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Francisco J. Mart́ınez-Murcia and Diego Castillo-Barnes

Department of Signal Theory
Networking and Communications

DASCI Institute, University of Granada
Granada 18071, SPAIN

∗gorriz@ugr.es

Accepted 1 March 2019
Published Online 14 May 2019

Parkinsonism is a clinical syndrome characterized by the progressive loss of striatal dopamine. Its diagno-
sis is usually corroborated by neuroimaging data such as DaTSCAN neuroimages that allow visualizing
the possible dopamine deficiency. During the last decade, a number of computer systems have been
proposed to automatically analyze DaTSCAN neuroimages, eliminating the subjectivity inherent to the
visual examination of the data. In this work, we propose a computer system based on machine learning
to separate Parkinsonian patients and control subjects using the size and shape of the striatal region,
modeled from DaTSCAN data. First, an algorithm based on adaptative thresholding is used to parcel
the striatum. This region is then divided into two according to the brain hemisphere division and char-
acterized with 152 measures, extracted from the volume and its three possible 2-dimensional projections.
Afterwards, the Bhattacharyya distance is used to discard the least discriminative measures and, finally,
the neuroimage category is estimated by means of a Support Vector Machine classifier. This method was
evaluated using a dataset with 189 DaTSCAN neuroimages, obtaining an accuracy rate over 94%. This
rate outperforms those obtained by previous approaches that use the intensity of each striatal voxel as
a feature.
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1. Introduction

Parkinsonism refers to a family of disorders caus-
ing similar clinical syndromes: tremor, hypokine-
sia, rigidity and postural instability.1 Most of the
patients with Parkinsonism suffer from Parkinson’s
disease (PD), a neurodegenerative disorder that
affects about 1–2% of people over 65 years and whose
prevalence is increasing in developed nations due to
the growth of the older population.

The diagnosis of Parkinsonism is usually corrob-
orated by means of neuroimaging data of several

modalities. Because PD and related disorders cause
a progressive loss of striatal dopamine, a big branch
of neuroimaging modalities used for PD diagno-
sis focuses on visualizing that potential dopamine
deficiency. An example is the 123I-ioflupane or
123I-FP-CIT (also known by the trademark name
DaTSCAN), a radiopharmaceutical drug that binds
the dopamine and serotonin transporters in vitro
with high affinity. Thus, along with a Single Photon
Emission Computer Tomography (SPECT) scanner,
this drug allows us to visualize the loss of striatal
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dopamine.2,3 Nevertheless, many researches still con-
sider the 18F-DOPA as the standard radiotracer for
PD diagnosis. Since the decade of 1980, this drug has
been successfully used to evaluate patients affected
by PD.4 123I-IBZM SPECT is another neuroimaging
modality widely used to characterize the dopamine
D2/3 receptors. A recent study confirmed that this
radioligand is highly sensitive and accurately detects
mild to subtotal striatal lesions by measuring loss
of D2/3 receptor in rats.5 In addition, non-dopamine
focused radiopharmaceuticals as 18F-FDG have been
successfully used to assist the diagnosis of PD.6

Traditionally, neuroimaging data were visually
analyzed by experienced clinicians in order to detect
the specific patterns that characterize the disease.
Nowadays, the visual examination is no longer
acceptable since it is subjective and often misses
important information. The striatal binding ratio,
computed from the estimation of the radiopharma-
ceutical uptake using specific computer software is
probably the “gold standard” to diagnose Parkin-
sonism using neuroimaging data. During the last
decade, several computer-aided diagnosis (CAD) sys-
tems7,8 have been developed to automatically sep-
arate parkinsonian patients and healthy subjects,
assisting the diagnosis that way.9,10 These systems
are based on modern statistical classifiers11–15 and
are able to take advantage of the huge amount of
information contained in the neuroimages.16,17

