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Finding new biomarkers to model Parkinson’s Disease (PD) is a challenge not only to help discerning

between Healthy Control (HC) subjects and patients with potential PD, but also as a way to measure

quantitatively the loss of dopaminergic neurons mainly concentrated at substantia nigra. Within this

context, the work presented here tries to provide a set of imaging features based on morphological

characteristics extracted from I[123]-Ioflupane SPECT scans to discern between HC and PD partici-

pants in a balanced set of 386 scans from Parkinson’s Progression Markers Initiative (PPMI) database.

These features, obtained from isosurfaces of each scan at different intensity levels, have been classified

through the use of classical Machine Learning classifiers such as Support-Vector-Machines (SVM) or

Näıve Bayesian and compared with the results obtained using a Multi-Layer Perceptron (MLP).

The proposed system, based on a Mann-Whitney-Wilcoxon U-Test for feature selection and the SVM
approach, yielded a 97.04% balanced accuracy when the performance was evaluated using a 10-fold
cross-validation. This proves the reliability of these biomarkers, especially those related to sphericity,
center of mass, number of vertices, 2D-projected perimeter or the 2D-projected eccentricity; among
others, but including both internal and external isosurfaces.

Keywords: Parkinson’s Disease; Neuroimaging; Machine Learning; Isosurfaces; Parkinson’s Progression
Markers Initiative (PPMI); Single Photon Emission Computed Tomography (SPECT); Computer-Aided-
Diagnosis (CAD); Supervised Learning.

1. Introduction

One of the most prevalent neurological disorders, led

only by Alzheimer’s Disease, is Parkinson’s Disease

(PD). This pathology is a progressive neurodegener-

ative disorder characterized by the loss of dopamin-

ergic neurons in the substantia nigra.1 Its most fre-

quent symptoms are: bradykinesia, tremor, ridig-

ity, lack of expressiveness and postural inestability

among others.2,3

The development of Computer-Aided-Diagnosis

(CAD) systems4–8 based on the analysis of neuro-

logical Single Photon Emission Computed Tomogra-

phy (SPECT) scans is becoming a potential support

tool for clinical practice. Among the more popular

radiotracers used for PD, the I[123]-Ioflupane radi-

oligand is the most frequently used.9–11 This tracer

has a high binding affinity for dopaminergic trans-

porters (DATs) in the brain, so its use results in a

grayscale image highly illuminated in those regions

where its concentration is higher. As dopaminergic
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neurons are mainly located at substantia nigra, this

region appears to be much brighter than other areas

and a quantitative measure of its spatial distribution

can be obtained.12

It is well-known that morphological informa-

tion obtained from structural (MRI) and functional

(SPECT) scans may be indicative of PD progres-

sion:13,14 when considering a HC subject, its stria-

tum appears to be highlighted, symmetrical and with

a defined c-sharped portion that corresponds with

the caudate and a globular part forming the puta-

men; on the contrary, patients with PD show the

striatum area not as highlighted and with a more

rounded shape due to the blurring of low intensi-

ties.15 In the current literature there are some works

that have dealt with this behaviour from the point

of view of 2D projections as carried out by Segovia

et al.;16 delimiting high intensity borders using con-

tour lines as presented in;17 or just adjusting a non-

closed surface to a high intensity threshold level to

extract some characteristics from it.18 These three

works have in common that all the morphological

features extracted in them represent 2D projections

of 3D intensity volumes delimited by a ROI or by

the manual selection of some slices in I[123]-Ioflupane

SPECT scans. Within this context, the work pre-

sented here tries to perform a classification of HC

participants and PD patients based on four funda-

mental rules that will simplify the preprocessing of

the images: 1) to avoid the need of both intensity and

non-affine spatial normalization steps; 2) to avoid

the need of a Region Of Interest (ROI) to extract

characteristics instead of using the full scan (or at

least one of the hemispheres); 3) to make use of

3D volumes that accurately model the spatial dis-

tribution of I[123]-Ioflupane radioligand uptake; and

4) to present a fully-automated solution. To this end,

one approach proposed in recent years has been to

model the I[123]-Ioflupane SPECT intensity distribu-

tion using 3D isosurfaces19,20 An isosurface can be

defined as the three-dimensional analog of an iso-

line.21 All the points that make up the surface have

the same constant value (intensity). As the I[123]-

Ioflupane SPECT images capture the presence of

dopamine which is mainly concentrated at the stria-

tum, isosurfaces are expected to shape adequately

this highly illuminated region. In this new scenario,

it is necessary to determine an automated way to de-

fine the intensity thresholds for the isosurfaces with-

out lowering our classification rates. Decision about

which of them should be used for future works will

not only depends on their maximum classification

rates obtained but also on the potential advantages

of each one.

