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Image anomaly detection is an application-driven problem where the aim is to identify novel samples,
which differ significantly from the normal ones. We here propose piade, a deep reconstruction-based
pyramidal approach, in which image features are extracted at different scale levels to better catch the
peculiarities that could help to discriminate between normal and anomalous data. The features are
dynamically routed to a reconstruction layer and anomalies can be identified by comparing the input
image with its reconstruction. Unlike similar approaches, the comparison is done by using structural
similarity and perceptual loss rather than trivial pixel-by-pixel comparison. The proposed method per-
formed at par or better than the state-of-the-art methods when tested on publicly available datasets
such as CIFAR10, COIL-100 and MVTec.

1. Introduction

Modern IT infrastructures are more and more ori-

ented to the acquisition of enormous amounts of

data, which cannot be manually analyzed and require

proper algorithms to be processed. In this field, an

emerging requirement is to identify anomalies in the

collected data.

Anomaly detection is defined as the identifica-

tion of samples which significantly differ from a refer-

ence set of normal data, under the assumption that

the number of anomalies is much smaller than the

number of normal samples. From a rigorous point

of view the problem is not well defined, as there is

no rigorous formalization of the properties this dif-

ference should have in order to be considered sig-

nificant: the definition of anomaly is often depen-

dent on an arbitrarily-defined threshold. However,

from a practical point of view, anomaly detection is

a widespread problem, marking strong presence in

the fields of medical imaging,1 network intrusion de-

tection,2 defect detection,3 fault prevention,4 video

surveillance,5 and many others. In medical imaging

an anomaly could be a tumor tissue among several

data of healthy patients, in quality-assurance indus-

trial inspection it can be a defective product, in the

surveillance videos of a shopping mall it can be the

behavioral pattern of a thief compared to normal

clients, etc.

This work is focused on the topic of deep neural

1
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networks for image anomaly detection. The goal thus

is, given a set of images representing the normality

model, to classify new images either as normal or

anomalous. We assume that there are no anomalies

in the training set, thus following a semi-supervised

approach (see section 2). The basic idea is to adopt

a reconstruction-based strategy, in which a neural

network learns how to encode the input images into

a low-dimension latent space and then reconstructs

them in order to minimize the difference between the

original and reconstructed image. By training such a

network on normal data only, the network will learn

only the features that are useful for the reconstruc-

tion of the training set, and thus will fail at recon-

structing anomalous images. The difference between

input and reconstructed images can thus be used as

an anomaly score.

Despite the reconstruction-based approach has

been already used in literature, we here propose pi-

ade (Pyramidal Image Anomaly DEtector), a net-

work architecture that includes several novel strate-

gies to improve the overall system performance.

First, we adopt a pyramidal approach6 that analyzes

the image features at different scale levels in paral-

lel. This way, we improve the probability that rele-

vant image features are extracted at the scale level in

which the anomaly is more evident. Then, we borrow

the idea of dynamic routing from capsule networks7

to have a finer control on the features that are re-

ally useful for the task of anomaly detection. More-

over, most of the reconstruction-based methods use

a pixel-wise loss functions in order to compare recon-

structions and input data. This assumes an indepen-

dence among the pixels, which is generally not true.

Hence, we adopted a more sophisticated loss func-

tion which considers the inter-relationship between

the pixels and a perception-based loss computed by a

pre-trained network. Finally, while many papers8–12

in this field have been evaluated on simple and

not anomaly-oriented datasets such as MNIST,13 we

tested our proposed network and method on one of

the first real-world datasets for image anomaly de-

tection published by MVTec.14 We found that the

proposed model performed at par or better when

compared with various state-of-the-art methods.

The rest of the paper is organized as follows:

in section 2 we give a short overview of the most

relevant works in the field of deep-learning-based

anomaly detection, as well as a taxonomy of the pro-

posed approaches based on the type of learning and

the adopted strategies. In section 3 we describe in

detail the proposed model, defining both the net-

work structure and the loss functions used to train

it. Section 4 shows the experimental results and com-

pare the system performance with the state-of-the-

art literature. Here we also evaluate the system on

the novel and anomaly-oriented MVTec14 dataset.

Section 5 extends the experimental results with some

ablation studies, in which the system performances

are measured when some of the network components

are turned off, in order to measure their influence on

the final result. Conclusions are in section 6.

2. Related Works

Image-based anomaly detection is not a new topic,

especially in the field of industrial inspection where it

is used to identify defective products.15 Several clas-

sical image processing and machine learning methods

have been used to perform this task, such as Bayesian

networks, rule-based systems, clustering algorithms,

etc.16,17 However, despite the recent trends in ma-

chine learning being almost entirely focused on deep

neural networks,18–26 deep anomaly detection is still

a novel topic which has been mostly investigated only

in the last few years.27 The rest of this section is fo-

cused on deep learning strategies for anomaly detec-

tion.