One of the major problems of statistical classifi-
cation is the overfitting problem in high-dimensional
settings with a small sample size, where the designed
classifiers are inevitably over-adjusted to the training
set, providing an almost vanishing training error, but
with a poor generalization ability. Unfortunately, in
neuroimaging this situation is the rule rather than
the exception, since the dimensionality of each neu-
roimage (millions of voxels) in relation to the size of
available samples (hundreds of scans) implies a high
risk of overfitting. This issue is commonly referred
as the curse of dimensionality or small sample size
problem and can be also explained in terms of the
high probability of the training set to be separable by
a given surface in high dimensional spaces.47 Several
approaches have been proposed to address this prob-
lem and most of them consist on reducing the dimen-
sionality of the data.18–20 They could be divided
into two big branches: (i) Those that perform a vox-
els selection and are commonly based on previous

knowledge and (ii) The ones that summarize the
information contained in the data into a reduced set
of features and often do not require previous knowl-
edge (they are based on ANOVA).9,21 In addition,
to preserve complex models from overfitting, some
solutions can be adopted that are well established
on cross-validation (CV) methods. In this sense, the
most common method to assess the validity of clas-
sification models in real-word datasets with a high
number of attributes is 10-fold stratified CV.22,23

In this work, we propose a novel approach
to analyze DaTSCAN neuroimages using statisti-
cal classification in order to assist the diagnosis of
Parkinsonism. It performs a dimensionality reduc-
tion by summarizing the information contained in
the data into a reduced feature set, addressing that
way the small sample size problem. After parceling
the striatum using a mask individually generated per
each subject, several morphological measures such as
volume, perimeter or eccentricity were computed.24

Then, these measures were used along with a sup-
port vector machine classifier to distinguish between
parkinsonian patients and control subjects. This
approach was evaluated using a dataset with 189
DaTSCAN neuroimages, obtaining an accuracy rate
over 94%, which outperforms classical approaches.

2. Materials and Methods

2.1. Dataset

A dataset consisting of 189 DaTSCAN neuroimages
was used in order to evaluate the proposed method-
ology (demographic details are given in Table 1).
The data were acquired during a longitudinal study
carried out in the “Virgen de la Victoria” hospi-
tal (Málaga, Spain). All the patients included in
this study had been referred for DaTSCAN exam-
ination by the neurology department because of
the suspicion of involvement of the nigrostriatal

Table 1. Group composition and demographic details of
the data used in this work. µ and σ stand for the average
and the standard deviation, respectively.

Sex Age

# M F µ σ Range

Controls 94 49 45 69.26 10.16 33–89
Patients 95 54 41 68.29 9.62 30–87
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pathway according to the clinical history and neu-
rological examination. Subjects on treatment with
drugs which have an effect, known or suspected,
by a direct competitive mechanism at the level of
dopaminergic transporters were excluded. The neu-
roimaging data were acquired 3 h after the radio-
pharmaceutical injection (185 MBq of 123I-ioflupane)
using a SPECT gamma camera (Millennium model
from General Electric) equipped with a dual head
and general-purpose collimator. The SPECT exami-
nation was performed after the first visit and at that
time the patients were not undergoing treatment for
movement disorders. The neuroimages were recon-
structed by means of filtered back-projection algo-
rithms without attenuation correction. A Hanning
filter of frequency 0.7 was also applied.

After the reconstruction, the neuroimages were
preprocessed in order to make them comparable.
This procedure consisted of two steps: spatial regis-
tration and intensity normalization. The former was
carried out using the template matching algorithm
implemented in the SPM toolbox (version 8). To
this end, a specific template was computed25 as fol-
lows: First, the control neuroimages were spatially
registered to a randomly selected one. Then, these
neuroimages were averaged and the resulting image
was made symmetrical. The latter step required a
flipped image that was generated by flipping each
coronal slice of the averaged image over the sagit-
tal plane. Both, averaged and flipped images, were
averaged and resulting image was used as template.
The intensity normalization26–28 was performed by
dividing the intensity level of each voxel by a value
computed as the average of the 1% of the voxels of
highest intensity (per neuroimage).

