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Abstract

A central challenge in cognitive neuroscience is to understand the neu-
ral mechanisms that underlie the capacity to control our behavior ac-
cording to internal goals. Flanker tasks, which require responding to
stimuli surrounded by distracters that trigger incompatible action ten-
dencies, are frequently used to measure this conflict. Even though the
interference generated in these situations has been broadly studied, mul-
tivariate analysis techniques can shed new light into the underlying neural
mechanisms. The current study is an initial approximation to adapt an
interference Flanker paradigm embedded in a Demand-Selection Task to a
format that allows measuring concurrent high-density electroencephalog-
raphy. We used multivariate pattern analysis (MVPA) to decode conflict-
related neural processes associated with congruent or incongruent target
events in a time-frequency resolved way. Our results replicate findings
obtained with other analysis approaches and offer new information re-
garding the dynamics of the underlying mechanisms, which show signs of
reinstantiation. Our findings, some of which could not had been obtained
with classic analytical strategies, open novel avenues of research.

Keywords— multivariate pattern analysis; electroencephalography; classi-
fication; support vector machine; demand-selection task.
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1 Introduction

Cognitive control comprises a set of mechanisms that allow humans to behave
according to their internal goals while ignoring distracting information.1 The
flanker task, where participants respond to the direction of an arrow surrounded
by other distracting arrows, is among the most used in the field. The main result
of this task is the so-called interference or conflict effect, where responses are
slower and less accurate in incongruent (when the direction of the distracters is
opposite to the target) vs. congruent trials. In the current study, we employed a
task that measured interference effects in the context of effort avoidance.2 Cog-
nitive control involves effort, which is costly and partly aversive, and thus hu-
mans usually avoid it if given the chance. In Demand- Selection Tasks (DST),2

participants tend to choose the easy option over the hard one. The tendency to
avoid the hard option seems partly due to the cost of overcoming the increased
cognitive control required when responding to incongruent situations. However,
the neural underpinnings of this effect are not well understood.

The majority of Electroencephalography (EEG) studies of the interference
effect have analyzed Event-Related Potentials (ERPs), focusing on the N2 com-
ponent. Besides, studies employing frequency analyses have shown Theta and
Delta band involvement. Other authors3 have proposed a link between the
ERPs and modulations in the Delta-Theta band of frequency.

Supervised Machine Learning algorithms, more specifically Linear Support
Vector Machines (LSVM)(Vapnik, 1979)4,5 have been widely applied in clinical
settings such as computer-aided diagnosis of Alzheimer’s disease,6–9 automatic
sleep stages classification10,11 or automatic detection of sleep disorders.12 In
recent years, these Machine Learning-based analyses, in conjunction with neu-
roimaging techniques such as functional Magnetic Resonance Imaging (fMRI),
Electroencephalography or Magnetoencephalography (MEG), have gained pop-
ularity in Cognitive Neuroscience.13–18

One of the most remarkable advantages of Multivariate Pattern Analy-
sis (MVPA) versus univariate approaches is its sensitivity in detecting subtle
changes in the patterns of neural activity.19 When applied to fMRI data, the
poor temporal resolution of the signal prevents an accurate study of how cog-
nitive processes unfold in time. In contrast, when applied to M/EEEG signals,
MVPA have been useful to uncover the neural dynamics of face detection,20

the process of memory retrieval,21 the representational dynamics of task and
object processing in humans22 or the representation of spoken words in bilin-
gual listeners.23 In the same line, time-resolved MVPA presents an opportunity
to categorize the temporal sequence of the neural processes underlying the in-
terference effect. Furthermore, the relationship between these and the Theta
frequency modulations can be better understood using this approach. The goal
of the current study is to present a set of methodological MVPA tools that allow
to study and decode the conflict-related neural processes underlying interference
effects, in a time-frequency resolved way.
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2 Materials and methods

2.1 Paradigm and data acquisition

2.1.1 Participants

Thirty-two healthy individuals (21 females, 29 right-handed, mean age = 24.65,
SD = 4.57) were recruited for the experiment. Participants had normal or
corrected-to-normal vision and no neurological or psychiatric disorders. All of
them provided informed, written consent before the beginning of the experi-
ment and received a 10-euro payment or course credits in exchange for their
participation. The experiment was approved by the Ethics Committee of the
University of Granada.