Most of the proposed works can be roughly

grouped in three fundamental approaches, differing

in the type of adopted learning strategy, on the train-

ing data and on the expected outcomes:

• supervised learning;

• unsupervised learning;

• semi-supervised learning.

Some authors28 use the terms “outlier detec-

tion” and “novelty detection” to distinguish between

unsupervised and semi-supervised approaches. How-

ever, there is no general consensus on whether these

terms should be used as synonyms or should denote

different problems.17 In the rest of this paper we use

the most generic term “anomaly detection”.

The supervised approach consists in training a

standard binary classifier, in which the two classes

represent the normal and the anomalous data, and

a labeled training set is available.29 The main differ-

ence with regular classification problems consists in
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the training dataset being typically extremely imbal-

anced, as many real-world scenarios (e.g. industrial

inspection) can produce a large number of normal

samples but a very limited amount of anomalies. This

requires proper data augmentation strategies such as

over-sampling the anomaly class, either by synthetic

data creation or data duplication. In either case the

idea is to apply a pre-processing step to obtain a bal-

anced dataset before passing through the deep net-

work.30,31 Few works have tried to deal with data

imbalance directly rather than with data augmenta-

tion, as in the work by Piciarelli et al.32 where the

authors use a capsule network and define a proper

anomaly metric which is efficient even with a 99:1

data imbalance. Also the work by Perera and Pa-

tel33 can be considered a supervised approach since

it requires an external dataset of negative examples,

however in that case that dataset is just used to ex-

tract compact and descriptive features for the nor-

mal class, which are later analyzed with a traditional

classifier.

The unsupervised approach considers the case of

unlabeled training sets containing both normal data

and anomalies. It consists in estimating the region

where normal data is mostly concentrated, conse-

quently separating the deviant observations. Since

neural networks are not particularly well-suited for

clustering tasks, the most common approach in this

case is to use the neural network as a feature extrac-

tor, and the features are later analyzed with other

machine learning tools such as one-class Support

Vector Machines. In several papers the two steps are

handled independently,34–36 but some works proved

that better results can be achieved if the feature

extraction and classification tasks are jointly opti-

mized, in order to extract the best features for sub-

sequent anomaly detection.11,37,38

The most common approach to deep anomaly

detection however is the semi-supervised one. In this

case the assumption is that a labeled training set ex-

ists, but it contains only normal data. This is a fre-

quent scenario in real-world applications, where large

amounts of normal data can be acquired easily but

anomalous ones are extremely rare. The task of the

anomaly detection system is thus to learn a “nor-

mality” model from the training data, and subse-

quently classify as anomaly any sample that does not

fit the model.8,9, 39–42 Some authors define this ap-

proach as unsupervised, especially if the system can

work even in presence of a small number of anomalies

in the training data. However, we believe that “ro-

bust semi-supervised” would be a better description

of these approaches, since the anomalies in the train-

ing data are not directly used to learn anything, and

the system is just robust enough to learn the nor-

mality model despite the anomalies in the training

data.

The strategies to build the normality model in

semi-supervised deep-learning works mostly fall in

two categories: reconstruction-based methods and

probabilistic methods. In the former case the net-

work ideally acts as an identity function on normal

data, trying to reproduce the input image in its out-

put. The network typically has an autoencoder-like

structure, where the image is first encoded into an

intermediate low-dimension latent space, and then it

is reconstructed back to its original dimensions. This

structure forces the latent space to catch only the

most representative features of the images. In this

case, the normality model description is distributed

across all the network weights, and a successfully

trained network is able to correctly reconstruct nor-

mal images. On the other hand, it is assumed that

anomalous images have different latent features and

thus cannot be properly reconstructed. Anomaly de-

tection is thus obtained by measuring the dissimilar-

ity between the original and the reconstructed im-

age.43–46

The probabilistic methods instead aim at explic-

itly building a probabilistic model of the latent space

of normal images.42 This can be obtained for exam-

ple with variational autoencoders,47 where the latent

space is forced to have a Gaussian distribution. In

this case, anomaly detection can be obtained directly

in the latent space, comparing the latent features of

the input image with the Gaussian model represent-

ing the normality. Another popular probabilistic ap-

proach is to rely on Generative Adversarial Networks

(GAN). GAN models are composed of two networks:

