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Abstract. Measurement-based profiling introduces intrusion in program
execution. Intrusion effects can be mitigated by compensating for mea-
surement overhead. Techniques for compensation analysis in performance
profiling are presented and their implementation in the TAU performance
system described. Experimental results on the NAS parallel benchmarks
demonstrate that overhead compensation can be effective in improving
the accuracy of performance profiling.
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1 Introduction

Profiling and tracing are the two main approaches for empirical parallel perfor-
mance analysis. Parallel tracing is most often implemented as a measurement-
based technique. Here, the application code is instrumented to observe events
which are recorded in a trace buffer on each occurrence during execution [5, 28].
In contrast, performance profiling [16] can be implemented in one of two ways:
1) in vivo, with measurement code inserted in the program (e.g., see [6, 9, 21,
23, 24]), or 2) ex vivo, by periodically interrupting the program to assign perfor-
mance metrics to code regions identified by the halted program counter (e.g., see
[10, 13, 14, 22, 26]. The first technique is commonly referred to as measurement-
based profiling (or simply measured profiling) and is an active technique. The
second technique is called sample-based profiling (also known as statistical pro-
filing) and is a passive technique since it requires little or no modification to
program.

There are significant differences of opinion among performance tool research-
ers with regards to the merits of measured versus statistical profiling. The is-
sues debated include instrumentation, robustness, portability, compiler optimiza-
tions, and intrusion. Ultimately, the profiling methods must be accurate, else
the differences of opinion really do not matter. Herein lies an interesting per-
formance analysis conundrum. How do we evaluate analysis accuracy when the
“true” performance is unknown? Some technique must be used to observe per-
formance, and profiling tools will always have limitations on what performance
phenomena can and cannot be observed [17]. Is a tool inaccurate if it does not



provide information about particular performance behavior at a sufficient level
of detail? Furthermore, no tool is entirely passive, and any degree of execution
intrusion can result in performance perturbation [17]. Should not all profiling
tools be considered inaccurate in this case? Parallel performance analysis is no
different from experimental methods in other sciences. “Truth” always lies just
beyond the reach of observation. As long as this is the case, accuracy will be a
relative assessment.

Until there is a systematic basis for judging the accuracy of profiling tools,
it is more productive to focus on those challenges that a profiling method faces
to improve its accuracy. Our work advocates measured profiling as a method of
choice for performance analysis [21]. Unfortunately, measured profiling suffers
from direct intrusion on program execution. This intrusion is often reported as
a percentage slowdown of total execution time, but the intrusion effects will be
distributed throughout the profile results. The question we pose in this paper is
whether it is possible to compensate for these effects by quantifying and removing
the overhead from profile measurements.

Section §2 describes the problem of profiling intrusion and outlines our com-
pensation objectives. The algorithms for overhead removal are described in Sec-
tion §3. We tested these on a series of case studies using the NAS parallel bench-
marks [1]. In Section §4, we report our findings with an emphasis on evaluating
relative accuracy. Our approach can improve intrusion errors, but it does not
fully solve the overhead compensation problem. Section §5 discusses the thorny
issues that remain. Conclusions and future work are given in Section §6.

2 Measured Profiling and Intrusion

Profiling associates performance metrics with aspects of a program’s execution.
Normally, it is the program’s components being profiled, such as its routines
and code blocks, and profile results show how performance data are distributed
across these program parts. Execution time is the most common metric, but any
source of performance data is valid (e.g., hardware counters [4, 6, 23, 30]). Flat
profiles show performance data distributed onto the static program structure,
while path profiles [11] map performance data to dynamic program behavior,
most often represented as program execution paths (e.g., routine calling paths
[7, 11]). Profiling both measures performance data and calculates performance
statistics at runtime.

Measured profiling requires direct instrumentation of a program with code
to obtain requisite performance data and compute performance statistics. Gen-
erally, we are interested in observing events that have entry / exit semantics.
Instrumentation is done both at the event “entry” point (e.g., routine begin)
and the event “exit” point (e.g., routine return). Profile statistics report per-
formance metrics observed between event entry and exit. We typically speak
of inclusive performance, which includes the performance of other descendant
events that occur between the entry and exit of a particular event, as well as of
exclusive performance, which does not include descendant performance.
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Unfortunately, the measurement code alters the program’s execution, pri-
marily in execution time dilation, but it also affects hardware operation. In-
trusion will be reflected in the profile results unless techniques can compensate
for it. Other research work has sought to characterize measurement overhead
as a way to bound intrusion effects or to control the degree of intrusion during
execution. For instance, the work by Kranzlmüller [15] quantifies the overhead
of MPI monitors using the benchmarking suite SKaMPI, and Fagot’s work [8]
assesses systematically the overhead of parallel program tracing. The work by
Hollingsworth and Miller [12] demonstrates the use of measurement cost models,
both predicted and observed, to control intrusion at runtime via measurement
throttling and instrumentation disabling.