2.1.2 Stimuli and apparatus

Stimuli presentation and behavioral data collection were carried out using MAT-
LAB (MathWorks) in conjunction with Phychtoolbox-3.24 The visual stimuli
were presented in an LCD screen (Benq, 1920x1080 resolution, 60 Hz refresh
rate) and placed 68.31±5.37 cm away of participant’s Glabella, in a magnetically
shielded room. Using a photodetector, the stimuli onset lag was measured at
8ms, which corresponds to half of the refresh rate of the monitor. Triggers were
sent from the presentation computer to the EEG recording system through an
8-bit parallel port and using a custom MATLAB function in conjunction with
inpoutx64 driver,25 a C++ extension (mex-file) that uses native methods to
access low-level hardware in MATLAB (I/O parallel ports).

Cues consisted of two squares of two different colors (red/green and yel-
low/blue, in different blocks) stacked and presented at the center of the screen
(visual angle ∼5 degree). In forced blocks, a small white indicator (circle 50%
or square 50%) appeared on top of the color that had to be chosen. In voluntary
blocks, this indicator appeared between the two colored squares (see Figure 1).
Each target stimulus consisted of five arrows pointing left or rightwards, which
were displayed at the center of the screen (visual angle ∼6 degree). The color
of the target stimulus was the same as the cue previously selected.

2.1.3 Procedure

The Color-Based Demand-Selection Task (DST) (Figure 1 a), modified from,2

consisted of a cue-target sequence arranged in four blocks (2 forced and 2 vol-
untary). In voluntary blocks, participants were required to freely choose one of
the two colors available, which indicated the difficulty of the upcoming task. In
forced blocks, a small white indicator appeared on top of the color that had to
be chosen. The color of the target stimulus was the same as the cue previously
selected and participants were required to discriminate the orientation (right
or left) of a central arrow target surrounded by arrows pointing at the same
(compatible distractors) or opposite (incompatible distractors) directions.
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Figure 1: (A) Experimental sequence of events in case of a correct response on
both cue and flanker stimuli. Each trial started with a fixation point, followed by
a cue, which acted as a selector of the difficulty of the upcoming Flanker target.
Participants had to choose (freely or forced, depending on the block type) the
posible color of the upcoming target stimulus, which was associated with either
high (difficult) or low (easy) probability of incongruent trials. Finally, after a
variable time interval (100-300ms) the target stimulus appeared and participants
had to respond to the orientation of the central arrow. Another variable time
interval appeared before the beginning of the next trial. The cue and the target
stimuli remained on screen for 190ms. (B) Cognitive effort was manipulated
through the percentage of congruent and incongruent trials. Each cue color was
associated with the high or low conflict contexts.
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Our task was built following a 3-way factorial design, containing the following
within-subjects independent variables: (1) Stimulus type (congruent/incongruent);
(2) Block type (forced/voluntary) and (3) Context (easy/difficult). The task dif-
ficulty manipulation was based on the proportion of congruent and incongruent
trials, with the easy contexts presenting 80% of congruent and 20% of incon-
gruent trials, and the difficult task context the opposite proportion. Within
forced blocks, half of the trials corresponded to the easy context and the re-
maining to the difficult one (maintaining, within each condition, the proportion
of congruent and incongruent trials). On voluntary blocks, however, partici-
pants freely chose the context and no experimental control could be exerted
upon this variable.

Participants were instructed to respond as fast and accurately as possible,
and to not choose color based on personal preference. They were unaware of
the cognitive effort manipulation. To preserve the signals as clean as possible
and remove the least number of trials, participants were encouraged to remain
as still and relaxed as possible, avoiding face muscle activity and eye move-
ments, but blinking normally. The order of the blocks, cue colors, response
keys and color-conflict context mappings were counterbalanced across partici-
pants. There were 4 blocks, 240 trials per block, and the total recording session
lasted ∼90min. Before the experimental session, participants performed a brief
practice to familiarize themselves with the task (4 blocks, 20 trials per block,
practice duration ∼20min).

2.1.4 EEG acquisition and preprocessing

High-density electroencephalography was recorded from 65 electrodes mounted
on an elastic cap (actiCap slim, Brain Products) at the Mind, Brain, and Be-
havior Research Center (CIMCYC, University of Granada, Spain). The TP9
and TP10 electrodes were used to record the electrooculogram (EOG) and were
placed below and next to the left eye of the participant. Impedances were kept
below 5kΩ. EEG activity was referenced online to the FCz electrode and signals
were digitized at a sampling rate of 1KHz.