The data were labeled through visual inspection
of the neuroimages by three experienced clinicians
from the Nuclear Medicine service of the hospital.
Two groups were defined:

• Control subjects. Bilateral, symmetrical uptake
appeared in caudate and putamen nuclei.

• Parkinsonian patients. There were areas of sig-
nificant reduced uptake in any of the striatal
structures.

2.2. Morphological features

The approach we are proposing characterizes the
potential striatal dopamine deficiency by means of

morphological measurements of the striatal region in
DaTSCAN neuroimages. In order to deal with the
non-bilateral disease variants,29 left and right brain
hemispheres were independently analyzed. Thus,
after preprocessing the data as described in previ-
ous section, each neuroimage was divided into two,
resulting in two volumes per subject, each one con-
taining a brain hemisphere. Then, the striatal region
of each hemisphere was parceled using an ad-hoc
mask computed through an adaptative threshold.
This procedure started by selecting the voxels whose
intensity was higher than a value Ith = 0.80 × Imax,
being Imax the mean intensity of the 100 voxels with
largest intensity in the hemisphere. Ith was itera-
tively increased with increments ∆ = 0.01 until the
selected voxels are in the neighborhood of each other,
i.e. they form a unique region. Algorithm 1 shows the
pseudocode corresponding to this process.

Both, 3-dimensional and 2-dimensional measures
were calculated for the two striatal regions of each
subject. 3-dimensional measures are described as
follows:

• Volume. Number of voxels.

• Centroid. Location in space of the central voxel of
the region (3 coordinates). This measure matches
with the center of mass assuming homogeneous
(binaryzed) regions.

In order to compute 2-dimensional measures,
the volumes were projected over the three possible
planes, resulting in six 2-dimensional images (3 per
hemisphere) per subject. The measures we computed
are as follows:

• Area. Number of voxels in the plane.

• Centroid. Location of the central voxel of the
region (2 coordinates).

• Eccentricity. Ratio of the distance between the
foci of a conic section and its major axis length.

• Roundness. Indicate how closely the shape of the
region approaches that of a circle. It was calculated
as 4× π ×A × P , where A and P are the region’s
area and perimeter respectively.

• Length of radial vectors. Length of the 8 radii
that extend from the centroid to the perimeter
with angles 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦

and 315◦ respect to the horizontal axis (8 values).
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Algorithm 1: Parcellation of the striatal region
Input: Brain volume containing one brain hemisphere, V

Output: Striatal region, Vsel

Vmax = Select the 100 voxels with maximum intensity from V

Imax = Compute mean intensity in Vmax

T = 0.8 × Imax

repeat
Vsel = Select voxels with intensity > T from V

Nregs = Number of regions defined by voxels in Vsel

T = T − 0.01
until Nregs > 1

• Orientation. Angle (measured in degrees and
given in the range [−90, 90]) between the major
axis of the ellipse and the x axis.

• Perimeter slope. Slope of the 8 perimeter strokes
that connect the end of the radial vectors (8
values).

• Length of the major axis. Length (in voxels)
of the major axis of the ellipse that has the same
normalized second central moments as the region.

• Length of the minor axis. Length (in voxels)
of the minor axis of the ellipse that has the same
normalized second central moments as the region.

This procedure resulted in 76 features per hemi-
sphere and, therefore, 152 features per subject.

2.3. Feature selection

As shown in previous section, the striatal region of
each hemisphere was modeled by 76 features. This
procedure intended to completely define the mor-
phology of that region and produced a relatively
high number of features. In order to reduce this
number, we carried out a feature selection step that
selected the most discriminant features. Three class-
separability measures were analyzed to rank our fea-
ture set: Bhattacharyya distance, Fisher’s discrimi-
nant ratio and relative entropy.