Our interest is to compensate for measurement intrusion. Thus, we need
to understand the intrusion effects are manifested in performance profiles. Let
us first consider inclusive execution time profiles, using routines as our generic
events. Two timing measurements are necessary to determine inclusive time for
a routine every time it is called: one to get the current clock value at time of
entry and one to get the clock value at exit. The difference between the clock
samples is the inclusive time spent in this call. Let ∆i represent the overhead to
measure the inclusive time. If the routine A is executed N times, its inclusive
time is increased by N ∗ ∆i measurement overhead.

However, A’s inclusive time is also increased by the overhead incurred in the
inclusive time measurement of descendant routines invoked after A is called and
before it exits. If M routines are called while A is active (M covers all calls to A),
the inclusive time is increased additionally by M ∗ ∆i because each descendant
routine profiled will incur inclusive overhead.

To calculate A’s exclusive time, the inclusive time spent in each direct de-
scendant is subtracted from A’s inclusive time. Since this occurs at A’s exit,
the inclusive times for all direct descendant calls must be summed. If ∆e is the
measurement overhead to do the summation upon each direct descendant exit,
the total overhead that gets reflected in A’s exclusive time is L ∗ ∆e for L di-
rect descendant calls. (The subtraction from A’s inclusive time is small and will
be ignored for sake of discussion.) It is important to observe that all overhead
accumulated in the inclusive times of A’s direct descendants gets cancelled in
the exclusive time computation. Unfortunately, if we calculate the inclusive and
exclusive times simultaneously, as is normally the case, the L∗∆e overhead must
be added to A’s inclusive time.

To summarize, the total performance profile of routine A will show an increase
in inclusive time due to measurement overhead of N ∗∆i + M ∗∆i + L ∗∆e,
where N is the total number of times A is called, M is the number of times
descendant routines of A are called, and L is the number of times A’s direct
descendant routines are called. The performance profile of routine A will also
show an increase in exclusive time of L ∗ ∆e due to overhead.

Standard profiling practice does not report the measurement overheads in-
cluded in per event inclusive and exclusive profiles. Typically, overhead is re-
ported as a percetage slowdown in total execution time, with the implicit as-
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sumption that measurement overhead is equally distributed across all measured
events. Clearly, this is not the case. Events with a large number of descendant
event occurrences will assume a greater proportion of measurement overhead. If
we cannot compensate for this overhead, the performance profile will be distorted
as a result. Furthermore, if processes of a parallel application exhibit different
execution behavior, the parallel profiles will show skewed performance results.

3 Overhead Analysis and Compensation

The above formulation allows us to quantify the measurement overheads that
occur in inclusive and exclusive times as a result of measured parallel profiling. If
we were to actually compute these overheads, it must be done at runtime because
the overheads depend on the dynamic calling behavior. However, our goal is to
additionally remove the measurement overhead incurred in parallel profiling.
Thus, the profiling system must both track the overhead and compensate for it
dynamically in profile computations.

As a first step, we must determine the values ∆i and ∆e. These overhead
units will certainly depend on the machine and compilers used, but could also
be influened by the application code, the languages and libraries, how the ap-
plication is linked, and so on. Also, it should not be assumed that ∆i and ∆e

are constant. In fact, they may change from run to run, or even within a run.
This means that we must measure the overhead values at the time the applica-
tion executes, and even then the values will be approximate. The approach we
propose is to conduct overhead experiments at application startup.

3.1 Overhead Analysis

To ascertain the overhead values ∆i and ∆e, we must measure the instrumenta-
tion code that calculates inclusive and exclusive performance. However, the ∆i

and ∆e values may be at the same scale as the measurement precision. Thus,
we must construct a test that guarantees statistical accuracy in our estimation
of ∆i and ∆e.