Electroencephalography recordings were average referenced, downsampled to
256Hz, and digitally filtered using a low-pass FIR filter with a cutoff frequency
of 120Hz, preserving the phase information. The recording amplifiers have an
intrinsic lower cutoff frequency of 0.016Hz (time constant τ = 10s).

No channel was interpolated for any participant. EEG recordings were
epoched [-1000, 2000ms centered at onset of the target arrows] and baseline
corrected [-200, 0ms], and data was extracted only from correct trials. To re-
move blinks from the remaining data, Independent Component Analysis (ICA)
was computed using the runica algorithm in EEGLAB,26 excluding TP9 and
TP10 channels. Artifactual components were rejected by visual inspection of
raw activity of each component, scalp maps and power spectrum. Then, an
automatic trial rejection process was performed, pruning the data from non-
stereotypical artifacts. The trial rejection procedure was based on (1) abnormal
spectra: the spectrum should not deviate from baseline by ±50dB in the 0-2 Hz
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Observations per participant N Nr Nb

Congruent class 480 426±49 359±52
Incongruent class 480 368±59 359±52

Total number of observations NTr NTb

Congruent class 13644 11505
Incongruent class 11782 11505

Table 1: Number of observations of the final dataset

frequency window, which is optimal for localizing any remaining eye movements,
and should not deviate by -100dB or +25dB in 20-40Hz, useful for detecting
muscle activity (∼1% of the total sample was rejected); (2) improbable data: the
probability of occurrence of each trial was computed by determining the prob-
ability distribution of values across the data epochs. Trials were thresholded,
in terms of ±6SD, and automatically rejected (∼6% of the total sample); (3)
extreme values: all trials with amplitudes in any electrode out of a ±150µV
range were automatically rejected (∼3% of the total sample).

2.1.5 Final dataset description

The final dataset for our binary classification problem is shown in Table 1,
where N is the initial number of trials per participant and class, Nr represents
the number of remaining correct trials after the trial rejection stage andNb is the
final number of trials used for classification per participant (after downsampling
the majority class in order to get balanced datasets).

2.1.6 Behavioral data analysis

Reaction time (RT) and error rates were registered for each participant. Before
the statistical analysis, the first trial of each block, trials with choice errors
and trials after errors were filtered out.27 Finally, RT outliers were also re-
jected using a ±2.5 SD threshold, calculated individually per participant and
condition. To analyze behavioral data (accuracy and reaction times) we con-
ducted a repeated-measures ANOVA in IBM SPSS Statistics Software (v.20).
Post hoc tests were carried out on the significant interactions using a Bonferroni
correction for multiple comparisons.

2.2 Multivariate pattern analysis

The MVPA for the decoding analysis was performed in MATLAB by a custom-
developed set of linear Support Vector Machines, trained to discriminate be-
tween congruent and incongruent target stimuli. To avoid skewed classification
results, the datasets were strictly balanced, by downsampling the majority class
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Figure 2: (A) Feature extraction process in simulated data. The feature vectors
of each condition and time point consisted of a z-scored voltage array for all the
scalp electrodes. For an improved SNR, several trials were averaged before fea-
ture extraction. (B) Cross-validated LSVM classifier. For each time point, an
LSVM was trained and tested (stratified k-fold cross-validation, k=5). Chance
level was calculated by permuting the labels.

to match the size of the minority one. In addition, class size was set as a factor
of k, the total number of folds in the cross-validation stage. Accordingly, each
fold was composed by exactly the same number of observations, avoiding any
kind of bias in the results. The rest of the classification parameters remained
by default.

2.2.1 Feature extraction

To obtain the classification performance in a time-resolved way, the feature vec-
tors were extracted as shown in Figure 2. The classification procedure, for each
participant, ran as follows: (1) For each timepoint and trial, we generated two
feature vectors (one for each condition or class) consisting of the raw potential
measured in all electrodes (excluding EOG electrodes: TP9 and TP10). (2)
Features vector containing raw potential values were normalized (z-score).

2.2.2 Supertrial generation

Due to the noisy nature of the EEG signal, a trial averaging approach was
carried out during the feature extraction stage. This approach increases the
signal-to-noise ratio (SNR),28 improves the overall decoding performance and
also reduces the computational load. Each participant’s dataset was reduced by
randomly averaging a number of trials ta belonging to the same condition. The
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value of ta is a trade-off between an increased classification performance (due to
an increased SNR) and the variance in the classifier performance, since reduc-
ing number of trials per condition typically increases the variance in (within-
participant) classifier performance.29 Therefore, the optimal number of trials to
average depends on the dataset, taking into account that averaging more trials
does not increment the decoding performance linearly.