These measures were independently computed
per each feature, and the features with highest dis-
tance/ratio were selected. Specifically, we used the
minimum number of features so that the sum of the
distance/ratio of the selected features is 80% of the
total (the sum of the distance/ratio of all features).
That way, we selected the smallest possible feature

set with as much discriminative information as pos-
sible.

2.3.1. Bhattacharyya distance

The Bhattacharyya distance, B, is defined as

B =
1
8
(µ1 − µ2)T

(
σ1 + σ2

2

)−1

(µ1 − µ2)

+
1
2

ln
|σ1+σ2

2 |√|σ1||σ2|
, (1)

where µi and σi, respectively are the mean and stan-
dard deviation of the ith class and | · | denotes the
determinant of the respective matrix.30 Note that,
in our case (features are individually ranked), σi is
a scalar and |σi| is simply σi. The value B can be
considered a class separability measure and it is com-
monly used in the literature to calculate the Cher-
noff bound, a minimum bound to estimate the mini-
mum attainable classification error of a classification
procedure.

2.3.2. Fisher’s discriminant ratio

The Fisher’s discriminant ratio (FDR),30 J , is
defined as

J(w) =
wT SBw
wT SWw

, (2)

where w represents a direction in the data space and
SB and SW are respectively the “between classes”
and the “within classes” scatter matrices. Note
that, scatter matrices are proportional to covariance
matrices and, when only 2 classes are considered, SB
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can be expressed as

SB = (µ1 − µ2)(µ1 − µ2)T , (3)

where µi denotes the mean of the samples belonging
to the ith class. In this case, the Fisher’s discriminant
ratio for a single feature can be estimated as

J =
(µ1 − µ2)

2

σ2
1 + σ2

2

, (4)

where µi and σi are, respectively, the mean and the
standard deviation of the selected feature for sub-
jects belonging to the ith class.

2.3.3. Relative entropy

The cross or relative entropy30 is a measure of
the Kullback–Leibler divergence, D, which can be
expressed as

D =
∫ ∞

−∞
(p(x|ω1) − p(x|ω2))ln

p(x|ω2)
p(x|ω1)

dx, (5)

where p(x|ωi) is the probability density function for
class ωi and x is a feature vector (describing a specific
feature selection). Assuming Gaussian density func-
tions and 2 classes, the one-dimensional case (feature
vectors with only a feature) can be calculated as

D =
1
2

(
σ2

2

σ2
1

+
σ2

1

σ2
2

− 2
)

1
2

(µ1 − µ2)
2

(
1
σ2

1

+
1
σ2

2

)
,

(6)

where µi and σi are, respectively, the mean and the
standard deviation of the selected feature for sub-
jects belonging to the ith class.

2.4. Background on support vector
machine

Given a set of training data composed by
N -dimensional patterns, xi ∈ R

N , and binary labels,
yi ∈ −1, 1 defining the patterns’ class

(x1, y1), (x2, y2), . . . , (xl, yl) (7)

a Support Vector Machine classifier calculates an
hyperplane, g(x), that has the largest distance to the
closest training data point of any class

g(x) = wT x + w0 = 0, (8)

where w and w0 are, respectively the weight vec-
tor, orthogonal to the decision hyperplane, and the
threshold. Using this hyperplane, the classifier is able
to estimate the class label of new unseen patterns

according to the side of the hyperplane, where the
patterns are

ŷ = sign(wT x + w0). (9)

The computation of the hyperplane can be
solved using as a maximization problem and using
Lagrangian functions, resulting in

maximize
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi,xj)

subject to
N∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , N, (10)

where α is the vector of dual variables corresponding
to each separation constraint, and k(xi,xj) is a func-
tion R

D × R
D → R known as “kernel”.31 For linear

SVM, k(xi,xj) = xixj .

