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Brain function has been proposed to arise as a result of the coordinated activity between distributed brain areas. An 

important issue in the study of brain activity is the characterization of the synchrony among these areas and the 

resulting complexity of the system. However, the variety of ways to define and, hence, measure brain synchrony and 

complexity has sometimes led to inconsistent results. Here, we study the relationship between synchrony and 

commonly used complexity estimators of electroencephalogram (EEG) activity and we explore how simulated lesions 

in anatomical based cortical networks and the connections between them would affect key functional measures of 

activity. We explored this question using different types of neural network lesions while the brain dynamics was 

modelled with a time-delayed set of 66 Kuramoto oscillators. Each oscillator modelled a region of the cortex (node), 

and the connectivity and spatial location between different areas informed the creation of a network structure (edges). 

Each type of lesion consisted on successive lesions of nodes or edges during the simulation of the neural dynamics. 

For each type of lesion, we measured the synchrony among oscillators and three complexity estimators (Higuchi’s 

Fractal Dimension, Sample Entropy and Lempel-Ziv Complexity) of the simulated EEGs. We found a general 

negative correlation between EEG complexity metrics and synchrony but Sample Entropy and Lempel-Ziv showed 

a positive correlation with synchrony when the edges of the network were deleted. This suggested an intricate 

relationship between synchrony of the system and its estimated complexity. Hence, complexity seems to depend on 

the multiple states of interaction between the oscillators of the system. Our results can contribute to the interpretation 

of the functional meaning of EEG complexity. 

Keywords: Kuramoto model; Network lesions; Synchrony; EEG Complexity 

1. Introduction 

Major functions of the brain, such as cognitive 

or emotional processes, have been hypothesized to arise 

as a result of the transient cooperative activity of 

distributed but interconnected brain areas 1. Thus, in 

order to describe brain functions, it is necessary to unveil 

the structural and functional interplay between brain 

regions. One approach to the study of structure-function 

                                                 
*Typeset names in 10 pt Times Roman, uppercase. Use the footnote to indicate the present or permanent address of the author. 
†Typeset names in 10 pt Times Roman, uppercase. Use the footnote to indicate the present or permanent address of the author. 
‡Typeset names in 10 pt Times Roman, uppercase. Use the footnote to indicate the present or permanent address of the author. 

relationships is to design a mean field model spanning the 

entire cortical brain functioning2. These models allow to 

manipulate, with high precision, structure and function 

and measure the changes in their dynamics. It is also 

possible to use the model to simulate measures as fMRI 

or EEGs and evaluate experimental measures developed 

for real patients. In this study, we introduce a 

neurocomputational model to explore the effects of 
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different types of lesions in global brain structure and 

their consequences at two different levels: (a) general 

cortical dynamics and (b) the complexity of the simulated 

EEGs. In this section, we justify these goals by a brief 

introduction on the effect of structure modification in 

global brain dynamics; the mean field models as a tool to 

investigate these dynamics; and the experimental 

measures of complexity that are able to characterize 

functional states in real patients.  

Understanding the interplay between brain 

structural networks and function will help us to better 

comprehend the impact of disease on system’s dynamics. 

Many studies has explored the relationship between 

synchronicity or neural systems dynamics and different 

pathologies (e.g., 3–6). Selectively damaging edges 

connecting high degree nodes in a 

magnetoencephalogram (MEG)-derived network has 

shown to be an effective approach to model the effects of 

Alzheimer’s disease (AD) on brain functional 

connectivity 7. Whereas both a targeted lesion and a 

random error model could account for the decreased level 

of connectivity in the lower alpha band in AD, only the 

targeted lesions were able to model the 

pathophysiological process in that disease 7. In contrast, 

cognitive deterioration in normal aging would be 

regarded as an accumulation of randomly distributed 

errors 8. 

Another fruitful approach to the study of this 

structure-function interaction is to use 

neurocomputational models of the entire brain. These 

models provide functional mechanistic explanations by 

combining structural information with known dynamical 

properties of brain networks 9–11. In general, this 

approach consists of mean field models (e.g., Kuramoto), 

which assume that the main dynamics of the neural 

system can be well approximated by simple, but realistic, 

network models 12. Brain dynamics are obtained using a 

set of coupled non-linear differential equations that 

describe some key features of the entire working brain. 

Each differential equation represents a node in the 

network, which is a dynamical abstraction of the mean 

activity in a cortical parcellation. Coupling between 

nodes represents cortical connectivity, which can be 

experimentally obtained from physiological studies (e.g., 

diffusion tensor imaging and brain tractography). The 

dynamics of the models allows simulations of different 

physiological properties as they are registered with 

macroscopic measures such as MEGs and EEGs. 

Using this methodology, it has been shown that 

simulated data resembles real brain data when the system 

exhibits spontaneous phase transitions from order 

(synchrony between the dynamical elements of the 

model) to disorder or desynchronization 10. Networks 

near such a critical point generate a maximum number of 

transient states and are especially capable of information 

processing 13, transmission 14,15 and storage 14,16. This 

property of the networks has been designated as 

metastability 17,18, and is characterized by the tendency of 

a system of oscillators to continuously migrate between 

a variety of transient synchronous states, allowing a 

dynamical organization between the elements of the 

network. It has been found, for example, that a model of 

weakly coupled oscillators produce simulated fMRI 

signals that parallel those from real resting state 

(endogenous) and focused attention on external events 

(exogenous) 17, and EEG signals with similar fractal 

properties to those from mind wandering states from real 

participants 19. 