a generator that creates images starting from ran-

dom samplings, and a discriminator trying to distin-

guish between generated and real images. The two

networks are in competition, with the generator try-

ing to create images that are more and more similar

to the training ones, and the discriminator trying to

distinguish them. Convergence is achieved when the

generator is able to create novel, synthetic images

that are indistinguishable from the training ones, and



July 13, 2020 9:51 paper

4 P. Mishra, C. Piciarelli and G. L. Foresti

mag 1 

mag 2 

mag 4 

mag 8 

S-E
Resnet18

Pyramidal
Pooling
Block

Stacked features of
different magnification

for dynamic routing

Instantiation
vectors

Dynamic
Routing

Linear Upsampling
Layer

Convolutional
Decoder

Concatenation

BatchNorm + ReLU

Fig. 1. Proposed piade network architecture. The network consists of the first levels of a SE-Resnet18 network for
feature extraction, followed by a pyramidal pooling layer that extracts features at different scales. The features are then
dynamically routed to two instantiation vectors in R64. The vectors are passed to a linear upsampling layer and a final
transposed convolutional decoder. The features obtained form the upsampling layer are concatenated with the output
features of ResNet18 before passing to final decoder.

the discriminator has the same performances of a

random guess. Anomaly detection can be performed

by inverting the generator and projecting the tested

image in the generator’s sampling space, where it

can be classified using a probabilistic model. The in-

version is not trivial but feasible, as in the ADGAN

model.8 Other approaches try to avoid the inversion

step by including the anomaly detector in the dis-

criminator, as in AnoGAN.41

It must be noted that the reconstruction-based

and probabilistic models can coexist, as for exam-

ple in the GANomaly architecture by Akcay et al.,9

in OCGAN by Perera et al.,12 or in the work by

Abati et al.,40 where anomalies are identified by an

analysis at both the image and latent space levels.

3. Proposed Model

As already introduced in Section 1, we propose to

approach the problem of anomaly detection using

piade, a semi-supervised, reconstruction-based deep

neural network. The network is thus trained on nor-

mal data only, and its aim is to reconstruct the input

image after its encoding in a low-dimension interme-

diate latent space. The rationale of this approach is

that the latent space will model only the relevant

features of normal images, and will be unsuitable to

describe anomalous images. Anomalies can thus be

detected by their poor reconstruction.

Compared to other deep anomaly methods, our

main contributions consist in the addition of a pyra-

midal level in the network structure, to extract im-

age features at different resolution scales. This way

we increase the probability to extract the features

at a scale in which the anomaly is particularly evi-

dent. We also use dynamic routing, as proposed by

Hinton for capsule networks,7 to better extract rel-

evant features. In addition, we also adopt a better

way to compare the input and reconstructed images.

Most methods use trivial pixel-by-pixel comparisons,

e.g. MSE loss, which implicitly assumes the unreal-

istic hypothesis of statistical independence between

pixels. We instead propose a high-level image com-

parison loss which quantify the image degradation

at an higher abstraction level. In Section 3.1 we de-

scribe the network architecture and in Section 3.2 we

define the image comparison loss function.

3.1. Network Architecture

The piade network architecture is shown in Figure 1.

It consists of an initial ResNet block to extract ba-

sic image features. These features are then pooled

in the pyramidal pooling block, in order to repre-

sent them at different scales. Following the idea of

capsule networks,7 the pooled features are then dy-

namically routed to two instantiation vectors (more

details below), in order to filter the best ones that

are useful for later image reconstruction. Image is

then reconstructed via a linear upsampling layer and

a convolutional decoder in order to obtain an output

with the same shape of the input data. We here give

a detailed description of each block.

• SE-ResNet18 - A pre-trained ResNet18 network

is used for deep feature extraction. The network

was trained over the imageNet dataset. All 5 con-
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volutional layers of the ResNet18 have been used.

The primary idea is that the network is able to

extract generic features of images. A pre-trained

network also gives the benefits of transfer learning

as the real world datasets are mostly related to

imageNet dataset.

In order to improve the quality of the extracted

features, each convolutional block is followed by

a Squeeze-and-Excitation (SE) block, as proposed

by Hu et al.48 (see Figure 2). The SE block

is a form of attention mechanism among con-

volutional channels, that adaptively calculates

channel-wise weights to to explicitly model the

inter-dependencies between channels.
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s
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Fig. 2. Squeeze-Excitation (SE) Block.48

Formally, given the output tensor U ∈ RW×H×C

of a convolutional layer, SE first squeezes it to a

vector z ∈ R1×1×C by aggregating the spatial di-

mensions according to the following equation:

zc =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (1)

Then, the excitation vector s ∈ R1×1×C , contain-

ing the channel weights, is computed as follows:

s = σ(W2δ(W1z)) (2)

where σ is an element-wise sigmoid function,

δ is a ReLU activation function, and W1 ∈
RC

4 ×C ,W2 ∈ RC×C
4 are two learned matrices that

model the excitation function itself. Then, the ten-

sor U is channel-wise re-weighted using weights s

(meaning that each channel Uc ∈ RW×H is mul-

tiplied by the scalar sc) to generate the output of

the SE block, which is subsequently passed to the

other network layers. The entire operation can be

seen as a self-attention mechanism on the chan-

nels using global information of the entire recep-

tive field.

