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EEG is the gold standard for seizure detection in the newborn infant, but EEG interpretation in the preterm group is 

particularly challenging; trained experts are scarce and the task of interpreting EEG in real-time is arduous. Preterm 

infants are reported to have a higher incidence of seizures compared to term infants. Preterm EEG morphology differs 

from that of term infants, which implies that seizure detection algorithms trained on term EEG may not be appropriate. 

The task of developing preterm specific algorithms becomes extra-challenging given the limited amount of annotated 

preterm EEG data available.  

This paper explores novel deep learning architectures for the task of neonatal seizure detection in preterm infants. 

The study tests and compares several approaches to address the problem: training on data from full term infants; 

training on data from preterm infants; training on age-specific preterm data and transfer learning. The system 

performance is assessed on a large database of continuous EEG recordings of 575 hours in duration.  

It is shown that the accuracy of a validated term-trained EEG seizure detection algorithm, based on a support vector 

machine classifier, when tested on preterm infants falls well short of the performance achieved for full term infants. 

An AUC of 88.3% was obtained when tested on preterm EEG as compared to 96.6% obtained when tested on term 

EEG. When re-trained on preterm EEG, the performance marginally increases to 89.7%. An alternative deep learning 

approach shows a more stable trend when tested on the preterm cohort, starting with an AUC of 93.3% for the term-

trained algorithm and reaching 95.0% by transfer learning from the term model using available preterm data. The 

proposed deep learning approach avoids time-consuming explicit feature engineering and leverages the existence of 

the term seizure detection model, resulting in accurate predictions with a minimum amount of annotated preterm data.  

Keywords: Neonatal EEG, preterm EEG, seizure detection, support vector machine, deep learning, transfer learning

1. Introduction 

Seizures are the primary biomarker of neurological 

dysfunction in term and preterm infants with an incidence 

of 2-3 per 1000 live births in term infants, and much 

higher incidences, ranging from 5-30 per 1000 live births, 

reported in preterm infants.1-3 It is critical to detect and 

treat seizures at the earliest opportunity. The clinical 

diagnosis of seizures in infants is challenging without 

brain monitoring due to the prevalence of electrographic-

only seizures which show no visible clinical 

manifestations.4,5 The identification of preterm seizures 

with clinical manifestations is complicated by the vast 

repertoire of jerky movements that are often seen in 

preterms, many of which are essential for normal 

sensorimotor development.6,7 These jerky movements 

can be difficult to distinguish from seizures which can 

result in unnecessary treatment of infants with anti-

epileptic drugs.  

Continuous EEG monitoring is the optimal method 

available for the detection of seizures in infants. 

Interpretation of neonatal EEG requires highly trained 

healthcare professionals and as a result, it is limited to 

specialized centers. Several computer methods have been 

developed for the detection of seizures in term infants.8-

17 Over the past 20 years term EEG seizure detection 

algorithms (T-SDAs) have passed several stages of 

development.18 The early algorithms relied on signal 

processing routines to extract information from the EEG 

followed by hand-tuned rule-threshold decision making. 

Over many years of research simple features have 

evolved into more sophisticated hand-crafted 

characteristics while the rules and thresholds have 

transformed into data-driven classifier-based decision 

making. State-of-the-art results have been reported by a 

recent deep learning (DL) solution which combines 

feature extraction and classification into a single end-to-

end optimization problem.19 DL has also shown success 

in detecting seizures in adult EEG.20 

While there has been research in the area of automated 

classification of patterns in preterm background 

EEG,21-25 no studies on the automated detection of 

seizures in preterm EEG exist. There are several 

important differences between term and preterm EEG 

which makes the development of preterm EEG seizure 

detection algorithms (P-SDA) challenging. One 

challenging aspect to consider when developing a P-SDA 

is data availability. Recording multichannel EEG in the 

preterm is difficult due to the clinical condition of 

preterm infants and physical limitations such as the small 

head circumference. Specially trained staff are required 

to record preterm EEG with the correct equipment, and 

careful preparation.26 Good quality seizure and non-

seizure data sets, which are required to train, test and 

validate an algorithm for automated analysis, are 

therefore very difficult to obtain. The algorithmic 

solution to this problem must consider that comparatively 

small datasets will be available. 
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The characteristics of preterm EEG are very different to 

those of the term infant; this is another aspect to consider 

when designing a P-SDA. The features of preterm EEG 

that make P-SDA development more involved include 

the intermittent background pattern (tracé discontinu) 

which consists of periods of low-voltage activity (inter-

burst intervals) alternating with periods of short duration 

higher-voltage activity, known as bursts or spontaneous 

activity transients. Additionally, preterm seizures are 

usually focal/regional with less propagation than seizures 

of term neonates due to ongoing synaptogenesis and a 

relative paucity of inter-regional connectivity.27 The 

frequency of most preterm seizures lies in the delta band, 

but has been shown to evolve with age, and seizure 

morphology tends towards repetitive sharp waves, rather 

than spike and wave pattern.27,28 Preterm seizures are 

usually shorter in duration and demonstrate less 

evolution in terms of frequency and morphology during 

an ictal event. Figure 1 (a) shows an example of a preterm 

seizure with little spatial or frequency evolution. Given 

the complexity of preterm EEG, the set of seizure-

descriptive features which were developed for the 

T-SDA machine learning model may not be optimal for 

preterm seizure detection. 