Our approach is to conduct a two-level experiment where the inclusive mea-
surement code is executed k number of times (in a tight loop) and the per-
formance data being profiled is measured and stored. This procedure is then
repeated j times and the minimum performance value across the j experiments
is retained. We use that value divided by k to compute ∆i. While this does not
entirely insure against anomalous timing artifacts, its statistical safety can be
improved by increasing j. The two-level experiment is then repeated, this time
with the exclusive measurement code included, resulting in an approximation
of ∆i + ∆e. We can substract our ∆i approximation to find ∆e. It is impor-
tant to note that we need to do this overhead evaluation at the beginning of
the application execution for the specific set of profile performance data being
measured.1

1 In this regard, ∆i and ∆e are really vectors of overhead values.
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3.2 Overhead Compensation

Given the approximations for ∆i and ∆e, we are ready to apply overhead com-
pensation. There are several ways to go about it. One way is to use the formulas
above and remove the overhead at the end of the execution. To do so, however,
we must determine the variables N , M , and L for every event. Without going
into details, calculating N , M , and L amounts to maintaining a dynamic call
graph for every currently active event as the root of its own call tree. Knowing
this allows us to consider a second way that removes inclusive overhead on-the-
fly with every event exit. In this case, we need to only determine mi and li values
for each ith event occurrence (M =

∑
mi and L =

∑
li, for 1 ≤ i ≤ N). Since

we must calculate profile values at event exit, it is reasonable to have these be
compensated calculations.

Using compensated inclusive calculations at event exit, we now have a choice
for calculating compensated exclusive profile values. Without loss of generality
with respect to other performance metrics, consider only execution time. The
exclusive time for an event A is the difference between A’s inclusive time and
the sum of the inclusive times of all of A’s direct descendants. Regardless of
compensated or uncompensated inclusive times, we have to accummulate the
inclusive times of A’s direct descendants. However, for uncompensated inclusive
times, an additional subtraction at A’s exit of li ∗ δe is needed to calculate the
exclusive profile time for this invocation of A. Thus, the scheme we advocate for
on-the-fly overhead compensation of exclusive time is to subtract the compen-
sated inclusive times of A’s direct descendants (as they exit) from A’s running
exclusive time, and add A’s compensated inclusive time back in when A finally
returns.

4 Experiments with Compensation Analysis in TAU

To evaluate the efficacy of overhead compensation, we must implement the meth-
ods described above in a real parallel profiling system and demonstrate their abil-
ity to improve application profiling results. To this end, we have implemented
the overhead compensation techniques in the TAU parallel performance system
[21]. TAU uses measured profiling to generate both flat profiles and callpath
profiles. Inclusive and exclusive overhead compensation is implemented in TAU
for both profiling modes.

How will we know if our overhead compensation works successfully? The
standard measure for intrusion error is usually given as a percentage slowdown
in total execution time. Thus, one can test the ability of a compensation-enabled
profiling tool to accurately recover total execution time from profile measure-
ments with varying levels of instrumentation. As the instrumentation increases,
so likely will the intrusion and the overhead compensation techniques will be
more stressed. However, it is important to understand that accurate perfor-
mance profiling will also depend on the precision of measurement, in particular,
the ability to observe small performance phenomena. Overhead compensation
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can improve measurement accuracy, but it cannot remove measurement uncer-
tainty for small events.

For any level of instrumentation, it is reasonable to expect that less instru-
mentation leads to more accurate profiling results than more instrumentation.
Thus, if the total execution time is accurate, we might assume the rest of the pro-
file statistics are also. However, there are two issues to keep in mind. First, perfor-
mance variability due to environmental factors can arise even in un-instrumented
applications. Second, the success of overhead compensation on profile statistics
is difficult to assess given that the “real” profile values are not known. The best
we can do then is to compare profiling results at one level of instrumentation
with results from using less instrumentation, under the assumption that the ex-
ecution is relatively stable and the results from less instrumented runs are more
reliable and accurate.

4.1 Experimental Methodology

The experimental methodology we use to evaluate overhead compensation char-
acterizes the profiling measurement for an application with respect to levels of
instrumentation and sequential versus parallel execution. For the experiments
we report here, we used three levels of instrumentation. The main only (MO)
instrumentation is used to determine the total execution time for the “main”
routine. This will serve as our standard estimate for overall performance using
as little instrumentation as possible. The profile all (PA) instrumentation gen-
erates profile measurements for every source-level routine of the program. The
callpath all (CA) instrumentation uses TAU’s callpath profiling capabilities to
generate profile measurements for routine callpaths of the program. Obviously,
this CA instrumentation is significantly greater than PA and will further stress
overhead compensation.