• Pyramidal Pooling Layer - The idea behind the

pyramidal pooling layer is that image features can

be analyzed at different magnifications, and possi-

bly relevant features that are well-visible at a given

scale could be not well extracted by the network

at another scale. The pyramidal pooling layer thus

scales the input features at different magnification

levels, thus increasing the possibility that features

relevant for the anomaly detection task are actu-

ally extracted.

Each pyramid layer consists in the application of

an adaptive average pooling. For a given feature

map with spatial size W × H, standard average

pooling creates a new map with size W/k ×H/k,

and each element of the new map is the average

of the corresponding elements in the original map,

as shown in Figure 3. Adaptive average pooling

works in a similar way, but the term k is auto-

matically chosen to guarantee a fixed size output,

independently from the input size.

13 8

10 1

average 
pooling 

12 20

8 12

20 0

2 10

27 0

0 13

3 0

0 1

Fig. 3. Average pooling with k = 2.

In the proposed architecture we adopt four differ-

ent pyramid levels, respectively with spatial out-

put sizes of 8 × 8, 4 × 4, 2 × 2, and 1 × 1. The

number of channels is left unchanged (in our case,

the ResNet18 module final output uses 512 chan-

nels). Each pooling layer is followed by a convolu-

tion to reduce the number of channels (1×1 kernel,

stride=1, 64 channels) and a batch normalization.

The output features of each pyramid level are then

flattened, concatenated and reshaped in a final set

of 8-dimensional feature vectors.

• Dynamic Routing - Dynamic routing is a novel

algorithm proposed by Hinton in his Capsule Net-

works paper.7 In capsule networks, the belonging

of a sample to a given class is represented by a

vector (called instantiation vector) rather than a

scalar value. The norm of the vector represents

how much the sample belongs to a specific class,

while the vector itself represents a specific instance

of that class, hence the name. Each instantiation

vector is defined as a sum of several features, and
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dynamic routing is the algorithm that dynamically

chooses which features must be routed to each vec-

tor. In other words, for each class, dynamic rout-

ing selects the best features that are more suited

to describe that class.

Dynamic routing algorithm is shown in algo-

rithm 1, where the squash() function forces the

vector norms to be in the range [0, 1]:

squash(sj) =
||sj ||2

a+ ||sj ||2
sj
||sj ||

(3)

In the proposed system, dynamic routing is used

to route the features from the pyramidal pooling

layer to two instantiation vectors, described below.

Algorithm 1 Dynamic Routing Algorithm7

1: function Routing(ûj|i, r, l)

2: . ûj|i are the features from layer i to j

3: . l is the current layer

4: ∀i ∈ l,∀j ∈ l + 1 : bij ← 0

5: for r iterations do

6: ∀i ∈ l : ci ← softmax(bi)

7: ∀j ∈ (l + 1) : sj ←
∑

i cij ûj|i
8: ∀j ∈ (l + 1) : vj ← squash(sj)

9: ∀i ∈ l,∀j ∈ (l + 1) : bij ← bij + ûj|i · vj
10: end for

11: return vj
12: end function

• Instantiation Vectors - In a standard capsule

network classifier, each instantiation vector repre-

sents a class. In our case, we adapted this model to

anomaly detection by using only two instantiation

vectors: the first one represents the normal class,

while the second one is just used to collect all the

features that are discarded by the routing algo-

rithm because not relevant enough to model the

normal class. Observe that this is not the same

as modeling the anomaly class because we do not

have anomalies in the training set. In the pro-

posed reconstruction-based method, these vectors

are the low-dimension (R64 in our experiments) la-

tent space in which images are mapped before re-

construction. For this reason, during training the

first instantiation vector is always passed to the

upsampling and decoding layers. While testing,

the vector with maximum norm is decoded in-

stead. This method is in contrast with traditional

approaches where all the features contribute to the

output computation, which can be accomplished

using a single instantiation vector (and thus no

routing at all). In section 5 we propose an abla-

tion study to prove that the two-vectors approach

always performs better than the single-vector one.

• Upsampling and decoding layers - The up-

sampling layer consists of three linear layers and

it is used to upsample the instantiation parame-

ters from R64 to R512×mf×mf , where “mf” is the

multiplying factor equals to the width of output

features from SE-Resnet18. The decoder is made

of transposed convolutional layers, which take con-

catenated features from the SE-Resnet18 and up-

sampling layers with dimensions Rbatch×n×8×8 and

transforms them into the reconstructed image of

the same size as the input image.