Preterm EEG evolves rapidly as the infant matures and a 

thorough knowledge of the age appropriate maturational 

features of the EEG is required in order to identify 

seizures accurately.29 Preterm EEG patterns change 

throughout gestation particularly in terms of voltage and 

length of discontinuous periods. Bursts of activity 

lengthen and inter-burst intervals progressively shorten 

during the preterm period and it has been suggested that 

this evolution from discontinuity to continuity represents 

a transition from primarily endogenously generated 

sporadic cortical activities in preterm to continuous 

sensory driven activity towards term.30 In addition, 

specific features appear and disappear at different 

gestational ages (GA) and features such as asynchrony 

between hemispheres can be normal or abnormal 

depending on the GA.29,31 There are several intermittent 

age appropriate maturational features such as delta 

brushes, and transient theta bursts over the temporal and 

occipital regions. The frequency content of the EEG also 

changes with a predominance of slow delta activity at 

early preterm ages and an increase in faster activities 

towards term.32 Figure 1 (b) and (c) show examples of 

preterm background EEG patterns. The patterns in 

Figure 1 (b) and (c) show the characteristic changes that 

occur with GA. The question arises as to whether there is 

a need to employ models that are specific to GA, due to 

the evolution of preterm characteristics with GA; this 

work will look at both generalized and age specific 

classifier development. Given the scarcity of preterm 

data, it is important to consider efficient data usage when 

developing age specific preterm models, which are each 

naturally supported by a much smaller subset of the 

overall training data.  

Previous work in the area of epileptic seizure detection in 

adult EEG has already shown that the algorithms 

developed for the adult population are not suitable for 

term neonatal EEG.12, 33-35 The clinical urgency and the 

outlined differences between term and preterm EEG need 

to be accommodated in the choice of data partition (train 

and test), system design, at the level of feature 

engineering and predictive modelling.  

This study poses and addresses the following research 

questions: 

i. Can the algorithms which were designed to 

detect seizures in term neonatal EEG also be 

used to detect seizures in preterm EEG?  

 

Fig. 1.  Examples of preterm background EEG patterns and 

seizure patterns. (a) A representative example of preterm 

seizure showing a short 30-second lateralized seizure with 

rhythmic delta morphology and little evolution at 28 weeks GA, 

(b) runs of background semi-rhythmic delta activity with delta 

brush (arrows) and premature temporal theta transients (circles) 

at 31+5 weeks GA, (c) discontinuity at 24 weeks GA. 
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ii. What are the steps to improve the model 

performance on preterm EEG?  

iii. How can the existence of the term-EEG seizure 

detection model and an abundance of term EEG 

data be leveraged to create an accurate preterm 

EEG seizure detection system with minimum 

preterm annotated EEG data in the minimum 

amount of time? 

This study is organized as follows: section 2 provides an 

overview of the previously developed T-SDAs and 

presents the proposed P-SDAs along with the 

experimental setup; section 3 presents details of the 

databases (DB) used; section 4 presents the experimental 

results which are then discussed in section 5. 

2. Methods 

This work explores two baseline T-SDAs which were 

trained on a term EEG dataset, namely the SVM based 

T-SDA16 and a deep-learning based T-SDA.19 These two 

algorithms were initially assessed on the preterm test DB 

(the Cork dataset of long continuous preterm EEG 

recordings) to establish the baseline preterm 

performance. Subsequently, the algorithms were 

retrained using preterm EEG from the preterm training 

DB and re-assessed on the preterm test DB. The deep 

learning algorithm retraining involved several 

modifications. While the full descriptions of the 

algorithms have been previously published16,19, the 

general structure of the algorithms in included here to 

enable discussion of the performance results. 

2.1. SVM T-SDA 

Figure 2 (a) shows the system level representation of the 

SVM algorithm. This system is divided into four main 

stages: the preprocessing stage, the feature extraction 

stage, the SVM classification stage and the 

postprocessing stage. During preprocessing the multi-

channel EEG is down-sampled from either 1024Hz or 

256Hz (depending on the recording frequency) to 32Hz 

with an anti-aliasing filter set at 12.8Hz and a high pass 

filter set to 0.5Hz. The signal is then segmented into 

single channel 8-second windows with a 4-second 

overlap. A set of 55 features are extracted from these 8-

second windows; these features characterize the EEG 

activity in the time domain, the frequency domain and 

using information theory measures. These features have 

been engineered specifically for term EEG and validated 

in a number of previous studies on term EEG, such as 

neonatal seizure detection,16,36,37 grading term 

background EEG,38 neurological outcome prediction in 

term infants39 and even adult seizure detection and 

prediction.33,40 The extracted feature vectors are then fed 

to the SVM classification stage of the system where the 

inputs are assigned a probability of being a seizure. This 

probability is smoothed and postprocessed. Temko et 

al.16,41 have reported in detail on this algorithm and on the 

set of 55 features. 

2.2. DL T-SDA 

Figure 2 (b) shows the system level representation of the 

deep learning algorithm. The deep learning system 

 

Fig. 2.  Comparison of the (a) SVM and (b) DL algorithms. The SVM algorithm relies on hand-crafted engineered features that aim 

to convey all the information from the raw preprocessed EEG. The features are fed into the SVM and postprocessed to produce a 

probability of a seizure being present in the given time interval. In the deep learning architecture, the neural network is applied to 

raw preprocessed EEG directly and requires no distinct feature extraction stage. 
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utilizes the same preprocessing and postprocessing stages 

as the SVM algorithm, but the feature extraction and 

classification stages are combined into one end-to-end 

deep learning network. The algorithm is applied to 

temporal multi-channel EEG signals directly; this EEG 

has been down-sampled to 32Hz (anti-aliasing filter set 

to 12.8Hz and a high pass filter set to 0.5Hz) and split 

into 8-second windows with a 7-second overlap. 

Convolutional filters are used to extract data-driven 

information from the 8-second multi-channel windows of 

EEG. A series of hierarchical non-linear filtering 

operations extract a complex internal representation of 

the EEG, with the final convolutional layers performing 

the classification, as shown in Table 1. The designed 

fully-convolutional architecture was optimized on term 

EEG.19  

An important aspect of this architecture is that it can be 

trained on multi-channel EEG signals - therefore the 

seizure annotations do not need to be channel specific. 

EEG windows of (N,256,1) dimensions are input to the 

input convolutional layer of the network; N is the number 

of EEG channels and 256 represents 8-second windows 

of EEG sampled at 32Hz. All convolutional filters in the 

network are applied across the temporal dimension only, 

so N, the number of EEG channels remains unchanged. 

In the penultimate layer, the average of all feature maps 

in the temporal dimension is calculated, then the max 

across all feature maps in the EEG channel dimension is 

calculated. This operation is analogous to the max 

operator which is applied across EEG channels in the 

SVM T-SDA postprocessing routine.  