2.2.3 Feature selection

As mentioned in section 2.2.1, Xn×p datasets are generated for each partici-
pant and timepoint, where n is the number of trials (observations) and p the
total number of electrodes (variables or features). In machine learning, fea-
ture selection techniques, also known as dimension reduction, are a common
practice to reduce the number of variables in high-dimensional datasets (Fig-
ure 3). Principal Component Analysis (PCA) is probably the most used and
popular multivariate statistical technique and it is used in almost all scientific
disciplines,30 including Neuroscience.31

PCA is a linear transformation of the original dataset in an orthogonal co-
ordinate system in which axis coordinates (principal components) correspond
to the directions of highest variance sorted by importance. To compute this
transformation,32 each row vector xi of the original dataset X is mapped to
a new vector of principal components ti = (t1, ..., tl), also called scores, using
a p-dimensional coefficient vector wj = (w1, ..., wp). For dimension reduction,
l < p.

ti = xi ·wj i = 1, ..., n j = 1, ..., l (1)

To maintain the model’s performance as fair as possible, in our study PCA
was computed only for training sets Xtraining, independently for each fold inside
the cross-validation procedure. Once PCA for the corresponding training set
was computed and the model was trained, the exact same transformation was
applied to the test set Xtest (including centering, µtraining). In other words,
the test set was projected onto the reduced feature space obtained during the
training stage. According to equation (1), this projection is computed as follows:

Ttest =
Xtest − µtraining

W’training
(2)

Feature selection techniques such PCA usually imply an intrinsic loss of
spatial information, e.g. data projected from the sensor space onto the reduced
PCA features space. Therefore, PCA presents a trade-off between dimension
reduction and results’ interpretation. If PCA is computed, the spatial informa-
tion of each electrode is lost, which means that, for example, we cannot directly
analyze which electrodes are contributing more to the decoding performance.
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2.2.4 Model’s performance evaluation

To evaluate classification models in neuroscience, performance is usually mea-
sured employing mean accuracy.33 However, mean accuracy may generate sys-
tematic biases in situations with very skewed sample distributions and overfit-
ting one single class should be avoided. Therefore, nonparametric and criterion-
free estimates, such as the Area Under the ROC Curve (AUC) have been proved
as a better measure of generalization in these situations.34 The AUC provides a
way to evaluate the performance of a classification model. The larger the area,
the more accurate the classification model is, and it is computed as follows:

AUC =

∫ 1

0

ROC(s)ds (3)

The ROC curve is one of the most important evaluation criteria, which
shows how capable the model is in distinguishing between conditions, by facing
the sensitivity (True Positive Rate, TPR) against 1-specificity (False Positive
Rate, FPR). In this study, we employed both accuracy methods, to replicate a
common approach in literature, and ROC curves and AUC, to provide a more
informative measure.

To evaluate the performance of our model, LSVMs were trained and vali-
dated, resulting in a single performance value for each timepoint and participant.
The classification performance at the group level was calculated by averaging
these values across participants. The chance level was calculated following the
former analysis but using randomly permuted labels for each trial.

The generalization ability of our model was estimated through a Cross-
Validation (CV) approach (stratified k-fold, k = 5 ), which is a well-established
and a widely implemented technique to preserve complex models from overfit-
ting.

Moreover, some important aspects are worth being highlighted. The use of
CV approaches often leads (particularly in Neuroscience) to small sample sizes
and a high level of heterogeneity when conditions are splitted into each fold,
causing among other things a high level of classification variability. To address
these problems, a recent study35 considered the use of the resubstitution error
estimate when using LSVM (in small sample sizes and low dimensional scenar-
ios), proposing a novel analytic expression for the upper bound on the actual
risk γemp(l, d) for a range of sample sizes l, dimensions d and any significance
η < 0.05 (Figure 8). Therefore, the difference between the actual error and the
resubstitution error is bounded by the actual risk γemp, which is computed as
follows:

γemp ≤

√
1

2l
ln

N(l, d)

η
(4)

where N is defined in35 as:
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Figure 3: Dimension reduction in real datasets. 3D representation of the three
first PCA components for congruent vs. incongruent trials [example participant,
t = 421ms after Flanker stimulus onset]

N(l, d) = 2
d−1∑
k=0

(
l − 1

k

)
(5)

Resubstitution has been proved competitive in some heterogeneous-data sce-
narios with CV approaches not only in terms of accuracy but also in compu-
tational load.36 The proposed solution has been recently applied in clinical
settings studying autistic patterns37 or Alzheimers Disease.38 The scenario
previously mentioned (linear classifiers, small sample size and low dimensional
space) seems to fit perfectly with our study setup, therefore, the use of the
resubstitution error estimate in Cognitive Neuroscience studies is worthy of
consideration.