3.2. Objective and Losses

As stated before, the proposed model uses a

reconstruction-based approach, in which the aim is

to produce a network output similar to its input.

In order to measure the similarity between the origi-

nal image and its reconstruction, we considered three

possible loss functions:

• MSE Loss - Mean Squared Error (MSE) loss is a

pixel-level loss, which assumes independence be-

tween pixels. MSE loss is computed as the average

of the squared pixel-wise differences of the two

images, and can be formally defined in terms of

the Frobenius norm as 1
WH ‖X − X̂‖

2
F , where X is

the input and X̂ is the output of the network (re-

spectively the original and the reconstructed im-

age), and W,H are the image width and height.

MSE loss is often used in many reconstruction-

based works, however the pixel-level independence

assumption is unrealistic in real-world images.

• Perceptual Loss - Perceptual loss49 is a more so-

phisticated loss trying to catch visually meaningful

differences in images. It is a MSE loss computed

between the high-level image features obtained

by a pre-trained VGG11 network using its first

four layers. The loss is defined as 1
WHC ‖F (X) −

F (X̂)‖2F , where F is the transformation function

applied through the trained four layers of VGG11

network, and W,C,H are the size of the result-

ing feature map. The trained network is only used

for the calculation of loss and the weights are not
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updated during training.

• Structural Similarity Index - The Structural Simi-

larity Index (SSIM)50 is used to measure the image

similarity by considering visual properties that are

lost in the standard MSE approach. The impor-

tant feature in this loss calculation is that it takes

care of perceptual phenomena, including both lu-

minance and contrast, and it is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4)

where, µx, µy, are the average values of input and

reconstruction image, σ2
x, σ2

y are the variance of

input and reconstructed image, σxy is their co-

variance and c1, c2 are the two constants used for

numerical stability.

The overall proposed objective function minimizes

the total loss L, defined as a weighted sum of the

three image comparison losses:

L(X, X̂) = MSELoss(X, X̂)+

λ1PercLoss(X, X̂) + λ2SSIM(X, X̂)
(5)

where X is the input image and X̂ is the image re-

constructed by the network. λ1 and λ2 are weighing

factor between three losses. All the experiments dis-

cussed in section 4 are obtained with λ1 = λ2 = 1,

since we noted that small differences in these values

do not lead to significant differences in the results. In

the ablation study presented in section 5 we show the

results with λ1 = 0 and λ1 = λ2 = 0, thus disabling

the perceptual and/or the SSIM components.

4. Experimental Results

In this section we present the experimental results

obtained with piade. We first describe the datasets

used for training and testing, then we describe the

testing procedure and the adopted metrics to mea-

sure the system performance. Finally, comparative

results are given, in order to evaluate the achieved

results with other state-of-the-art works on anomaly

detection.

4.1. Datasets

The proposed piade model has been tested us-

ing publicly available datasets. Tests have been

done on CIFAR1051 and COIL-10052 datasets. Al-

though these datasets are not specifically designed

for anomaly detection tasks, they are useful to show

the ability of the system to discriminate between one

class, considered normal, and the other ones, consid-

ered anomalies. Since the performances of many pre-

vious works have been evaluated on these datasets,

testing on CIFAR10 and COIL-100 is important for

comparative results. In addition to this, the pro-

posed model has also been tested on the real-world

MVTec anomaly detection dataset,14 which is a re-

cently published dataset specifically for anomaly de-

tection tasks (see figure 4).

• CIFAR10: It contains 60,000 images with size

32 × 32 pixel. Images are grouped in ten classes:

Airplane, Automobile, Bird, Cat, Deer, Dog, Frog,

Horse, Ship, and Truck. 50,000 images are for

training while 10,000 images are for testing. For

this study, we treated one of the classes as normal

and rest as anomaly. The results presented here

are averaged over all the classes in several runs, in

which each one of the original classes is chosen to

be the normality model.

• COIL-100: The dataset has been taken from the

Columbia Object Image Library. It contains 7,200

color images of 100 objects, having dimension

128 × 128 pixels. Differing from CIFAR10, each

class in COIL-100 represents a single object, but

observed from different points of view: each ob-

ject was kept on an automated turntable, and the

images were taken at a fixed pose step of 5 de-

grees. For each object a total of 72 images were

recorded. As in the case of CIFAR10, experimental

results are averaged over 100 runs, each one with

a different class chosen as normal. While training,

one of the object is treated as the normal while

all others as anomaly. The images were resized to

120 × 120, this is to maintain the same network

structure used for the MVTec dataset. As the num-

ber of images in this dataset is limited, we used

the training strategy of Pidhorskyi et al.,53 and

split the training and testing data with a ratio of

80% : 20%.