2.5. Univariate analyses

A voxel-wise statistical analysis was carried out in
order to examine effects contained in the data.32

Specifically, we performed a 2 × 2 factor analysis on
SPM to evaluate the presence of significant diagno-
sis × hemisphere interactions. To this end, we gen-
erated brain maps containing only data from left or
right hemisphere and then a general linear model at
each voxel was fit with diagnosis and hemisphere as
fixed factors and age as nuisance covariate.33 Statisti-
cal outcome were corrected for multiple comparisons
using the widely used family-wise error (FWE) rate
of 0.05.34,35 In addition, effects due to gender and
age were discarded using ANOVA. F -statistic and
corresponding p-value were computed to determine
whether controls and patients have different ages.
Effects due to gender were assessed by a voxel-wise
ANOVA analysis performed on SPM.

2.6. A computer aided diagnosis
system for Parkinsonism

A CAD system for Parkinsonism was build using the
feature extraction method proposed in Secs. 2.2 and
2.3, and a Support Vector Machine (SVM) classi-
fier. This system was compared with the classical
approach consisting on using the intensity of vox-
els located in the striatum as feature. Two method-
ologies were considered to parcel the striatal voxels
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for the classical approach: (i) Using an atlas, and
(ii) using an intensity threshold. Classification mea-
sures of all these systems were estimated using the
database described in Sec. 2.1 along with a 10-fold
CV scheme. Moreover, the reported measures were
computed as mean (± standard deviation) across 10
repetitions of the CV procedure (with different train-
ing/test sets). In all cases a stratified sampling strat-
egy was followed to calculate training and test sets.
This sampling procedure keeps in each sample the
same (or approximately same) proportion of exam-
ples of each class as there is in the whole population.
In our case, this ensured approximately same number
of controls and patients in all training and test sets.
In order to avoid biased results, the feature selection
procedure was run in an inner CV loop so that only
training data were used to perform the feature selec-
tion. Thus, during the training step, we saved the
position of most discriminative features in the fea-
ture vectors (obtained by means of the feature selec-
tion procedure) and then, during the test step, we
selected the features located at the saved positions
(which are supposed to be the most discriminative
ones). The SVM cost parameter, C, was set to the
commonly used value of C = 1.

The significance of the accuracy rate obtained
by the proposed method was estimated using

a permutation test.36 In this experiment the
classification procedure was repeated 1000 times
using different label sets generated as random per-
mutations of the original one. The p-value was esti-
mated as the percentage of these classification pro-
cedures whose accuracy was equal to or greater than
the accuracy obtained with the true labels.

3. Results

Figure 1 shows the brain regions with significant
effects of diagnosis determined by the factor analysis
carried out in SPM. As expected, big clusters cover-
ing the striatal region were found.37,38 No significant
clusters were found on hemisphere. Similarly, no sig-
nificant differences were found by the ANOVA tests
for age (F -statistic = 0.45; p = 0.51) and gender
(p < 0.05, FWE).

Once the morphological features were extracted,
the difference between patients and controls can be
roughly estimated from the mean value of those
morphological measures. Table 2 shows the absolute
value of volume and area, eccentricity and length of
major and minor axes of each possible 2-dimensional
projection. Note that, differences between patients
and controls are clear for some features, as volume
and eccentricity of the axial projection.

20.95 

94.82 

168.7 

242.58

316.46

390.33

20.95 

94.82 

168.7 

242.58

316.46

Fig. 1. Brain regions showing significant effects (p < 0.05, FWE) of diagnosis in the 2× 2 factorial design. Clusters were
represented over the gray matter segment of a study-specific template.
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Table 2. Average value of most representative mor-
phological features for control subjects and parkinso-
nian patients.

Left hem. Right hem.