Five experiments are run for an application using the three levels of instru-
mentation. The MO experiment gives us a measure of total execution time.
For parallel SPMD applications, we profile the “main” routine of the individual
processes, using the maximum as the program’s total execution time. The per
process times can also be used for evaluation under the assumption the pro-
gram’s behavior is well-behaved. The PA experiment returns profiling measure-
ments without compensation. We let PA-comp represent a PA-instrumented run
with compensation enabled. Similarly, a CA experiment returns callpath pro-
filing measurements without compensation and a CA-comp experiment returns
callpath profile results after overhead compensation.

We can compare the “main” profile values from PA, PA-comp, CA, and CA-
comp runs to the MO run to evaluate the benefit of overhead compensation.
However, we can also look at other indirect evidence of compensation effec-
tiveness. Assuming the PA-comp run delivers accurate profile results, we can
compare the associated statistics from the CA-comp profile to see how closely
they matched. This can also be done for the PA and PA-comp runs with different
levels of instrumentation. Per process values can be used in all parallel cases for
comparison under SPMD assumptions.
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Ten trials are executed for each experiment. We have a choice of using pro-
file results with the minimum “main” values or the average “main” values in
the evaluation. Our preference is to use the profiles reporting minimums. The
reason is that these runs are likely to have less artifacts in the execution (i.e.,
anomalies not directly attributed to the program) and, thus, represent “best
case” performance. On the other hand, an argument can be made to take the
average profile values, since artifacts may be related to the instrumentation. We
report both values in our results below. However, it is important to note that
calculating average profiles may not be reliable for programs that do not behave
in a deterministic manner.

Following the experimental methodology above, we tested overhead compen-
sation on all NAS parallel benchmark applications [1]. As the application codes
vary in their structure and number of events, we expected differences in the
effectiveness of compensation. We ran the ten experiments for each application
sequentially and on 16 processors. Problems sizes were chosen mainly to achieve
runtimes of reasonable durations. The parallel system used in our study was
a Dell Linux cluster.2 In the following sections, we report on six of the NAS
benchmarks: SP, BT, LU, CG, IS, and FT.

4.2 Sequential Experiments

Table 1 shows the total sequential execution time of “main” in microseconds
from the different profiles for the different applications. The minimum and mean
values are reported. We also calculate the percentage error (using minimum and
mean values) in approximating the MO time for “main.” The dataset size (A or
W) used in the experiments is indicated.

An important observation is that the TAU measurement overhead per event
is already very small, on the order of 500 nanoseconds for flat profiling on a 2.8
GHz Pentium Xeon processor. This can be easily seen in the TAU profile results
(not shown) where the overhead estimation is given as an event in the profile. Of
course, the slowdown seen in the PA and CA runs depends on the benchmark
and the number of events instrumented and generated during execution. Because
more events are created for callpath profiling, we expect to see more slowdown
for the CA runs.

The results show that overhead compensation is better at approximating
the total execution time, both for flat profiles and for callpath profiles. This is
generally true for all of the NAS benchmarks we tested. In the case of IS-A,
the flat profile compensation (PA-comp) shows remarkable improvement, from
a 193% error in the PA measurement to within 2.1% of the “main” execution
time. The improvements in compensated callpath profiles for SP-W to less than
1% error are also impressive.

2 Hardware: 16 dual-processor 2.8 GHz Intel r© Pentium 4 XeonTM CPUs, 512 KB
cache, 4 GB memory per node, gigabit ethernet interconnect, hyperthreading en-
abled. OS: Red Hat Linux 2.4.20-20.8smp kernel.
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Experiment MO PA PA-comp CA CA-comp
µsecs µsecs µsecs µsecs µsecs

SP-A min 387588657 397602281 392833924 405226516 399405895
mean 388540699 398360423 394245841 407233889 401650317

%error (min:mean) 2.5 : 2.5 1.3 : 1.4 4.5 : 4.8 3.0 : 3.3

SP-W min 65427051 67942093 66404006 71812623 65517453
mean 66178471 69254426 67104562 73659688 66687843

%error (min:mean) 3.8 : 4.6 1.4 : 1.3 9.7 : 11.3 0.1 : 0.7

BT-A min 522765488 549063282 542479898 553178345 532736660
mean 524248915 552617635 545409236 555959945 536680190