The above-mentioned studies highlight the 

importance of the synchronization between elements of 

brain networks to provide an accurate representation of 

brain activity. In this vein, synchronization between 

oscillators has been proposed as a general mechanism for 

information interchange within neural circuits 20. Apart 

from their putative role in normal brain functioning, 

alterations in neural synchrony parameters have been 

proposed to be at the root of several mental disorders 21,22. 

Thus, disturbed neural synchrony may therefore reflect 

errors of effective connectivity and neural integration in 

mental illness 23. 

Another important class of measures to 

characterize brain dynamics are the estimations of the 

complexity of cortical activity. Cortical complexity is 

normally estimated with non-linear measures such as 

fractal dimension or entropy metrics of EEG time series 
24–26. Although non-linear EEG measures have been 

widely used in the last two decades and they have been 

useful in the characterization of different brain conditions 

and diseases 7,27,28 the interpretation of complexity is still 

controversial. When it is stated, for example, that AD 

patients exhibit less complex EEG signals than healthy 

participants 7,27, it would be important to know what this 
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really means at a neural level. In an early paper, 29 

suggested that the fractal dimension of the EEG 

(measured by correlation dimension, D2) reflected the 

number of independent cortical sources in a given period 

of time. However, later experimental results showed the 

importance of long-range interactions in cortical 

dynamics 30,31, suggesting that the concept of 

independent sources is not appropriate to describe 

underlying mechanisms of brain signals. Hence, the field 

shortly started to consider other alternative non-linear 

metrics, many of which were rooted in the concept of 

“complexity” 32. Indeed, the concept of “complexity” can 

be interpreted in two different ways 28,33. One notion 

considers complexity as an intermediate state between 

randomness and order 33,34. However, most non-linear 

metrics applied to brain activity fall within an alternative 

definition by which complexity is a measure of the 

degree of randomness or degrees of freedom of a system 
32. Here, we propose that one reliable approach might be 

to explore variables that contribute to the dynamics of the 

system as a whole. 

With this aim, we utilized a mean field model 

(i.e., Kuramoto model) to study how structural changes 

in the network (through directed lesions as well as 

random errors, both affecting nodes and edges) would 

modulate the network's dynamics and the complexity 

exhibited by its simulated EEGs. We developed a 

computational model that consisted of a set of Kuramoto 

oscillators with realistic anatomical coupling 35. We 

calibrated the system so that its dynamics were in a 

critical point that exhibited a phase transition, since it has 

been shown that it is a main feature of brain functioning 
36. From this standpoint, then, we tested the effect of 

lesion changes on the network synchrony with diverse 

complexity estimators. 

 

2. Methods 

2.1. Kuramoto model 

 

2.1.1 Mathematical description 

We introduce a modified Kuramoto model 10,37 

which consist of a system of coupled differential 

equations that represent dynamics of N weakly coupled 

limit-cycle oscillators or rotators with time delays:  
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where θi is the phase of the ith oscillator (i.e., rotator) on 

its limit cycle and ωi is its natural frequency (fn = ωi/2π), 

drawn from a fixed Gaussian distribution with mean f0 

(f0=60Hz here) and standard deviation σf (σf = 1Hz in our 

analyses). The term Cij is the relative coupling strength 

from oscillator j to oscillator i (representing the number 

of fibers between regions, together with the synaptic 

weights), and k is the global coupling strength which 

scales all connections’ strength. τij is the structural 

conduction delay between the i and j oscillators. 

For the Kuramoto model, the overall synchrony 

of the population of oscillators is conveniently measured 

by an order parameter (r). 

              [2]                                                                    

where 0 ≤ r(t) ≤ 1 measures the phase coherence of the N 

oscillators, and θj is the phase of the oscillator j. If all 

oscillators are perfectly synchronized with identical 

angles θj(t), then r(t) = 1. In contrast, if all oscillators are 

spaced equally on the unit circle, then r(t) = 0. 

 The Kuramoto model is a simple model, yet able 

to simulate macroscopic neural dynamics related to 

underlying structural connectivity 9,17,38,39. It has been 

shown that the Kuramoto model captures aspects of 

macroscopic dynamics (tens of thousands of simulated 

neurons) as more complex models 40. Hence, this model 

provides a good trade-off between complexity and 

plausibility 41. A review can be seen in 42. Of particular 

interest here is that the model will undergo a phase 

transition when the order parameter is in the vicinity of a 

critical value (kc). This is important because, according 

to 43, the behavior of empirical data can be extrapolated 

from simulated dynamics of an oscillating system at or 

close to a phase transition. 

 

2.1.2 Implementation of the model 

Our model implements 66 Kuramoto oscillators 

coupled together according to human white matter 

tractography 35. Further topological characteristics of the 

network can be found in 35. The tractography information 

is used in our study to determine the length and fiber 

density between brain regions. The length and fiber 

density serve as the basis for the elaboration of the 

  



N

j
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N

tr
1

1 



A. J. Ibáñez-Molina, J. Escudero & S. Iglesias-Parro 
 

4 

connection strength (C) and conduction delay (τ) 

matrices that give the structural meaning to the network. 

