong 

field potentials.
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Fig. 2. 
Block diagram of the three analytical layers within ClusDiag: representation, optimization 

and evaluation. For the latter, diagnostic tests reported FP and FN instances over the first run 

of clustering. The reclustering decision logic called up the conjugate gradient method to 

minimize the error from the first run of clustering. The second iteration of clustering 

routines was then applied to the faulty electrodes, and the recovered new clusters were 

passed on to the second run of diagnostic tests. Finally, the third run of diagnostic tests 
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served to enhance the clustering resolution for the remaining clusters per electrode. Error 

assessment quantified all the final FP and FN errors per cluster.
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Fig. 3. 
(Color online) Detection of spike trains recorded from three electrodes of interest. E52, E35 

and E54 captured the activity of cells with regular spiking and burst firing throughout the 

recording. (a) Full 42.2 s waveform of the MEA-recorded raw data in gray and the filtered 

data in blue. (b) Magnified time window of the data in the first row [25 ms, vertical mark in 

(a)]. (c) Filtered data from (b), overlaid with the adaptive threshold of detection (red). The 

asterisk marks denote peak amplitudes of detected spikes. (d) Detected spikes train for the 

whole recording duration in (a). Square wave indicates stimulus periodicity with ON (high) 

and OFF (low) 2 s periods.
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Fig. 4. 
Definition of the feature vector from a detected spike and threshold of detection. The feature 

vector f consists of maximum depolarization amplitude A1, maximum hyperpolarization 

amplitude A2, time difference (∆t) between the time points of A1 and A2 and the temporal 

width of the spike at the level of threshold w.
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Fig. 5. 
(Color online) Examples of sorted spikes from the first run of clustering. (a), (d), (g) Rotated 

3D scatterplots for three of the four spike features: depolarization amplitude A1, 

hyperpolarization amplitude A2 and the difference between their time points, ∆t. (b), (e), (h) 

Time domain representations for an ON and OFF stimulation period starting at 33.24 s and 

ending at 37.26 s. (c), (f), (i) Overlaid spike cutouts (2.5-ms interval) for clusters 1 and 2, 

together with the derived templates. Clusters, spikes and templates are pseudocolored in red 

and blue. (a)–(c) The 702 spikes from electrode E52 fall in one cluster. (d)–(f) Spikes from 

electrode E35 were sorted into two clusters, with 309 spikes in cluster 1 and 46 spikes in 
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cluster 2. (g)–(i) Spikes from electrode E54 fall in two clusters. Cluster 1 included 210 spikes 

and cluster 2 comprised 82 spikes.
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Fig. 6. 
Diagnostic tests provide metrics to assess the quality of the first clustering run. The metrics 

check on FP and FN cases that arose from the clustering. (a) Normalized histogram of the 

amplitude scale factor in cluster 1 (bin width: 0.1) is represented with the smoothed estimate 

of distribution function (solid line). A scaled normal distribution fitted to the data (dashed 

line) is also shown. (b) Normalized histogram of the MAE statistic is represented for cluster 

1 (top) and cluster 2 (bottom) across all electrodes (bin width: 0.01). A smoothed estimate of 

distribution function (solid line) is shown together with a half-normal distribution fit (dashed 

line). The test threshold was λ1 = 0.027 for cluster 1 and λ2 = 0.046 for cluster 2, as shown. 

Comparing the MAE value from cluster 1 on each electrode to λ1 showed that cluster 1 

failed in FP measure on E35 and E54. (c) The spike-time cross-correlation function was 

computed for each pair of clusters per electrode. Shown here are the histogram distributions 

of spike-time firing between clusters 1 and 2 on E35 and E54 (bin width: 2 ms). The region 
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surrounding zero is shown magnified. A gap in vicinity of zero in the smallest bin width 

means dependency among clusters. Thus, both E35 and E54 failed, and the initial clusters 

needed to be reassessed. (d) Cluster contamination with spikes from other cells was also 

checked using the ISI histogram (bin width: 0.5 ms). The binned violation area is magnified. 

