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The combination of different sources of information is currently one of the most relevant aspects in the

diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities

providing structural and functional information are frequently available. Those modalities are usually

analyzed separately, although a joint of the features extracted from both sources can improve the

classification performance of Computer-aided diagnosis (CAD) tools. Previous studies have computed

independent models from each individual modality and combined then in a subsequent stage, which

is not an optimum solution. In this work, we propose a method based on the principles of siamese

neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission

Tomography (PET). This framework quantifies the similarities between both modalities and relates

them with the diagnostic label during the training process. The resulting latent space at the output of

this network is then entered into an attention module in order to evaluate the relevance of each brain

region and modality at different stages of the development of Alzheimer’s disease. The excellent results

obtained and the high flexibility of the method proposed allows fusing more than two modalities, leading

to a scalable methodology that can be used in a wide range of contexts.

Keywords: Multimodal combination; siamese neural network; self-attention; Deep learning; medical imag-
ing.

1. Introduction

Current neuroimaging techniques provide very use-

ful information regarding the structure or functional

state of the brain. Thus, features extracted from

those modalities are usually exploited in Computer

Aided Diagnosis (CAD) tools, since they figure out

discriminative information which is highly valuable

to diagnose different neurological and neurodegener-

ative diseases. Both image modalities provide differ-

ent but complementary information: while structural

Magnetic Resonance Imaging (MRI) informs about

the distribution of the different tissues in the brain

(mainly gray and white matter), functional imaging

such as Positron Emission Tomography (PET) in-

form about changes in cerebral blood flow and in

cerebral glucose metabolism. This is an indicator of

neuronal activity that can be figured out by means of

different radiotracers. For instance, 18F-FDG-PET

imaging have been extensively used for the diagnosis

of neurodegenerative pathologies such as Alzheimer
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disease (AD).1–5 In a similar way, changes in differ-

ent brain structures related to the progression of a

neurodegenerative proccess can be revealed by struc-

tural MRI, and further used in differential diagnosis

tasks.2,6–10 These works use GM or WM images ob-

tained by segmentation of MRI to classify controls

and AD patients9,10 or to compute Regions of Inter-

est (ROI), searching for common patterns in Controls

(CTL) and AD subjects. Moreover, the construction

of neurodegeneration models to study the progres-

sion of the disease usually requires the use of both,

functional and structural information. This is gener-

ally addressed by combining features computed from

functional and structural images.2,7

Deep Learning (DL) architectures are particu-

larly effective in these scenarios, given their ability

to learn hierarchical representations from the input

data. One crucial aspect is how information from dif-

ferent sources is combined, but it is also highly im-

portant when features from different modalities are

fused. In early fusion, data from different sources

are concatenated in the first stage of the processing

pipeline. This means that the DL model treats them

as if they belong to the same modality, eliminating

any identification about their origins.11–13 In inter-

mediate fusion, the concatenation of the features is

not done in the input of the network, but in a mid-

dle layer of the DL architecture. For example, data

from one modality is processed by a fully convolu-

tional layer, combining the output of this layer with

the input data from another modality. This strat-

egy is particularly flexible, allowing the fusion of the

second modality once the first one has been conve-

niently processed.14–16 Finally, in late fusion frame-

works different modalities are combined at the end of

the classification stage.17–19 Specifically, one model

is trained individually by each modality of the data,

resulting in a number of models equal to the dif-

ferent modalities. Then, the classification decisions

are combined according to a specific rule. Although

the use of these fusion techniques can improve per-

formance compared to using a single modality, they

probably do not take advantage of the complemen-

tarity of the different modalities. In fact, these meth-

ods have demonstrated their effectiveness in differ-

ential diagnosis tasks, but their use in exploratory

analysis is limited since it is difficult to link struc-

tural and functional features. Besides, they rely on

the combination of different models (one for each

modality) instead of fusing information from differ-

ent modalities into the same model, which is a much

more optimum solution.

To address this issue, we propose a classification

framework formed by a siamese neural network and

an attention module in order to combine MRI and

PET imaging. First, the siamese architecture is em-

ployed to fuse structural and functional images by

quantifying the similarity between them. The two

modalities are independently entered into the net-

work, but its training is simultaneously performed

with data from both sources. The basis of this archi-

tecture is to relate the distance between the two indi-

vidual inputs (structural and functional information)

and the diagnostic label. The resulting latent space

obtained at the output of the siamese network is then

entered into an attention module that evaluates the

relevance of each brain region and image modality.