Initial conditions of the numerical solution of 

the model correspond with the first 1000 time steps 

(100ms) and were discarded from the analyses. For each 

condition of the study we computed 10 realizations of the 

model. The model was simulated for 35s in the lesions to 

nodes conditions, and 40s for the lesions to edges 

conditions. We used an Euler’s integrator scheme with 

0.1ms time steps 10. All simulations were carried out with 

a mean τ = 3ms and k = 7. These values were chosen 

because they lead to high metastability and a near-phase 

transition in the model 36. After a certain number of steps 

(detailed in Section 2.3), matrix C was modified 

according to a Targeted Lesion or a Random Error 

strategy. Thus, the supporting connectivity topology 

varies through the simulations. All calculations are 

performed using Matlab®. 

 

2.2. Network lesions 

This section describes the graph metrics used to 

characterize the topology and the implementation of the 

network damages. 

 

2.2.1. Graph Theory and graph metrics 

In mean-field models of brain functioning, the 

connections between distant regions of the brain are 

frequently modeled by a graph whereby the brain is 

usually parceled in nodes (representing cortical and 

subcortical areas) connected by edges (representing 

anatomical or functional connections) 44. Such graphs 

constitute a useful tool for studying the complex neuronal 

structures and their relations. Once a brain graph has been 

constructed, its topological properties can be measured 

by a rich collection of metrics 45 46 providing a common 

language for the analysis of complex systems.  

In the present study, we consider network 

metrics aimed at describing different properties of the 

network considering that a waking and conscious brain is 

the result of two complementary dynamics, namely 

information integration and differentiation 48. Thus, we 

have chosen two graph metrics, commonly used in the 

field (see for example 49), that capture these two 

dynamics: Efficiency and Clustering Coefficient. 

We calculated the Efficiency as an indicator of 

network integration. This is typically quantified with the 

characteristic path length, which is the average of the 

shortest path lengths between the nodes, indicating the 

amount of traffic the network can support 50. However, 

we consider the global efficiency as the average inverse 

shortest path length because the global efficiency may be 

computed even on disconnected networks 50.  

As a complementary measure to Efficiency, we 

considered the Clustering Coefficient (CC), a traditional 

measure of network segregation 50. Segregation has been 

associated with the idea that specialized functions are 

carried out by clusters of densely interconnected regions. 

The CC assesses segregation by computing the ratio of 

the number of existing connections to the number of all 

possible connections in the neighborhood of a node 50. 

We compute the mean of the weighted CC for all nodes 

in the network. 

 

 

2.2.3 Targeted lesions and random errors 

We consider both targeted lesions and random 

errors implemented at the node and edge level, thus 

leading to four (two by two) different approaches in 

which the network is damaged. For all conditions, we 

apply the network lesions while the model is evolving in 

time so it is possible to evaluate functional changes at 

many structural states of the network. 

As a criterion for node or edge removal in the 

targeted lesion conditions, we calculate the maximum of 

the edge and node Betweenness Centrality, which 

measures the number of shortest paths of the network that 

go through a particular edge or node 50. The BC can be 

interpreted as the amount of control of an edge or node 

that it has over the communication between elements in 

the network 51. Recent work has shown that betweenness-

based lesion are more harmful, in terms of altering the 

communication transmission capacity of the network, 

than other centrality-based strategies 52. Hence, the first 

targeted lesion strategy seeks to damage central nodes of 

the network. To this end, in each iteration of the deletion 

process, the node with the highest value of BC is 

removed from the adjacency matrix. This implies that all 

connections from and to this node are canceled. For a 

node h, we made wi,h = 0 and wh,j = 0, for all i and j. 

Consequently, the network shrinks in size. This process 

is repeated until the network contains half the original 

number of nodes. From a physiological point of view, it 

has been proposed 53 that node lesions may represent 

neurodegenerative processes that damage grey matter. 
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The second targeted lesion strategy damaged 

central edges to the network. Similarly to the previous 

case, the edge with the highest value of edge BC is 

removed from the network in each iteration by making 

wi,j = 0. It must be noted that, in this case, the network 

does not decrease in size (it is still composed of the same 

number of nodes). Edge lesions simulate damage to brain 

white matter 53. We iterate this process until the number 

of edges in the network has decreased to half the original 

number. 

Both targeted lesion strategies are deterministic. 

The order in which nodes and edges are deleted is fixed 

for a given original topology. However, there is 

variability in the times at which the lesions or errors 

occur. We simulate the occurrence of damage to nodes 

according to a uniform probability density function with 

limits 5001 and 14999 simulation steps, corresponding to 

intervals between 0.5s and 1.5s. During our simulations, 

we consider a far larger number of edge damages. Hence, 

we simulate the occurrence of an edge damage every n 

simulation steps, with n being drawn from a uniform 

distribution with limits 356 and 996 steps (corresponding 

to 0.036s and 0.10s). To account for possible effects of 

initial conditions, simulations were repeated 10 times. 

Hence, the source of variability in each condition was 

provided by these realizations. 

As a benchmark, we consider two other random 

eliminations of nodes and edges (random error strategy). 