The ISI violation rates were 5.1% on E52, 1.3% on E35 and 3.4% on E54.
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Fig. 7. 
Sorted spikes from the electrodes presented in Fig. 5 after second run of clustering. For 

description of 3D scatter plots [(a) and (d)], time domain representations [(b) and (e)] and 

spike cutout overlays [(c) and (f)], see Fig. 5. E52 was detected by the decision logic to be 

reassessed by the leader-follower algorithm and reclustered. This reclustering still 

represented E52 via one cluster, so all the illustrations for E52 remain as shown in Fig. 5. (a)–

(c) The two reassigned clusters of E35 now have 226 spikes (cluster 1) and 126 spikes 

(cluster 2). (d)–(f) Reassigned spikes for E54 resulted in 158 spikes in cluster 1 and 129 

spikes in cluster 2. Both E35 and E54 were diagnosed as faulty electrodes through Run 1 of 

the diagnostic tests and were reclustered to improve each one’s SSE value. (g) Comparison 

test between the SSE values of Run 1 and Run 2 for all diagnosed electrodes for the 

parametric features and each of the five experiments (WF1–WF5). Bars represent the mean 

value and error bars depict standard deviations. Improvements were all statistically 
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significant in either 0.5%(**) or 2%(*) level for the null hypothesis. From left to right the 

SSE improvement was significant for WF1 (p < 0.005, n = 50), WF2 (p < 0.02, n = 37), WF3 

(p < 0.02, n = 40), WF4 (p < 0.02, n = 40) and WF5 (p < 0.005, n = 36), where n is the total 

number of diagnosed electrodes. Run 2 of diagnostic tests showed that E35 and E54 were 

recovered after the reclustering. In comparison with clusters in Fig. 5, the FN spikes in 

cluster 2 due to cluster 1 are reduced for both electrodes.
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Fig. 8. 
(Color online) RGC bursting classification and spike sorting assessment. (a) Spike raster plot 

for the 72 detected cells in WF3 dataset using the parametric features. ON periods are shown 

shaded, and each point indicates firing time of a cell on an electrode (color coded to 

illustrate the cluster type). (b) The cumulative PSTH is examined to infer the type of the cell 

based on a ratio index Il. The cumulative PSTH for an OFF cell recorded by E68 is shown 

(the Il value was −0.2). An envelope of relative variation of cumulative PSTH is also 

graphed. (c) The cumulative PSTH for an ON–OFF cell recorded by E52 is shown (the Il 

value was zero). (d) Total error against the estimated SNR in cluster 1 from the parametric 

features. The error trajectories for all the five whole field stimuli are shown in dotted gray. 

The median all over the estimated SNR values is depicted in red. (e) Total error against the 

estimated SNR from the PCA. The error trajectories for all the stimuli in dashed black. The 

median represents the error across all the estimated SNR values in blue. (f) The average 

Ghahari et al. Page 33

Int J Neural Syst. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



firing rates for all the detected cells, calculated for all whole field stimuli using the 

parametric features. The median of average firing rates of all the cells detected on an 

electrode is shown in red on the shaded interquartile range. (g) The average firing rates of 

the cells detected across all whole field stimuli, when using PCA-based features per 

electrode, with the median of average firing rates of all the detected cells shown in blue.
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Fig. 9. 
(Color online) Estimated noise characterization for the WF3 dataset. (a) The spatiotemporal 

correlation function derived within a smaller 3 × 3 neighborhood of E54. We chose 10 

equally-spaced 20 ms long intervals across the noise waveform for each electrode, and 

calculated 10 of such functions. The 20 ms range was sufficient to see the decay of the 

functions to zero. We took the average of the 10 cross correlation functions (shown in dark 

red). This process was repeated for varying regions and electrodes of the MEA. The noise 

characterized a nonstationary stochastic process. (b) Normalized distribution of the 

estimated noise histogram for the three electrodes. (c) The negentropy criterion was 

calculated for each electrode to quantify the closeness to the Gaussian distribution. The 95% 

confidence interval ranged from 0.04 bits to 1.71 bits, indicating fair predictability to a 

Gaussian. (d) Extrapolated spatial correlation function from 10 samples of the average 

correlation function in (a). At each electrode location, those 10 samples are shown around 
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the central E54. (e), (f) The values in (d) are projected onto x- or y-axis to find the respective 

horizontal or vertical spread of the noise cross-correlation function (avg. ± s.d. is shown).
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Fig. B.1. 
Reclustering decision logic.
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Fig. B.2. 
Logic to detect faulty electrodes/clusters.
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Table 4.

Select quantities of results of the cell detection and identification. TNDC: total number of detected cells; 

NDON: number of detected ON cells; NDOFF: number of detected OFF cells; NDONOFF: number of 

detected ON–OFF cells.