%error (min:mean) 4.6 : 5.2 3.4 : 3.8 5.8 : 6.0 1.9 : 2.3

LU-W min 297366632 300993317 302786082 306287598 303405699
mean 299395075 302941264 305796049 307849925 306172285

%error (min:mean) 1.4 : 3.3 0.0 : -0.6 10.2 : 8.9 3.4 : 2.6

CG-A min 5368659 5733951 5740469 6824800 6536302
mean 5560969 5758157 5764569 6916842 6628535

%error (min:mean) 6.8 : 3.5 6.9 : 3.6 27.1 : 24.3 21.7 : 19.1

IS-A min 5967910 17540614 6094620 35457776 2632054
mean 5987002 17667114 6215288 36008102 4441510

%error (min:mean) 193.9 : 195.0 2.1 : 3.8 494.1 : 501.4 -55.8 : -25.8

FT-A min 24593893 25418103 25296244 29104159 28754736
mean 25215853 25549141 25557557 29470907 28918045

%error (min:mean) 3.3 : 1.3 2.8 : 1.3 18.3 : 16.9 16.9 : 14.6

Table 1. Overhead Compensation Results for NAS Benchmarks on Linux Cluster -
Sequential

To be clear, we are instrumenting every routine in the program as well as
every depth of callpath. If, as a result, we instrument a small routine that gets
called many times, overheads can accumulate significantly. For callpath profiling
with instrumentation including a small event, overheads will be effectively mul-
tiplied by the number of callpaths containing the small routine. This is what is
happening in IS-A. Flat profile compensation can deal with the error, but call-
path compensation cannot. It is interesting that the reason can be attributed to
the small differences in overhead unit estimation, ranging in this case from 957
nanoseconds (minimum) to 1045 (maximum). This seemingly minor 90 nanosec-
onds difference is enough in IS-A callpath profiling to cause major compensation
errors. Certainly, the proper course of action is to remove the small routine from
instrumentation.

4.3 Parallel Experiments

Table 2 reports the results for parallel execution of the six NAS benchmarks on
the Linux Xeon cluster. All of the applications execute as SPMD programs using
MPI message passing for parallelization across 16 processors. For evaluation
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purposes, we compare minimum “main” values for each process to those for the
MO run. Each process will complete its execution separately, resulting in different
“main” execution times. We show the range of minimum values (labeled “high”
and “low” in the table), the mean error over this range (comparing process-by-
process with the minimum results from the MO run), and the error of the mean
and “high” values (effectively execution time of Node 0’s “main”).

Experiment MO PA PA-comp CA CA-comp
µsecs µsecs µsecs µsecs µsecs

SP-A min (high) 67369049 67519758 67758618 72968801 73416350
min (low) 64346890 64834412 64963104 67047549 67124742

%error (mean:high) 0.6 : 0.2 0.8 : 0.5 4.3 : 8.3 4.3 : 8.9

SP-W min (high) 13874506 14217942 14257427 15336991 13985473
min (low) 11306714 11602819 11628739 12539279 11064565

%error (mean:high) 2.5 : 2.4 2.5 : 2.7 9.9 : 10.5 -1.5 : 0.7

BT-A min (high) 76799427 77454300 77839767 85876074 85835820
min (low) 74182308 74696115 74937243 78018235 77721303

%error (mean:high) 0.6 : 0.8 1.0 : 1.3 5.5 : 11.8 5.4 : 11.7

LU-A min (high) 36966517 37783314 37629343 52540729 52395303
min (low) 34399415 35194131 35099696 43787261 43176436

%error (mean:high) 2.2 : 2.2 1.8 : 1.7 27.5 : 42.1 25.7 : 41.7

CG-A min (high) 4353851 4612676 4525479 8677331 8291439
min (low) 1848843 2076113 1950485 4252990 3691704

%error (mean:high) 7.4 : 5.9 3.8 : 3.9 84.1 : 99.3 65.6 : 90.4

IS-A min (high) 5420444 5973752 5836727 8301860 5585069
min (low) 2772617 3490618 3080709 5789329 1634756

%error (mean:high) 17.9 : 10.2 11.1 : 7.6 76.9 : 53.1 1.4 : 3.0

FT-A min (high) 8085574 8195461 8088853 9620210 9366497
min (low) 5422766 5518819 5485972 6021030 6029058

%error (mean:high) 0.8 : 1.3 -0.1 : 0.0 8.9 : 18.9 8.6 : 15.8

Table 2. Overhead Compensation Results for NAS Benchmarks on Linux Cluster -
Parallel

Overall, the results show that compensation techniques improve performance
estimates, except in a few cases where the differences are negligible. This is en-
couraging. However, we also notice that the results display a variety of interesting
characteristics, including differences from the sequential results.