2.2.5 Optimization of SVM hyperparameters

A search-grid based optimization of the misclassification cost parameter C was
carried out using five-fold cross-validation on the training set:

||β||2 + C
l∑

i=1

ξi (6)

where C is a constant which modulates the trade-off between the training error
and the complexity of the model and the vector β contains the coefficients that
define an orthogonal vector to the hyperplane.
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2.3 Temporal generalization matrix

Temporal generalization analyses are used to evaluate the stability of the brain
patterns along time, by training the model in one temporal point and testing its
capability to correctly discriminate between conditions in the remaining tempo-
ral window. This process is repeated for every timepoint. In our study, classifi-
cation performance was assessed through a cross-validation technique (stratified
k-fold cross-validation, k=5). For each timepoint, the classifier was trained with
Xtraining dataset and tested with Xtest in the remaining points of the tempo-
ral window. This process was repeated k times obtaining the final decoding
accuracy.

An above-chance discrimination rate outside the diagonal of the matrix sug-
gests that the same activity pattern is sustained in time. However, if there
is no evidence of temporal generalization, separate patterns of activity can be
assumed.22

2.4 Multivariate cross-classification

The ability of MVPA to detect subtle differences in brain activity patterns
can be used to study how these patterns are similar across different cognitive
contexts. In other words, the consistency of the information across different
sets of data can be analyzed. To this end, classification algorithms are trained
with one set of data and the consistency is assessed by testing the model with
another dataset, belonging to a different experimental condition. This technique
is calledMultivariate Cross-Clasification19(MVCC) and is growing in popularity
in recent years.39–41

The fact that the training and test sets are different eliminates the need
to use cross-validation techniques. However, several considerations have to be
taken into account. First, the right choice of classification direction, that is,
which set is used for training and which one for testing. The result of the clas-
sification could differ if, for instance, the signal-to-noise ratio is quite different
across datasets, that is to say, differences in classes separability across datasets
and an asymmetry in the generalization direction.42 For this reason, reporting
results in both directions is highly recommended.

In this study, MVCC was used to analyze if the neural patterns associated
with the congruency effect are similar across voluntary and forced blocks. For
that, classifiers were trained with data of forced blocks and tested in voluntary
blocks, and vice versa. In addition, a temporal generalization matrix was also
computed to study the similarity across block types and time. Feature selection
in MVCC analysis also requires some additional considerations, as features se-
lected for the training set could not be the optimal selection for the test set. To
avoid possible skewed results, no feature selection was computed in our study.
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Figure 4: Accuracy (a) and cluster size (b) null distributions. The vertical
dotted line represents the threshold corresponding to a very low probability to
obtain significant results by chance. This threshold correspond to a p-value
below 0.001 for both distributions.

2.5 Statistical analysis

Applying t-test statistics on multivariate results is an unsuitable approach to
draw statistical inferences at the group level.43 For that reason, the use of
cluster-based non-parametric permutation methods is widespread, not only in
fMRI44–47 but more recently also in M/EEG studies.48–51 In our study, a non-
parametric cluster-based permutation approach, proposed in43 for fMRI data,
was adapted and implemented for the statistical analysis.

We thresholded the decoding accuracy obtained with an empirical accuracy
null distribution, calculated by means of a combined permutation and boot-
strapping technique. First, at the single-subject level, 100 randomly permuted
accuracy maps were generated. To draw statistical inferences at the group level,
we randomly drew one of the previously calculated accuracy maps for each par-
ticipant. This selection was group-averaged and the procedure was repeated 105

times, generating 105 permuted group accuracy maps.
Next, for each timepoint we estimated the chance distribution of accuracy

values and determined the accuracy threshold (99.9th percentile of the right-
tailed area of the distribution), which corresponds to a very low probability to
obtain significant results by chance.

Then, we searched and collected clusters of timepoints exceeding the previ-
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ously calculated threshold in all the 105 permuted accuracy maps, generating
the normalized null distribution of cluster sizes. Finally, we applied a correc-
tion for multiple comparisons (FDR) to obtain the smallest cluster size to be
considered significant.