• MVTec Dataset: MVTec recently published a

real-world anomaly detection dataset. It contains

5,354 high-resolution color images of different tex-

ture and objects categories. It has normal and

anomalous images which showcase 70 different

types of anomalies of different real-world products.

It also contains 3 products images in grayscale, as
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Fig. 4. Reconstructions of normal and anomaly images for (a) CIFAR10, (b) COIL-100, and (c) MVTec datasets. Rows 1,
3, and 5 show few examples taken from the normal class and from the anomalies. Rows 2, 4, and 6 show the reconstructed
images. The network is unable to correctly reconstruct anomalous data. The normal classes shown for the CIFAR10
examples are respectively Ship (row 1), Car (row 3) and Dog (row 5). The normal classes for COIL100 are the first three
objects of the dataset. The normal classes for MVTec are Hazelnut, Bottle and Screw.

grayscale images are very common in industrial

practices. With this dataset, all the images were

first resized to 120 × 120 pixel size before being

passed to the model. Image anomalies are still vis-

ible at this resolution.

4.2. Training and testing procedure

The model is trained by minimizing the total loss

L(X, X̂) (equation 5). The same loss is also used

in testing phase as an anomaly score. The model

weights are initiated with orthogonal initialization

except the ResNet block, which was pre-trained on

imageNet, and the VGG11 block, which was pre-

trained on imageNet and kept fixed. The architec-

tural hyper-parameters are shown in table 1. The

model has been implemented in Python using the

Pytorch framework54,a, the source code is available

onlineb. All the experiments have been done on a

dual Xeon E5-2660 CPU, 224 GB RAM, 1 Tesla K40

and 2 Titan XP GPUs. On such hardware, train-

ing took on average 20 minutes for each class of

the MVTec dataset, and 30 minutes for each class

of the CIFAR10 dataset. Inference time is however

extremely low, requiring on average 0.012 seconds to

classify a single MVTec image and 0.006 seconds for

a CIFAR10 image.

Table 1. Training hyperparame-
ters.

Adam learning Rate 0.001

weight decay 0.0001

batch size 120

Epochs 400

4.3. Performance metrics

In order to measure the system performance, we con-

sider the total loss L(X, X̂) (equation 5) as a mea-

sure of the degree of anomaly of an image. This is

a sound approach since the loss measures the dis-

similarity between input and reconstructed images,

and the reconstruction-based approach assumes this

dissimilarity will be high for anomalous images.

Once this anomaly score is computed, a thresh-

old is required to convert it to a binary classifica-

tion: any image with a score above the threshold will

be considered anomalous, while the remaining ones

will be classified as normal. Once this classification is

done, standard statistics such as True Positives (TP),

ahttps://pytorch.org/
bhttps://github.com/pankajmishra000/PIADE
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Table 2. AUC scores using the CIFAR10 dataset. Each row shows the normal class
on which the model has been trained. Comparative results taken from literature.40

Class
OC
SVM

KDE DAE VAE
Pix
CNN

GAN LSA
PIADE
(ours)

0 0.630 0.658 0.718 0.688 0.788 0.708 0.735 0.751

1 0.440 0.520 0.401 0.403 0.428 0.458 0.580 0.550

2 0.649 0.657 0.685 0.679 0.617 0.664 0.690 0.708

3 0.487 0.497 0.556 0.528 0.574 0.510 0.542 0.609

4 0.735 0.727 0.740 0.748 0.511 0.722 0.761 0.805

5 0.500 0.496 0.547 0.519 0.571 0.505 0.546 0.645

6 0.725 0.758 0.642 0.695 0.422 0.707 0.751 0.729

7 0.533 0.564 0.497 0.500 0.454 0.471 0.535 0.651

8 0.649 0.680 0.724 0.700 0.715 0.713 0.717 0.771

9 0.508 0.540 0.389 0.398 0.426 0.458 0.548 0.532

Mean 0.586 0.610 0.590 0.586 0.551 0.592 0.641 0.675

False Positives (FP), True Negatives (TN) and False

Negatives (FN) can be computed. These raw values

are then converted into suitable ratios: in particu-

lar, we considered the True Positive Rate (TPR, also

known as Recall, or Sensitivity) and the False Posi-

tive Rate (FPR), defined as follows:

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)
(6)

Rather than choosing an arbitrary threshold,

we followed the popular approach of computing the

(TPR,FPR) pairs for every possible threshold: the

plot of these values gives the well-known Receiver

Operating Characteristic (ROC) Curve. Finally, the

area under the ROC curve (AUC) is used as a per-

formance measure that summarizes the overall qual-

ity of the achieved results. This approach has been

adopted to perform comparative analysis with state-

of-the-art methods both on CIFAR10 and COIL-100

datasets. Observe that the choice of (TPR,FPR)

pairs, and thus the use of ROC curves, is typically

more suited when the tested dataset is balanced,

while on imbalanced datasets the Precision/Recall

values are more suited, since they are not affected

by the large abundance of True Negatives. How-

ever, despite dealing with anomalies, our datasets

are balanced for testing: in CIFAR10 and COIL-100,

anomalies belong to 9 classes out of 10, and thus can

be safely chosen so that their total amount is com-

parable to the amount of normal data.