For instance, the PA values for SP-A, BT-A, and FT-A are practically equiv-
alent to “main” only results, yet the sequential profiles show slowdowns. The PA-
comp values are within less than 1% in these cases. We believe this suggests that
the instrumentation intrusion is being effectively reduced due to parallelization,
resulting in fewer events being measured on each process. We tend to charac-
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terize the SP-W flat profile experiments in the same way, since the errors are
reasonably small and the minimum ranges are tight.

Other benchmarks show differences in their range of minimum “main” exe-
cution times. IS-A is one of these. It also has the greatest error for flat profile
compensation. Compared to the sequential case, there is a significant reduction
in PA error (193.9% to 10.2%) due to intrusion reduction, but the compensated
values are off by 11.1% on average per process and 7.6% for Node 0’s “main”
time (compared to 2.1% minimum error in the sequential case). This suggests a
possible correlation of greater range in benchmark execution time with poorer
compensation, although it does not explain why.

CG-A also has a significant difference in its “high” and “low” range, but
its PA-comp errors are lower than IS-A. However, as more events are profiled
with callpath instrumentation, the CA and CA-comp errors increase significantly.
Compared to the sequential CA and CA-comp runs, we also see a slowdown in
execution time compared to the sequential case. This is odd. Why, if we assume
the measurement intrusion is being reduced by parallelization, do we see an
execution slowdown? Certainly, the number of events is affecting compensation
performance, as was the case in the sequential execution, but the increase in
execution times beyond the sequential results suggests some kind of intrusion
interdependency. In addition, we see the execution time range is widening.

Looking for other examples of widening execution time range with increased
number of events, we find additional evidence in the callgraph runs (CA and
CA-comp) for SP-A, BT-A, LU-A, and FT-A. The effect for LU-A is particu-
larly pronounced. Together with the observations above, these findings imply
a more insidious problem that may limit the effectiveness of our compensation
algorithms. We discuss these problems below.

5 Discussion

The experiments we conducted were stress tests for the overhead compensation
algorithms. We profiled all routines in the application source code for flat profiles
and we profiled all routine calling paths for callpath profiles.3 While the results
show the overhead compensation strategies implemented in TAU are generally
effective, we emphasize the need to have an integrated approach to performance
measurement that takes into account the limits of measurement precision and
judicious choice of events. It should not be expected that performance phe-
nomena occurring at the same granularity as the measurement overhead can be
observed accurately. Such small events should be eliminated from instrumenta-
tion consideration, improving measurement accuracy overall. In a similar vein,
there is little reason to instrument events of minor importance to the desired
performance analysis.

TAU implements a dynamic profiling approach where events to be profiled are
created on-the-fly. This is in contrast with static profiling techniques where all

3 We did eliminate a few very small routines: BINVCRHS, MATMUL SUB, and MATVEC SUB,
from the BT benchmark, and ICNVRT from CG.
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events must be known beforehand [7]. Static approaches can be more efficient in
the sense that the event identifiers and profile data structures can be allocated a
priori, but these approaches do not work for usage scenarios where events occur
dynamically. While TAU’s approach is more general, modeling the overhead
is more complicated. For instance, we do not currently track event creation
overhead, which can occur at any time. Future TAU releases will include this
estimate in the overhead calculation. The good news is that we made significant
improvements in the efficiency of TAU’s profiling system in the course of this
research. Our callpath profiling overheads were improved ten times by switching
to a more efficient callpath calculation and profile data lookup mechanism.

Callpath profiling is more sensitive to recovery of accurate performance statis-
tics for two reasons. First, there are more callpath events than in a flat profile
and each callpath event is proportionally smaller in size. Second, we only esti-
mate the flat profiling overhead at this time in TAU. The overhead for profiling
measurements of callpaths is greater because the callpath must be determined
on-the-fly with each event entry and the profiling data structures used must be
mapped dynamically at runtime (flat profile data structures are directly linked).
Nevertheless, it is encouraging how well compensation works with callpath pro-
filing using less exact (smaller) overhead values. Also, TAU’s implementation
of callpath profiling allows the depth of callpath to be controlled at execution
time. A callpath depth of 0 results in a flat profile. Setting the callpath depth
to d results in events for all callpaths of length ≤ d being profiled. This callpath
depth control can be used to limit intrusion.

