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The nature of neural codes is central to neuroscience. Do neurons encode information through relatively

slow changes in the emission rates of individual spikes (rate code), or by the precise timing of every spike

(temporal codes)? Here we compare the loss of information due to correlations for these two possible

neural codes.

The essence of Shannon‘s definition of information is to combine information with uncertainty: the

higher the uncertainty of a given event, the more information is conveyed by that event. Correlations

can reduce uncertainty or the amount of information, but by how much? In this paper we address this

question by a direct comparison of the information per symbol conveyed by the words coming from a

binary Markov source (temporal codes) with the information per symbol coming from the corresponding

Bernoulli source (uncorrelated, rate code source). In a previous paper we found that a crucial role in the

relation between Information Transmission Rates (ITR) and Firing Rates is played by a parameter s,

which is the sum of transitions probabilities from the no-spike-state to the spike-state and vice versa. It

turned out that also in this case a crucial role is played by the same parameter s. We found bounds of

the quotient of ITRs for these sources, i.e. this quotient‘s minimal and maximal values. Next, making

use of the entropy grouping axiom, we determined the loss of information in a Markov source in relation

to its corresponding Bernoulli source for a given length of word.

Our results show that in practical situations in the case of correlated signals the loss of information is

relatively small, thus temporal codes, which are more energetically efficient, can replace the rate code

effectively. These phenomena were confirmed by experiments.
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1. Introduction

Since the seminal work of Adrian1 it has been rec-

ognized that in the nervous system information is

transmitted among spiking neurons by trains of dis-

crete electrical pulses, called action potentials or

spikes. A second, non-digital, mode of communica-

tion, through gap junctions, is also common (for ex-

ample,2,3) but will not be considered here. It has

been shown that Firing Rates of spikes change in a

consistent manner with inputs. That has given rise

to the notion that information is encoded in the neu-

ronal Firing Rate. Recently, in Ref.4 it was presented

that in the cerebral cortex various types of neural

coding are controlled by the energy field and energy

flow. In turn, it is known that Firing Rate is directly

related to energy cost,5 namely, energy consumption

increases linearly with spiking frequency.6,7 On the

other hand, many reports show (for example, Ref.8)

that the total number of spikes varies substantially

from trial to trial during the presentation of the same

stimulus. This observation has given rise to an alter-

native hypothesis, which states that additional in-

formation is contained in the precise timing of the

spikes within the spike train. These two not mutu-

ally exclusive views of neural encoding and decoding

are broadly categorized as “rate-based” and “spike-

based”.9

In Ref.10 it has been shown that the pairwise

temporal spike correlation function within a spike

train, and the spike correlation function across re-

peated presentations of the same stimuli determine

the information content in the case of neural codes

with finite memory. In Ref.,11 a specific transforma-

tion of spike trains into analog signals was applied

to explain a mechanism that a spiking neuron is able

to learn. It has been argued that associations of ar-

bitrary spike trains in a supervised fashion allow the

processing of spatio-temporal information encoded in

the precise timing of spikes.

In our previous papers we compared directly In-

formation Transmission Rates with their correspond-

ing Firing Rates12,13 in the case of binary Informa-

tion Sources. Our results show that a parameter s

(which we called a “jumping parameter”) played a

crucial role in the characterization of neural coding.

It turned out that depending on this parameter s,

temporal coding can be more effective than rate cod-

ing.13

In this paper, we compare transmission rates for

two types of binary Information Sources: correlated

sources and their corresponding independent sources.

Making use of the entropy grouping axiom,14 we an-

alyze the relation of information transmitted by the

sources described as Markov processes, and by re-

lated sources being Bernoulli processes. Our results

show that also in this case a crucial role is played by

the parameter s. We found bounds for the quotients

of ITRs for these sources, and also their quotients

minimal and maximal values. We also determined

the loss of Shannon information in Markov sources

versus corresponding Bernoulli sources for a given

length of word.

The paper is organized as follows. In Section 2,

we briefly recall the basic concepts of Information

Theory, Bernoulli and Markov processes. In Section

3, we present the comparison of the ITR of spike

trains coming from a Markov source and from the

corresponding Bernoulli source. Section Conclusions

contains final remarks.