The architecture takes multi-channel EEG inputs and 

produces a single probabilistic output. This property 

meant that the T-SDA algorithm developed by O’Shea et 

al.19 was trained on a dataset of over 800 hours EEG. In 

contrast to this, the SVM T-SDA was trained on a subset 

of around 2% of the same term EEG dataset because it 

requires channel-specific seizure annotations during the 

training stage. The generation of channel-specific seizure 

annotations is a laborious process and typically only a 

subset of seizure events in a dataset are annotated in this 

way. 

The model was trained using a categorical cross-entropy 

loss function and a learning rate of 0.01. Three babies 

from the training set were removed and utilized as a 

patient independent validation set for early stopping. The 

Area Under the receiver operating Curve (AUC) score on 

the validation set was calculated after each epoch - if the 

validation AUC score did not improve for 8 training 

iterations the training was stopped and the network which 

resulted in the best validation AUC score was selected as 

the final network. This routine was repeated three times, 

randomly selecting a different set of babies for the 

validation set on each iteration. This resulted in three 

separate models, each based on a slightly different set of 

training babies. In order to fully utilize all three models, 

they are combined using an ensembling technique. The 

average of the probabilistic outputs from the three trained 

networks was taken to be the final probabilistic output at 

the inference stage.  

2.3. Development of accurate P-SDAs 

The simplest way to build a P-SDA is to re-use an 

existing T-SDA algorithm but retrain it on preterm EEG 

data. In this manner, the same pre-processing, feature 

extraction, modelling and post-processing stages can be 

employed. In the first experiment both T-SDAs were 

trained using the preterm training data (Parma dataset) 

and were then tested on the preterm test data (Cork 

dataset). This experiment will show how suitable the 

Table 1. The structure of each feature extraction block (a) and classification block (b) used in the deep learning T-SDA. The full 

convolutional DL algorithm consists of 3 feature extraction blocks (a) followed by one classification block (b). This gives a total 

convolutional depth of 10 layers. 

(a)  Architecture of feature extraction building block  (b) Architecture of classification building block 

Layer Name 
Feature 

Maps 
Size Stride Activation 

 
Layer Name 

Feature 

Maps 
Size Stride Activation 

Convolution 32 3 1 ReLU Convolution 2 3 1 ReLU 

Convolution 32 3 1 ReLU Global Pooling - - -  

Convolution 32 3 1 ReLU Output - - - Softmax 

Batch 

Normalization 
         

Average Pooling  4 3       
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system choices (engineered features, DL architecture, 

etc.) which were made for term EEG scenario are for 

classification of preterm EEG. For the DL P-SDA three 

separate models were trained, each with a different 

random weight initialization and each with a different 

randomly chosen subset of held-out training infants for 

early stopping. These models were combined by taking 

the average probabilistic outputs to generate one DL 

P-SDA model. 

It is known that the GA of a preterm has a large effect on 

EEG morphology.29 A second experiment was therefore 

proposed to determine if the use of age-specific models 

improves the performance of the preterm SDAs. In this 

experiment, the training and test datasets were divided 

into three subgroups according to the gestational ages of 

the infants: Group 1 (GA < 26 weeks), Group 2 (26 weeks 

≤ GA ≤ 29 weeks) and Group 3 (GA > 29 weeks). The 

system was then trained and tested using only the data of 

the chosen subgroup. This results in three different 

models with each model covering a specific GA range. 

Given the scarcity of the training data, segmenting 

data into GA subgroups comes at a cost of reducing the 

training data for each model. The SVM is known to 

perform well with limited amount of training data and 

thus for the SVM-based SDAs the training process for 

GA-specific experiment is unchanged. However, the DL 

is known to require large amounts of training data to be 

accurate, and the scarcity of available training data in 

GA-specific experiment poses a real problem for the DL-

based SDAs. To overcome the limited training data 

availability when training the GA-specific DL SDAs the 

training process has been modified in three ways:  

i) The DL GA-specific P-SDA was trained using 

transfer learning instead of retraining from scratch. 

In particular, the network was initialized with 

weights from one of three T-SDA algorithms which 

were trained on large amounts of term EEG. The 

data from each GA group were used to fine-tune the 

trainable network parameters. All layers in the fully 

convolutional architecture are updated during the 

training process. 

ii) Layer-wise adaptive learning rate scaling 

mechanism (LARS) was utilised.42 LARS extends 

stochastic gradient descent with momentum to 

determine a learning rate per layer. This is done to 

account for the potential variation of parameter 

(weights and biases) and gradient magnitudes in 

each layer during the transfer learning stage. In 

typical standard gradient descent updates, the 

weight update is 𝑤𝑡+1
𝑖 =  𝑤𝑡

𝑖 − 𝜂𝛻𝑤𝑡
𝑖, where 𝑤𝑡

𝑖 is 

the weight in the 𝑖𝑡ℎ layer at step 𝑡, 𝛻𝑤𝑡
𝑖 is the 

gradient of the weight with respect to the loss 

function and 𝜂 is the learning rate.  LARS scales the 

weight update by the layer-wise ratio of the 𝑙2-norm 

of the parameters and the 𝑙2-norm of the gradients.  

 𝑤𝑡+1
𝑖 =  𝑤𝑡

𝑖 − 𝜂
‖𝑤‖

‖𝛻𝑤‖
𝛻𝑤𝑡

𝑖 (1) 

iii) Instead of excluding the training data from other 

GA groups all the available training data are 

included in the DL-transfer learning experiment. 

Each training sample is weighted based on one of 

the three membership functions shown in Figure 3. 

In particular, the training samples that belong to the 

chosen GA group are given a weight of 1.0 in the 

loss; the remaining data are given a weight which 

linearly decays depending on the difference 

between their GA and the GA threshold of the group 

for which the P-SDA is trained.  