The most important result from the research work is the insight gained on
overhead compensation in parallel performance profiling. Our present techniques
are necessary for compensating measurement intrusion in parallel computations,
but they are not sufficient. Depending on the application’s parallel execution
behavior, it is possible, even likely, that intrusion effects seen on different pro-
cesses are interdependent. Consider the following scenario. A master process
sends work to worker processes and then waits for their results. The worker pro-
cesses do the work and send their results back to the master. A performance
profile measurement is made with overhead compensation analysis. The workers
see some percentage intrusion with the last worker to report seeing a 30% slow-
down. The compensated profile analysis works well and accurately approximates
the workers “actual” performance. The master measurement generates very little
overhead because there are few events. However, because the master must wait
for the worker results, it will be delayed until the last worker reports. Thus, its
execution time will include the last worker’s 30% intrusion! Our compensated
estimate of the master’s execution time will be unable to eliminate this error be-
cause it is unaware of the worker’s overhead. We believe a very similar situation
is occurring in some, if not all, of the parallel experiments reported here.

Figure 1 depicts the above scenario. Figure 1(a) shows the measured ex-
ecution with time overhead indicated by rectangles and termination times by
triangles. The large triangle marks where the program ends. The overhead for
the master is assumed to be negligible. The arrows depict message communi-
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cation. Figure 1(b) shows the execution with all the overhead bunched up at
the end as a way to locate when the messages returning results from the work-
ers (dashed arrows) would have been sent and the workers would have finished
(small shaded triangles), if measurements had not been made. Profile analysis
would correctly remove the overhead in worker performance profiles under these
circumstances. However, the master knows nothing of the worker overheads and,
thus, our current compensation algorithms cannot compensate for it. The master
profile will still reflect the master finishing at the same time point, even though
its “actual” termination point is much earlier.

(a) (b)

W1

W3

W2

W1

M M

W1

W2

W3

W3W1W2 W3W2

Fig. 1. Parallel Execution Measurement Scenario.

Unfortunately, parallel overhead compensation is a more complex problem to
solve. This is not entirely unexpected, given our past research on performance
perturbation analysis [18–20]. However, in contrast with that work, we do not
want to resort to a parallel trace analysis to solve it. The problem of overhead
compensation in parallel profiling using only profile measurements (not tracing)
has not been addressed before, save in a restricted form in Cray’s MPP Ap-
prentice system [29]. We are currently developing algorithms to do on-the-fly
compensation analysis based on those used in trace-based perturbation analysis
[25], but their utility will be constrained to deterministic parallel execution only,
for the same reasons discussed in [17, 25]. Implementation of these algorithms
also will require techniques similar to those used in PHOTON [27] and CCIFT [2,
3] to embed overhead information in MPI messages. While Photon extends the
MPI header in the underlying MPICH implementation to transmit additional in-
formation, the MPI wrapper layer in the CCIFT application level checkpointing
software allows this information to piggyback on each message.

6 Conclusion

Measured profiling has proven to be an important tool for performance analysis
of scientific applications. We believe it has significant advantages over statis-
tical profiling methods, but there are important issues of intrusion that must
be addressed. In this paper, we focus on the removal of measurement overhead
from measured profiling statistics. The algorithms we describe for quantifying
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the overhead and eliminating it on-the-fly have been implemented in the TAU
performance system. Testing these algorithms using TAU on the NAS parallel
benchmarks shows that they are effective at reducing the error in estimated per-
formance. This is demonstrated for both flat and callpath profiling. In general,
the overhead compensation techniques can be applied to any set of performance
metrics that can be profiled using TAU.

However, there are still concerns and problems to address. We need to validate
the compensation analysis approach on other platforms where different factors
will influence observed overhead. We need to better understand the limits of
overhead compensation and its proper use in an integrated instrumentation and
measurement strategy. In particular, the problems with overhead compensation
analysis in parallel profiling require further study. While the current methods
do reduce intrusion error in parallel profiling, they are unable to account for
interdependent intrusion effects. We will address this problem in future research.
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