2. Entropy and Information

In Shannon‘s Theory a communication system is

represented by: an input Information Source (stim-

uli source), a communication channel (neuronal net-

work) and an output Information Source (output sig-

nals). In mathematical language sources of informa-

tion are modelled as stationary discrete stochastic

processes. Discrete communication channels are de-

fined by a system of conditional probabilities linking

input and output symbols.14,15,17 In this paper, we

study two types of output Information Sources, i.e.

sources represented by Markov processes and by cor-

responding Bernoulli processes.14,18 First, we briefly

recall the basic notation.13

2.1. Entropy

Let ZL be a set of all words (i.e. blocks) of length L,

built of symbols (letters) from some finite alphabet

Z. Each word zL can be treated as a message sent by

Information Source Z being a stationary stochastic
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process. If P (zL) denotes the probability the word

zL ∈ ZL occurs, then the information in Shannon

sense carried by this word is derived as

I(zL) := − log2 P (zL) . (1)

Thus, the average information of the random vari-

able ZL corresponding to the words of length L is

called the Shannon block entropy, and is given by

H(ZL) := −
∑

zL∈ZL

P (zL) log2 P (zL) . (2)

Since the word length L can be arbitrary, the block

entropy does not perfectly describe the Information

Source.14,17

In the special case of a two-letter alphabet Z =

{0, 1} and the length of words L = 1 we introduce

the following notation

H2(p) := H(Z1) = −p log2 p− (1− p) log2 (1− p) ,
(3)

where P (1) = p, P (0) = 1 − p are the associated

probabilities.

2.2. Information Transmission and
Firing Rates

The appropriate measure for estimation of transmis-

sion efficiency of an Information Source Z is the in-

formation transmitted on average by a single symbol,

i.e. Information Transmission Rate (ITR).14,17

Let us introduce the notation

ITR(L)(Z) :=
H(ZL)

L
(4)

and in the limiting case

ITR(Z) := lim
L→∞

H(ZL)

L
. (5)

This limit exists if and only if the stochastic process

Z is stationary.17

The most commonly used definition of Firing

Rate refers to the temporal average19–21 and is de-

fined as

FR =
nT
T

, (6)

where nT denotes spike count in a given time window

of length T (typically a few seconds). In practice, in

order to get sensible averages, some reasonable num-

ber of spikes should occur within the time window.21

Since the messages are treated as trajectories of lo-

cally stationary stochastic process, the Firing Rate

as defined by “Eq. (6)” is specific for a given In-

formation Source provided T is large enough. Thus,

FR · ∆τ is related to the probability p of spike ap-

pearance, where ∆τ is the time resolution or bin size.

2.3. Information Sources

An Information Source must produce sequences of

symbols, which from a mathematical point of view

can be treated as trajectories of a stationary stochas-

tic process Z = (Zi), i = 1, 2, . . . where Zi are ran-

dom variables18 taking the values from a finite al-

phabet.

The most commonly used method of digitaliza-

tion spike trains was proposed in Ref.13,22–29 It is

physically justified that spike trains as being ob-

served, are detected with some limited time resolu-

tion ∆τ , so that in each time slice (bin) a spike is

either present or absent. If the presence of spike is

denoted by “1” and no spike by “0”, then if we look

at some time interval of length T , each possible spike

train is equivalent to T
∆τ binary sequence which can

be treated as trajectory of the stochastic process.

In Ref.22,24 it was assumed that random vari-

ables which describe the generation of consecutive

bits in the sequence representing spike train are in-

dependent. This means that these random variables

are uncorrelated, i.e. their Pearson Correlation Coef-

ficient (PCC) is equal to 0. Thus, assuming that 1 is

generated with probability p (a spike is found in the

bin), 0 is generated with probability 1− p (a spike is

not found), what we have is a Bernoulli process.17,18

Clearly, in the case of a Bernoulli process the distri-

bution of k “ones” between the sequence of bits of

length n does not influence the probability of such

sequences. This probability is simply equal, for all

such sequences, to pk(1−p)n−k and depends only on

the Firing Rate k
n . Consequently, since the Shannon

information depends only on the probability, all such

sequences transmit the same amount of information

and we are in the rate code regime.