The proposed methodology has been evaluated us-

ing images from the Alzheimer Disease Neuroimag-

ing Initiative (ADNI)20 in order to explore structural

and functional changes during the development of

Alzheimer’s disease (AD). The rest of the paper is

organized as follows. Section 2 provides a detailed

description of previous works that have employed

data fusion and siamese neural networks. Section 3

describes the methodology proposed in this work, es-

pecially focused in the architecture for combining dif-

ferent imaging modalities. The discriminative power

of our method is evaluated in Section 5, a complete

discussion is presented in Section 6, whereas Section

7 summarizes future works and conclusions.

2. Related works

Recent developments of intelligent systems have

demonstrated that fusion of different modalities

leads to a boost in classification performance. This

allows not only a more accurate classification sys-

tem, but a better understanding about the relevance

of each individual source. It is worth noting that

this process is particularly effective when the infor-

mation provided by one source complements the in-

formation extracted from a different one. Although

the way the different modalities are combined is

crucial for obtaining a robust and accurate system,

this task is not particularly simple. A high num-

ber of studies have developed frameworks for com-

bining information from different modalities by us-

ing machine learning21–24 or deep learning.25–28 Fu-
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sion of multimodal data has been successfully used

both for segmentation and classification purposes,

especially when applied to medical imaging. Ref.29

developed a method based on a recurrent frame-

work for tumor segmentation based on PET and

Computed Tomography (CT) images. Specifically,

they combined features from these modalities with

the intermediary segmentation results, which was

previously estimated from multiple recurrent fusion

phases. Their results demonstrated the generalizabil-

ity of the method, and its flexibility to be applied

in scenarios with limited computational resources.

Ref.30 introduced a method based on the features

learned by a 2D convolutional autoencoder to create

a 3D network able to segment spatial and volumet-

ric information in a more efficient way. According

to their findings, this method obtained a superior

performance than common architectures (3D-UNet,

3D-MultiResUNet) while guaranteeing a much more

reduced computational cost. Information contained

in different sources has also been fused for classifi-

cation tasks. Ref.31 developed a Searchlight analy-

sis that explored structural MRI in order to identify

the brain region that leads to the maximum sepa-

rability between the different classes. Briefly, they

combined the voxels contained in small spherical re-

gions with scores from psychological tests to deter-

mine the regions more affected by AD. In a simi-

lar context, Ref.32 proposed an ensemble framework

to combine information from MR images of differ-

ent sessions of the longitudinal study. The contribu-

tion of each individual source to the global classifica-

tion was estimated within a nested cross-validation

scheme, which means that weights were derived from

the scenario of maximum performance.

Other previous works have introduced the relia-

bility of a classification prediction for weighting each

modality within an ensemble architecture. Ref.33 em-

ployed a Bayesian deep learning approach for max-

imizing performance while quantifying the uncer-

tainty of a model’s prediction. Specifically, they re-

placed the deterministic weights along the neural

network by a distribution over these parameters. The

informativeness of different regions of an image and

their influence in a classification have also been eval-

uated by a similar approach. Ref.34 used a proba-

bilistic version of a Support Vector Machines (SVM)

for providing information about the uncertainty of

the classification. The weight of each individual was

not derived from the performance of the classifier,

but from its reliability, leading to a system in which

reliable predictions contribute more than those with

a higher uncertainty.

Regarding the siamese networks, they were in-

troduced in the 1990s within a signature verifica-

tion system.35 The idea behind these architectures

is to check the similarity between two different sam-

ples, which is measured according to a specific dis-

tance (Euclidean, cosine, etc). One of the most clear

applications of this technique is to quantify differ-

ences based on distance metrics. Ref.36 focused on

the problem of content-based retrieval in audio sig-

nals. The siamese neural network was employed for

encoding the audio into a representation of lower di-

mensionality. They showed that the output of the

siamese architecture extracted the semantic infor-

mation associated with each individual event, lead-

ing to an effective tool for retrieving semantically

similar instances. Another example of the applica-

bility of siamese networks in audio can be found in

Ref.37 Authors developed a framework based on two

convolutional neural networks (CNN) to extract fea-

tures from two different samples: an original sound

and an imitation. They proposed a semi-siamese al-

ternative in which the two encoders were asymmet-

ric and previously trained in other similar tasks like

speech recognition. Results showed that the inclu-

sion of transfer learning within the siamese frame-

work significantly improved the performance of the

system.