In this approach, a randomly selected node (or edge) was 

removed from the network during realizations of the 

models. A uniformly distributed random process was 

selected for node/edge selection. Hence, during random 

error lesions, the order of node/edge elimination was 

random. Time intervals between random removals of 

nodes and edges were the same as above. The elimination 

process stopped when the number of nodes (or edges) 

decreased to half the original number. Similarly to the 

targeted lesion conditions, the simulations were repeated 

10 times.  

2.3. Simulation of the EEGs 

EEG activity from 33 sensors was simulated for 

the solutions of each model according to the following 

weighted sum of the activity in each source (oscillator) 

from the model: 

    [3] 

 

           [3] 

where xi(t) is the time series from sensor ith, wij is the 

weighted contribution of source jth in sensor ith. Each wij 

was calculated based on a spherical four-shell head 

model 54 using a standard forward model algorithm55 . 

The term εi(t) represents uncorrelated white Gaussian 

noise added to the signal. In our study, we investigated 

the effect of noise by adding four levels of intensity. 

2.4. Complexity metrics 

A number of measures have been proposed to 

estimate the complexity of EEG signals, but results have 

not always been convergent 56,57. Complexity is a term 

with multiple acceptations34,58. The lack of homogeneity 

in research results can be attributed to different 

requirements demanded by each measure.  

 

In the context of mental disease, 59 conducted a 

study in order to compare the discriminative power of 

several complexity measures. The results showed that 

Higuchi fractal dimension, Lempel-Ziv complexity and 

entropy indexes were the more informative to 

discriminate between schizophrenia patients and 

controls. Reliable results have been found with these 

measures in the discrimination of AD patients and 

controls too 32,60. In the present study, we aim to explore 

possible differences in the capability of these measures to 

capture the effects of different types of lesions on the 

underlying network dynamics.  

2.4.1 Higuchi’s Fractal Dimension 

The Higuchi’s fractal dimension (HFD) is a 

measure of irregularity and self-similarity of a signal that 

can be calculated in the time domain 61. The range of 

values for HFD lies between 1 and 2, being 1 for a simple 

curve such as a sine, and 2 for a randomly distributed 

curve that nearly fills the Euclidean 2D space. HFD has 

been successfully applied to the analysis of biomedical 

signals 62,63. 

 

2.4.2 Sample Entropy 

Sample Entropy (SampEn) is an irregularity 

measure defined as a modification of approximate 
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entropy to reduce its bias, and it is well suited for 

analyzing short and noisy experimental data 64,65. 

SampEn has been successfully applied to EEG analysis 

in multiple areas (see for example, 31,67–69).  

2.4.3 Lempel-Ziv Complexity 

LZC is a widely used metric of complexity in 

the Kolmogorov’s sense 69. This non-parametric measure 

assesses the number of distinct substrings and their rate 

of recurrence along the time series, assigning higher 

values to more complex data (i.e. higher number of 

substrings). LZC has been widely applied to biomedical 

signals 32,70,71 and it has been related to signal concepts 

such as the bandwidth of random processes and the 

harmonic variability in quasi-periodic signals 72.  

2.4.4 Complexity analysis 

HFD, SampEn and LZC are applied to each 

channel of the simulated EEG signals, which have been 

band-pass filtered between 2Hz and 80Hz to replicate the 

process used to select a typical band of interest in EEG 

analysis. To account for the dependency of the 

complexity measures on the evolution of the topology of 

the structural network, we compute the complexity 

metrics using a sliding window procedure. Successive 

epochs of the EEGs are selected with a sliding window 

of 2s (i.e. 2000 samples as the final sampling frequency 

is 1kHz). This epoch length is similar to that used in other 

non-linear analysis of electrophysiological brain signals 
32. The sliding windows have 25% overlap. Finally, the 

complexity metrics are computed within each window 

and the results are averaged across channels and 

repetitions of the experiments (type of network 

damages). We consider global results (averaged over all 

electrodes). 

 

3. Results 

 
3.1. Effects of attacks on network topology 

 

Clustering Coefficient  

Once nodes or edges are removed from the network, 

nodes may become more disconnected from the rest of 

the network. Clustering coefficient captures these 

dynamics, being equal to 1 for a node at the center of a 

fully interlinked cluster, and 0 for a node that is part of a 

group whose neighbors have no direct connections 

between them. As can be seen in Figure 1 (bottom 

panels), the clustering coefficient drop linearly with the 

random lesions, both for nodes and edges. However, the 

clustering coefficient behaved differently under targeted 

lesions. Specifically, for node directed elimination 

(Figure 1, top left panel) there is an initial fragmentation 

rate that decreases over lesions until it reaches a 

minimum value followed by an increase in clustering at 

the end of the simulation. On the other hand, at the 

beginning of edge lesions (Figure 1, top right panel), 

there was a rapid network fragmentation rate followed by 

a deceleration in the rate of fragmentation.
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Figure 1. Clustering coefficient values depending on lesion strategy (95% CI shown as shadowed region). Top panels show the effects 

of directed lesions and low panels show the effects of random lesions. 

 

Efficiency  

For each type of lesion, we calculated the evolution of the 

average inverse shortest path length (efficiency). As can 

be seen in Figure 2, the loss of the capacity of processing 

information at the end of the simulation of lesions was 

similar in all conditions and there was a linear loss of 

efficiency associated to removals. However, in directed 

edge elimination, when compared with the other 

scenarios, there was a quicker initial loss of efficiency, 

showing again the network vulnerability to selective edge 

removal.  