Following the entropy definition “(2)” the In-

formation Transmission Rates “(4)” and “(5)” for

Bernoulli process B with the probability of bit 1

equal to p is determined as

ITR(B(p)) = −p log2 p− (1− p) log2(1− p) . (7)

Note that ITR(B(p)) is equal to H2(p).

Now, let us assume that the generation of bits

of the output signal from an Information Source
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is described by correlated random variables (in the

sense of PCC), and this generation is governed by

a Markov process M. In general, a discrete Markov

process is defined by a set of conditional probabili-

ties pj|i describing changes from state i to the state j,

(where i, j=0, 1), and by initial distribution proba-

bilities. These changes are called transitions and the

probabilities associated with them are called tran-

sition probabilities. These probabilities can be put

together into a matrix P, called the transition ma-

trix, which for the two-states-process is of the form

P :=

p0|0 p0|1

p1|0 p1|1

 =

1− p1|0 p0|1

p1|0 1− p0|1

 . (8)

This is a stochastic matrix, i.e. each of its columns

sums to 1. Here, we assumed that the process is ho-

mogeneous in time. The probability evolution is gov-

erned by the Master Equation16pn+1(0)

pn+1(1)

 =

1− p1|0 p0|1

p1|0 1− p0|1

 ·
pn(0)

pn(1)

 ,

(9)

where n stands for the discrete time, pn(0) and pn(1),

are probabilities of finding state “0” or “1” at time n.

In the case of Markov processes the distribution of k

“ones” between the sequence of bits of length n does

influence the probability of such sequences. Conse-

quently, since the Shannon information depends only

on the probabilities, in general such sequences trans-

mit different amounts of information. Here the pat-

terns in the sequences of bits do play a role and we

are in the temporal code regime.

The stationary solution of “(9)” is given bypeq(0)

peq(1)

 =


p0|1

(p0|1+p1|0)

p1|0
(p0|1+p1|0)

 . (10)

The entropy rate “(6)” of the Markov source with

transition matrix defined by “(8)” reads17 by defini-

tion

ITR(M) = (11)

Peq(0)[−p1|0 log2 p1|0 − (1− p1|0) log2 (1− p1|0)]+

Peq(1)[−p0|1 log2 p0|1 − (1− p0|1) log2(1− p0|1)] .

or, making use of notation “(3)” it can be written in

a compact form

ITR(M) = peq(0)H2(p1|0) + peq(1)H2(p0|1) . (12)

For the latter, the use of the probability of state “1”

is, in fact, understood as the Firing Rate, and is de-

noted by p,

p := peq(1) =
p1|0

(p0|1 + p1|0)
. (13)

For the special case when p0|1 +p1|0 = 1, the Markov

process M becomes uncorrelated, and reduces to a

Bernoulli process with p = p1|0.

Under the above notation, we introduced13 the

“jumping” parameter s which can be interpreted as

the tendency of transition from one state to the other

state

s := p0|1 + p1|0 . (14)

Note that 0 ≤ s ≤ 2.

Using this notation, in the case of the Markov

processes M, we have

p =
p1|0

s
. (15)

For 0 ≤ s ≤ 1, the firing frequency p can take the

values from the interval [0, 1], while for 1 ≤ s ≤ 2 the

values of p are limited to the interval 1− 1
s ≤ p ≤

1
s .

These limits of the range of p follow from “(14)”,

“(15)” and the inequality s− 1 ≤ p1|0 ≤ 1.

3. Results

In this Section we compare directly Information

Transmission Rates transmitted by spike trains com-

ing from a Markov Information Source as defined by

“(12)”, with ITR of spike trains coming from the cor-

responding Bernoulli Information Source “(7)”. It is

natural to assume that the Bernoulli process corre-

sponding to a given Markov process is defined by the

stationary probabilities “(10)” of this Markov pro-

cess.