2.6 Frequency contribution analysis

The contribution of each frequency band to the overall decoding performance
was assessed through an exploratory sliding filter approach. We designed a
band-stop FIR filter using pop firws EEGLab function (2Hz bandwidth, 0.2Hz
transition band, 2816 filter order, Blackman window) and pre-filtered the EEG
data (120 overlapped frequency bands, between 0-120Hz and linearly-spaced
steps) producing 120 filtered versions of the original EEG dataset. The former
time-resolved decoding analysis (congruent vs. incongruent, ta = 10) was re-
peated for each filtered version and the importance of each filtered-out band
was quantified computing the difference maps in decoding performance between
the filtered and the original decoding results. Significant clusters were found
applying the proposed cluster-based permutation test to filtered-out datasets,
generating accuracy null distributions for each time-frequency point.

With the purpose of obtaining better frequency resolution in lower bands, the
previous analysis was repeated for frequencies between 0-40Hz in 120 overlapped
and logarithmically spaced steps.

3 Results and discussion

3.1 Behavioral results

The behavioral results of reaction times replicate well-known conflict effects
linked to context-dependent congruency,2,27 with a significant interaction of
Context × Stimulus Type (F(1,31) = 26.285, p < .004, η2p = .459). Planned
comparisons showed significant differences between congruent and incongruent
trials for both the easy (F(1,31) = 272.707, p < .001, η2p = .885) and the difficult
contexts (F(1,31) = 183.109, p < .001, η2p = .855) with larger differences in
reaction times in the easy (congruent trials: M = 0.465, SD = 0.13; incongruent
trials: M = 0.560, SD = 0.15), compared to the difficult context (congruent
trials: M = 0.474, SD = 0.13; incongruent trials: M = 0.553, SD = 0.14).

3.2 Electrophysiological results

The electrophysiological analyses (Figure 5a) show significant differences (p<.001,
cluster corrected) in activity patterns for congruent vs. incongruent trials, peak-
ing at 375ms after the stimulus onset. At this point, the classifier accurately
predicted (> 80%) if participants were responding to congruent or incongruent
trials. Table 2 reports the variations in classification performance for averages of
different number of trials. The SVM hyper-parameter C was optimized, slightly
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increasing the decoding performance, however, the computation time required
increased significantly.

Figure 5: Group level MVPA results. Time-resolved classifier performance when
different number of trials were averaged. The standard error of the (a) classifi-
cation accuracy and (b) the Area Under the Curve are represented using colored
areas. Significant windows (ta = 10) obtained via Stelzer permutation test are
highlighted using horizontal bold lines. The stimulus screen time [0− 190]ms is
shaded. (c) Receiver Operating Characteristic curves for different timepoints
[example participant, ta = 10, t =-199ms, 188ms, 328ms and 375ms].

The statistically significant regions extended from 130ms after stimulus onset
to 1200ms afterwards, when ten trials were averaged to generate supertrials. As
Figure 5 shows, before the stimulus onset the classification accuracy remained
at the chance level (0.5).

The temporal generalization analysis is shown in Figure 6. First, AUC
proved to be a more sensitive measure. The AUC temporal generalization ma-
trix (Fig 6b) shows a distinct pattern of generalization. Clusters appearing
only alongside the diagonal have been associated with a succession of different
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Figure 6: Group level temporal generalization results for congruent vs. incon-
gruent trials (ta = 10). Accuracy (a) and AUC (b) values when the model was
trained and tested in each time point of the whole time window. Significant
clusters obtained via Stelzer permutation tests are highlighted using red lines.

Figure 7: Group level MVPA. (a) Time-resolved classifier performance (ACC)
for congruent vs. incongruent trials when different number of PCA components
were selected. Colored areas represent the ACC standard error. Statistically
significant time windows (ta = 10, No PCA and 10 PCA comp.) are highlighted
using horizontal bold lines. The stimulus screen time [0-190]ms is shaded. (b)
Explained variance for different number of PCA components [example partici-
pant].

mechanisms. That is to say, the neural information that allows the classifier
to tell apart congruent and incongruent trials is likely the result of a series
of distinct events. Moreover, Figure 6b shows a cluster of homogeneous AUC
between 200 and 400ms, which theoretically suggests the operation of a single
cognitive process maintained in time.34 Such mechanism apparently reappears
at ∼800-1000ms after the target onset, posterior to the mean RT (513ms). In
consequence, results indicate the existence of a particular brain process involved
in the interference effect that intervenes in the initial stages of target processing
during an extended time window, and reappears after the behavioral response
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No. of averaged trials (ta) ACC ± SD AUC ± SD

ta = 1 .60±.05 .65±.07
ta = 3 .65±.07 .70±.08
ta = 5 .69±.10 .74±.12
ta = 8 .74±.10 .79±.12
ta = 10 .76±.11 .80±.13
ta = 10 - C optimized .76±.10 .81±.13