In summary, for this work we have extracted

a wide range of morphological features from a bal-

anced dataset of 386 I[123]-Ioflupane SPECT scans,

classified them using different Machine Learning al-

gorithms including a Multi-Layer Perceptron (MLP)

classifier, and validated all results through the use

of a 10-fold cross-validation schema. Final list of in-

put features includes (among others): area/volume

of each isosurface; its center of mass; 2D projections

on the X,Y, Z planes; its sphericity value; its total

number of vertices and faces; or the isoperimetric

quotient computed for each polyhedron. Note that

due to the bilateral nature of the disease, all exper-

iments have been computed considering only: 1) left

hemispheres (LH); 2) right hemispheres (RH); 3) the

full brain (FULL) and 4) a LH+RH+FULL features

list (ALL).

This work is in line with the research proposed

in.19,20 This is a full and improved version of the

most important conclusions given in them but in-

cluding a longer set of morphological features; op-

timizing the way intensity thresholds should be se-

lected; comparing the classification results obtained

using different classifiers and measuring their vari-

ability.

2. Materials & Methods

2.1. Parkinson’s Progression Markers
Initiative (PPMI)

Data used in the preparation of this article were

obtained from the Parkinsons Progression Markers

Initiative (PPMI) database (www.ppmi-info.org/

data). For up-to-date information on the study, visit

www.ppmi-info.org. PPMI - a public-private part-

nership - is funded by the Michael J. Fox Founda-

tion for Parkinsons Research and funding partners,

including all partners listed on www.ppmi-info.org/

fundingpartners.

Informed consents to clinical testing and neu-

roimaging prior to participation of the PPMI cohort

were obtained and approved by the institutional re-

view boards (IRB) of all participating institutions.

The PPMI obtained written informed consent from

www.ppmi-info.org
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all study participants before enrolled in the Initia-

tive.

More information are available in http://

www.ppmi-info.org/wp-content/uploads/2014/

06/PPMI-Amendment-8-Protocol.pdf.

2.2. Participants

A total of 386 participants after exclusion criteria

from PPMI database were selected for this work.

This included Healthy Control subjects (HC) and

patients diagnosed with Parkinson’s Disease (PD).22

Participants’ demographics have been sum-

marised in Table 1. Note that, to limit the number

of results from each subject corresponding with their

total amount of visits, only the baseline (BL) visit of

each participant has been included for this work. In

case of PD participants, this also refers to de novo

patientsa. A summary of the UPDRS scale available

in the PPMI dataset for PD participants in BL has

been depicted in Figure 1. Since the UPDRS scale is

sub-grouped into 4 different sets of tests (also called

parts),23 each box in Figure 1 corresponds to one

part (first 1− 4 columns) or the average of all parts

(last column).

Part I Part II Part III Part IV All
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Figure 1. UPDRS scale for PD subjects at BL.

2.3. Image preprocessing

2.3.1. Background and spatial normalization

The template Mask ICV.nii from the SPM (Sta-

tistical Parametric Mapping) software package tool

(SPM12 version available from its website www.fil.

ion.ucl.ac.uk/spm/software/spm12/) has been

spatially normalised to each subject using an affine

registration.24 This results in a mask with ones lo-

cated at brain voxels and zeros in the rest. Then,

each mask is multiplied by its correspondient I[123]-

Ioflupane scan.

2.3.2. Generating isosurfaces

Isosurfaces used in this work are generated using the

Marching Cubes algorithm.25,26 This procedure ex-

tracts a 2D surface mesh from a 3D volume. Concep-

tually, this conforms a 3D generalization of isolines.

The version of the algorithm used in this work has

been proposed by Lewiner and it is known as the

Lewiner Marching Cubes Algorithm (LMCA). This

is an improved version of the works presented by

Lorensen et al.,27 and Chernyaev.28 Originally, this

method was designed to generate triangle models of

isosurfaces F (x, y, z) = α of a scalar function given

by samples over a cuberille grid to modellate a par-

ticular volume (28 possible arrangements). However,

as some of these cases are topologically equivalent

(e.g. if considering rotations), the number of con-

figurations can be reduced up to 15 arrangements

for Lorensen’s proposal and 33 for Chernyaev’s. Al-

though this may be sufficient for many scenarios,

LMCA is designed for making a heavy use of lookup

tables to handle the many different cases of inter-

sections completing the ambiguity resolution of the

previous implementations. An isosurface example ob-

tained from the first participant has been depicted in

Fig. 2. A second representation but using 8 different

intensity levels to generate the isosurfaces map from

the first participant has also been included as shown

in Fig. 3.

aThe current definition of de novo patients in the PPMI guidelines refers to either newly diagnosed patients with PD or
patients not receiving L-dopa.

http://www.ppmi-info.org/wp-content/uploads/2014/06/PPMI-Amendment-8-Protocol.pdf
http://www.ppmi-info.org/wp-content/uploads/2014/06/PPMI-Amendment-8-Protocol.pdf
http://www.ppmi-info.org/wp-content/uploads/2014/06/PPMI-Amendment-8-Protocol.pdf
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Table 1. Demographics.