The final experiment uses classifier fusion to increase the 

power of the developed P-SDA. The fusion of classifiers 

has been proven to improve performance, especially if 

the classifiers represent diverse ways of approaching the 

same task.43 To assess this hypothesis, two simple fusion 

schemes were tested using either the weighted arithmetic 

mean (2) or the weighted geometric mean (3) over the 

probabilistic output of the classifier, P,  which are defined 

as follows, for 𝛼𝑖 ≥ 0, ∑ 𝛼𝑖 = 1𝑖 : 

 𝑃𝑓𝑢𝑠𝑖𝑜𝑛_𝑎_𝑚𝑒𝑎𝑛 = ∑ 𝛼𝑖𝑃𝑖𝑖  (2) 

 𝑃𝑓𝑢𝑠𝑖𝑜𝑛_𝑔_𝑚𝑒𝑎𝑛 = ∏ 𝑃𝑖

𝛼𝑖
𝑖  (3) 

 

Fig. 3.  The weighting applied to each preterm infant's GA 

during training of the GA specific DL classifier. These weights 

are utilized during the training of the GA specific algorithm to 

ensure that all of the training data was used despite the 

developed classifiers being age-specific. 
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For two classifiers, Eq. 2 can be rewritten as 

𝑃𝑓𝑢𝑠𝑖𝑜𝑛_𝑎_𝑚𝑒𝑎𝑛 =  𝛼𝑃𝑇−𝑆𝐷𝐴 + (1 − 𝛼)𝑃𝑇−𝑆𝐷𝐴 and Eq. 3 

becomes 𝑃𝑓𝑢𝑠𝑖𝑜𝑛_𝑔_𝑚𝑒𝑎𝑛 = 𝑃𝑇−𝑆𝐷𝐴
𝛼 𝑃𝑃−𝑆𝐷𝐴

1−𝛼 , where 0 ≤ α ≤ 

1. 

2.4. Performance metrics 

To quantify the performance of the system, the AUC 

score, which measures sensitivity versus specificity, is 

used. Sensitivity (4) and specificity (5) are defined as the 

epoch-wise accuracy of each class (seizure and non-

seizure), respectively. Each epoch is labelled as either 

true positive (TP), false positive (FP), true negative (TN), 

false negative (FN); sensitivity and specificity are 

summations of these labels. All AUCs reported in this 

work are generated by concatenating the probabilistic 

outputs and the true labels of multiple preterms. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
∑𝑇𝑃

∑𝑇𝑃+∑𝐹𝑁
 (4) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
∑𝑇𝑁

∑𝑇𝑁+∑𝐹𝑃
 (5) 

Second, we report the event-based clinically relevant 

metric of the number of correctly detected events at a 

specific false detection per hour (FD/h) threshold. The 

seizure detection rate is the percentage of seizure events 

that are correctly detected. A correct detection is any 

overlap of a predicted positive seizure label with a 

seizure event in the ground truth. The FD/h metric 

indicates the number of times that a clinician will have to 

check the results of an SDA in vain; this is an unwanted 

consequence of employing an SDA in the NICU. This 

metric is clinically relevant because clinical staff will 

only trust an SDA if the FD/h is at a tolerably low level.44  

3. Databases 

Two datasets containing annotated neonatal seizures 

were used in this work to develop and test the P-SDAs. 

The datasets were recorded in two separate hospitals 

(Cork and Parma) and annotated by different 

neurophysiologists. All recordings were annotated by a 

single neonatal neurophysiology expert (EP or RL). A 

seizure on the neonatal EEG was defined as a sudden and 

evolving repetitive stereotyped waveform with a definite 

start, middle and end, lasting for at least 10-seconds on at 

least one EEG channel.45 

3.1. Cork dataset of preterm EEG: Preterm EEG 

test DB 

The first dataset was recorded at Cork University 

Maternity Hospital (CUMH), Ireland. Ethical approval 

for the collection and analysis of the data was granted by 

the Clinical Research Ethics Committee of the Cork 

Teaching Hospitals, Ireland. Written informed parental 

consent was obtained for each study. Table 2 presents the 

Table 2. Cork dataset of preterm EEG. This dataset consists of long EEG recordings with seizures annotated. The seizures have 

temporal annotations, but the channel specific location of each seizure event is not available. Corrected age shows the age of first 

seizure event, this is used as the measure of GA for each infant. 

Corrected 

age 

(Weeks) 

Record 

Length 

(hours) 

Seizure 

events 

Seizure duration Seizure statistics 

>1min <1min 
Mean 

duration 

Min 

duration 

Max 

duration 

23 24.00 0 - - - - - 
24 48.02 84 24 60 48’’ 12’’ 5’46’’ 
24 24.02 0 - - - - - 
25 58.80 6 0 6 25’’ 20’’ 29’’ 
25 99.56 49 38 11 2’44’’ 29’’ 5’54’’ 
25 12.02 0 - - - - - 
26 12.01 0 - - - - - 
26 24.00 0 - - - - - 
26 67.10 1 0 1 41’’ 41’’ 41’’ 
26 14.76 0 - - - - - 
29 48.49 15 7 8 51’’ 33’’ 1’20’’ 
29 12.15 0 - - - - - 
29 12.09 0 - - - - - 
30 24.06 0 - - - - - 
31 24.03 0 - - - - - 
31 70.13 149 94 55 1’26’’ 15’’ 22’32’’ 

Total 575.24 304 163 141  
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details of the Cork dataset. The dataset consists of 

continuous multichannel video-EEG recordings from 

infants less than 32 weeks gestation.2  

A modified 10-20 system, neonatal electrode montage 

was used; 8 channels were selected for analysis: F4-C4; 

C4-O2; F3-C3; C3-O1; T4-C4; C4-Cz; Cz-C3; C3-T3. 

Three EEG machines were used for data collection: the 

NicoletOne EEG system, the NeuroFax EEG-1200, and 

the CNS-200 EEG and Multimodal Monitor. EEG was 

recorded at a sampling frequency of either 256Hz or 

1024Hz and a reference electrode was placed at Fz. 

Disposable, single-patient surface electrodes were 

utilized. 

The dataset contains 6 preterms with seizure events and 

10 control preterms without seizure events. The addition 

of non-seizure infants to the testing dataset ensures that 

the developed algorithms are tested under conditions 

were high levels of specificity are enforced. It can be seen 

from Table 1 that over 45% of all seizures in this dataset 

were short seizures of less than 1-minute in duration. 