 

 
 

Figure 2. Efficiency values depending on lesion strategy (95% CI shown as shadowed region). Top panels show the effects 

of directed lesions and low panels show the effects of random lesions 

 

3.2. Effects on synchrony 

The order parameter r (i.e. synchrony or the coherence 

among oscillators) is the standard way to describe the 

collective dynamic of the Kuramoto model. Synchrony 

has been proposed as a communication mechanism 

allowing large-scale integration of information 73. From 

this point of view, very high or very low levels of 

synchrony would be seen as indicators of pathological 

functioning 74.  

In Figure 3, we present the average values of r 

for each type of lesion. The system seemed to be more 

resilient against random errors than to directed lesions. 

There was a higher loss of synchrony under directed 

lesions starting about t=7s. However, the overall shape of 

the loss function was similar across conditions.
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Figure 3. Average values of the Kuramoto’s order parameter for each type of lesion (95% CI shown as shadowed region). Top panels 

show the effects of lesions to nodes and bottom panels show the effects of lesions to edges in the network. 

 

3.3 Effects on EEG complexity 

In the following subsections, we present the effects on 

EEG complexity of random and directed lesions to edges 

and nodes as they are captured by the different metrics 

we study (HFD, SampEn and LZC). The reported results 

reflect the complexity of the whole system by means of 

an average across all simulated EEG channels.  

 

3.3.1. HFD 

Edge Directed Lesions. As can be seen in Figure 4, 

bottom panels, HFD was relatively unaffected by the 

presence of noise. The function relating complexity and 

the edge lesions remained relatively unchanged 

irrespective of signal to noise ratio. It is interesting to 

note that the same pattern of robustness against noise 

could be seen for HFD irrespective of type of lesion. In 

general, the complexity showed a logarithmic increase 

with edge directed elimination. That is, HFD suffered a 

rapid increase followed by a decelerated increase. It 

should be noted that the edge elimination strategy 

produced the highest levels of HFD complexity (see 

Fig.4, third and fourth rows of subplots). 

 

Node Directed Lesions. The network seemed to be more 

resilient under node directed lesions when compared with 

edge directed lesions. It took longer (i.e. it requires the 

elimination of a higher proportion of nodes) to reach 

similar levels of complexity.  

 

Edge Random Errors. As can be seen in Figure 4, fourth 

row of subplots, there was a linear increase of the 

complexity as a function of the increase of edge random 

failures. The variability of HFD values across 

simulations increased with the number of failures 

suggesting more homogeneity in the course of the lesions 

during the first stages of the elimination process and 

more heterogeneity following an accumulation of 

lesions. 

 

Node Random Errors. There was also a linear increase of 

the complexity as a function of node random errors (see 

Figure 4, top panels). The system reached similar values 

of HFD when compared with edge random pruning. The 

variability of HFD values increased for the lesions 

produced in the middle of elimination sequence (i.e. 

lower at the beginning and end and higher in the middle). 

This condition produced the lowest values of complexity. 
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Figure 4. Average values of HFD for each type of lesion and noise level (95% CI shown as shadowed regions). Top panels show HFD 

for node lesions, and bottom panels show HFD for Edge lesions. 

 

3.3.2. SampEn 

Edge Directed Lesions. Relatively unaffected by the 

presence of noise, the complexity showed a rapid initial 

increase after which it slightly decreased (for low levels 

of noise, Fig. 5, bottom panels on the left) or it became 

stable (for SNR=0dB, Fig. 5, bottom panels on the right).  

 

Node Directed Lesions. There was a rapid increase of the 

complexity at the beginning of lesions after which 

SampEn behaved asymptotically. The presence of 

maximum levels of noise (SNR=0dB) smoothed the 

growth of complexity (see Fig. 5, first row of subplots on 

the right). 

 

Edge Random Errors. Relatively unaffected by the 

presence of noise, after an initial rapid growth of the 

complexity there was a progressive deceleration of 

SampEn values (see Fig. 5, third row of subplots). 

 

Node Random Errors. There was an apparent effect of 

noise on the relationship between complexity and the 

evolution of failures. Thus, for low noise levels there was 

a rapid initial increase of the complexity followed by 

stabilization (see Fig. 5, top panels). However, the 

increase of noise tends to linearize the relationship 

between lesions and noise (see Fig. 5, top panels from left 

to right). There is also a reduction in the variability of 

complexity as a function of presence of noise. These 

results might suggest that this level of noise is so high 

that SampEn is not robust to it anymore and the results 

are obscured by noise. 
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Figure 5. Average values of SampEn for each type of lesion and noise level (95% CI shown as shadowed regions). Top panels show 

SampEn for node lesions, and bottom panels show SampEn for Edge lesions. 

 

3.3.3. LZC 

Edge Directed Lesions. For low to moderate levels of 

noise (Fig. 6, bottom left panels) the complexity showed 

an initial increase after which LZC values decreased or it 

became stable (for SNR=0dB, Fig. 6, bottom panels on 

the right). 

 

Node Directed Lesions. There is a rapid initial increase 

of the complexity after which SampEn behaved 

asymptotically. The presence of maximum level of noise 

(SNR=0dB) smoothed the growth of complexity (see Fig. 

6, top right panels).  