These architectures have also been evaluated in

biological works, such as identification of chromo-

somes,38 characterization of cellular heterogeneity,39

metagenome interpretation40 or drug response.41

However, image processing is one of the fields where

siamese networks are more widely used. Ref.42 ex-

plored a method in a one-shot learning context,

where a unique exemplar of each possible class was

available. The high performance obtained in a 20-

way one-shot classification demonstrated the pow-

erful discriminative ability of the siamese networks,

being able to generalize even with new classes whose

distributions were unknown. In a similar context,

Ref.43 developed a siamese neural network for the

identification of heavy mineral images. The main

contribution of this work was the inclusion of an

adversarial training to discard domain-related infor-

mation, which allowed the identification of the tar-
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Figure 1. Brain parcellations provided by the AAL atlas.

get features in unseen scenarios. Ref.44 designed a

regularized siamese neural network in a context of

anomaly detection, i.e. when the number of sam-

ples of a specific context is much lower than others.

Specifically, authors proposed an architecture formed

by stacked convolutional autoencoders for feature ex-

traction and unsupervised deep siamese networks for

learning the representational space generated by the

distance between two samples. The resulting latent

representations were then entered into a one-class

SVM to detect subtle lesions in epileptic patients,

outperforming in terms of sensitivity the most rele-

vant studies in this field. Another medical applica-

tion of siamese networks is given in Ref.45 This work

presented a model for the detection of malaria par-

asites from microscopic images. First, features from

images of different classes (infected cell vs uninfected

cell) were extracted by using a fully connected con-

volutional block. Then, the similarity of the resulting

features associated with each initial image was eval-

uated in the siamese block. Finally, the output was

feed forwarded to the last linear layer, assigning the

corresponding label based on the activation of the

neurons of that final layer.

3. Methodology

3.1. Brain parcellation

The method proposed in this work relies on mea-

suring differences between structural and functional

information in the brain. Although severe diseases

can cause damage across the whole brain, it is likely

that the level of the atrophy varies for different re-

gions. For this reason, it is crucial to detect the pres-

ence of abnormalities, but even more important to

identify where they are. One possible solution is to

employ an atlas in order to delimitate the different

anatomical brain regions. An important point is to

choose a proper atlas, since there is a high number

of them differing in the complexity and detail of the

parcellations. Dividing the brain into a high number

of regions improves spatial precision, but reduces the

probability of identifying relevant patterns.46 On the

other hand, the use of too large regions could lead

to mark as informative voxels that they are not, in

case only a small part of the region is affected by

a specific pathology. In order to provide a sensitive

method while controlling Type I errors, we employed

the 116 regions contained in the Automated Anatom-

ical Labeling (AAL47) atlas since it strikes a balance

between the number of regions and their size. Figure

1 depicts the brain subdivisions contained in this at-

las.

3.2. Siamese architecture

Each region defined in the AAL atlas is iteratively

extracted both in the MRI and PET images. Re-

garding the first one, we only focused on gray matter

(GM) because atrophy in this tissue has been proven

to be related to AD.48–51 From the original MRI and

PET images, all the regions except the target one are

automatically discarded by setting the values of the

voxels within these regions to zero. Thus, the result-
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Figure 2. Both branches have exactly the same configuration, sharing the weights that are updated during the training
process. The main difference is that the left branch receives as input the MRI images, whereas the right one receives the
PET images.

ing images contain only informative values in a small

region, corresponding to the one that has not set to

zero. To reduce the computational burden associated

with the processing of this non-relevant information,

we cropped the images by automatically selecting a

rectangular area that only contains the voxels of the

target region. This considerably reduces the size of

the images and the subsequent mathematical opera-

tions. After that, all the images of the database are

standardized by removing the mean and scaling to

unit variance, as follows:

z =
x− µ
σ

(1)

where x is a matrix containing the target region of

all the patients in the dataset, µ and σ are the mean

and standard deviation of this matrix, respectively,

and z denotes the resulting scores.