Different seizure morphologies were observed during 

analysis, including rhythmical delta; rhythmical triphasic 

sharp waves; sharp and slow waves; spike and slow 

waves.  

The dataset consists of 575 hours of continuous EEG 

recordings. This dataset was not edited to remove the 

large variety of artefacts commonly encountered in the 

real-world neonatal intensive care unit (NICU) 

environment. Therefore, this dataset is truly 

representative of the real-life situation in the NICU and 

allows for a realistic estimate of the preterm seizure 

detection algorithm’s performance. For these reasons, 

this dataset is used for testing purposes in this work. 

3.2. Parma dataset of preterm EEG: Preterm EEG 

training DB 

The second dataset was collected in Parma University 

Hospital, Italy. Ethical approval for the collection and 

analysis of the data was granted by the Ethics Committee 

of Parma. Written informed parental consent was 

obtained. Recordings were started, on average, 13 days 

(range 1-47 days) after birth. Preterms, with confirmed 

video-EEG seizures, were admitted to the NICU of 

Parma University Hospital. A sample dataset was then 

created with the following inclusion criteria: 1) infants 

born before 32 weeks GA; 2) video-EEG-confirmed 

neonatal seizures; 3) seizure onset before 36 weeks GA.  

Table 3 details the Parma dataset. Depending on the 

infant's head size, electrodes were applied according to 

the international 10-20 system modified for infants using 

14 recording channels. A Micromed 21-channel 

synchronized video-EEG machine was utilized for EEG 

recordings. All EEG was recorded at a sampling 

frequency of 256Hz and a reference electrode was placed 

at Fz. Disposable, single-patient surface electrodes were 

utilized. Recordings continued until a complete cycle of 

wakefulness, quiet, and active sleep was obtained. When 

state changes were not clearly distinguishable, the 

recording continued for at least 60-minutes. 

If an infant had several recordings in the same day or 

serial follow-up recordings, only the files with at least 

one seizure were selected for inclusion in the dataset. The 

dataset is primarily comprised of short EEG recordings 

lasting an average of 1 hour and 19 minutes (range: 0.5-

4.8 hours). Approximately half of all seizures in this 

dataset were less than 1-minute in duration. Most 

seizures had per channel annotations which are usually 

required in order to train machine learning algorithms. 

Table 3. Parma dataset of preterm EEG. This dataset 

consists of EEG recordings with relatively short duration, 

in comparison to the Cork dataset. All seizure events in 

this dataset have temporal annotations, a number of the 

seizure events also have channel-specific annotations. 

Corrected age shows the age of first seizure event. 

Corrected 

age 

(Weeks) 

Record 

length 

(hh:mm:ss) 

Seizure 

events 

Seizure duration 

> 1-min < 1-min 

24 4:49:01 26 14 12 

24 1:29:55 2 2 0 

25 0:37:23 12 6 6 

26 1:48:40 8 0 8 

26 0:32:48 1 1 0 

27 1:02:02 3 0 3 

27 2:00:16 12 9 3 

28 1:54:46 13 1 12 

28 0:57:23 1 1 0 

29 1:31:36 2 0 2 

29 1:01:46 1 1 0 

30 1:10:04 5 2 3 

30 0:38:54 1 1 0 

30 1:10:35 15 8 7 

31 1:16:29 4 4 0 

32 0:51:38 21 17 4 

32 0:31:03 1 1 0 

Total 23:24:19 128 68 60 

 



 Deep learning for EEG seizure detection in preterm infants 

 

7 

These short recordings are not reflective of the long 

duration recording practices which neonatal SDA 

development targets. A recent clinical trial indicated that 

SDAs had the most benefit to seizure detection rates in 

NICUs during the unsociable hours of weekends46 - for 

this reason, this dataset was used for training purposes 

only. 

3.3. Comparison of data statistics between term 

and preterm EEG 

Figure 4 compares the duration of seizure events in the 

preterm datasets utilized in this work against a dataset of 

EEG recordings with annotated seizures from a 

population of term infants. The dataset of term infants 

was utilized to train the SVM T-SDA and the DL T-SDA, 

as is reported in previous works.19.40 This term DB 

consisted of long recordings (>24h duration) from 18 

infants who suffered from seizures and short recordings 

(~1h duration) from 54 infants who experienced hypoxic-

ischemic encephalopathy but did not have any confirmed 

seizure events. All EEG recordings were associated with 

full term infants between 39w and 42w GA. The dataset 

totaled over 834h in duration and contained 1389 

annotated seizure events.  

Figure 4 indicates that preterms have double the 

proportion of short seizures, approximately 46% (less 

than 1-minute duration), when compared to the term 

infants. Moreover, preterm datasets have the smallest 

proportion of seizures with duration of greater than 5 

minutes. While the distributions of seizure durations in 

the term and preterm populations differ, the seizure event 

statistics between the two preterm datasets, train DB and 

test DB, are similar. 

4. Experimental results 

Table 4 shows the results of the various term and preterm 

SDAs when tested on Preterm EEG test DB. It can be 

seen that the SVM T-SDA drops its performance from an 

AUC of 96.6% on the term test DB to an AUC of 88.3% 

on the preterm test DB, which is equal to an 8.3% 

absolute drop in performance. For the DL-based SDAs, a 

smaller decrease in AUC of 5.2% absolute is observed, 

dropping from an AUC of 98.5% to an AUC of 93.3%. 

When retrained on the training preterm DB, the 

performance of both the SVM and DL SDAs marginally 

improves, with a larger improvement observed for the 

SVM P-SDA. The SVM P-SDA results in a 1.4% 

increase in AUC and the DL P-SDA results in a 0.2% 

increase in performance. Overall, it can be seen the DL 

SDAs outperformed the SVM SDAs both on term and 

preterm EEG. 