 

Edge Random Errors. In this condition LZC seemed to 

be relatively unaffected by the presence of noise. There 

was a monotonically increasing relation between the 

number of failures and LZC.  

 

Node Random Errors.  There was a rapid initial increase 

of the complexity after which LZC behaved 

asymptotically (see Fig. 6, top left panels). The presence 

of maximum level of noise (SNR=0dB) linearized the 

growth of complexity (see Fig. 6 top right panels).  

 

 
Figure 6. Average values of LZC for each type of lesion and noise level (95% CI shown as shadowed regions). Top panels show LZC 

for node lesions, and bottom panels show LZC for Edge lesions. 

 

3.3.4. Overview 

In sum, HFD showed a general linear progression at most 

conditions indicating that this measure is sensitive to the 

number of nodes/edges deleted from the network. 

However, SampEn and LZC exhibited a different pattern 

of evolution in complexity during network lesions when 

compared with HFD. Both SampEn and LZC capture 

changes in network structure at the beginning of the 

simulations but reached an approximately stable value 

until the end of the lesion. This evolution of complexity 

was stronger for conditions with directed lesions. In 

addition, SampEn and LZC estimations tend to diminish 

after the first increase in the condition of edge directed 

lesions (except for the maximum noise condition).  

 

3.4 Relationship between synchrony and EEG 

complexity 

In order to explore the relationship between complexity 

and synchrony, the Spearman rank order coefficient was 

calculated. Due to different length of Node and Edge 

series, both were resampled. In these analyses, only the 

complexity metrics of the 12 no-noise conditions were 

utilized, yielding a 16-order correlation matrix. As can be 

seen in Figure 7, there were significant positive 

correlation coefficients between the distinct synchrony 

measures as well as between most of complexity 

measures (yellow range). We obtained significant 

negative correlation coefficients between complexity and 

synchrony metrics (red range of colors). However, an 

opposite pattern of results was found for LZC and 

SampEn measures of complexity in Edge Directed 

Lesion condition. Specifically, LZC and SampEn 

showed a significant negative correlation with the other 

complexity metrics but a significant positive relationship 

with the synchrony measures.  
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Figure 7. Spearman rank-order correlation calculated among complexity and synchrony measures. Non significant (ns). HFD during 

Edge Random Errors (ER HFD), LZC during Edge Random Errors (ER LZC), SampEn during Edge Random Errors (ER SampEn), 

HFD during Edge Directed Lesion (ED HFD), LZC during Edge Directed Lesion (ED LZC), SampEn during Edge Directed Lesion (ED 

SampEn), HFD during Node Random Errors (NR HFD), LZC during Node Random Errors (NR LZC), SampEn during Node Random 

Errors (NR SampEn), HFD during Node Directed Lesion (ND HFD), LZC during Node Directed Lesion (ND LZC), SampEn during 

Node Directed Lesion (ND SampEn), Synchrony during Edge Random Errors (ER Sync), Synchrony during Edge Directed Lesions (ED 

Sync), Synchrony during Node Random Errors (NR Sync), Synchrony during Node Directed Lesions (ND Sync). 

4. Discussion 

In this paper, we have considered two 

interrelated questions: how changes in network structure 

alter the underlying network functional activity, and how 

different complexity metrics capture these changes in 

functional activity. Starting from a structural 

connectivity network9,35, we have simulated their 

oscillatory dynamics using a Kuramoto model 10,37. From 

the resulting phases of our Kuramoto oscillators, we 

calculated the order parameter (r, synchrony) in order to 

summarize the behavior of the whole system. Then, using 

a standard forward model algorithm 55, cortical EEG 

activity from 33 sensors was simulated and various 

measures of signal complexity were obtained (HFD, LZC 

and SampEn). At that point, we aimed to study how 

structural changes (node or edge elimination) would 

impact on function measures (the synchrony among 

oscillators and the complexity of EEG signals).  

Our results showed that the complexity metrics 

obtained from simulated EEG signals cannot be reduced 

to a direct relationship with the synchrony of the system, 

suggesting that the different types of measures that we 

explored maps onto distinct underlying aspects of 

system’s dynamics.  

 

4.1 Structural connectivity metrics 

Random removal of nodes or edges produced a 

linear reduction in segregation and efficiency. These 

results replicated observations made by other 

investigators who examined the robustness of brain 

networks to random lesions 75–77.  

Targeting edges on the basis of their centrality 

resulted in the rapid appearance of disconnected 

components and a rapid decrease in the network's global 

efficiency. On the contrary, targeted removal of nodes 

with high BC resulted in a more gradual decline in 

efficiency and fragmentation (comparable to random 

lesions). 

Following a previous study 53, our results may 

suggest that damages in white mater, particularly in hub 

regions would have higher impact on integrity and 

efficiency than damages on grey mater. Moreover, 

according to Mancini et al. 53 who found greater tolerance 

to damage in peripheral white mater when compared to 

damages in hub connections, our results show greater 

loss of efficiency under edge directed lesions than under 

node directed lesions. However, these results need to be 

taken with caution since real brains show a much more 

intricate pattern of connectivity expanded at several 

scales, and complementary work need to be conducted to 

confirm this finding.  