Under the notation “(7)” and “(12)”, we in-

troduce the following Information Markov-Bernoulli

Quotient Qs, which is a function of p and depends

on parameter s

Qs(p) :=
ITR(Ms(p))

ITR(Bs(p))
. (16)

Applying “(12)” and “(15)” we have

Qs(p) :=
(1− p)H2(ps) + pH2((1− p)s)

H2(p)
. (17)

Taking into account the range of p, farther on we

consider Qs in the following two cases

a) 0 ≤ s ≤ 1, here 0 ≤ p ≤ 1 , (18)
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Figure 1. The Markov-Bernoulli Information Quotient Qs as a function of Firing Rate p for a chosen values of the jump-
ing parameter s. (A) for parameters 0 ≤ s ≤ 1 according to “(18)” the range of p is [0,1] (B) for parameters 1 ≤ s ≤ 2
due to “(19)” the range of p is 1 − 1

s ≤ p ≤ 1
s .

b) 1 ≤ s ≤ 2, here 1− 1

s
≤ p ≤ 1

s
. (19)

In Fig. 1 we present, for some arbitrary values of s,

typical traces of Qs as a function of p both for lower

values of the jumping parameter 0 ≤ s ≤ 1 (panel

A), and for larger values of the jumping parameter

1 ≤ s ≤ 2 (panel B). Observe, that Q1(p) = 1 for

each p, due to the fact that for s=1, the Markov

process reduces to the Bernoulli process. In general,

for s close to 1 the amounts of information carried

by correlated and corresponding uncorrelated signals

are comparable, i.e. the loss of information by cor-

related signals is relatively small. Note that Qs for

every s 6= 1 exhibits one maximum only. One can

check the symmetry property i.e.

Qs(
1

2
− r) = Qs(

1

2
+ r) . (20)

for 0 ≤ r ≤ 1

2
, in the case of 0 ≤ s ≤ 1 (21)

and

for 0 ≤ r ≤ 1

s
− 1

2
, in the case of 1 ≤ s ≤ 2 .

(22)

Thus, in both cases, the maximumQmaxs over p of the

quotient Qs for all values of parameter s is achieved

for p = 1
2 and by “(17)” it is equal to

Qmaxs = Qs(
1

2
) = H2(

s

2
) . (23)

In Fig.2, we show Qmaxs as a function of s for 0 ≤
s ≤ 2. Here one can observe that the minimal values

of the quotient Qs(p) for each s are reached at the

endpoints of the intervals “(18)” and “(19)”.

For 0 ≤ s ≤ 1 , making use of “(17)”, the bounds

are as follows

lim
p→0

Qs(p) = s and lim
p→1

Qs(p) = s , (24)

while for 1 ≤ s ≤ 2 the bounds read

lim
p→1− 1

s

Qs(p) =
H2(s−1)

s

H2( s−1
s )

and by “(20)”

lim
p→ 1

s

Qs(p) =
H2(s−1)

s

H2( s−1
s )

. (25)

Observe that for s→ 1+ we have
H2(s−1)

s

H2( s−1
s )
→ 1.

g(s) :=
H2(s−1)

s

H2( s−1
s )

as the function of s for 1 ≤ s ≤
2 is shown in Fig. 3.

Notice, that for each s

f(s) := 2− s ≤ g(s) . (26)

The basic idea of Shannon Information Theory is

to combine information with uncertainty. The higher

the uncertainty of a given event, the more informa-

tion is transmitted by such an event. The concept of

entropy already addresses this idea.

To determine how far correlation reduces uncer-

tainty, i.e. in fact the amount of Shannon informa-

tion, we compare the information per symbol trans-

mitted by the words coming from a binary Markov
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Figure 2. The upper bound “(23)” of Qs, i.e. Qmaxs and the limiting factor h(s) =
H2

s
2 +1
2 in “(33)”, “(34)” as functions

of the jumping parameter s.

Figure 3. The Qs’ lower bound g(s) =
H2(s−1)

s

H2( s−1
s )

“(24)” and f(s)=2-s “(26)” as functions of the jumping parameter

1 ≤ s ≤ 2.

source with the information per symbol coming from

the corresponding Bernoulli source.