No. of PCA components (ta = 10)

First Component .64±.14 .66±.17
3 first components .71±.11 .76±.13
5 first components .72±.11 .78±.12
8 first components .73±.12 .80±.13
10 first components .74±.11 .81±.13

Table 2: LSVM model peak classification performance [t = 375ms] at a group
level. The mean accuracy and AUC are reported for different values of ta and
different number of PCA components.

is given.
Interestingly, this is the same temporal window where classic Event-Related

Potential studies52 have repeatedly observed the N2 potential, which is taken
as the reflection of interference processing. The indication that the same under-
lying mechanism reappears after the response could reflect the reinstantiation
of the interference episode, perhaps reflecting trial event boundaries.53 Further
research will be needed to clarify and extend this novel finding.

The cross-classification results (Figure 9a,b) showed smaller clusters com-
pared to the MVPA time generalization (Figure6a, b). However, the main
diagonal cluster in the matrix indicates a series of different events that occur in
cascade, but shared between both contexts.34 This mechanism could reflect the
interference process itself, previous to the response.

The actual risk estimation for different sample sizes and dimensions γemp is
shown in Figure 8. The difference between the actual error and the resubstitu-
tion error is bounded by γemp. White markers represent different experimental
configurations for both the sample size (l) and the number of PCA components
(d) analyzed in our study. Performance results obtained by resubstitution (C-
optimized, t = 375ms) for these experimental configurations are shown in Table
3. The classification accuracy remained above chance despite the conservative
estimation of the upper bound of the actual error, preserving our classification
model for overfitting and proving that both conditions are representative of dif-
ferent underlying activity patterns associated with congruent and incongruent
stimuli.
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ACC(γemp(l, d)) d = 1PCA d = 3PCA d = 5PCA

l = 790 (ta = 1) .55(.04) .63(.10) .65(.13)
l = 260 (ta = 3) .58(.08) .68(.16) .71(.20)
l = 150 (ta = 5) .58(.11) .79(.20) .81(.25)
l = 90 (ta = 8) .72(.14) .80(.24) .83(.30)
l = 70 (ta = 10) .81(.15) .88(.27) .92(.34)

Table 3: Classification performance and the actual risk γemp for a C-optimized
LSVM model obtained by the resubstitution approach. [example participant,
t = 375ms]

Figure 8: Different upper bound estimations via the procedure found in35 for
LSVM across dimension and sample size at a 95% confidence level (η = 0.05).
White markers represent the upper bound values for the experimental conditions
tested in our study.
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Figure 9: MVCC results. (a) Temporal generalization results when the model
was trained with forced blocks and tested in voluntary blocks and (b) vice versa.
(c) Classifier performance (acc) for the former analyses. Colored areas represent
the standard error. Significant windows calculated via Stelzer permutation test
are highlighted using horizontal lines.
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3.3 Frequency contribution results

A sliding bandstop filter approach was followed to study the contribution of
each frequency band to the overall decoding accuracy. Results show that the
interference effect observed relies on neural processes operating in the Delta and
Theta frequency bands. Figure 10a shows how decoding accuracy significantly
drops when frequencies up to 8Hz were filtered-out.

Previous studies on cognitive control, and more specifically, interference pro-
cessing, have found that slow rhythms (i.e. Theta, Delta) are associated with
communication between distant brain regions.54 Our results are in line with
those studies, showing that Theta and Delta oscillations are relevant for the
brain activity underlying performance in an interference task. Moreover, pre-
vious results (e.g. Cohen55) show the relevance of Theta in the first instances
of target processing, which changed to Delta after the participants’ response.
These results are supported by the present study, which shows Theta and Delta
to be crucial for classification right after the target onset, which evolves into a
single Delta-based classification around and after the response time.