CTL PKS CTL PKS

Volume 176 142 173 157

Axial projection:
Area 41 32 41 33
Eccentricity 0.84 0.63 0.83 0.63
Length of the major axis 10.2 7.5 10.1 7.7
Length of the minor axis 5.5 5.4 5.4 5.5

Coronal projection:
Area 37 33 36 35
Eccentricity 0.54 0.57 0.54 0.60
Length of the major axis 7.7 7.5 7.6 7.7
Length of the minor axis 6.3 5.8 6.3 5.9

Sagittal projection:
Area 45 36 45 40
Eccentricity 0.69 0.59 0.68 0.60
Length of the major axis 9.2 7.8 9.2 8.2
Length of the minor axis 6.5 5.9 6.5 6.2

Mean distance/ratio
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Sagital features

Coronal features

Axial features

Volumetric features

Bhattacharyya
FDR
Entropy

Fig. 2. Mean Bhattacharyya distance, Fisher’s discrimi-
nant ratio and relative entropy of the extracted features.
They were grouped into 4 groups according to the data
they were extracted from: (1) Projection over the sagittal
plane, (2) Projection over the coronal plane, (3) Projec-
tion over the axial plane and (4) Whole volume.

All morphological features can be categorized
into four groups according to the data they were
extracted from. Figure 2 shows the mean dis-
tance/ratio of 4 feature groups: features extracted
from sagittal, coronal or axial projections and from

the 3-dimensional volume. This allows us to esti-
mate the importance of these data in the separation
problem.

The three class-separability measures described
in Sec. 2.3 were evaluated in terms of the distance
that they separate the groups defined in our dataset
(Fig. 3) as well as in terms of the performance of a
CAD system that uses them. Table 3 shows the clas-
sification metrics obtained by the implemented CAD
systems. The accuracy rate can be further analyzed
in Fig. 4, which shows the accuracies obtained in the
10 times that the 10-fold cross-validation procedure
was repeated.

For the sake of completeness, we also evaluated
the performance of a SVM classifier fed by striatal
standardized uptake values (SUV),39 which are con-
sidered by many as the standard biomarkers for PD
diagnosis. Figure 5 shows the classification hyper-
plane for this approach, which yields an accuracy
about 64% (estimated through 10-fold CV). To a
certain extent, this is similar to use only the striatal
volume as feature.

A permutation test was performed to esti-
mate a p-value for the accuracy achieved by the
CAD system that provided the best performance
(the one based on the proposed feature extrac-
tion and Bhattacharyya distance). As a result, a
p-value of p < 0.001 was obtained. Figure 6 shows
the histogram corresponding to the accuracy rates
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Fig. 3. Cumulative sum of the Bhattacharyya distance,
Fisher’s discriminant ratio and relative entropy corre-
sponding to the 152 initial features sorted in descending
order. They were normalized to fix in the interval [0, 1].
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Table 3. Classification measures obtained by the CAD systems implemented in this work. They were calculated as the
mean (±SD) of those obtained from 10 repetitions of a 10-fold cross-validation procedure. TPR, FPR, FNR and TNR
stand for true positive rate, false positive rate, false negative rate and true negative rate, respectively.

Accuracy (%) Sensitivity (%) Specificity (%) TPR FPR FNR TNR

Proposed system (Bhattacharyya) 94.25 (±0.74) 91.26 (±1.12) 96.17 (±0.74) 86.70 3.60 8.30 90.40
Proposed system (FDR) 90.21 (±1.10) 86.74 (±2.49) 92.77 (±2.06) 82.40 6.80 12.60 87.20
Proposed system (entropy) 90.58 (±0.75) 81.58 (±1.14) 98.62 (±0.51) 77.50 1.30 17.50 92.70
Striatal intensity (atlas) 90.16 (±0.94) 88.95 (±1.43) 91.38 (±0.78) 84.50 8.10 10.50 85.90
Striatal intensity (threshold) 88.99 (±0.89) 87.68 (±1.00) 90.32 (±1.27) 83.30 9.10 11.70 84.90

A
cc

ur
ac

y

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Proposed
system

(bhattacharyya)

Proposed
system
(FDR)

Proposed
system

(Entropy)

Striatal
intensity
(atlas)

Striatal
intensity

(threshold)

Fig. 4. (Color online) Accuracies obtained across 10
repetitions of the cross-validation procedure. Blue boxes
and circled dots represent accuracies’ range and median,
respectively. Some values considered as outliers are plot-
ted using the + symbol.

obtained in all classification procedures carried out
in this test.