Number of participants Age

Male Female Total Male Female Both

HC 128 65 193 61.97 ± 10.72 58.84 ± 11.88 60.90 ± 11.22
PD 127 66 193 62.25 ± 9.92 60.34 ± 9.66 61.60 ± 9.87
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Figure 2. Example showing only the 16th isosurface (20
in total) obtained from the first participant.

2.3.3. Obtaining morphological
characteristics from SPECT volumes

Once all the scans have been preprocessed, next step

is to calculate the feature set based on the mor-

phological characteristics of each isosurface from the

I[123]-Ioflupane SPECT volumes. The resulting pat-

terns differ from the anatomical structures and can

be used to measure the spatial distribution of the

uptake in the brain for different intensity levels.

Given a reference intensity level (Iref) from

a range of N possible intensity levels corre-

sponding with the number of isosurfacesb, Iref ∈
[I1, I2, . . . , IN ], the LMCA iterates across the vol-

ume, looking for regions which cross this value. If

such regions are found, triangulations are generated

and added to an output mesh. Then, using this mesh,

several features from the delimited volume can be

obtained including:

• Area and Volume - Of the region within the

isosurface at the intensity reference level Iref. For

that, Qhull library based on the work presented

in29 and available at www.qhull.org was used.

Documentation about Qhull and applications of

this tool (e.g. Delaunay triangulation, intersec-

tions of halfspaces or Voronoi diagrams) are also

available at this website.

• Center of Mass (CoM) - Given a particles sys-

tem, CoM represents the spatial point where the

weighted relative position of the distributed mass

sums to zero. Although the feature name has not

been changed, this work makes use of intensity

values instead of mass. This procedure has been

computed for each isosurface using only voxels

whose intensity is equal or higher than the refer-

ence intensity of the reference isosurface: IVoxel ≥
Iref. Mathematically, Eq. (1) computes the CoM

of all M voxels within isosurface IRef with rela-

tive position (xi, yi, zi) and distributed intensities

I(xi, yi, zi).

CoMIRef
=

M∑
i=1

(xi, yi, zi) ∗ I(xi, yi, zi)

M∑
i=1

I(xi, yi, zi)

i = 1, 2, . . . ,M

(1)

• Projections - Previous works, like presented

in,16,18 have made use of axial, sagital and coronal

projections of the striatum region as an intermedi-

ate step to obtain reliable features for Parkinson’s

Disease. The list of these characteristics included:

area of the projection, eccentricity, orientation and

major/minor axis length of the ellipse that has the

same normalised second central moments as the

region. Using these ideas, the axial, sagital and

coronal projections of each isosurface have been

computed to get some features of the projection

bThe way those intensities thresholds are choosen will be detailed in Section 2.3.4.

www.qhull.org
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Figure 3. Example showing 8 isosurfaces obtained from the first participant. High intensity parts (red) corresponds with

a high uptake of I[123]-Ioflupane radiotracer.

including: area, centroid, eccentricity, equivalent

diameter, extent, major and minor axis length of

the equivalent ellipse, orientation, perimeter and

solidity. A representation of the base planes pro-

jections (X,Y, Z) of an isosurface computed for a

participant is depicted in Fig. 4.
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Figure 4. Left 3D-projections of the 16th isosurface
obtained from the first participant. Points represent
the vertices projections on the base planes X,Y,Z
through the point defined by the CoM.

• Sphericity - Apart from the low intensities ob-

tained in scans of PD patients, the shape of their

more highlighted regions also seems to be round.

In regard of this, it has also been included the

sphericity of each isosurface as a potential feature

for Parkinson’s Disease diagnosis.

• Isoperimetric Quotient - The isoperimetric

quotient of a closed curve is defined as the ratio

(QISO) of the curve area to the area of a circle

(Ar) with same perimeter as the curve (pr):

QISO
2D =

4πAr
p2r

(2)

In case of considering a 3D polyhedron, it can

be used both volume (Vr) and surface (Sr) of an

sphere as reference instead of the area of a circle

and its perimeter. Thus, this quotient remains as

follows:

QISO
3D =

36πV 2
r

S3
r

(3)

• Number of elements - When considering

healthy subjects, the region with a high DATs con-

centration is expected to be large and with a de-

fined c-shape. In this case, LMCA will provide a

number of vertices and faces greater than the ob-

tained for patients with PD.

• Other polyhedron features - Including the Eu-

ler characteristic number and the polyhedron ori-

entability. In the case of the Euler characteristic

number, χ, this parameter relates the number of

vertices Vp, edges Ep, and faces Fp of the polyhe-

dron:

χ = Vp − Ep + Fp (4)
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Therefore, when concatenating all the characteris-

tics considered for each isosurface, its total number

of features is 15 if considering the full brain and 57

when it also includes the information from 2D pro-

jections (hemispheres).