Table 5 reports the GA-group specific results for the 

SDAs examined in Table 4 and also for P-SDAs that were 

retrained using the GA-specific data from the preterm 

training DB. The DL GA-specific P-SDA utilizes all 

three training modifications which were detailed in 

Section 2.3. It can be seen from Table 5 that the 

performance of both the T-SDA and P-SDA differs 

considerably across the GA groups. While overall results 

of retraining from scratch show marginal improvement 

over their corresponding T-SDAs counterparts, the 

distribution of scores in the three groups between 

P-SDAs (retrained from scratch) and T-SDAs are very 

different. When comparing the GA-specific retraining 

with simple retraining, the SVM P-SDA did not improve 

 

Fig. 4.   Distribution of seizure events according to their 

duration in the preterm datasets and compared to a term dataset. 

t represents the duration of the seizure event in minutes. 

Table 4. Performance of various SDAs reported on the 

Term and Preterm test DBs. Performances are reported in 

AUC (%). 

SDA 

Term 

EEG test 

DB 

Preterm 

EEG test 

DB 

SVM T-SDA 96.6 88.3 

SVM P-SDA 

(retrained from 

scratch) 

- 89.7 

 

DL T-SDA 98.5 93.3 

DL P-SDA (retrained 

from scratch) 
- 93.5 
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in all 3 groups, whereas the GA-specific transfer learning 

for the DL P-SDA improved across all three groups; 

improving from an AUC 93.3% to 95.0% when tested 

across all babies concatenated in the preterm test DB. 

Figure 5 shows the results of clinical metrics, seizure 

detection rate vs FD/h, for the best combination of the 

SDA systems, and the results of the individual SDA 

systems used in the ensemble (DL T-SDA, DL P-SDA 

GA-specific transfer). The method of fusion and the best 

weighting of each classifier were found on the validation 

data (previously utilised for early stopping in DL 

systems). Figure 6 shows the AUC obtained on the 

validation set (a subset of the training data) as a function 

of the chosen weight for both geometric and arithmetic 

mean ensembling methods. It can be seen from Figure 6 

that the geometric mean of probabilities given by DL 

T-SDA and DL P-SDA with GA-specific transfer 

learning gives the highest performance on the validation 

data when combined with a weight of 0.7 given to P-SDA 

and a weight of 0.3 given to T-SDA. From Figure 5 it can 

indeed be seen that the fusion of the term and preterm 

SDAs outperforms either of them separately for the 

complete range of thresholds, reaching the final best 

overall AUC of 95.4% on the preterm test DB. The 

Preterm EEG test DB includes infants which did not 

experience seizures. An AUC of 96.3% is obtained when 

the ensemble is tested on seizure infants only. 

Figure 7 presents results of experiments where variation 

of classifier performance with respect to infants in the 

test dataset is analysed for the three DL classifiers which 

were studied in this work. The AUC score for each 

classifier was calculated on subsets of the overall test 

Table 5. GA specific results for the DL and SVM SDAs reported as AUC (%). The classifier performances when tested on each 

GA group separately are reported alongside the performance of each classifier when tested on the entire test dataset. The T-SDA 

and P-SDA (retrained from scratch) both for SVM and DL cases have the same single model as in Table 4. For the GA specific P-

SDA, three separate algorithms were trained using only data from their corresponding GA group in the preterm training DB for 

SVM SDAs or using modifications explained in Section 3.3 for DL SDAs. The best performances in column are shown in bold. 

SDA Group 1  Group 2 Group 3 Preterm EEG test 

DB 

SVM T-SDA 93.6 87.1 86.8 88.3 

SVM P-SDA (retrained from scratch) 87.1 71.8 96.2 89.7 

SVM P-SDA (GA-specific, from scratch) 82.6 91.6 90.7 78.5 

 

DL T-SDA 91.8 96.0 93.8 93.3 

DL P-SDA (retrained from scratch) 94.4 84.3 92.1 93.5 

DL P-SDA (GA-specific, transfer learning) 95.8 93.8 93.4 95.0 

 

 

Fig. 6.  The performance on all infants in the validation 

dataset concatenated together as a function of α. The 
performance reported here is for the two held-out preterms 

from the train DB, which were used for early stopping, for 

each GA-specific classifier. The leftmost point represents 

the DL P-SDA with GA specific transfer learning (α = 0), 
the rightmost point represents the DL T-SDA (α = 1). 

Validation AUC is reported without postprocessing and 

thus can be smaller than test DB performance. 

 

Fig. 5.  The curve of seizure detection rate vs the number 

of false detections per hour. The fusion with geometric 

mean reaches an overall AUC of 95.4%.  
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dataset; each subset was created by removing an infant 

from the test dataset. This resulted in 16 variations of test 

conditions, one corresponding to the removal of each 

infant in the testset. The DL T-SDA, DL P-SDA (GA-

specific TL), and the Fusion (Geometric mean α = 0.3) 

classifiers were tested for each testing condition and the 

resultant distribution of AUC scores for each classifier 

are illustrated in a boxplot in Figure 7. These experiments 

indicate that the improvement in performance due to 

classifier training adaptions which were tested as part of 

this work are consistent across the cohort of infants.  

5. Discussion 

5.1. Performance of T-SDAs on the preterm test 

DB 

Previous works have proposed several algorithms to 

detect seizures in full term EEG;40,47,48 these works have 

achieved AUC performances in the range of 83% - 96.6% 

when tested on term EEG. It has been shown that both 

the approaches that rely on hand-crafted features and the 

approaches that are based on deep learning achieve 

reliable and robust results when trained and tested on 

term EEG. This work however illustrates that the 

performance of these approaches falls short when tested 

on preterm EEG to detect seizures.  

The results in Table 4 indicate that the SVM T-SDA, 

which is based on a set of hand-crafted features and 

utilizes channel-specific seizure annotations during 

training, in particular, is not suitable for use as a preterm 

seizure detection tool. In contrast, the DL T-SDA was 

trained with multi-channel temporal EEG and did not 

require an engineered feature set or channel-specific 

seizure annotations during training. The DL T-SDA 

architecture is not affected by changes in the EEG 

montage, making it a robust classifier which performs 

well on unseen datasets.19 Various ways to improve the 

performance of SDAs designed for term EEG are 

investigated in this work and assessed on the preterm test 

DB.  