The influence of the most discriminative morpho-
logical features could be also analyzed by examin-
ing the weights assigned by the SVM classifier.40

Figures 7 and 8 show the projection of the data
from all our patients over some selected weight coor-
dinates, wi, computed by the SVM classifier. We
selected the weights corresponding to the morpho-
logical features with larger Bhattacharyya distance
between groups. Specifically, the volume and area
and center of mass of each of the three 2-dimensional
projections.

4. Discussion and Conclusion

The results shown in Table 3 suggest that the stri-
atal size and shape contain enough information to
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Fig. 5. Support vectors and classification hyperplane
obtained with a system that uses only the striatal SUV
as feature.
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Fig. 6. (Color online) Histogram of the accuracy rates
achieved by using randomly generated label sets (1000
repetitions) and the proposed method (with Bhat-
tacharyya distance). Red and blue lines are, respectively
the accuracy associated with a p-value of 0.05 and the
accuracy obtained when using the true labels (94.25%).
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Fig. 7. (Color online) Projection of selected morphological measures of each patient’s striatum over the weight coordinate
corresponding to those features. Left and right columns show representations for features corresponding, respectively to
left and right hemisphere. In all plots, the data are grouped by diagnosis and different markers were used for controls
(blue crosses) and patients (red circles).
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Fig. 8. (Color online) Projection of center of mass of each patient’s striatum over the corresponding weight coordinate
computed by the SVM classifier. As in Fig. 7, different markers were used for controls (blue crosses) and patients (red
circles).
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differentiate parkinsonian patients and control sub-
jects. This is consistent with a previous work that
reported differences between PD patients and con-
trols on some morphological measures.41 In this
work, it has been shown that using this information,
a CAD system for Parkinsonism based on SVM clas-
sification reached an accuracy rate over 94% (p <

0.001). These results outperformed the ones obtained
by classical approaches that used the intensity of the
striatal voxels as feature and are in line with mod-
ern systems based on more sophisticated approaches.
For the same neuroimaging modality, previous works
have reported accuracy rates about 94% using prin-
cipal component analysis9 or partial least squares
to reduce the dimensionality of the data.16 Similar
rates were reported by a recent work that used deep
neural networks to separate PD patients and nor-
mal controls.42 Compared with previous works, the
approach proposed here can be considered a simpler
way to achieve an accurate and automatic separation
of parkinsonian patients and controls. In addition,
the reported results corroborate that the size and
shape of the distribution of the striatal dopamine is
an effective biomarker for the diagnosis of Parkin-
sonism. Nevertheless, we should be careful when
comparing classification results obtained by using
different datasets because the accuracy and remain-
ing performance metrics highly depend on how they
were estimated and the data used for it. An accuracy
rate about 95% is probably close to highest preci-
sion achievable with a specific dataset. Note that, an
accuracy of 100% is highly unlikely and maybe not
desirable due to potential labeling errors.

According to Fig. 2, the features that contribute
the most to separate the groups are the volumetric
ones, i.e. the volume and centroid of the striatum.
Their mean Bhattacharyya distance and relative
entropy are considerably larger than those corre-
sponding to any of the 2-dimensional projections.
This is consistent with the results shown in Table
2 which shows that the striatal volume (along with
the eccentricity of the axial projection) is the mea-
sure with the largest difference between parkinsonian
patients and controls. This result also coincides with
clinical findings, since it is known that Parkinsonism
produces a decrease of the striatal dopamine that is
reflected on DaTSCAN neuroimages.2

One of the key properties of the proposed
method is the adaptative threshold described in

Fig. 9. Axial slices showing the striatum of two
parkinsonian patients. Left figure: patient with non-
homogeneous dopamine deficiency across hemispheres;
the left one is more affected. Right figure: patient in
advanced stage; it is difficult to parcel the striatum.