At this point, information from structural and

functional images is available to be fused. To do so,

we developed a neural network based on the princi-

ples of siamese architectures.35,42,52 This framework

relies on the use of a convolutional neural network

with two branches sharing the same architecture and

weights. Each individual branch receives as input one

of the modalities to be fused: GM MRI images in the

left branch and PET images in the right one. During

the training, each branch processes the information

as a common feed-forward network: each neuron of a

specific layer receives an input, processes it and sends

the output to the next layer. Given the shared nature

of this architecture, weights of both branches are si-

multaneously updated. The structure of the siamese

network is shown in Figure 2, which is based on con-

volutional and linear layers in each branch. Specif-

ically, we employed two convolutional layers whose

outputs were modified according to a ReLU activa-

tion function. After that, the outputs were entered

into two linear layers containing 1024 and 20 neu-

rons, respectively. The training process was guided

by a loss function that evaluated the similarity of

the outputs of the last linear layers of both branches.

The mathematical expression for computing the dis-

tance measure was based on the Hinge function,53 as

follows:

L(y) = max(0, 1− t · y) (2)

where y refers to the outputs of the linear layers of

the two branches and t = {−1, 1} denotes the actual
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Figure 3. Scheme of the method proposed. Brain parcellations are extracted from MRI and PET images. Then, each
individual region is entered into a siamese network which is trained with the aim of finding a relationship between the
class of each sample and the distance between structural and functional information. The resulting embeddings are used
as inputs of an attention module that evaluated the importance of each individual region and image modality into the
final classification decision.

label.

The network was trained during 200 epochs, in-

cluding an early stopping to finish this procedure

when the validation loss was lower than l = 0.01.

Then, the outputs of both branches were concate-

nated into an embedding that can be interpreted as

a representation of lower dimensionality of the simi-

larity between the MRI and PET images of the brain

region. This initial network worked as a feature ex-

tractor, identifying the most relevant aspects that

characterize the combination of both image modali-

ties.

3.3. Attention module

The resulting embeddings for each region of the AAL

atlas were then combined to have a global fusion
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Table 1. Demographics of the subjects of the database according to their diagnosis: Alzheimer’s disease (AD, Mild cognitive
impairment converter (MCIc) or stable (MCIs), and normal controls (CTL).

Diagnosis Number Gender (M/F) Age MMSE

AD 70 46/24 75.26 ±7.53 22.49 ±2.91
MCIc 39 25/14 77.77 ±7.41 26.00 ±2.97
MCIs 64 42/22 76.49 ±6.85 27.18 ±2.53
CTL 68 43/25 75.93 ±4.98 28.98 ±0.98

.

of the structural and functional information of the

brain. These features were used as input of a classi-

fication block that allowed the automatic distinction

between the different classes. Given the flexibility of

the model proposed, this block could be based on a

simple linear classifier receiving as input features the

embeddings of the different regions of the atlas. Al-

though performance would be possibly excellent with

this simple solution, we designed an attention mod-

ule in order to refine the embeddings assuring an op-

timum classification solution. This block weights the

contribution of each brain region and modality in the

final classification task. Attention modules are com-

monly used to force a CNN to dismiss non-relevant

information and focus only on the most important

one, which leads to a boost in the discriminative

power.54 They are also beneficial for preventing gra-

dients from non-informative regions of the images.55

The attention module proposed in this work consists

on an MLP and a sigmoid function at the end to gen-

erate a mask of the input feature map. Specifically,

the embeddings computed by the siamese network

were then entered into an MLP. Then, its output was

multiplied by the embeddings before entering the re-

sult into a final linear layer. The architecture of the

attention module, as well as its connections to the

siamese block is shown in Figure 3.

4. Evaluation of Alzheimer’s disease
progression

The performance of the proposed method is evalu-

ated by studying differences between structural and

functional damage of the brain, with the aim of iden-

tifying changes associated with the different phases

in the development of Alzheimer’s disease. Specifi-

cally, we evaluated our proposal with 18F-FDG PET

and MRI images, which provide functional and struc-

tural information, respectively. The following subsec-

tions contain information about the source of the

database employed, as well as the demographics of

the subjects included in the study and the prepro-

cessing applied to each individual image modality.