5.2. Retraining on preterm data 

While the results for the T-SDAs in Table 4 show a large 

decrease in performance when the algorithms were tested 

on the preterm test DB, a marginal improvement was 

observed when retrained on the preterm training DB. 

Overall, the resultant DL P-SDA outperformed the SVM 

P-SDA on the preterm test DB.  

A contributor to the poorer performance of the SVM 

SDAs in comparison to the DL SDAs is their dependence 

on a set of hand-crafted features which were specifically 

designed to capture information present in term EEG and 

particularly term seizures.16,37,38 These features have been 

developed for term seizure detection over nearly a decade 

and consequently they are not optimized to capture 

preterm EEG specific information. Significant 

engineering effort would therefore be necessary to adapt 

the existing feature extraction method and to engineer 

new characteristics that would be specific to preterm 

seizures and preterm EEG background. The SVM T-SDA 

algorithm has also shown to be less effective at detecting 

short seizure events, which are more prevalent in the 

preterm EEG data, as shown in Figure 2.49 This further 

highlights the mis-match between conditions for 

detecting term seizures and conditions for detecting 

preterm seizures.  

A factor which affects the performance of the DL SDAs 

is the need for large amounts of training data; the DL 

T-SDA was trained on over 800 hours of multi-channel 

EEG, in contrast the DL P-SDA was trained on less than 

24 hours of multi-channel preterm EEG. While the small 

improvement observed for the SVM P-SDA, when the 

 

Fig. 7.  Distribution of AUC scores for experiments were 

one infant is removed from the testset; scores are reported 
as % AUC with only moving average filter postprocessing 

applied to the probabilistic outputs (no collar and no 

respiration adaptation). The performances of the DL 

T-SDA, DL P-SDA (GA-specific TL), and the Fusion 
(Geometric mean α = 0.3) classifiers are illustrated in a 

boxplot. This analysis indicates that the developed DL 

P-SDA is significantly better than the DL T-SDA (p < 

.001). The fusion of these two classifiers is significantly 
better than the DL T-SDA (p < .001) and classifier fusion 

also results in a significantly better classifier than the DL 

P-SDA (p < .01). 
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SVM T-SDA was retrained with the preterm training DB, 

was mainly limited by using features designed for term 

infants, the small improvement that was observed in the 

DL P-SDA was undoubtedly limited by the size of the 

preterm training DB which was not sufficiently large to 

learn the complexity and variation in the preterm EEG 

with varying GA. 

5.3. GA-specific retraining and transfer learning 

To evaluate the effect of the GA-conditional changes in 

preterm EEG, the performance of the SDAs was 

evaluated for each GA group separately and compared. 

Table 5 demonstrates that the performance of the SVM 

P-SDAs on individual GA groups varies widely 

depending on the GA. No clear pattern of improvement 

was observed when three different GA-specific SVM 

classifiers were developed by segmenting the preterm 

training DB into groups based on GA. The performance 

of the GA-specific SVM P-SDA is especially poor when 

it is tested on a concatenation of all three GA groups; this 

shows the variation in optimal decision thresholds across 

the three models - e.g. a given threshold may accurately 

detect seizures in Group 1 but cause many false 

detections in Group 3 and vice-versa. This decreases the 

overall AUC across concatenated data and indicates a 

lack of robustness in the algorithm.  

The three DL SDAs were similarly built by retraining on 

the same GA specific data. The use of transfer learning 

and GA-specific models showed an improved 

performance for the DL P-SDA as shown in Table 5, 

(overall AUC improved from 93.5% to 95%). DL based 

algorithms require large amounts of training data. The 

preterm training DB is a relatively small dataset for DL 

algorithm development, dividing this DB into three GA 

specific groups would result in even smaller datasets to 

train each GA-specific DL P-SDA. To overcome the 

constraints imposed by data scarcity, three different 

classifiers were trained using the complete preterm 

training DB as explained in Section 3. Additionally, the 

GA specific DL P-SDA training also benefitted from the 

utilization of transfer learning; a deep learning technique 

which allows for the initialization of algorithms using 

pre-trained network weights borrowed from the DL T-

SDA.  

It is worth noting that the DL P-SDA was trained using 

seizure annotations that contained no information about 

the seizure locations. Preterm seizures are known to start 

and remain more focal than term seizures with less 

propagation.27,28 The DL P-SDA takes multi-channel 

EEG as input and a single seizure or non-seizure label as 

target. The training dataset in this work consists of 14 

channels of EEG, therefore the seizure to non-seizure 

ratio could be as poor as 1-to-13 for a DL P-SDA training 

epoch. But the ability to learn from these weakly labelled 

examples means that all the data in the preterm training 

DB were available to train the algorithm. 

The development of GA-specific classifiers does come at 

the cost of an additional input requirement; knowledge of 

an infant’s GA must be utilised to select the appropriate 

classifier. This additional classifier input constraint must 

be considered if GA-specific classifiers are to be 

employed in clinical settings.  

5.4. Mixture of experts 

The DL models outperform the SVM SDAs both on term 

and preterm test datasets, reaching an AUC of 98.5% for 

term and 95% for preterm as compared to 96.6% and 

89.7% for SVM term and preterm SDAs, respectively. 

Interestingly, when retrained on preterm training DB 

from scratch and with transfer learning, both SVM and 

DL P-SDAs do not improve the performance for all 

groups. In fact, the best performance for Group 3 (GA > 

29 weeks) is obtained with the SVM preterm model 

(SVM P-SDA retrained scratch), for Group 2 (26 weeks 

≤ GA ≤ 29 weeks) with the deep learning term model (DL 

T-SDA), for Group 1 (26 weeks ≤ GA ≤ 29 weeks) and 

overall for all 3 groups with GA-specific transfer learning 

(DL P-SDA GA-specific transfer). Taking the best model 

for each group and using the resultant meta-classifier will 

inevitably improve the performance on the observed 

dataset. However, this will come at a cost of using the 

same data to select the models and assess the 

performance of the models which will invalidate the 

latter. The choice of models must be made without 

observing the preterm test DB performance.  