 

4.2. Connectivity and synchrony 
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Our results showed a general reduction of 

synchrony tied to lesions irrespective of whether they 

were random or directed to nodes or edges. These results 

are in accordance with those obtained by other authors 78 

as characteristic of exponential networks. According to 

these authors, due to the homogeneity of such networks, 

there is no substantial difference between randomly 

conducted lesions and those depending on connectivity 

between its nodes.  

In exponential networks, as the proportion of 

removed elements increases the system's fragmentation 

increases in a threshold-like fashion (suddenly and fast). 

In our simulations, even though the 50% of nodes/edges 

were eliminated, the synchrony did not show an evident 

transition point in the r parameter value whose drop have 

been indicated a completely loss of the global 

information-carrying ability of the network. It has been 

proposed that this robustness to lesions might be due to 

redundancy in connections 79. 

Our data showed a higher loss of synchrony in 

directed lesions than in random errors. These results 

contrast with those obtained by 78 who found comparable 

degree of disconnection for exponential networks either 

under directed lesions or random errors. Although our 

connectivity matrix corresponds to an exponential 

network 35, obtained results would obey the fact that our 

connectivity matrix is sparse with fiber densities not 

uniformly distributed across the cortical surface (most of 

central nodes are located in medial and temporal 

cortices). 

Although transient synchrony between distant 

areas of the brain seems to be a necessary condition for 

integration and healthy brain functioning, according to 

some authors 80,81, brain dynamics cannot be reduced to 

synchrony, and complexity has been proposed as an 

additional variable to account for differentiation in brain 

dynamics 73.  

 

4.3 Complexity measures 

Complexity estimators we selected seemed to 

capture different aspects of the system’s dynamics for 

directed lesions, particularly for edge directed 

elimination. In this condition, a logarithmic increase in 

HFD can be observed as a result of central edges 

elimination, but a different pattern can be observed for 

SampEn and LZC as lesions occur in time. 

Before we continue with the discussion of our 

results, we may need to consider that what is reflected in 

the simulated EEGs is a result of the constant adjustment 

of the phase of each oscillator to synchronize with the rest 

of them. In addition, the global behavior of the system 

introduce a general oscillatory activity to EEG data. 

These two aspects in the dynamics may change 

complexity in different ways that are not directly 

predicted from the global synchrony alone. Importantly, 

these two processes are also observed in studies with real 

participants where regular oscillatory patterns coexist 

with irregularities at a different scale.  For example, in 

one study 82, it has been shown that patients with 

Parkinson exhibit a pathologic interaction between beta 

oscillations and high frequencies suggesting global-local 

abnormal interactions in the functional networks of the 

cortex. 

Fractal measures, as HFD, analyze time series at 

different scales capturing fine grained as well as coarse 

grained variability. From this point of view HFD captures 

the whole range of the complexity, and although the 

physiological nature of fine and coarse time-scales 

remains unclear 83, it has been proposed that fine time 

scales maps onto local information processing and coarse 

time scales maps onto distributed, long range, 

information processing 84. From this point of view, HFD 

might capture changes in information processing at local 

and at more distributed information processing level. 

On the other hand, SampEn is a measure based 

on Approximate Entropy, and LZC is also considered an 

entropy related measure closely related to Shannon 

entropy 69,85. Both SampEn and LZC indicate the degree 

of similarity or predictability of time series, where lower 

values can be found for constant or periodic sequences 

without any randomness 86. Moreover, both types of 

measures are based on a discretization of time series 63,70. 

For example, some authors 87 working with heart rate 

data found that a decrease in the entropy of time series 

might be due to an increase in the degree of data 

regularity, or importantly here, it might also be due to the 

presence of outliers that inflate the observed variance of 

data. These differential aspects of the measures under 

consideration might explain the observed differences in 

our data. Thus, as the central edges are eliminated, the 

network becomes more fragmented, emerging new 

communities of oscillators that introduce more variability 

in the EEG time series reducing in turn the magnitude of 

entropy-based measures, more sensitive to discretization 

changes 88. However, because HFD averages the 

complexity at different timescales, the loss of complexity 



 Effects of Neural Network’s lesions on synchrony and EEG complexity 
 

3 

at coarse-grained timescales might be compensated at 

smaller timescales.  

Another important feature in the divergence 

between HFD and SampEn/LZC is that HFD is not 

sensitive to stereotypical or repetitive signals. There is no 

reason why a repetitive signal does not show a high 

fractal dimension. In other words, one may have 

predictable time series with a high fractal dimension. 

Conversely, SampEn and LZC are sensitive to specific 

oscillatory patterns in the time series, and apparently 

disordered signals may result less complex if they are 

constructed with the same sequence patterns. In the case 

of edge deletion, fragmented groups of oscillators might 

tend to show more predictable behaviors making the EEG 

structure simpler in terms of information. When lesions 

were directed to nodes, EEG variability increases, and 

then, it is reasonable to consider that the EEG signals may 

be constructed with less predictable sequences of 

oscillations that did not decreased the estimation of 

complexity.  

Taking into account these characteristics 

between the measures, also supported by our data, from 

a clinical point of view, we might consider the possibility 

to use HFD in cases where lesions are distributed across 

scales or they are not well known. In addition, 

SampEn/LZC could be more suitable for widely 

distributed pathologies (large scales). 