2.3.4. Generating intensity thresholds for
each isosurface

It remains to select the intensity values for each iso-

surface. For that, this work proposes two alterna-

tives:

(i) Given an image from a subject, a list of N inten-

sity reference values IRefj are generated following

Eq. (5) where ISubjectmin and ISubjectmax are the respec-

tive minimum and maximum intensity levels from

each subject.

IRefj = ISubjectmin + j
ISubjectmax − ISubjectmin

N
(5)

(ii) Given a reference template, use its mini-

mum/maximum intensity values to obtain a set

of IRefj levels common to all the subjects. This

second alternative requires not only to gener-

ate this template but also to decide how maxi-

mum/minimum intensity levels from each patient

should match with the maximum/minimum inten-

sity levels from the template. Once the template

is generated by averaging all the images from a

set of HC participants (it will require to apply a

non-affine spatial registration procedure followed

by an intensity normalization), the difference be-

tween its maximum/minimum intensity levels is

splited in N parts. Then, each level is used as in-

tensity reference value for each subject image.

Fig. 5 shows an schema of these two approaches.

Note that, to avoid excesive highlighted voxels (out-

liers), maximums can be computed by averaging the

1% of the most intensity values. On the contrary,

minimums are always referred to 0.

Figure 5. Graphical representation of the two proposed
alternatives to determine the isosurfaces intensity thresh-
olds IRefj .

This allows us to define two experiments, each of

them corresponding to the two schemas listed above.

It also should be highlighted the importance of using

a fixed number of isosurfaces, N , to avoid problems

with the dimensionality of the feature vectors. Thus,

if a particular isosurface does not fit with any inten-

sity threshold, its feature vector should be filled at

least with zeros indicating the no-existence of that

layer.

2.4. Classification algorithms

For this work, several classification approaches have

been used not only as a way to compare their per-

formance when using the morphological features ex-

tracted from the I[123]-Ioflupane SPECT volumes but

also to test the advantages of a multilayer neural net-

work classification over traditional methods.

2.4.1. Support-Vector-Machines (SVM)

SVM classifiers are based on linear discriminant

functions that define a decision hyperplane in a mul-

tidimensional feature space maximizing the separa-

tion between different labeled data classes.30,31

Given a training set of instance-label pairs xi, yi
with i = 1, 2, . . . , n, xi ∈ <m and y ∈

{
1,−1

}n
, a
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SVM classifier solves the optimization problem given

by Eq. (6) subject to Eq. (7) where C > 0 is a penalty

factor, and ξ represents the loss function:

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi (6)

yi
(
wTφ(xi) + b

)
≥ 1− ξi ξi ≥ 0 (7)

In this scenario, the training vectors xi are mapped

into a higher (maybe infinite) dimensional space by

the function φ. The form φ(xi)
Tφ(xi) is also called

the kernel function (K(xi,xj)). According to the ker-

nel methods, for this work we have made use of three

commonly used kernels in the extant literature:4–8

• Linear Kernel - It uses the simplest kernel func-

tion, K(xi,xj) = xixj + C, where the constant

C trades off misclassification of training examples

against simplicity of the decision surface. Low val-

ues for C smooth the decision surface whereas high

values force the classification of all training exam-

ples correctly.

• Radial Basis Function (RBF) kernel - It also

presents the parameter γ which defines the radius

of influence of a single training example. Thus,

the larger γ value is, the closer other examples

must be to be affected. In this case, K(xi,xj) =

exp
(
− γ‖xi − xj‖2

)
.

• Polynomial kernel - Where K(xi,xj) =(
αxTi xj+C

)d
which makes use of an slope modifier

parameter, α, and the polynomial degree d.

In all cases, to tune the parameters, all possible com-

binations for both C ∈ {0.1, 1, 10, 100} and γ ∈
{0.1, 1, 10} have been considered.32 With respect the

polynomial kernel, its degree was fixed to 3.

Related, but not the same, it was also included

the called NuSVC classifier33,34 which controls the

fraction of training errors and support vectors by its

ν ∈
(
0, 1
]

parameter. In our context, its value was

finally set to ν = 0.1.