Algorithm 1. This method allows us to perform an
accurate parcellation of the striatum in an auto-
matic way, i.e. without human intervention, even in
the non-bilateral disease (see Fig. 9). Theoretically
the intensity normalization applied during the data
preprocessing should make possible to use a common
threshold for all the neuroimages. But, in practice,
this results in two or more not connected regions for
some brain hemispheres and no region for some oth-
ers. The approach we propose ensures only one region
is selected and, as expected, this region is very small
in patients in advanced stages, when it is difficult to
detect the striatal region in DaTSCAN neuroimages.

In this work, we decided to include a large num-
ber of morphological measures, assuming this deci-
sion could lead to some redundancy. For example,
roundness and eccentricity are similar and, moreover,
all 2-dimensional measures were repeated for the
three possible projections. As a result, we obtained
152 features per patient, which are not many com-
pared with the number of features used by classi-
cal approaches but enough to affect the classification
accuracy because of the small sample size problem.
For this reason, a feature selection algorithm was
included before the classification to discard the
least discriminative features. Specifically, three clas-
sical approaches for feature selection (Bhattacharyya
distance, Fisher’s discriminant ratio and relative
entropy) were evaluated. Among them, the Fisher’s
discriminant ratio is probably the most widely used
in neuroimaging studies. However, according to our
experiments, this is the approach that produced the
least dimensionality reduction (Fig. 3). These three
techniques work similarly. They rank each feature
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according to the mean of that feature for each class
and take into account, somehow, the standard devi-
ation. If they are analyzed in terms of classifica-
tion performance, both, FDR and entropy, gave rise
to accuracies similar to those obtained by classical
approaches based on voxel intensity. Conversely, the
Bhattacharyya distance provided a more effective
feature selection that leads to better classification
performance as it is clearly shown in Fig. 4. These
differences can be explained by the lower weight
given by the Bhattacharyya distance to the differ-
ence between the mean of each class, which increase
the relative weight of the standard deviation in the
calculation (note that the difference between the
mean of each class is multiplied by 1

8 (Eq. 1)). It
is worth noting that the usefulness of a given fea-
ture set depends on the statistical classifier used in
the subsequence classification procedure. Thus, our
experiments determined that the Bhattacharyya dis-
tance provides a better feature selection than FDR
or entropy when SVM is used to classify the selected
features. The selection of a SVM classifier was sup-
ported by the successful results reported in previous
neuroimaging studies that used SVM.43,44 Indeed,
this classifier is considered by many as the standard
classifier for neuroimaging data.

This work focused on the automatic separation of
parkinsonian patients and control subjects. However,
the major challenge in the diagnosis of Parkinson-
ism is commonly the differentiation among parkinso-
nian syndromes. This is therefore a limitation of this
work. Analyzing whether the striatal morphology
can be used to distinguish between different parkin-
sonian pathologies would require a dataset with neu-
roimaging data from patients suffering those disor-
ders in a comparable number and accurately labeled
(unfortunately some parkinsonian patients are mis-
diagnosed with a related parkinsonian syndrome45).
In addition, it would require using an appropriate
neuroimaging modality. Several parkinsonian syn-
dromes such as multiple system atrophy or progres-
sive supranuclear palsy produce a similar reduction
of dopamine transporters46 and, therefore, the use-
fulness of DaTSCAN to differentiate among them is
limited.

Another limitation is related to the gold stan-
dard used to label the images. In this work, we
used the report issued by three experienced clinicians
who visually analyzed the data. Thus, the developed

systems were intended to reproduce the knowledge
of those clinicians, which is not exempt of errors.
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