First we consider words of length 2. We make

use of the grouping axiom of entropy.14 It is known

that the entropy functionH(Z) for a discrete random

variable Z under assumptions of continuity, mono-

tonicity, uncertainty of joint experiment and group-

ing axiom, is interpreted as the average uncertainty

associated with the events Z = zi, and is derived as

H(Z) = H(p1, . . . , pK) = −ΣKj=1 log2 pj , where pi is

probability of the event Z = zi, i = 1, 2, . . . ,K. Let

us consider the quotient Qs of the entropy of Markov

“(11)”, “(12)” and a corresponding Bernoulli process

“(7)”. With the above notation and by “(3)” and

“(8)” we have

Qs =
peq(1)H2(p0|1) + peq(0)H2(p1|0)

H2(peq(1))
=

peq(1)H(p0|1, 1− p0|1) + peq(0)H(p1|0, 1− p1|0)

H(peq(1), 1− peq(1))
=

peq(1)H(p0|1, p1|1) + peq(0)H(p1|0, p0|0)

H(peq(1), peq(0))
. (27)
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Now, we express Qs in the form

Qs =
peq(1)H(

peq(1)p0|1
peq(1) ,

peq(1)p1|1
peq(1) )

H(peq(1), peq(0))
+

peq(0)H(
peq(0)p1|0
peq(0) ,

peq(0)p0|0
peq(0) )

H(peq(1), peq(0))
. (28)

By adding and subtracting H(peq(1), peq(0)) in the

nominator and making use of the grouping axiom

Qs =
peq(1)H(

peq(1)p0|1
peq(1) ,

peq(1)p1|1
peq(1) )

H(peq(1), peq(0))
+

peq(0)H(
peq(0)p1|0
peq(0) ,

peq(0)p0|0
peq(0) )

H(peq(1), peq(0))
+

H(peq(1), peq(0))−H(peq(1), peq(0))

H(peq(1), peq(0))
=

H(peq(1)p0|1, peq(1)p1|1, peq(0), p1|0, peq(0)p0|0)

H(peq(1), peq(0))
−

H(peq(1), peq(0))

H(peq(1), peq(0))
=

H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))−H(peq(1), peq(0))

H(peq(1), peq(0))
.

(29)

where p(i, j) denotes the probability of the words

(i, j), i, j = 0, 1.

For 0 ≤ s ≤ 1 applying “(23)” and “(24)” to

“(29)” we have

s ≤ H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))

H(peq(1), peq(0))
− 1 ≤ H2(

s

2
) .

(30)

For 1 ≤ s ≤ 2 applying “(23)” and “(25)” to “(29)”

we have

H2(s−1)
s

H2( s−1
s )
≤

H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))

H(peq(1), peq(0))
− 1 ≤ H2(

s

2
) .

(31)

and applying “(23)” and “(26)” to “(29)” we have

2−s ≤ H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))

H(peq(1), peq(0))
−1 ≤ H2(

s

2
) .

(32)

Let us consider the ITRs for the Markov pro-

cess against the corresponding Bernoulli process for

words of length 2. Making use of “(30)” and “(32)”,

and using the notation “(4)”, we obtain the following

relation between these Information Sources:

s+ 1

2
ITR(Bs(p)) ≤ ITR(2)(Ms(p)) ≤

H2( s2 ) + 1

2
ITR(Bs(p))

for 0 ≤ s ≤ 1 , (33)

and

3− s
2

ITR(Bs(p)) ≤ ITR(2)(Ms(p)) ≤

H2( s2 ) + 1

2
ITR(Bs(p))

for 1 ≤ s ≤ 2 , (34)

where ITR(2)(Ms(p)) denotes the Information

Transmission Rate “(4)” of the Markov pro-

cess for words of length 2, and ITR(Bs(p)) =
1
2ITR

(2)(Bs(p)) is Information Transmission Rate of

the corresponding Bernoulli process. Note that the

correlation can reduce the ITR by as much as a half,

i.e

1

2
ITR(Bs(p)) ≤ ITR(2)(Ms(p)) ≤ ITR(Bs(p))

for 0 ≤ s ≤ 1 , (35)

1

2
ITR(Bs(p)) ≤ ITR(2)(Ms(p)) ≤ ITR(Bs(p))

for 1 ≤ s ≤ 2 . (36)