4.1. Database description

The data used in the preparation of this paper were

obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). The

ADNI was launched in 2003 by the National Institute

on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical

companies and non-profit organizations, as a $60 mil-

lion, 5-year public-private partnership. The primary

goal of ADNI has been to test whether serial MRI,

PET, other biological markers, and clinical and neu-

ropsychological assessment can be combined to mea-

sure the progression of MCI and AD. Determination

of sensitive and specific markers of very early AD

progression is intended to aid researchers and clini-

cians to develop new treatments and monitor their ef-

fectiveness, as well as lessen the time and cost of clin-

ical trials. The Principal Investigator of this initia-

tive is Michael W. Weiner, MD, VA Medical Center

and University of California, San Francisco. ADNI

is the result of efforts of many co-investigators from

a broad range of academic institutions and private

corporations, and subjects have been recruited from

over 50 sites across the U.S. and Canada. The initial

goal of ADNI was to recruit 800 subjects but ADNI

has been followed by ADNI-GO and ADNI-2. To date

these three protocols have recruited over 1500 adults,

ages 55-90, to participate in the research, consisting

of cognitively normal older individuals, people with

early or late MCI, and people with early AD. The

follow up duration of each group is specified in the

protocols for ADNI-1, ADNI-2, and ADNI-GO. Sub-
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Figure 4. Gray Matter structural image and PET functional image for a control subject.

jects originally recruited for ADNI-1 and ADNI-GO

had the option to be followed in ADNI-2. For up-to-

date information, see www.adni-info.org.

From the high amount of information contained

in the ADNI database, we focused on the analysis

of PET and MRI images. Given the longitudinal na-

ture of the study, MRI scans were acquired at dif-

ferent sessions. However, PET images were not col-

lected in all of these moments. For this reason, we

selected only those patients with at least one image

of each modality. Thus, the dataset used comprises

data from 251 patients, consisting on 68 normal con-

trols (CTL), 70 AD patients, 39 suffering from Mild

Cognitive Impairment that converts at certain ses-

sion to AD (MCIc) and 64 diagnosed with MCI that

remains stable along the different sessions (MCIs).

Table 1 summarizes demographics of the dataset in

terms of age, gender and Mini Mental State Exam-

ination (MMSE) scores. Finally, Figure 4 shows an

example of the MRI and PET images of a control

patient.

4.2. Images preprocessing

4.2.1. MRI images

Images were firstly registered following a spatial

transformation based on exponential Lie algebra.56

The idea behind this process is to assure the struc-

tural correspondence between all the voxels across

the images, so that the location of one specific voxel

is the same in images of different subjects. After

that, the images were resized to 121 x 145 x 121,

with a voxel size of 1.5 mm in the sagittal, coronal

and axial planes. Then, we performed a segmenta-

tion of the images into gray (GM) and white (WM)

tissues, using the algorithms available in SPM12.57

This tool provides the distribution of the intensi-

ties of the voxels of the T1-weighted MRI accord-

ing to the tissue probability maps, containing values

ranging from 0 to 1 as they reflect the probability

that a specific voxel belongs to GM, WM or cerebro-

spinal fluid (CSF). These maps provided by the In-

ternational Consortium for Brain Mapping (ICBM)

are derived from 452 T1-weighted scans, which were

aligned with an atlas space and corrected for scan in-

homogeneities. Finally, a non-linear deformation field

was computed to find the one that best fits the tissue

probability maps of each patient.

4.2.2. PET images

We also employed SPM12 in this kind of images

to spatially normalize them according to a specific

template. Then, a normalization in intensity was ap-

plied to each individual image to guarantee that com-

parisons between them were properly done. Briefly,

the normalization value was computed as the aver-

age of the 0.1% voxels with the highest intensities.58

Besides, voxels whose intensity was lower than the

10% of the normalization value were automatically

discarded for subsequent analysis. Specifically, they

were considered as background, which means that

they do not contain relevant information but can in-

troduce different artifacts and noise.59

4.3. Experimental setup

The small sample size problem is widely present in

most biomedical studies, and it is caused by the

limited number of samples that this kind of works

usually have. For this reason, it is necessary to as-
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sure that samples employed for training the model

are independent from those used to test its perfor-

mance, guaranteeing the generalization ability of our

method. Thus, we employed a resampling approach

based on k-fold cross-validation (k = 5) to estimate

the prediction error of the method proposed.