Also the MVTec dataset has enough test anoma-

lies to be considered balanced for testing. In this case,

however, we adopted the same testing procedure de-

scribed in the original paper where the dataset is pro-

posed.14 Here, for each class and each tested method,

we compute the Sensitivity (TPR) and Specificity

(TNR) for all the possible thresholds, and we select

the best pair (TPRbest, TNRbest) as the one that

maximizes their sum TPR + TNR. The best algo-

rithm for each class is defined as the one with the

highest mean of the two values, i.e. with the highest

(TPRbest + TNRbest)/2.

4.4. Comparative results

Table 2 shows the results obtained for CIFAR10

dataset. Training has been done considering one

class as normal and the rest as anomaly, and this

procedure has been repeated over all the classes.

The achieved results have been compared with stan-

dard methods such as one-class support vector ma-

chines and kernel density estimators, as well as with

deep learning approaches such as denoising autoen-

coders, variational autoencoders,55 Pix-CNN56 and

Latent Space Autoregression.40 The comparative re-

sults have been taken from the work by Abati et al.40

Table 2 shows that the proposed model superseded

the results of the state-of-the-art models in 7 out of

10 classes, and it has the best average result.

Table 3. AUC scores us-
ing the COIL-100 dataset.

Models Reference AUC

GPND NIPS 201853 0.979

OCGAN CVPR201912 0.995

DCAE MLSDA1457 0.908

PIADE
(ours)

− 0.998
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Table 4. Results on the MVTec dataset. Each row shows
the results achieved on a specific category. Each cell
shows the best TNR (top) and TPR (bottom) values.
The method with the highest mean of the two values is
shown in bold. Comparative results taken from literature.14

Class
AE

SSIM
AE
(L2)

Ano
Gan

CNN
Feat.
Dict.

PIADE
(ours)

Carpet
0.43 0.57 0.82 0.89 0.33
0.90 0.42 0.16 0.36 0.74

Grid
0.38 0.57 0.90 0.57 0.67
1.00 0.98 0.12 0.33 0.60

Leather
0.00 0.06 0.91 0.63 0.82
0.92 0.82 0.12 0.71 0.45

Tile
1.00 1.00 0.97 0.97 0.97
0.04 0.54 0.05 0.44 0.19

Wood
0.84 1.00 0.89 0.79 0.85
0.82 0.47 0.47 0.88 0.93

Bottle
0.85 0.70 0.95 1.00 0.87
0.90 0.89 0.43 0.06 1.00

Cable
0.74 0.93 0.98 0.97 0.73
0.48 0.18 0.07 0.24 0.93

Capsule
0.78 1.00 0.96 0.78 0.60
0.43 0.24 0.20 0.03 0.83

Hazelnut
1.00 0.93 0.83 0.90 0.89
0.07 0.84 0.16 0.07 0.97

Metal nut
1.00 0.68 0.86 0.55 0.57
0.08 0.77 0.13 0.74 0.78

Pill
0.92 1.00 1.00 0.85 0.89
0.28 0.23 0.24 0.06 0.51

Screw
0.95 0.98 0.41 0.73 0.80
0.06 0.39 0.28 0.13 0.67

Toothbrush
0.75 1.00 1.00 1.00 0.92
0.73 0.97 0.13 0.03 0.96

Transistor
1.00 0.97 0.98 1.00 0.70
0.03 0.45 0.35 0.15 0.90

Zipper
1.00 0.97 0.78 0.78 1.00
0.60 0.63 0.40 0.29 0.65

Table 3 shows the results on the COIL-100

dataset. Since it would be impractical to report the

results for all the 100 classes in a table, we just show

the final average AUCs for each method, computed

over the 100 classes, where each class was alterna-

tively considered as normal and rest as anomaly. Our

proposed model achieved a final AUC score of 0.998,

surpassing GPND,53 OCGAN12 and DCAE,57 which

recorded 0.979, 0.995, and 0.908 respectively. Out of

100 classes, more than 50 classes achieved AUC score

of 1, denoting a 100% correct classification.

Table 4 shows the results on the MVTec dataset

over all the 16 categories, comprising both tex-

tures (carpet, grid, leather, etc.) and objects (bot-

tle, cable, capsule, etc). Our results are compared

with other deep learning anomaly detection algo-

rithms such as autoencoders with L2 norm loss and

structural similarity loss,50 the GAN-based approach

AnoGAN,41 and CNN feature dictionary.58 The com-

parative results have been taken from the work by

Bergmann et al.14 Performance is compared by com-

puting the average of the best TPR and TNR for

each class and for each model. The proposed method

achieves the best results on 10 out of 15 categories.