Similar considerations for words of length n (n ≥ 2)

led to the more general formulas

[s(1− 1

n
) +

1

n
]ITR(Bs(p)) ≤ ITR(n)(Ms(p)) ≤

[H2(
s

2
)(1− 1

n
) +

1

n
]ITR(Bs(p))

for 0 ≤ s ≤ 1 , (37)

[(2−s)(1− 1

n
)+

1

n
]ITR(Bs(p)) ≤ ITR(n)(Ms(p)) ≤

[H2(
s

2
)(1− 1

n
) +

1

n
]ITR(Bs(p))

for 1 ≤ s ≤ 2 . (38)
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Note, that from “(37)” and “(38)” the following up-

per and lower bounds follow

sITR(Bs(p)) ≤ ITR(n)(Ms(p)) ≤

H2( s2 ) + 1

2
ITR(Bs(p))

for 0 ≤ s ≤ 1 , (39)

(2− s)ITR(Bs(p)) ≤ ITR(n)(Ms(p)) ≤

H2( s2 ) + 1

2
ITR(Bs(p))

for 1 ≤ s ≤ 2 , (40)

where in Ref.17 ITR(Bs(p)) = H2(p) and n ≥ 2.

Note, that the bounds s and 2−s can be interpreted

as 1− detP and trP, respectively.

These results show that for Markov processes for

any length of word, the reduction of information due

to correlations is limited by the factor s or 2−s. This

finding supports the hypothesis that under certain

conditions neurons can use temporal codes which are

more energetically efficient compared to the more

reliable rate code. It is interesting that the factors

(bounds) in the above inequalities depend only on

the jumping parameter s. This parameter is simply

the sum of the conditional probabilities of transition

from state to state. On the other hand, experiments

show30 that spiking frequency is in practice limited

typically by 40 spikes within a time period of a few

seconds and time resolution of the spikes being de-

tected is typically in the range of 3 ms. Thus, it is

justified to assume that, after digitalization, the tran-

sition probability from the state in which there is a

spike, to the state where there is no-spike is large

(i.e. close to 1), while the transition probability from

the state of no-spike to the state where there is a

spike is small (i.e. close to 0), and consequently the

values of s are around 1. However, our results show

that for s close to 1, the amounts of information

carried by correlated (like temporal codes) and cor-

responding uncorrelated (like rate code) the signals

are comparable. This suggests that when a neuronal

system decides to use a temporal code, some trade-

off between energetic cost and transmission reliabil-

ity must be taken into account. Experiments confirm

that such situations can occur in the primary audi-

tory cortex,31–34 the visual cortex,35 and also in the

olfactory36 and the gustatory37 information process-

ing systems.

4. Conclusions

Spiking neurons communicate with each other by

means of small electric currents, transferring infor-

mation via sequences of action potentials called spike

trains, which can be viewed as a string of binary sig-

nals.24 It is still an open question whether the infor-

mation contained in these binary signals is conveyed

by the firing frequency, or by the precise timing of the

spikes. The nature of the code used by spike trains is

closely related to whether the digitalized representa-

tion of messages is governed by uncorrelated stochas-

tic processes (Bernoulli processes) or by correlated

ones, such as some Markov processes.

We point out that the correlations we have con-

sidered in this paper refer only to correlations within

a given spike train, and are thus distinct from cor-

relations among spike trains emitted by several dif-

ferent neurons, a topic that has received a great deal

of experimental and theoretical attention (for exam-

ple,39–41).

In this paper we have shown, that when infor-

mation conveyed by spike trains coming from such

different sources is compared, a crucial role is played

by the same jumping parameter s, as we found in

Ref.13 We have found that the correlation-related

loss of information for signals governed by Markov

processes, when compared with the corresponding

uncorrelated processes, is determined only by this

parameter s. Experiments confirm that taking into

account the frequency of neuronal signals and spike

detection resolution this parameter oscillates around

1. Our results show that for s close to 1, the amounts

of information transmitted by correlated and corre-

sponding uncorrelated signals are comparable. Thus

temporal codes, which are more energetically effi-

cient, can be used instead of rate codes. This was

observed in a number of in vivo recordings of neu-

ronal activity38 and in the studies mentioned in that

reference.
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