5. Results

The first classification context using the methodol-

ogy described in previous sections consists on the

classification between Controls (CTL) and AD pa-

tients. In this scenario, our method led to an accu-

racy of 96%. Additionally, classification experiments

between CTL and MCIc were carried out, yielding

94% of accuracy. Finally, we also evaluated the per-

formance of the proposed methodology when dis-

tinguishing between CTL and MCIs. In this case,

we obtained an accuracy of 86%. Table 2 summa-

rizes the results of the different experiments based

on additional performance metrics. Figure 5 depicts

the ROC curve for the three classification experi-

ments carried out in this work. The ROC curve shows

the trade-off between sensitivity and specificity, com-

puted using the probability predictions derived from

the neurons of the output layer of the DL architec-

ture. In addition to the ROC plot, we included the

area under the ROC curve (AUC) for the different

experiments as a measure of the discrimination abil-

ity between two diagnostic groups. We can see that

our method yielded a high performance for all clas-

sification contexts, but they are gradually ordered

according to their difficulty.

These results demonstrate that the information

fusion provided by our method is extremely benefi-

cial for boosting the classification performance. How-

ever, our proposal provides additional information in

terms of explainability that is relevant in the study

of AD. Figure 6 shows a representation of the em-

beddings after the sigmoid activation of one subject

according to his/her structural and functional infor-

mation, as well as a combination of both modali-

ties. These maps were generated by computing, for

each patient, the number of features from the embed-

dings that were important during the evaluation of

similarity between structural and functional images.

Specifically, we counted all the features associated

with each brain region and modality that surpassed

a threshold of thr = 0.9, as a measure of the a pri-

ori relevance of the region/modality in the fusion of

both modalities. We can see in Figure 6 that there

is a subtle discrepancy between the importance of

regions in structural images (top of the figure) and

functional images (middle of the image). The reason

for the emergence of these differences will be clearly

explained in next section.

Figure 7 depicts the weights of the neurons at

the output of the first fully connected layer of the

attention module. Thus, they represent the impor-

tance of each brain region in the classification deci-

sion when distinguishing between controls and AD

patients. This map demonstrates that our method

is able to identify the localization of the most rele-

vant structural-functional differences, i.e. those dis-

similarities between both modalities that are relevant

in the classification outcome. Besides, it is important

to note the ability to identify the role of different

brain regions in the development of AD, evidencing

changes in the anatomy (such as atrophy) and func-

tionality according the progression of this pathology.

We will discuss about some of these regions in Sec-

tion 6.

6. Discussion

In this work, we present a method for fusing struc-

tural and functional information from brain imag-

ing based on a siamese architecture. This approach

evaluates the similarity between both modalities ac-

cording to a specific distance measure, which is then

related to the diagnostic label of both samples. Once

the network is trained, the latent space obtained as

the output of the last linear layer contains the em-

beddings associated with the different classes. They

are finally used to train an attention module that

performs the classification task. The generalization

ability of our method was evaluated in MRI and PET

imaging from Alzheimer’s disease patients at differ-

ent stages of this pathology. Specifically, we focused

on studying differences between structural and func-

tional brain damage in classification contexts of in-

cremental difficulty, from the simplest scenario where

evaluating normal controls vs AD patients to a more

complicated one in which differences between MCI

and AD were studied.

The idea behind ensemble frameworks has been

used in previous studies in order to decompose a dif-

ficult problem in multiple simpler ones. For exam-

ple, these alternatives are employed to alleviate the

computational burden associated with deep learning.
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Table 2. Performance obtained by our method in terms of balanced accuracy, sensitivity, specificity, precision, F1-score
and area under the ROC curve, respectively.

Controls vs Alzheimer’s

Bal Acc Sens Spec Prec F1-score AUC

0.96±0.03 0.99±0.01 0.93±0.05 0.94±0.04 0.97±0.04 0.98±0.01

Controls vs MCI converters

Bal Acc Sens Spec Prec F1-score AUC

0.94±0.02 0.97±0.05 0.93±0.05 0.92±0.05 0.94±0.02 0.93±0.03

Controls vs MCI stable

Bal Acc Sens Spec Prec F1-score AUC

0.86±0.04 0.94±0.06 0.91±0.05 0.90±0.06 0.92 ±0.05 0.88±0.02

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
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Figure 5. ROC curves obtained in the different classification scenarios.