TNDC NDON NDOFF NDONOFF

Stim. fspike PCA fspike PCA fspike PCA fspike PCA

WF1 63 61 27 24 2 0 34 37

WF2 77 73 7 11 12 8 58 54

WF3 72 70 14 16 2 1 56 53

WF4 76 81 16 19 4 1 56 61

WF5 71 69 15 13 9 7 47 49

Int J Neural Syst. Author manuscript; available in PMC 2019 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ghahari et al. Page 43

Ta
b

le
 5

.

Se
le

ct
 q

ua
nt

iti
es

 o
f 

re
su

lts
 o

f 
th

e 
cl

us
te

r 
qu

al
ity

 d
ia

gn
os

tic
s 

an
d 

er
ro

r 
as

se
ss

m
en

t. 
FN

C
R

3:
 f

in
al

 n
um

be
r 

of
 c

lu
st

er
s 

af
te

r 
R

un
 3

 o
f 

di
ag

no
st

ic
 te

st
s 

fr
om

 a
ll 

el
ec

tr
od

es
; F

N
SS

R
3:

 f
in

al
 n

um
be

r 
of

 s
or

te
d 

sp
ik

es
 a

ft
er

 R
un

 3
 o

f 
di

ag
no

st
ic

 te
st

s 
fr

om
 a

ll 
el

ec
tr

od
es

; A
IV

C
1:

 a
ve

ra
ge

 I
SI

 v
io

la
tio

n 
ra

te
 in

 c
lu

st
er

 1
 o

ve
r 

al
l e

le
ct

ro
de

s;
 A

IV
C

2:
 a

ve
ra

ge
 I

SI
 v

io
la

tio
n 

ra
te

 in
 c

lu
st

er
 2

 o
ve

r 
al

l e
le

ct
ro

de
s;

 A
Se

C
1:

 a
ve

ra
ge

 s
en

si
tiv

ity
 in

 c
lu

st
er

 1
 o

ve
r 

al
l e

le
ct

ro
de

s;
 A

Sp
C

1:
 

av
er

ag
e 

sp
ec

if
ic

ity
 in

 c
lu

st
er

 1
 o

ve
r 

al
l e

le
ct

ro
de

s;
 A

SR
1:

 a
ve

ra
ge

 s
or

tin
g 

ru
nt

im
e 

pe
r 

el
ec

tr
od

e 
ov

er
 f

ir
st

 d
iv

is
io

n;
 A

SR
2:

 a
ve

ra
ge

 s
or

tin
g 

ru
nt

im
e 

pe
r 

el
ec

tr
od

e 
ov

er
 s

ec
on

d 
di

vi
si

on
. E

ac
h 

st
im

ul
at

io
n 

la
st

ed
 f

or
 4

2.
2 

s.

F
N

C
R

3
F

N
SS

R
3

A
IV

C
1

A
IV

C
2

A
Se

C
1

A
Sp

C
1

A
SR

1(
s)

A
SR

2(
s)

St
im

.
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A
f s

pi
ke

P
C

A

W
F 1

63
61

21
,4

56
23

,6
89

0.
02

0.
02

0.
02

0.
02

0.
99

0.
93

0.
92

0.
87

3.
27

2.
59

1.
92

2.
34

W
F 2

77
73

18
,7

77
19

,4
70

0.
01

0.
01

0.
00

3
0.

00
2

0.
99

0.
98

0.
98

0.
97

1.
32

1.
23

1.
11

1.
13

W
F 3

72
70

23
,7

35
31

,7
78

0.
01

0.
03

0.
01

0.
01

0.
99

0.
99

0.
96

0.
96

2.
02

2.
01

1.
88

1.
95

W
F 4

76
81

31
,0

42
33

,9
79

0.
01

0.
02

0.
01

0.
02

0.
99

0.
99

0.
95

0.
87

2.
21

2.
09

1.
97

1.
99

W
F 5

71
69

18
,3

78
16

,8
12

0.
01

0.
01

0.
01

0.
02

0.
99

0.
95

0.
95

0.
95

1.
24

1.
26

1.
14

1.
15

Int J Neural Syst. Author manuscript; available in PMC 2019 October 01.


	Abstract
	Introduction
	Methods
	Data preparation
	Spike detection
	Feature extraction
	Initial cluster analysis
	Failure diagnosis
	Diagnostic tests
	Unimodal amplitude scale factor
	Mutual refractory period incident
	Interspike interval violation


	Reclustering through optimization
	Final clusters
	Cell detection and identification
	Error assessment

	Discussion
	Conclusion
	Appendix A. Cluster Analysis: Leader–Follower Algorithm
	Algorithm A.1.
	Appendix B. Decision Logics for Iterative Evaluation
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. B.1.
	Fig. B.2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