 

4.3.1. Synchrony and complexity   

As a general result, we found an inverse 

relationship between the degree of neural complexity and 

phase synchrony between oscillators. These results are in 

agreement with the 89 proposal of an inverse relationship 

between complexity and synchrony. According to these 

authors, signals with more neural complexity establish an 

environment in which phase relationships are difficult to 

obtain, thus decreasing the probability of synchrony. 

Evidences of an inverse relationship between functional 

connectivity (synchrony) and complexity in brain signals 

can also be found in other studies 58,83,90. Nevertheless, 

and as we mentioned in the previous section, our data also 

showed that LZC and SampEn in Edge directed lesions 

tended to decrease in time after an initial increase. This 

effect explained that LZC and SampEn exhibited a 

positive correlation with the synchrony of nodes from the 

network. As suggested before, it was possible that edge 

deletion left partially isolated groups of oscillators that 

started to behave more stereotypically; and then, 

produced more predictable behaviors. This effect might 

have caused a slight decrease of synchrony/complexity 

with lesions to edges; and then, a positive correlation 

between them. It would be equivalent to state that node 

isolation in the network lead to less synchrony and less 

informational complexity, but interestingly, as we 

discussed before, higher estimations of fractal dimension. 

Hence, there are alternative ways to describe and 

measure complexity that may lead to divergent results 
56,57. Our results showed how different patterns can be 

obtained for distinct complexity indexes when applied to 

the same dataset. Thus, caution should be made in future 

research when calculating and interpreting complexity 

measures. Although speculative, our results indicated 

that is reasonable to expect a HFD and SampEn/LZC 

divergence when compared with controls for patients 

with white matter injury (edges), and a high correlation 

between the three measures for patients with grey matter 

injury (nodes). For example, it has been shown that white 

matter degradation is more prominent in Frontotemporal 

Dementia (FTD) than in AD91, and therefore it would be 

reasonable that HFD and SampEn/LZC would show 

lower positive correlation in FTD than in AD. 

 

4.3.2. Comparison between complexity metrics in terms 

of their robustness to noise 

One of the biggest challenges when using EEG 

is the very small signal-to-noise ratio of the brain signals 

that we try to observe. This noise may come from 

different sources. For example, the variability of 

individual spike times will result in substantial activity 

fluctuations when aggregated at the population level 92, 

providing a “noisy background” which further varies the 

spike timing 93. 

In the present work we have considered 4 

different types of network lesions with four different 

levels of noise each. Complexity measures of random 

lesions, either to nodes as to edges, seems to be relatively 

unaffected by SNR. However, in targeted lesions, the 

increase of noise seems to smooth the increase of 

complexity. According to various authors 94,95 this 

robustness may reflect the effect of noise attenuating the 

relative importance of network elements, either nodes or 

edges. Thus, although in the directed lesions the 

nodes/edges were eliminated according to their 

centrality, the increase of background noise reduces the 

impact of individual elements on the whole system. 
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4.3.3. Future research and limitations of the study 

Even though we addressed the relationship 

between whole brain dynamics and the complexity of its 

generated signals using a well suited mean field model, it 

is of no doubt that our results are based on a highly 

abstract model, and the conclusions we extract need to be 

taken with caution. First, the neural network model the 

dynamics of only 66 brain regions. This simplification 

may lead to simple dynamics and hide other possible 

emerging effects from more complex structures. In 

addition, the dynamics of the model are based from a 

narrow frequency band, which obviously, does not 

correspond with the richness of frequencies we find in 

real brain functioning. Hence, we believe it would be 

important to try to replicate our results using larger 

networks and models that include multiple frequencies. 

It would be also important to design 

experiments to detect divergences between HFD and 

SampEn/LZC. For example, it would be interesting to 

compare healthy controls with patients with different 

types of grey and white matter injury and study the cases 

in which the pattern of HFD of their EEGs differ from 

SampEn/LZC estimations. 

Finally, one step further of this study will be to 

design specific lesions in the network that resemble 

different disorders. One possibility would be to explore 

Parkinsonism or AD. Since it is well known how the 

evolution of these pathologies is from a structural point 

of view, one may model the evolution of the structural 

network on each pathology and obtain the changes in the 

corresponding complexity measures.  

5. Conclusions 

In this study, we modeled brain dynamics using 

a network of coupled oscillators to investigate directed 

and random lesions to the network and their effects in 

synchrony and EEG complexity. Our results showed that 

HFD increased proportionally with node and edge 

removal. However, SampEn and LZC tended to increase 

faster at the beginning and reached a stable value until 

the end of the lesions. This behavior indicated that these 

measures, based on information theory, might be 

sensitive to slight changes in the structure of the system 

but they could not be appropriate to signals from very 

disordered systems since the estimations easily reach an 

asymptotic value. Another finding is that synchrony 

between oscillators is negatively related with EEG 

complexity in the majority of conditions we explored; 

that is, the mean synchrony of the system decreased 

during network lesions while EEG complexity increased. 

Although significant, the negative relationship between 

synchrony and complexity need to be taken into 

consideration since the evolution curves of synchrony 

and complexity were different in shape and range of 

variability (see Figure 7). This can be of interest when we 

interpret EEG complexity results because in many 

occasions complexity estimations are thought to reflect 

de-synchronization or disorder in the system, and we 

show here that the relationship between the order of the 

system and the structure of the signal we measure on the 

scalp is not straightforward. 
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