Images are usually partitioned and processed instead

of being processed as a whole since it would require

high memory and computational resources that are

not always met. Ensemble architectures have also

been used for combining information from different

modalities.2,7 In these contexts, the aim is to extract

information from different sources that can be rele-

vant for classification. However, most of these works

do not rely on an integrative model that simultane-

ously identifies informative patterns from different

sources. On the contrary, they build one model for

each modality, compute the relevance of each indi-

vidual model and combine them according to their

relevance. Although these alternatives can lead to a

high performance, the interpretability of their results

must be done carefully. Specifically, they provide in-

formation about how relevant a specific modality is

according to its weight in the ensemble scheme. The

higher the weight, the higher the importance, and

viceversa. In the study of the development of AD,

these techniques would allow to measure the impor-

tance of structural and functional damage in the pre-

diction of the progression of this pathology. How-

ever, they would not inform about the relationship

between both modalities, which could be crucial for

a better understanding of this disease.

The method proposed in this work efficiently re-

lates functional and structural information by com-

puting the similarity between them. Thus, our ap-

proach exploits the complementarity between the
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Figure 6. Example of the activation maps for different brain regions for structural and functional images, and after the
fusion process in the CTL vs AD classification context.

1

0

Figure 7. Weights of the neurons at the output of the first linear layer of the attention module in the CTL vs AD
classification scenario. These values represent the relevance of each individual region in the classification outcome.

two modalities of medical imaging to detect abnor-

malities in the brain. In healthy subjects, the basal

state of the brain would present a minimum atrophy,

in addition to a correct functionality. This leads to

a certain “distance”, a specific measure that relates

these two states. However, it is likely that patients

with an incipient cognitive decline would present

structural or functional changes in their brain. In

this case, our method would detect a deviation in

the relationship between the two imaging modalities.

Moreover, people diagnosed with Alzheimer’s disease

will present a much higher atrophy in the brain, as

well as a loss of brain function. Thus, it would be even

easier for our tool to carry out a correct diagnosis.
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Nevertheless, there is not always a direct relation-

ship between structural and functional damage in a

brain region, as Figure 6 shows. It is possible that

atrophy is present in a brain region, but the func-

tionality associated with this region is still preserved.

Otherwise, it would not be necessary the acquisition

of anatomical and functional imaging because they

would provide exactly the same information. For this

reason, we would like to highlight the importance of

the contribution of this work, presenting a method

that allows the intra-model combination of two imag-

ing modalities by quantifying their differences.

It is important to note that our method eval-

uates the structural-functional relationship for indi-

vidual brain regions. From the technical standpoint,

this mitigates the curse of dimensionality problem

that appears when the number of features (voxels

in 3D images) is much higher than the number of

samples (images in the database). From the clini-

cians point of view, it is quite interesting to predict

the outcome of a patient in order to select a proper

treatment that delay the brain damage caused by

AD. Besides, it is highly important to identify the

brain regions where abnormalities caused by AD are

present. Our method shows a high sensitivity in the

detection of these regions either for abnormalities

in their structure or by a loss in their functional-

ity. Specifically, we clearly identified alterations in

the precuneus, hyppocampus, thalamus or the or-

bitofrontal cortex, regions with a crucial role in the

development of AD.60–63 This allows a better under-

standing of the affection and an early identification of

the neural functions that will affect the patient in the

future, leading to a tool for personalized medicine to

improve the patient’s health. Finally, the high perfor-

mance obtained by our framework evidences its suit-

ability in the identification of abnormal brain pat-

terns. Results reveal the usefulness of our method

not only for detecting AD, but for expanding our

knowledge about the development of this disorder.

7. Conclusions and Future Work

In this work, we propose a method based on deep

learning to combine medical images from different

modalities. The method used relies on a siamese neu-

ral network, an architecture which computes differ-

ences between structural and functional data from

the brain. This combined information is then entered

into an attention module employed to identify the

relevance of each brain region and modality in the

development of Alzheimer’s disease. The high perfor-

mance shown by our method manifests its suitability

for combining complementary information from dif-

ferent modalities. Besides, it paves the way for differ-

ent applications not only in the medical field, but in

imaging processing. Alternatively, the high flexibility

of siamese architectures allows fusing more than two

modalities by the inclusion of an additional branch

for each new data type, leading to a scalable method-

ology that can be used in a wide range of scenarios.
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Y.-D. Zhang, and J. M. Górriz, “Uncertainty-driven
ensembles of multi-scale deep architectures for im-
age classification,” Information Fusion, vol. 89, pp.
53–65, 2023.

34. J. E. Arco, A. Ortiz, J. Ramı́rez, F. J. Mart́ınez-
Murcia, Y.-D. Zhang, J. Broncano, M. Álvaro
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