2.4.2. Näıve Bayesian

This non-linear classifier is known by its good per-

formance when using a small set of features.35 In the

binary case, it is based on the assumption that the

data matrix X = x0,x1 . . .xn contains n samples

drawn from two different populations with random

normal distribution πc with c ∈ [1, 2]. Using the no-

tation f1(xi) for the probability densities of any of

the samples belonging to class 1 or 2 with i the in-

dex of any subject of class c, this classifier labels each

subject xi as label c using the likelihood ratio rule,

stating that:

xi ∈

{
π1 if f1(xi)/f2(xi) > 1

π2 if f1(xi)/f2(xi) ≤ 1
(8)

When considering that πc is a multivariate nor-

mal population with mean µc and dispersion matrix

Σc for c ∈ [1, 2], the relation f1(x)
f2(x)

can be obtained

as follows:

f1(x)

f2(x)
=

√
|Σ2|
|Σ1|

exp
(
− 1

2
(T1(x) + T2(x) + T3(x))

)
T1(x) = xT(Σ−1

1 −Σ−1
2 )x

T2(x) = −2xT (Σ−1
1 µ1 −Σ−1

2 µ2)

T3(x) = µT1 Σ−1
1 µ1 − µT2 Σ−1

2 µ2

(9)

This can be used to define the discrimination

function as described in Eq. (10). Since the true pa-

rameters µ1, µ2, Σ1 and Σ2 are not known in reality,

they are estimated making use of the maximum like-

lihood algorithm. Owing to this, the implementation

of this classifier did not require any tune.

fc(x) =
exp

(
1
2 (x− µc)

TΣ−1
c (x− µc)

)√
(2π)p|Σc|

(10)

2.4.3. Multi-Layer Perceptron (MLP)

The last classifier considered for this work was a

simple, yet powerful, Multi-Layer Perceptron (MLP)

which makes use of three layers of size L1(size) = 32,

L2(size) = 32 and L3(size) = 2. This number of neu-

rons has been set to achieve a good trade-off be-

tween the number of trainable parameters and the

overall accuracy of the model. The general schema

of the network is depicted in Fig. 6. Batch normal-

ization and Rectifier Linear Unit (ReLU) activation

was used after layers L1 and L2, as suggested in.36

For the output layer, log-softmax activation37 was

used over dimension 1. Dropout38 was applied dur-

ing training with a p = 0.25 between layers L1 and

L2, and layers L2 and L3 (output layer).
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Figure 6. MLP classifier: general schema used for this
work. Nf corresponds with the number of input features
for each classification.

During the training, it was made use of the

Stochastic Gradient Descent (SGD) optimizer, with

a fixed learning rate of µr = 0.1, providing both a

good convergence rate and accuracy. The Negative

Log-likelihood loss was computed with a batch size

equal to Nb:

`(x, y) = L = {l1, . . . , lNb
}T

ln = −wynxn,yn
wc = weight[c] · 1{c 6= ignore index}

(11)

A further mean reduction was applied as general

loss for the batch. This resulted in (12) with a batch

size set to 16.

`(x, y) =

Nb∑
n=1

1
Nb∑
n=1

wyn

ln (12)

The early stopping technique was applied using

an independent validation set. This saved the model

which achieved last descending validation loss over

the last 30 iterations.

2.5. Cross-validation strategy

Classification results have been validated using a

stratified K-fold cross-validation strategy schema

with K = 10 as recommended by Kohavi39 and

Krstajic et al.40

Resampling made by the cross-validation en-

sures that the ratio between classes is preserved in

each iteration (fold). This let us to evaluate the

generalization capabilities of each generated model

maintaining the independence of the results. More-

over, this strategy guarantees that high performance

rates do not come from a random selection of input

data (avoid bias). Note that the estimation of the

generalization error will result in an overstimate of

the true prediction error since only using just K − 1

folds. This difference in the estimation depends on

the learning curve of the classifier and it is reduced

as long as K increases.41

2.6. General diagram

A general diagram including all steps has been de-

picted in Fig. 7. Note that as Experiment 1 does

not require any template to determine the intensity

thresholds used to define each isosurface, this step

has been removed. In the case of using a template,

as necessary for Experiment 2, it can be generated

within the CV loop by averaging the training scans

of all HC subjects as explained in.42

This work was developed using Python 3.7.

Code for the marching cubes algorithm, isosurfaces

and morphological characteristics (Sections 2.3.2-

2.3.4) were specifically coded for this project. SVM

(Section 2.4.1) and Näıve Bayesian (Section 2.4.2)

used the scikit-learn library,43 which in case of

SVM is a wrapper of LIBSVM.44 The MLP model

(Section 2.4.3) was built in PyTorch.45

3. Results

Once experiments have been defined as explained in

section 2.3.4, the features proposed for this work

were extracted from each I[123]-Ioflupane SPECT

scan and classified through multiple classification

schemas variating the number of isosurfaces, N . Fol-

lowing the general diagram depicted in Fig. 7 for ex-

periments 1 and 2, final classification results varying

the number of isosurfaces have been calculated. As

experiment 1 results were much better than those

obtained for experiment 2, we have only included

Fig. 8 to show these rates. Moreover, as mentioned

in Section 1, owing to the bilateral nature of the

disease all the experiments have been performed

considering morphological characteristics extracted

from left/right hemispheres (LH/RH); the full brain

(FULL); and the combination of those three sub-

sets (ALL). Furthermore, regardless classifying only
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Figure 7. General diagram.