It is worth noting that piade performs poorly on the

texture classes (Carpet, Grid, Leather, Tile). This is

probably due to the ResNet module, which has been

pre-trained to extract features that are meaningful

to describe full objects rather than textures and pat-

terns.

5. Ablation Studies

We here propose a set of ablation studies, in which

the network is re-trained after the removal of specific

parts in order to measure the influence of those parts

on the network performance.
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0.0

0.2

0.4

0.6

0.8

1.0
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C 
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or

e 0.57 0.59

0.98 0.97

0.77

0.95

0.62

0.51
0.56

0.89
0.97

0.58

0.87

0.44

AUC results for 1-Ins.-Vec and 2-Ins.-Vec
2 Inst. vectors
1 Inst. vectors

Fig. 5. Comparison of AUC for one and two instantia-
tion vectors respectively.

The first ablation study has been done to jus-

tify the use of dynamic routing with two instantia-

tion vectors. Our hypothesis is that using a single

vector, and thus disabling dynamic feature routing,

will lead to worse results, since all the features are

forced to contribute to the same instantiation vec-

tor. On the other hand, with two vectors, features

are allowed at testing time to accumulate at the

second vector if they do not give a valid contribu-

tion to the image reconstruction task. The proposed

model reconstruction capabilities have been tested
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by comparing the SSIM of the reconstructed images.

The ablation study has been made using the MVTec

dataset, maintaining the same hyperparameters used

for regular testing (Table 1). For the comparison,

three products (Bottle, Capsule, Hazelnut) and three

textures(Carpet, Leather, Wood) have been chosen

from the dataset. The comparative results can be

seen in Figure 5. In all the categories, the two in-

stantiation vectors approach performed better than

one vector with a 9% improvement on average.

Another ablation study has been done to study

the effect of the Squeeze-Excitation attention mod-

ule. In this case we used the ResNet with and without

soft attention and found that the model with soft-

attention performed better in comparison to vanilla

ResNet. We took the same 7 objects of the previous

experiment and measured the AUC. Results of SE-

ResNet performed always better or at par with the

vanilla ResNet, as shown in Figure 6.
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0.0
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0.77

0.95

0.62

0.17

0.42

0.83

0.97

0.71

0.83

0.56

AUC results with and without SE-Block
With SE Block
No SE Block

Fig. 6. Comparison of AUC with and without the
Squeeze-Excitation attention module.

The last ablation study aims at testing the per-

formance of the three loss functions described in

section 3.2. In order to measure the system perfor-

mances, three models have been trained with the

following configurations: a) MSE loss only (λ1 =

λ2 = 0); b) MSE + SSIM loss (λ1 = 0); c) MSE

+ SSIM + Perceptual loss (λ1 = λ2 = 1). The net-

work was trained on the MVTec dataset categories

“bottle”, “capsule” and “carpet”, results are mea-

sured in terms of AUC. The results shown in Fig-

ure 7 clearly show that the model with all the three

losses has superior results if compared to the other

configurations.
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0.0
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0.6
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0.97
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Fig. 7. Comparison of AUC with different loss function
combinations.

6. Conclusions

In this work we proposed a reconstruction-based,

semi-supervised deep neural network for image

anomaly detection. The network is trained on nor-

mal data only, and it builds a “normality model” by

mapping the input images in a low-dimension fea-

ture space, from which they can be correctly recon-

structed. The inability of the network to reconstruct

other images allows the identification of anomalies,

which can be detected by their higher reconstruc-

tion error. Compared to other state-of-the-art works,

the proposed models includes a pyramidal multi-

scale approach to analyze image features at differ-

ent scale levels, a dynamic routing layer inspired by

the architecture of capsule networks, and a high-

level image comparison loss. Moreover, the system

has been tested not only on standard datasets such

as CIFAR10 and COIL-100 (which have not been

initially created for anomaly detection experiments),

but also on the recently proposed MVTec dataset of

anomalies in industrial images. Experimental results

showed that the proposed model is at least at-par,

and often outperforms other state-of-the-art works.

Further ablation experiments prove the validity of

the architectural choices on which the proposed net-

work is based.
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28. A. Géron, Hands-on
machine learning with Scikit-Learn and TensorFlow
: concepts, tools, and techniques to build intelligent



July 13, 2020 9:51 paper

A neural network for image anomaly detection with deep pyramidal representations and dynamic routing 13

systems (O’Reilly Media, 2017).
29. C. Ieracitano, F. Pantó, N. Mammone, A. Paviglian-
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