The final stage of development in this work was a fusion 

of various models and selection of the best combination 

on the validation dataset which was formed from the 

preterm training DB. The best validation performance 

was obtained when combining the DL T-SDA and the 

GA specific DL P-SDA. These represent diverse 

algorithms as they utilised different training datasets. The 

process of selecting a fusion algorithm and a weighting 

coefficient, α, for the selected two algorithms was 

illustrated in Figure 6. This validation dataset which was 

previously utilised to perform early stopping was 
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reutilised to select the fusion hyper-parameter. The 

combination of these two models improved the 

performance further to 95.4%. It is important to stress 

that the reported performance is not the best achievable 

on this dataset but the performance that is anticipated 

through model selection on the validation data.  

While the AUC metric represents an evaluation of the 

epoch-based accuracy, which is an important tool for 

engineering development, the full picture of an 

algorithm’s clinical utility can be seen through event-

based metrics such as the seizure detection rate and the 

number of false detection per hour. This trade-off 

between event sensitivity and event specificity is shown 

in Figure 5. Considering a threshold of one false 

detection every four hours the term algorithm (DL 

T-SDA) detects 37.6% of seizures, the GA specific 

preterm algorithm with transfer learning (DL P-SDA 

GA-specific transfer) detects 44.6%, and the fusion of 

these two classifiers by geometric mean, with 0.7 and 0.3 

weights for preterm and term algorithms, respectively, 

results in 49.7% of seizure events being detected. 

Importantly, this mixture of experts outperforms the best 

DL P-SDA GA-specific transfer for the entire range of 

operating points.  

The inclusion of the non-seizure infants in the test DB 

ensures that the model is tested under a more realistic 

setting where a low number of false seizure alarms must 

be enforced. Testing this ensemble model on the subset 

of six seizure infants in the Preterm Test DB results in 

62.4% of seizure events being detected at a threshold of 

one false detection every four hours, in comparison to 

49.7% of seizure events detected when control infants are 

included.  

Figure 7. further shows that the improvements seen by 

developing a DL GA-specific P-SDA classifiers and the 

fusion of two classifiers represent significant 

improvements which are not subject to fluctuations based 

on the inclusion of individual infants in the training 

dataset. This test indicates the robustness of the 

improvements which are the result of the classifier 

improvements in this work. All the modifications in this 

work were related to the DL training routine, further 

improvements in this area could be achieved with the 

incorporation of more advanced architectures. In recent 

works newer and more powerful architectures have been 

developed and applied to epilepsy detection including the 

Enhanced Probabilistic Neural Network, a Neural 

Dynamic Classification algorithm, and a Finite Element 

Machine50-52. Each novel architecture is associated with 

benefits for supervised pattern recognition tasks and they 

may prove suitable for overcoming the preterm seizure 

detection challenges.  

5.5. Limitations 

The preterm test DB and the preterm train DB utilised in 

this work both had temporal seizure annotations 

available, also known as weak labels; additionally the 

train DB had a subset of seizure events labelled with 

strong channel-specific annotations. Annotations from a 

single expert were available for each infant in these DBs, 

however it is important to highlight that there is a mis-

match between the experts who provided annotations 

across the DBs. The variation between the expert 

annotators who provided labels in the training and testing 

DBs in this work reflects the reality of mis-matched 

conditions which an AI-assisted seizure detection 

algorithm would have to face in clinical usage.  

The inter-observer agreement (IOA) for neonatal seizure 

annotations for experts is known to vary.53 A true test of 

a neonatal SDA would be to compare the developed 

algorithm against multiple human annotators using the 

IOA metric in the test DB. This is the first time that a 

seizure detection algorithm has been developed for 

preterm infants, further research in this area would 

benefit from the availability of multiple sets of 

annotations on the test DB. The availability of multiple 

expert annotators in any future training DB would also be 

advantageous as deep learning algorithms can benefit 

from modelling individual labellers and learning a data-

driven weighted average of these individual expert 

models.54 

This work represents the first time that neonatal seizure 

detection algorithms have been trained or tested on 

preterm EEG. The datasets utilised in this work were 

sufficient to show the potential of deep learning for 

developing preterm seizure detection algorithms but 

further work in this area would require larger testing 

datasets to validate the developed classifier. However, it 

should be noted that this dataset of preterm EEG 

recordings with annotated seizures represents a relatively 

large dataset, considering the difficulty of recording and 

annotating EEG from this vulnerable preterm population. 

6. Conclusion 

This study represents the first time that an automated 

seizure detection system has been developed specifically 
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for preterm EEG. This work has contributed three 

important messages. First the study showed that the 

performance of the algorithms developed for term EEG 

was not suitable to be used for seizure detection in 

preterm EEG. Second, the study showed that no 

substantial increase in algorithm performance was 

observed when the systems were simply retrained on 

preterm EEG. Finally, it is shown that the lengthy process 

of manual feature engineering could be avoided, and an 

accurate SDA can be developed with minimal preterm 

data availability. The proposed novel end-to-end deep 

learning approach utilizes three GA-specific models and 

overcomes limited data availability by 1) weighting data 

from all GA subgroups 2) utilising transfer learning from 

the term model 3) not requiring per-channel annotations 

and therefore learning from the more readily available 

weak labels. The performance obtained by combining the 

best performing algorithms reached an AUC score of 

95.4%; while detecting nearly half of preterm neonatal 

seizure events at a cost of one false seizure detection 

every 4 hours. The results obtained using deep learning 

allow for its practical application in neonatal intensive 

care units for detection of preterm seizures. The proposed 

DL architecture can be improved with a larger dataset of 

preterm EEGs with annotated seizures without the need 

for channel-specific seizure annotations, thus reducing 

the workload on clinical staff. Future work in this area 

will focus on gaining a clinical understanding of the 

patterns in EEG which lead to false detections and missed 

seizure events. This future clinical analysis of EEG 

morphology will give engineers insights into the 

potential differences between SDAs developed for term 

and preterm EEG, and how the preterm specific patterns 

affect algorithm efficacy. 
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