an hemisphere or using the entire brain, as the

amount of input features for their classification might

be excesive in comparison with the number of in-

put subjects. To identify which features present the

major margin separbility between classes, a Mann-

Whitney-Wilcoxon U-Test feature selection step was

introduced in the cross-validation loop.46 This non-

parametric test of the null hypothesis does not as-

sume that the input distributions follow the nor-

mal distribution. Making use of this test, and setting

pvalue ≤ 0.05 as threshold, if the amount of features

matching this condition did not exceed the number

of subjects, all the features are used for feature se-

lection and overfitting is prevented. On the contrary,

if this amount is greater than the number of sub-

jects, nstrain, the array containing all pvalue is sorted

in increasing order and only the first nstrain charac-

teristics are selected so overfitting is also prevented.

For example, when N = 20 and considering ALL

set, a total of N ∗ (15 + 57 + 57) = 2580 features

are generated. Although most of them presented a

pvalue ≤ 0.05 (about 2442 features in both exper-

iments), only nstrain of them were finally used for

their classification. Final list of the most significa-

tive input features included among others the list in

Table 2 sorted in increasing order of their pvalue. The

reason why a dimensionality reduction method like

PCA was not used is to maintain the physical inter-

pretation of each isosurface feature.

Maximum classification results are obtained

when generating the isosurfaces by using the first

schema proposed in Section 2.3.4 and classifying us-

ing the NuSVC classifier. In fact, for NISO = 20 iso-

surfaces, maximum rates reached up to 97.04%. Ta-

ble 3 and Table 4 have been included to summarize

the balanced accuracies obtained for experiment 1

and experiment 2 respectively.

Table 2. Top 10 features with better pvalue obtained for
experiment 1 when using MWW U-Test and N = 20 iso-
surfaces.

Feature name Isosurface Region

2D perimeter (Z) 10 Left hemisphere
2D Eccentricity (Y) 4 Right hemisphere
Sphericity 12 Left hemisphere
Center of Mass 12 Full brain
Num of vertices 13 Right hemisphere
2D Centroid (Y) 3 Right hemisphere
Num of faces 13 Left hemisphere
Volume 13 Left hemisphere
Isoperimetric Q 5 Full brain
Sphericity 13 Right hemisphere

Table 3. Balanced accuracies obtained for experi-
ment 1 when using a total of N = 20 isosurfaces.

Classifier LEFT RIGHT FULL ALL

SVM (linear) 90.59% 89.98% 90.91% 92.83%
SVM (rbf) 88.56% 88.42% 88.19% 88.70%
SVM (poly) 90.26% 91.64% 90.72% 93.54%
NuSVC 93.26% 93.75% 94.46% 97.04%
Näıve 83.76% 82.01% 84.58% 77.60%
MLP 85.07% 84.96% 83.42% 86.71%

Table 4. Balanced accuracies obtained for experi-
ment 2 when using a total of N = 20 isosurfaces.

Classifier LEFT RIGHT FULL ALL

SVM (linear) 56.65% 59.69% 67.32% 59.00%
SVM (rbf) 60.75% 57.52% 58.06% 55.11%
SVM (poly) 64.62% 58.50% 65.50% 60.36%
NuSVC 64.28% 64.79% 64.67% 65.69%
Näıve 64.60% 60.19% 61.96% 59.43%
MLP 56.68% 53.03% 57.77% 56.78%
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Figure 8. Classification results obtained for all the experiments using different classifiers and following the Schema 1
proposed in Section 2.3.4.

The Receiver Operating Curves (ROC) of each

experiment have also been included as depicted in

Fig. 9. These representations also include the Area

Under the Curve (AUC) obtained for both NuSVC

classifier and the MLP for each experiment. Fo-

cusing on them, best results are obtained for the

NuSVC classifier where AUC parameter for ALL la-

beled features were greater than in the others fea-

tures stack (AUCALL = 0.9844). In addition to

this, it can been observed clear differences between

left and right hemispheres: AUCLEFT = 0.9792 and

AUCRIGHT = 0.9718. On the contrary, the MLP

classification resulted in maximum AUC values equal

to AUCALL = 0.9128. This is a difference of 0.072

from using the NuSVC.

All the experiments have been repeated 10 times

with different randomization in each repetition to de-

termine the variability due to the change in the train-

ing/testing data sets. Fig. 10 shows this effect when

N = 20.
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Figure 9. Receiver Operating Curves (ROC) obtained
for experiments 1 (top) and 2 (down) using N = 20 iso-
surfaces. Comparison using NuSVC and MLP classifiers.
Area Under the Curve (AUC) results have also been in-
cluded.
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Figure 10. Boxplot representation showing the variabil-
ity obtained for experiments 1 and 2 when classifying
using N = 20 isosurfaces and ALL labeled features.