The meaning of the change from one frequency band to another along time
could be due to neuronal activity on the Theta band preventing the distractors
to be processed. Once the target is selected, Delta, which arises later, could
reflect inhibition of competing and erroneous motor responses.56

4 Conclusion

The current study is an initial approximation to adapt a DST to a format
that allows measuring concurrent high-density electroencephalography. While
most of previous studies categorize the interference effect through ERP markers
such as the N2 potential,52 we successfully used multivariate pattern analysis
(MVPA) to decode conflict-related neural processes associated with congruent or
incongruent events in a time-frequency resolved way. Furthermore, our results of
frequency bands contribution analysis suggest that interference processing effect
relies on neural processes operating in the Delta and Theta frequency band.
This is in line with previous results pointing to Theta band modulations as a
cognitive control signature, indicating the presence of conflicting/incongruent
information. More specifically, the source of this modulation has been localized
in the midline brain, in anterior cingulate and premotor areas.53

In addition, our results offer new information regarding the reinstantiation
of the processes likely reflected on the N2 potential at a later time window in
the trial. This finding, which could not have been obtained with classic ana-
lytical strategies, opens novel avenues of research. Future lines of investigation
should address these findings to complement the results found in the current in-
vestigation. In addition, to increase our understanding of preparation processes
and conflict effects, it would be of interest to continue analyzing the current
dataset, focusing not only on the target stimulus, but also on the neural ac-
tivity triggered by the cues. Further detailed analyses should be carried out
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Figure 10: Results of frequency contribution analysis. Classification accuracy
differences when a specific frequency band is filtered-out. (a) [0-40]Hz loga-
rithmically spaced and (b) [0-120]Hz linearly spaced sliding filter approach.
Significant clusters obtained via Stelzer permutation test are highlighted using
red lines.
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to study the activation differences between forced and voluntary blocks or high
and low congruency contexts. MVPA techniques represent an opportunity to
study the neural basis of even more complex psychological processes, such as
the allocation of cognitive control and effort avoidance. Finally, the use of the
resubstitution approach mentioned above opens a new path that could lead to
promising results.
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I. Álvarez, and M. Gómez-Ŕıo. Computer-aided diagnosis of Alzheimer’s
type dementia combining support vector machines and discriminant set of
features. Information Sciences, 237:59–72, jul 2013.

[7] R. Chaves, J. Ramı́rez, J.M. Górriz, M. López, D. Salas-Gonzalez,
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[37] Juan M. Górriz, Javier Ramı́rez, F. Segovia, Francisco J. Mart́ınez,
Meng Chuan Lai, Michael V. Lombardo, Simon Baron-Cohen, and John
Suckling. A machine learning approach to reveal the neurophenotypes of
autisms. International Journal of Neural Systems, 29(7):1–22, 2019.

[38] Francisco J. Martinez-Murcia, Andres Ortiz, Juan-Manuel Gorriz, Javier
Ramirez, and Diego Castillo-Barnes. Studying the Manifold Structure of
Alzheimer’s Disease: A Deep Learning Approach Using Convolutional Au-
toencoders. IEEE Journal of Biomedical and Health Informatics, pages
1–1, 2019.

[39] Joset A. Etzel, Valeria Gazzola, and Christian Keysers. Testing Simulation
Theory with Cross-Modal Multivariate Classification of fMRI Data. PLoS
ONE, 3(11):e3690, nov 2008.

[40] Nikolaas N. Oosterhof, Steven P. Tipper, and Paul E. Downing. Crossmodal
and action-specific: neuroimaging the human mirror neuron system. Trends
in Cognitive Sciences, 17(7):311–318, jul 2013.

[41] Nikolaas N Oosterhof, Alison J Wiggett, Jörn Diedrichsen, Steven P Tip-
per, and Paul E Downing. Surface-based information mapping reveals cross-
modal vision-action representations in human parietal and occipitotempo-
ral cortex. Journal of neurophysiology, 104(2):1077–89, aug 2010.

[42] Job van den Hurk and Hans P. Op de Beeck. Generalization asymmetry in
multivariate cross-classification: When representation A generalizes better
to representation B than B to A. bioRxiv, apr 2019.

[43] Johannes Stelzer, Yi Chen, and Robert Turner. Statistical inference and
multiple testing correction in classification-based multi-voxel pattern anal-
ysis (MVPA): Random permutations and cluster size control. NeuroImage,
65:69–82, jan 2013.

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797415doi: bioRxiv preprint 

https://doi.org/10.1101/797415
http://creativecommons.org/licenses/by-nc-nd/4.0/


[44] Thomas E Nichols and Andrew P Holmes. Nonparametric permutation
tests for functional neuroimaging: a primer with examples. Human brain
mapping, 15(1):1–25, 2002.

[45] Paloma Dı́az-Gutiérrez, Juan E. Arco, Sonia Alguacil, Carlos González-
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