4. Discussion

In comparison with the current literature, there are

already some works that have measured common

differences in shape between HC subjects and pa-

tients with PD.16–18,47 Although most of them have

not made use of 3D volumes, they required the

use of templates to define a ROI, or used a non-

affine spatial normalization preprocessing step; they

have aided to improve the knowledge of the disease.

Whitin this context, this work was proposed to over-

come these limitations by creating a full-automated

volumetric approach without losing accuracy in our

final results. As included in Table 5 where it was

summarised the classification results of these referred

works, performance rates obtained by the use of iso-

surfaces not only has met the target set out, but also

they have been exceeded.

The first issue in this work was to determine how

to select the intensity thresholds associated to each

isosurface. For that purpose, the schemas proposed

in Section 2.3.4 should be compared and analysed

in terms of their classification rates and their po-

tential advantages/disadvantages. For that, following

the first schema (experiment 1), since its intensity

thresholds are obtained by dividing the difference

between the maximum and the minimum intensity

values of the scan, the first schema always yields a

fixed number of isosurfaces with non-empty values.

This advantage is coupled with the fact that this pro-

posal does require neither a reference template to set

up the thresholds nor an intensity procedure which

reduces considerably the computational load. On the

contrary, the second schema let us compare the same

intensities for all subjects. However, this comes at the

cost of using a template, which also involves perform-

ing not only an intensity normalization preprocess-

ing but also an accurate spatial normalization that

allows to math each region of the brain with its cor-

responding region in the template. At this point, the

key is to determine the influence of each approach on

the final classification.

If comparing results from experiments 1 and 2

(Fig. 8 and summarised results in Table 3 and Ta-

ble 4), classification rates using different ML algo-

rithms were good and similar to each other in the

case of experiment 1 whereas experiment 2 presented

a poor averaged correct rate barely above 67.32% as

its best. These results can be explained as the sec-

ond approach not always finds a match between the

template and a subject’s scan. Moreover, if the in-

tensity ranges from the template and subject differ

in excess, it could happen that the last isosuperface

(the one with the highest threshold intensity value)

will be too large to model all those voxels with the

most information.12

Once the first scheme for the intensity thresh-

old was selected, the next step was to determine the

number of isosurfaces needed to optimize our clas-

sification results. An easy solution for that was to

perform a grid search on this number looking at the

classification results. As shown in Fig. 8, this max is

reached when using N = 20 isosurfaces for most of

the input regions considered. With fixed scan size of

91× 109× 91 voxels and 2× 2× 2 mm of voxel-size,

using N = 20 isosurfaces, this results in outer isosur-

faces separated about 10 mm and many other much

closer with separation margins about few millime-

ters. Thus, the use of N = 20 isosurfaces also seems

to be reasonable in terms of the physical separation

between layers.

In relation to the most significant features

(pvalue ≤ 0.05) listed at Table 2, what is most note-

worthy is the fact that the intermediate isosurfaces

will be those with the highest statistical interclass

separation in terms of the Mann-Whitney-Wilcoxon

U-Test. In fact, when considering N = 20, among

the most highlighted characteristics, we found fea-
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Table 5. Summary of results obtained in previous related works.

Classification
Sample

Size
Morphological features Accuracy Author Reference

SVMlinear

10 Fold CV
715

Measures obtained from some
manually selected slices plus
a 3rd degree surface fitting

97.2% Prashanth et al. (2017) 18

SVMlinear

LOO CV
388

Measures obtained from 2D
projections of the striatum

area using a ROI
92.3% Castillo-Barnes et al. (2018) 47

SVMlinear

10 Fold CV
147

Measures obtained from a set
of contour lines in 4 slices

centered at striatum
92.5% Molina et al. (2018) 17

SVMlinear

10 Fold CV
189

Measures obtained from 2D
projections of the most
intense voxels (0.8Imax)

94.2% Segovia et al. (2019) 16

tures from layers 12 − 14 which correspond to the

borders of the most intense voxels. This result coin-

cides with that observed in48 when using the gradi-

ent magnitude for a set of I[123]-Ioflupane SPECT

images.

To quantitatively demonstrate the advantages

of the isosurface methodology, it has been compared

to well known methodologies in the literature. This

is the case of the Voxels As Features (VAF) ap-

proach, which directly uses voxels intensities as fea-

tures, or the composite features obtained using Prin-

cipal Component Analysis (PCA).49 For that, two

pipelines similar to Fig 7 were defined to evaluate

both approaches:

• VAF - It includes a non-affine spatial normaliza-

tion; an intensity normalization to the maximum

intensity values and a threshold to delimit the

boundaries of the ROI. To obtain this region, the

training set is averaged following the work pre-

sented in42 and the threshold is set up to 50%

of the maximum template intensity20 as shown in

Fig 11.

• PCA - Apart from the non-affine spatial normal-

ization and the intensity normalization to the max-

imum intensity values, within the cross-validation

loop, the PCA algorithm is calculated for a number

of components, nComp for their posterior evalua-

tion.

Both methods use an SVM classifier with Linear Ker-

nel classification. Evaluation of the stratified 10-fold

cross-validation schema with 10 repetitions yieled

maximum balanced accuracy rates equal to 85.67%

for VAF and 88.89% for PCA when using nComp =

24 (PCA results in function of nComp are depicted

in Fig 12).
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Figure 11. Regions Of Interest (ROIs) generated from
the (0%, 25%, 50%, 75%) percentages of the maximum in-
tensity value of the template.
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Figure 12. (left) Balanced accuracy obtained when ap-
plying PCA to the preprocessed intensity values from
I[123]-Ioflupane SPECT scans instead of using isosur-
faces. (right) Cummulative explained variance. All results
are referred to the SVM with Linear Kernel classification.

For this work, significant differences in classifica-

tion rates were found when comparing isolated LEFT

and RIGHT hemispheres. When taking as reference

the best classification scenario with N = 20 isosur-

faces and using a SVM classifier with Linear Ker-

nel, classification results considering only left hemi-

spheres were aproximately 0.6% better than using

right hemispheres. In the case of the NuSVC classi-

fier, this difference was similar (only using the right
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hemispheres gives an improvement of 0.5% with re-

spect only using left hemispheres). Although this

result is noteworthy, it is well-known that Parkin-

son’s Disease do not always presents a symmetric

behaviour50,51 so these differences were expected.

The classification performance, even in the case

of SVM with linear kernel, has proven the high relia-

bility of using isosurfaces instead of classical VAF

analysis or PCA. This approach reduces strongly

the number of input features but maintaining all

its physical interpretation. Differences between the

SVM and NuSVC lies in the selection of the NuSVC

hyperparameter ν = 0.1 which penalises incorrect

classifications. As this term can been rewritten in

terms of the C parameter from SVM, it can been

stated that both schemas are equivalent.

In the last few years, the use of Neural Net-

works (NN) with special emphasis on Deep Learn-

ing (DL)52–54 has become very popular in neuro-

science.55–60 For example, a recent publication con-

sisted of solid volumes obtained using a single thresh-

old and directly passed to a Convolutional Neural

Network (CNN).20 In that scenario, the features were

computed using the NN but without including nei-

ther a physical interpretation nor analysing how this

threshold should be calculated but only the use of

large amounts of volumetric intensities which could

be increasing the bias of the solution proposed. In

comparison with our MLP, as no more features than

the available number of subjects were selected, this

problem has been to a large extent resolved.

5. Conclusions

In summary, this work proposes an advanced and

automatic method to obtain reliable morphological

features from I[123]-Ioflupane SPECT scans making

use of isosurfaces obtained from each scan and the

posterior processing of their characteristics includ-

ing, among others: volume, area, sphericity, centers

of mass, or the total number of vertices/faces from

each isosurface. This has let us to classify a dataset

of 386 subjects from PPMI database with a balanced

accuracy of 97.04% following an intensity threshold

selection schema with advantages such as: 1) no need

of applying a non-affine spatial normalization pro-

cedure; 2) no need of an intensity normalization of

the I[123]-Ioflupane SPECT images; 3) being inter-

pretable from the point of view of the physiology

of the brain. In this sense, the main limitation of

our proposal could be the computational costs as-

sociated to the calculation of each isosurface. It is

expected that conclusions obtained here will be used

in future publications helping to interpret the longi-

tudinal evolution of these morphological patterns in

potential patients with Parkinson’s Disease and will

help the community in their finding of new markers

for PD,61 and its mathematical model.62
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cente, J. R. Álvarez-Sánchez, F. de la Paz López,
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Illán, P. Padilla, F. J. Mart́ınez-Murcia and E. W.
Lang, Building a FP-CIT SPECT brain template us-
ing a posterization approach, Neuroinformatics 13
(mar 2015) 391–402.

43. F. Pedregosa, G. Varoquaux, A. Gram-
fort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-
learn: Machine learning in python, Journal of ma-
chine learning research 12(Oct) (2011) 2825–2830.

44. R.-E. Fan, P.-H. Chen and C.-J. Lin, Working set
selection using second order information for training
support vector machines, Journal of machine learn-
ing research 6(Dec) (2005) 1889–1918.

45. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga et al., Pytorch: An imperative style, high-
performance deep learning library, Advances in Neu-
ral Information Processing Systems, 2019, pp. 8024–
8035.

46. H. Mann and D. Whitney, On a Test of Whether one
of Two Random Variables is Stochastically Larger
than the Other, The Annals of Mathematical Statis-
tics 18(1) (1947) 50–60.

47. D. Castillo-Barnes, J. Ramı́rez, F. Segovia, F. J.
Martinez-Murcia, D. Salas-Gonzalez and J. M.
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